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Abstract

Triangulations without large angles have a number of applications in nmnerical
analysis and computer graphics. In particular, the convergence of a finite element cal-

culation depends on the largest angle of the triangulation. Also, the running time of
a finite element calculation is dependent on the triangulation size, so having a trian-

gulation with few Steiner points (added vertices) is also important. Bern, Dobkin and
gppstein [1991] pose as an open problem the existence of an algorithm to triangulate a.
planar straight-line graph (PSLG) without large angles using a polynomial number of
Steiner points.

We solve this problem by showing that any PSLG with v vertices can be triangulated
wi{,h no angle larger than 7¢r/8 by adding O(v 2 log v) Steiner points in O(v 2 log 2 v) time.
We first, triangulate the PSLG with an arbitrary constrained triangulation and then
refi_ze that triangulation by adding additional vertices and edges. Some PSLGs require
ff/(v2) Steiner points in any triangulation achieving any largest angle bound less than
7r. Hence the number of Steiner points added by our algorithm is within a log v factor
of worst case optimal.

We note that our refinement algorithm works on arbitrary triangulations: Given
any triangulation, we show how to refine it so that no angle is larger than 77r/8. Our
construction adds O(nm+np log m) vertices and runs in time O((nm+np log m) log(m+
p)), where n is the number of edges, m is one plus the number of obtuse angles, and
p is one plus the number of holes and interior vertices in the original triangulation.
A previously considered problem is refining a constrained triangulation of a simple

polygon, where p = 1. Por this problem we add O(v 2) .qteiner points, which is within
a constant factor of worst case optimal. The algorithms we present are very practical:
Por most inputs the number of Steiner points and running time would be considerably
smaller than in the worst case.

°Em&il:samitch@cs.sandia.gov. Applied and Numerical Mathematics Department, Sandi_LNational l,ab-
oratories, PO Box 5800, Albuquerque, New Mexico 87185-5800. This work performed at Sandia NM,ional
Laboratories and was supported by the U.S. Department of Energy under contract I)F;-AC04-76DP00789,
and by the Applied MM.hematical Sciences progr_tm, U.S. Department. of Energy Rese_trch.
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l_'igUi'e 1" ,'\ 1,rialigliia,l, ioli refineilielil, inay require O(_/.m) _l, eilier !)Oilil,s l,o liaw" a, iiy coiisl, a,ill

a,ngle I)ound (left). Iii la,el, a. single _l,eiller pal li lilay rc'quire lt(?l,p)_l, eillOr l)oinl,s (rigtil,).

1 Introduction

1.1 Problem statement and motivation

\¥e _ro concerned with finding a, conforming oi" ,S'l,eine'r t,rio.'lzgulalio'n, of a, pla.na,r sl.ra.ighl,-lilie

graph (PSI,G). Tha, t is, we seek a t,ri_:ulgula,r gra,ph, such tha.t vortices of the ilipul, a.l)pea.r
a.svertices of the outpill,> alld edges of the inpul, a.t)pea.r a.sa Uliion Of edges of i,he Ol_ll, plll,.

,qteiner t,ria.ngula, tions whose t,ria.ngles ha.re bounded sli_q)e a,re iriiportant, for nlllilerica,l

alia.lysis, in parl.icula.r for a mesli iii a finite elenlenl, niel;hod, lla.bu_ka and Aziz [197,q]

siiows t.ha.t tile (,OllVel'gellCO of _-1finite olelllelll, nlethod depends Oil l,he largesl, ;i,llgle of lhc

tria, ngula.tioll, ell, ell one wishes to find a, t,ria,ligula, tioli for a, PSI,G tha.t is llOl; a l)olygoli.

For example, a. semiconductor may have two difrerently doped regions. Ilence a. descriptioii

of the semiconductor would include a,n edge with the interior of the region on l)ot,h sides.

Steiner t,ia, ngulations withoui, large a,ngles are a,lso of use iii functiona.l interi)ola.lion a.nd

computer gra,ptiics(seeBa,rnhin [1983]).
Iii addi_,Jon to the shape of the triangles, another iinporta.nt crit, erion for a. triangula.l;ion

is l_]le liilnlber of tria, ngles. ]"oi" exa,nlple> iii a, finite elelllell{ rnel, hod ca,lcula, l,ioli the llUllllier

of tria.ngles directly affects tl_e running time. For in_ny tria.ngulation a.lgorithins the iiuln-

ber of triangles produced depends on the input geometry oi" embedding, and nel just the
cardina, lity of the input. Bern, Dobkin and Eppstein [1991] pose a,s a,n open prolflenl the

exisl, ence of an a,lgorithni to triangula, te a. PSLG withoul, la,rge angles using only a. polyno-

inia.l liUlllber of a.dded vertices (called Sl;einer l)oinl.s), liere "l)olynolnia.l '' is ta,ken 1,oinca,li

1)olynoniia.l iii the input cardina.lity, independent, of tile geoinetry.

1.2 Previous results

For t)olygonal illl)ul, tliere are nially resull, s collcerning the COllSl, ruc.l, ion o[" l.ria.ng_ula.l.iolis

\vil.houl la.rg;e anglos, l/ern and I':pi)si, ein [1991] sllows how 1,() l.ria.iigulal.e _-111arl)il, rary
l)olygon so l,ha.1. Ii(./ a.ngle is (ll)liise 1)y ad(lilig ()(#_2) _leilier 1)Oilil;s. ]lel'li_ l)ol)kili ;i.i1(]

l:]l_l)Sl,eili [1991] sliows liow Io Iria, liglila,l,e va,riolis types of illpUl, l)_)]vg;olis witli v;l,i'iOliS
aiigle I)oulidS, USilig bel:\veen (J(_l{_gT_)aiid ()(,#_.l.S,-'.,),qJleiner t)oinl, s. II, is liliklioWii if file

iililill)ers of Sl,eiiier l)oints ad(led I)y l.tlose a,lgoril, tilliS are wors{ case ol)l, ilnal , as l.lle (Jill\'
knowl_ lower bou_id for.I)olyg,)lis and l)oinl s_,Is is f!(u). Bern, 17;l)l)stein and Gilbert [1,990]

shows how tc) l.ria.iigllla,l,e a. l)oint sel v,,itli ilO ol)l, use _:mgles using only a. linear llillilber of
Sl.einer l)oiill.s, wt_icl_ is worsl, case Ol)tiliial. l::pl>Sl.ein [1.9{)2]a,chieves lhis and siliiull.alie(_usly



apl)r(__xilllat.,.>t lte nlinirnuln weight St,einor triangulatiolt.
l{111)ert [1993] shows llow to tria,llgulate a I>SI,C s()l.lla.I no angle is slnall_'r l.t_all _/!),

and llellCe I1()a.llgle i_ la,rger tha.n 7_-/9. lIowever, any trialLgula.tioll l[lal, acIliev_,_ li() Sl_l_tll
angles is doomed to use. a nOn-l)olynolnial itumber of Steiner points, dependent on the iltl)Ut
geol:mtry. There are several previous algorithms that achieve similar results (by dissilllitar

techniques) for t)olygonal input. See Bern and Eppstein [1992] for a sumr.lary.
Edelsbrunner, 'Pa.n, and Waupotitsch [I990] shows how to generate a. con._'traincd tri<u_.-

gulation (one where no Steiner points a,re allowed) of a PSLG such thai tile maximunl angle

is minimized. The technique used is edge-insertion, a global stra.tegy that is a.genera.liza.l.iol_

of loca.1 edge flip. Mitchell and Park [1993] shows how to gene,'a.te a, covering triangulatio'l_
(one where no Steiner points are allowed on the input edges) of a PSI,G such tha,t the
ma,ximum angle is approximately minimum, using a polynomia.1 number of Steiner points.

1.3 Overview

\¥e consider the problem of triangulating a PSLG so tha.t no angles are large. We solve

this by first triangulating the PSLG with an arbitrary constrained triangulation, and then
refining that triangulation. Given any triangulation, we show how to refine it by adding

additional vertices and edges so that no angle is larger than 7rr/8. Our construction a,dds
O( nm+ np log m,) vertices and runs in time O((nm + np log m)log(m + p)). We define 1' to be

one plus the number of holes and interior vertices in the original triangulation. That is, p is
the number of two-dimensional connected components of the boundary of the region to be

triangulated, plus the number of vertices strictly interior to the region to be triangula.ted.
We define n to be the number of edges, and m to be one plus the number of obtuse angles

in the original triangulation. By Ealer's formula, in any constrained triangulation of a
PSI,G with v vertices each of p, n and m is O(v). ttence the final PSLG triangulation has

O(v _log v) vertices and takes O(v _log2 v) time.

Bern and Eppstein [1991] shows how to refine a constrained triangulation of a simple
polygon so that no angle is obtuse using O(n 4) Steiner points. They provide a lower bound
example, due to Paterson, that illustrates the key concept in our a,lgorithm. The example

shows that a triangulation refinement may require f_(n 2) (actually f_(nm)) Steiner points
in order to achieve any angle bound less than _r. The example consists of a stack of f_(7_)

long and skinny triangles capped by m = f_(n) triangles with obtuse angles directed into

the stack as in Figure 1 left.. Each obtuse angle in the cap requires a Steiner l)oiT_loll
the opposite triangle edge in order to refine the triangulation without large angles. This
induced Steiner point in turn illduces a Steine, r point on the next lower edge, etc. If tlm

figure is made sufliciently wide and short, the Steiner points induced for different ot)lus(,

angles are far apart and can not interact with one another, llence each of tile _(_1) ()l)l:llSe
angle induces _l(_z) Steiner points, for a total of _t(n 2) Steiner points.

Steiner path. The key concept in our algorithm is the fact ttmt if the tinal lriangulalio_l

is to have no large angles, adding a Steiner l)oint on one edge of a triangle may induce l]l(._

addition of a, Steiner point on another edge of tile triangle. We call a sequence of i_lduced

._l.einer points a. ,fftei_cr path. Besides being fairly intuitive, tilt: la.ct tl_a.t St(,.il_er l)allls
a.re sometimes necessary can be proved a.s a direct result of a. len_ma al)oul consl.rail_e(I

triangulations in l';delsl)runner, "Fan. and Wa,ul)otitsch [1990] (so(, Sec(iol_ 2.1 ).



:\ v_ri_ll, i_lll <ill l_il.l,erson'_ exa, illllle l)r_lvi_l('s axl_lil,iollal lllol, iv;ll,i_>ll f<_r SIx'ill_,r 1)al, ll,_ ill

S_'cl, ioJl L_. 'l'h(' ._l,i_ck :_,]ld l, ll,, (_ll_ ca li be rel_l_l,ce_t I_v 1,ria,u_les _11 Ila\'ilk._ :l v<'rl,_'x iI_ _'<'llll_l<_ll:

llli(ldle sl,a,cl_ _t" size _(7_,). 'l'lie Sl_:in?r pa,l.]l stiowli iii l:i_llro 1 ri_hl, i:_ regliil'_'d 1,o iilt<,i'secl,

li_a.y r(_qllire __(z_,'2) (ia,(,l,u;I,lly _(_,p)) St(;iiler l)oinl, s in _l,ny reli lielllolll, i,ha.l, achi(;ves ali a,llglo
I)oulld less tlia, u _r.

Algorithm. Our a,lgorithm is a,s follows. C,iv(:li a. l>Sl,(.;, we 1,ria,ligllla,l,e il, wil, li ii,li

a,rl)il, ra, ry consl, ra, iilod l,ria,ngula.l, iou a,lgoril, hm, such a,s l,llo lliilill_iix a.llglo l,ria, ll_ula, l,ioll of

I']<lelsl)ruulior, 'l'a,n, i_n(l \&:iCUl)Ol,it, sch []Ltg()]. lle.lic(,.tTirl, ll we c<llisider 1,h_l,1,1,ria,ii_lllll, l,ion

a,,_ollr int)ul,. Vet oa,cii obtuse a,ll_lo vertex of l,lie inl)Ul, > we ,_ulldivide it inl,tl two ax:.ul,e

a,il_les I)7 _ddill_ the a,ll;itnde from ii, to i, tie Opl)OSii;o l,i'ia, n__!_lee(i_e, ll<.,ilce a,li 1;ria,ii_le,_

a,l'O llOli-obl, u_e (bul, a.l_o ilOli-Coilforllia,l)> whicli i<siiiil)ol'l,a,lll, for _ocl,iou ii. 'l'llese a,ll_il,iido,_

iiil, roduce a, collection ,gJl,eine.r 1)oinl,,s iii l,he, inl,erior of l, ria, li_le edges. _ucli l)Oilil, s a,ro ca,ll<'d
'_,o'.,-<'o_tJ'o'r_,_U be<:a,u,so l,liey uia, ke i,he _ra,l)h liOil-l, ria,n_llla, r. 'l'lle,,_eilon-collfoI'niil,I I)Oilll, s

illdUce _l, einer pa, l,h,s. Any fixed stra,l_e.gy of consoclltivo, ly cll(i,sii/_ l,ho _{eiller poilil, s ()li ii.

i>a,l,li is dOOliiOd l,o l)I'o(iilcO _-i,very long pa.l,ii for Selll( _.iUl)Ut. As we slia,ll see in SecLiou 2

I,_olow>for a, <given desired a,n_le bound l,horo is sonic flexibility iii I;iCkiilt_ 1,lie llexl, _l,c,iiler

i)oi111, Oll ii, pa,rh. We l'e{a, ill this fl(,xibilii_y, a,nd consecul, ively dol,(_rl/iino it,li ovo.l' wideliill_

i'e_iOli ca,lled a ho'r'_,> such l,ha,1, 1,here i,s _oilie ax:ceptld)le _l,e,iilor pal, li ['l'tlili 1,lie iuilia,l w_rl, ex

i,o every poinl, ill t,llo hol'll. Only la,ter (lo we chose exa,clly which lia,i,h we l,a,ke fl'_,lll a,lllOli_

a,ll those possible inside tile ]i()l'II. 'Phis a,llows us I,o llound l, lie leli_l,h cii" ii, lla, i'l,i<_<lla,r lia,l, li

I).V O(ll,]J).

i']voul, uallv oa,eh liorli will l,erniina,l,e, oil, her by ilit, ersocl,ilit4 l, lie b<liilida, ry of l,he ilit)ul, or

_l,l,ria, n_l<_ v(;rl, ox, I)v iliters('.cl;in_ il, solf ill a, spocia,l wa,y, or l)y illl,ersecl, int_ a,notli_;l" horli, iii

i,l_o lirsi, ca,so we croa,l;(; _i,_l, oiner pa,l,ll to solno _teinor vorl, ox on l,ho iUl)Ul, I)Oiill(i.C,,l',7 of lille

l,l'ia, ii_lo verl, ox. iii l, he second ca,so we resolve the la,rge iul)uC a,u/4le I)y Cl'0a,till_ :<l,Sl,eiuer

lla,l,h tlia, t cuds iii ii, loop (see Vi_ure 3 loft). Ill l,ile 1,bird ca,se_ we ell, li Cl'Oa,{(_ii, Sl,eiuer pa, l,h

l,o ii,li ilitersecl, ion l)Oilll, of £ho two horns eli a, ti'ii_ligle edge (see ]"i_uI'e 3 right).

lleca, use of the third ca,so ollr algorithui is itora,tivo: We lllil,y hil,vo I,o Cl'O.il,l,(lii Sl,einor

l)a,l,h for l,he ilit(:rso('l;iOil [ioinl,> which we do ill til(; lie×l, il, ora, l,iOli. 'l'lie llililll)or Of _l, eiiier

pa,l, lls '#1_,i we need I,o inl, roduco ii,1,il;era, l,ion i de,crea,st, s _eoniel, l'ica,lIv> so 1,hero ii,re O([o_'_1_,)

il, era, l, iolls. "['h(; collecl, ion of l)a,l,h_ llla,y illl, ersec{ a,il ilipiil, e<l_e ()(71G 4-Ii) l,ili'.o,<;> wiiicli

is surl)risingly close I,o ollr bound of ()(7)) ['or siliglo l)a,l, li. Ilo.ric(' ii,i, ea,c,li il,ol'a,l,i<,!l \V(_axial

()(ll,(nl, i-t-lJ)) _l,(,ilior 1)Oilll, S, for ii, (,ota] of(J(ll, lll,-t-',,lJ log '_.,). As ii IJra,(.'l,ica,I c()iisidera, l,ioii> l, lie

c(lii,_i, ll,lil, iii tllis t)Olilid is rela,l, ively sllla, ll. In lla, rl, iclila, r> \w, (lei'i\._, ii,li lit)per I)OUli(I ,)r :l'_._..-t-

N'.,/Jl<l_>:ll, i '#lz-t-_./:i-i., _l,(,ilier poilil,,s, ii,lill even 1,1iis is li_ll, l,i_lil.. I"lli'i, lieriil_li'e, _-:_lililiil_

illl),sl illl>lll, S ([<) I1<)I, Illi,vo loli_ s(;(lUeliCO,_ <Ifaxliax'eiil, lrill, li_i('s \villi very silia,[] iii,:_[es, for

iil(isl, illl)lll,,_ 1,lie r(,lillO, lllt_lll, a l_(irii, lllil w(lilld axial Cllllsi<lt,l'nlllv ['<,\v<,r ll</ilii,s (llert,.,ijis <lliIv

:_,'_ ).

\,Vlleli ilil, rl_(tuciil_ a, lla,l, li> we .iusl, ilil, r_l(llice w,i'i, ii'_,s, all(I ii<ii, ell_es I)_q,weeli cllii,<;<,clil, ive

\,erl, ices <if l,lie llll,l, li. \,\:e <l(i l, llis I)O(_a, ll_(_ I!(t_('_ t'_lr l,\vll (lill'erelll, t)ni, tis illil,y Cl'(l_,_ ilil,<_l'illl" 1,ii

ii, l,l'ia, ll_le. \4/(_ ilil, ro<luc.e olt_(;s I,o Illa, ko l,llO _ra, l)ll Cllllf_lrllla,l lllily ii,l'l,el a.li ]la,l, lls li;l,vo I)('(;ll

Cl'enl,e<l. \Al<̀ i'<,solvl, l,li_, (,I'I)S,_ilI_S Of _l,('ill(_l" lla, l, ll e<l_es ill l,W<l \Vii.VS. if t,\v<_Cl'(issili_ _,_l_<,s

lln\,e Vt_l'i,il'_',_ li('il,l" il, ,<4111_i,IIn,iil_le VOl'l,<,x of _i,1,1ill,li(l(,, wt' eli, ii s\vli, ll vei'iic(,,<_ _<l i,]la, i, i, li(_ ('(l_(!._



(1_,l_of ('r,,s._, a1,cl a(t(I a (liag_)l_al 1o I riail_lllal,t, ll,_, rt'slllliIK_ <luadrila.teral. 'l'l_is ._tra.t(_%y
<l_,s II_l w(_rk llear 1.lkc'large allgle v<'rlic(!s t)f a i i'iallgl_,, sil <'_,l_atlls inv_l\'itlg a.ll flirt'.,'.<_["
ii,,' Iriallgle o<tges iI1:/\' illl(':l'H.cl.._(i) illSl.(_;-l.(t\V(' ill[l'O(lll(,(' Oil(, vorl.ex illsi<le I.Ile l l'ia, llg](' llea,r

till(_.edge Opl)osite the sina,ll a,ngle, a,nd connect it with an eclg:e to oa,eh rema,ining vertex on

the triangle l_oullda.ry.
The relna.inder of this paper is organized as follows. Section 2 concerns the d,.:veloplnent

t)l' t,lle Steiner pa,l.hs, a.ll(l Section 3 describes how to fix the non-cc)nforma.l input triangles.
In Section ,'1we present selected ol)en problenls. In the _I)l)endix, Section 5, we l)rovide

1.1_('l)roofs for many of our l(:nlllla,s and theorems a.nd bound the running (.izne.

2 Introducing Steiner points

2.1 Steiner path lnotivation

(-_,onslder refining a given triangula.tion so tha.t no angle is gre_ter th;_n some bound. We

the following lemma from Edelsbrunner, Tan, and Wa.upotitsch [1990], where #(T) denotes
the maximum angle of a, triangulation T.

"_' ) , •Lemma 1 Gz_en a vertcz set A, in any constrained triangulation T containing edge 14:V

wc have tr(T) _ ma,xseA ZW,5'V.

For a Steiner triangula,tion, the edge opposite a la.rge angle of a. tria,ngle must be subdi-
vided in order to reduce the bound of this lemma (a,dding Steiner vertices elsewhere merely

increases A). So suppose we add a, vertex S to subdivide an edge, Unless S is on the
boundary of the region to be triangulated: there may be a tria.ngle edge VW that subtends

a large angle at ,5'. Hence to reduce the bound of the lemma we need to subdivide this edge
a.s well, etc., inducing a. Steiner path.

To gaiu some intuition about long Steiner paths, we have a sufficient condition on a,

triangle T such that ZVSW is not large: /V,5'14: is at lea,st the supplement of the sma,llest
a,ngle of T. Hence Steiner pa.ths only continue through triangles with a sma,ll angle.

If ZVS14: is large, we wish to tind an acceptable placement of ,5'aon I4:1/in terms of the

angles ZV,S'5'_ and ZI'V,5'5'I such that the lower bound from Lamina 1 is rea,sona,bly sma.ll:

If we place ,S'_so that both of these angles are less tha.n ct, > _r/2, then the lower bound
from Lemma 1 is at most a,. Requiring ZVS,91 = ZI/V,S_,S'_-- 7r/2 lea.ds to a, single choice for

,S'_. This is too restrictive in tha.t it could leaxl to long Stein er paths (e.g. infinitely lo_,g in

Figure 3 left). We chose (_ = 37r/4, so tha.t there is a rauge of acceptable placemel_ts h_r $1.
In fact, regardless of the choice of ct, we need a global strategy for pla.cing the 5'i tha.l

takes into account the entire incluced Steiner path: For any local str;_tegy, there is an i_tput
that leads to a very long Steiner path.

We do not fix ,S'_, but instead only consider it to be in tl_e a,ccepta.ble range, witl_ tl_e
freedo_ to go back and fix its exa,cl, loca.tion later, tfence we ha.re more freedo_ in wl,ere
to place ,S':, or we may even discover a. position for ,S'_where ,S'2 is unlmc,'e".ssm'.'_(lue to a

l,ri_l_gle vertex of T_. 'I'l_e longer the path is, the more freedom we have. i,_ the l)la.<:e_<'nt

of the last Steiner vertex (see. Figure 2). We a.re _l)le to take a,dva.nta.ge,of tl_is fi'eedo_ to
prove that pa,tt_s a,re only of length hp. l{eca.ll tha,t for Section 3, the first point ,q is a,lxvay.s



Figure 2: A horn (shaded) and its center path (dashed) terminating oll its maw.

on the Mtitude containing the large angle vertex, and we consider tha, t Mtitude to be as any

other triangle edge. We now formMize.

2.2 Horns

Cone. Consider a Steiner point S' on WU of AUVW. The co'he a,t ,5' consists of ali points
P of AUI/W such that /PEW and /PSU are a.t most 3a-/4. Alternatively, the cone is the
intersection of AUVW and the infinite sector at ,5' whose 1)ounding rays make angle rr/4

with WU. The angle between the bounding rays of the cone is 7r/2. See Figure 5.
Maw. TILe maw of a cone is tile portion of the cone on the bounda.ry of /_UVI,V,

excepting S itself. If triangle vertex V is in the maw, then we know that the lower bound
f:'onl Lemma 1 is at most 3rr/4, and there is no need to add any more Steiner points in this

path. Otherwise, the maw corresponds to the range of positions for placing ,5'1such that the
lower bound of Lemma 1 is at mosf 3_/4. In this case the maw consists of a line segment

contained in I/VV or UV; without loss of generality we assume WV throughout this Dtper.
Each point in the maw defines an acceptable position for S1, which in turn defines a

cone for the next triangle. The union of the maws of these cones defines an acceptable
placement for S2. That is, it defines a range of placements for S2 such that we can find a

placement of Si where the cone at S1 contMns ,92, and tile cone at ,5'contains ,5'1.Thus we

define the following:
Horn. We iteratively build the horn a.t S as a union of cones. We initialize by setting

the horn to be the cone at S. At the next stage of the horn's construction, we add the union

of the cones in the next triangle for ali points in the ma.w at the current stage. \,Vedefine
tile maw of the horn at a particular stage to be the union of maws for the set of cones just

added. See Figure 2.
Center and boundary paths. We define the ce'nrc,"path of a, horn to be tlLesequence

of line segments connecting the midpoints of the maws for conse(;utive stages, st,art.ing a,l.

,5'. See Figure 2. We ca,li the two sequences of segments from tile starting ve,'tex of a ho,',l
nlaking angle rr/4 with ea.ch triangle edge bo_tndar!j palhs.

Terminating criteria. We coiltinue the construction of the horn in sta,ges ulltil olt(,of

the ff)llowing occurs (the first three a,re considered case one in rh(: introduction):

1. The maw contains a. triangle ve.rtex. :ks a heuristic, we also tennillat' if tl_e _t)aw

contains a Steiner path vertex of a previous iteration (see Sect,ion 2.5).

2. The ma,w is on a triangle edge wllere the l,ext, triangle ha,s ali a.ngles al leasl _-/s.
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l"i_lir(' 3: :\ h()rll iliay s<,lt"iulei'so<_ (loft). '1'1_(, tiorn sh(>\vn will self l.erlililla.l.(, I))' ll.elll

-1 afl<,r llii'_'_, 111()I'(.' ,_l,ll_(.'S, siliCe t.he hol'l/ l"roll/ ('('ill,el' t)alli t)oinl /)./ will C()lll.;:I.ili /I.S. A

c()llecl.ioil ()t" li()rlls iiiliv iliOl'gj(; (rich(). The h()i'iis for the iiexl ileral.i(::)ii iii'e darkly sila.ded.

ilii(t ,_l(,iiier l)aliis iile dash0d.

4. _l'lt_,lllUWis ()li aU ed_O of the. bouudarv (ff lho re_iou lo I>(,triail_311ated.

1. "I'll(' illiiW ('()iliilill,<-i _t C('lllor ])altl l)()iiit (:)1"a t)re\'i()lis sl;t_(, (Jt' Iii(, liorii, ali(l i)l()rt,()V(,l'

Iii(' II()l'll (l<'Jili('(I ['I'()111 lllal Celli('r l)aili l)()ilil ('()lll_-lill_ llial. ('Olll.('l" l)ai. li l)()ivii (s('('

I' i t_lli'(' :) I(,rt ).

."). 'l_ti( , liia\v ililel'se('l,_ a lioi'ii coli,_lrucled (,urlh, r iii lhc ('lirrelil ileral.i()li; a.n_l (,i!.h(,r

i tie ll_.)rlis iii'(, orienled iii 1,li(, sd.iii(' (lire('lioi_. or iii Opl)()sil.e direcl.ious all(l iii(' lii_l\v

iiii(,i'secl.s ii l>ounda.ry i>;.d,ti or conier l)alJi of the ()llioi" hori_ (see l"i_iire 3 ri_lil,).

\,\:hell O110 {)f l.]io,<-;el('rlllina.lioli criteria OCClll'S. 1]1(_,I'O iS {iii (I,('t'f'/'J/flb/( ,C]loilier path illSid(,

Iii<, horii. |.{,V a.CCel)ta.hle; we mea.li that tile lower 1)()/111(l i'l'Olil ]AL'IIIlIII:t I is _ll_-t.IX.l,llloo(] I.()

I)(, 11o lllO1'o thali a.ll(l the cone fl'rOlll lt _lOiliel" pa.lh 1)oinl COlll,_-tillS l.lie next. l)O)lil )11

tile lint.ii. (+i\'(,li ;1 [illal _l, eiuer t)Oilit_ it. is easy to eoinl)lito l-ill accot)la.t)lo l)a.t,]l t)y ,,vorkili<_

flx)ili i. lie final Sieiner poiiii back iu rho fir.st i)oiut ,b'of l, lle llorn. If the horn t,erliiina.tod
I)(,Call,_e t)P I lelli .1, l,llell we iiiusl, foriil a. 1ooI)COlilaiililiQ_ l lie _lisl.ili_uished Celiler pa.l,h l)()inl.

_lswell (s(,e l>i_ure 3 h'fl ).
Iii ll.('iil 1, i.t_<,tilial ,CJl,einer l)oinl, is l,lie v(,rle× coiil.ltillOd iri l.ll(, ili:-i\v. Iii 11"'iii 7 ali(I lloili

;J \re iiiii,v i)ick ;lily i)oinl, iii l,he iiiaw. Iii ]Io111 .5. \re pick iii(' t)()ilil l tial is I)olli iii Iii(, IllaW

illi(i _.)11iii(, I)()llilCiii.r,v l)iti, h of tile (.llli(,l" h(.)rll. (\\:(, 111_t.__ 1l()I uCilla.llv llS(' Iii(' ('()l'r(,.Sl)()li(lill_

I)Utii, (lel)ell(lillg Oll Wlletller _-tlly laler li()l'lis iii tile Clll'lelll ilel'al.i()li lerlliillale ()I1 il.; s(,(,

=_ _(,('li()li 9.:')). Ill llOlll-1, w(, l>ic'kIii(' ('olltel' I)_llli l)())iil 1).:lliul C<illS('(l iii(' li()rii 1()l('rliiilllll.('.

7.3 f:/o/inding a siil_lo pa£|i

Iii ()r(l('r 1() I)()iiil(i Iii+, illilill)(,r ()r fillies ]i()rii_ iii;_\ iill.(,r>e(i _i _,,,i\('l l (,(1,,,.._,(,w(, )l(,(,(l ._()lil(,

I(,lliliia.,-; ;ll)<)lil ll()w (lll)('l<l\ • lli(' ili_iw ()1 ii ll()rli ,)i'()ws iii r(,l;lii()li i()ii.n <'(,iil(,r i);llli I('ll,_lli

|,O.lllllli_/ 2 1"_)/'lh< <'<;tr<,I ,S'. lh< _HUIh<,f lh+ tnnn' i.,_l,'i<'< l/t< h n_.llD<d"ID< <'<hl( r ii<tlD.
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Iii ,,0hera,l, tile cellt, er point of the ne×t cone is not the center l_oint, of lhc llv×l, lnaw,

so tllal tile widl.l[ of tile maw is not atlwa.ys twice tlm OOlite': pa.til lengtll. However, we a,re

able toestM)lish a sma.ller linear bound. Sue Figure ,5 in Section 5.

Lemma ,3 ]'hc width of the maw is greater than the length of the center path .

Lemma 4 Suppose a horn intersects an, edge with maw width, M and aqain at a later slaqc
with maw width, 114I. Th,en either ]t(l_ > 2M or the horn terminates as in llem _.

We wish to bound the nunlber of times at center path may cro_:s at given edge. We first

show that successive center p_th points have some ordering atlong atn edge.

Lemma 5 Suppose a horn intersects an edge E with center" path point Pa, and again at a

later stage with center path point P2. If the horn intersect E at a later stage with center

point 1½ between i)1 and t92, then it self terminates as in Item ]t.

Proof. This proof illustrates at generatl technique we use often: We show that at center path

must be long, so thatt a matw is wide and hence either the center patth is far awaty from some
featture or contains that feature.

Consider the horn from Pa (whether or not I_ really is the first point of a horn). Let

d be the distance from /)1 to P2. Let 11,12be the maw width at t)2, where from Lemma 3

M2 > d. l,et M3 be the matw width art Pa. From bemlnat 4 we hatve Ma > 211,12. tlence

M:_ > 2d, and if tz_ has distance to Pl less thatn d, then the matw at P._ contatins P1 and the

horn terminates as in Item 4. II

We may use this lemma to analyze the nuntber of intersections a center path may have

on an edge if all points of intersection lie on one side of the first ceuter path point. But first

we need the following definition.

Hop. The center path between two points Pi and Pi+l on arn edge E, together with the

portion of E between Pi atnd Pi+l, forms the boundatry of a compact set in the plane. We

call this set a hop.

Theorem 1 Suppose a horn intersects an edge E with center path point t_. Consider the

line L containing E. Then the horn may intersect E at most p times on one side of P1

before_ intersecting L on the other side of Pl.

Proof. By Lemma 5,/)2, Pa,... are consecutive along E, and hence the corresponding hops

have disjoint interiors. Each hop contMns a vertex of the input in its interior (see Section

5), and hence there catn be at most p such hops. li

We now consider the case that atll of the points of at center pa.rh on E to not lie on

the same satme of tile first such point. Fbr this to hatpl)en, there needs to be a. r(:versal.

llltuitively, a, reversal is two consecutive hops ttlatt tr_tvel in ol)posite directions.

Reversal. A reversa.l is the (:enter path of at horn from at point P on edge l'5' to a, point

1)1on L (or E) to at point 1°,2on E, where P1 atnd 1-),2atrc on opposite sides of P, and L is the

line through lt;. Als(), the center patth must not cross E atr atny point other thatn 1)1 between

I) atnd 122 (otherwise we maty find a shorter reversal instead). See Figure 7 in Section ,5.

,lust as for a hop, we say that a reversatl contains the input vertices in the region bounded

by the center patth from P to 1)2 atnd E.



4

Lemn-la 6 7'h_ _,crlicc._ cont(lin('d b:q ln,_, rc"r_r,_.l._' _j. _'_ltl( r lmill .r_ It.I idcl_li_'.l, ttltl_,_._

lh, h,,r/I l_'rll/i/ml_,_ .,'_ in ll_'_J_ ._.

Proof• 'I'll(, l)r(,c_f lies iii observa.tioll ilia,l, ii' hol)s (:olltains t,]l(, Sltlll(' v(,rti('es alld a.re oriellte(l

iii lh(' same direction, the.n they grow closer together as tile mta,ges in(:rea.se. This holds true

for two hops for the samm Steiner l)a,th but (lifferent st_rting sl,a,ges, a,nd a,lso for two llot)s

for difl'orent Steiner pa.ths (used in tile next subsection). Tlm rate _l. which the dista, nce

between them decrea.ses ca,n be bounde(l below in the same way tha,t the ra.le of iz,(:rea.se

of the width of ama, w can be bounde(l below. Iience the l)roof reduces to showing l,ha,l.

the "center path" of the region between the two reverma.ls is long, so tha.t the outer reversal

nlust conta.in the sta, rting center path vertex of the inner reversa,1. See Section 5. |

Theorem 2 A horn may intersect a .qi_en edge at most O(p) li'mos.

Proof. The hops are pa,rti,'tlly ordered by conta.inment. Hence there a,re a.t most 2p unique

input vertex sets contained in hops. We enumerate the hops by cha.rging the vertex sets

for hops. Using a, c_reful clt_rging scheme, Lenlma, 6, _nd 'theorem 1, ea.ch vertex set gets

charged only a, consta, nt number of times. See Section 5 fox" the full proof. |

2.4 Bounding the collection of paths

We now consider _11 of the horns in a given itera, tion, _nd how they interact. We seek _

bound on the number of times these horns m_y collectively cross a given edge. We consider

two horns with hops oriented in the same direction with respect to E.

Lemma 7 Suppose a horn H has two consecutive hops M and 1141 (not a reversal), and

another horn H' has two consecutive hops M' and M_, such that 114 and 114' contain the

same input vertex set, and similarly for 11/.I1and M_. If neither H nor H' self terminates

on 11//,111', M1 or M_ as in Item ._, then 1141and 11/I_ intersect as in Item 5.

Lemma 8 Suppose a horn H has a revcrsal R, and another horn H' has a reversal R' with

hops containing the same vertex sets as those of R. If neither horn terminates on 17,or R'

as in Item _, then the two reversals intersect.

Theorem 3 The collection of horns 'may intersect a given edge at most O(p + mi) tithes.

Proof. The proof is very similar to the proof of Theorem 2, and relies on on Theorem 2,

l,emma 7 _tnd Lemma, 8. See Section 5 for the proof. |

2.5 Introducing Steiner paths for the collection

The algorithm for constructing the Steiner pa.ths is itera.tive. If no horn termina, ted by l(,e_l

5 we could construct the Steiner paths _u_d Ii.()more itera.tions would be required, llowever,

if a. horn termin_ttes t)ec_use of Item 5 then its la,st Ste.iner point may induce a. pa.lh in the

,l(,xl itera.tion. We have shown above tha.t ea,ch iteration will produce only O(n(mi+p))

Steiner pa.th points, where mi is the nun_ber of horns in iter_tiol_ i. We show below that

at each iteration we reduce, tile number of horns I)y a.t least a. fa.ctor of 3/4, so the sulll o["

the _,, is 3tn. l'_urtllerniore, since the *)*.ia.re bou_lded abow.', by a, geometric series, there is
()lily a loe;arill_l_lic nulnber of itera, tiol)s in tel'mm of _t.
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Figure 4: How to triangulate a triangle with Steiner points on its bounda, ry.

Theorem 4 The number of horns in the next iteration is at most 3/4 times the number of
horns in the current iteratiom That is, mi+l _<3mi/4.

Proof. The proof of this theorem is a matter of carefully specifying exactly which paths
we create when horns intersect. Consider a horn H that intersects a horn H _, where H _
terminates because of one of Item 1 through Item 4. Then H induces a path in the next
iteration, but H _ does not. For the horns that terminate on a horn that also terminates

because of Item 5, we are careful that at least a constant fraction of these are merged
together. See Figure 3 right and Section 5 for the specification and proof, ii

Theorem 5 At most O(nm + nplog m) oeteiner points are added.

3 Triangulating the non-conformal triangles

We now have a non-conformal triangulation in which some triangles have Steiner points on
their edges. We now show how to triangulate these triangles.

3.1 Fixing triangles that have a small angle

We introduce the Steiner path edge AB when the angle between the triangle edges corl-

taining A and .B is less than 7r/8. We say such edges are drawn. The other Steiner p_th
edges are forever ignored. We have bounds on the angle that Steiner path edges make with
triangle edges.

Lemma 9 The angles at the intersection of a drawn Steiner path edge and a triangle edge
arc between rc8 and 7rr/8.

Lemma 10 Steiner path edges may be drawn so that no two cross, while maintaining the
angle bou,nds of Lemma 9.

We now erase M1 Steiner path edges At----7where botll LUVA <_7r/4 a.nd Zl,'UIJ <_rcl,l.
Since the edges do not cross, there will be an edge AIJ close,sl to l."tr,/tha.t is not era,sod

10
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.\lJy <,cl_(' wit.li +, v<'rt,,x <:+Ii_it+/"+(>r /_-l- will la,+ ,'v:_,'d. n1_tl +_l_"('_Ig+' x\'i+l_ _ v<'rt,'x _,t_ +fill'
t_vl_'[+"willI)_'(Ira,w+_.

'l'l_e reIllaillitlg _lra.wll (,(Ig('s ii_t.er.sect ,a'itlL /Y+NII"X'("tr)l'+;rln Iriall_les a.tl<l ll'al><'z<>i(Is,

together v,'ith t.he regi<)ll l)etvceetl .'l Ii' and /i:I.". According l,(, l,(,tnula +)attd l,e+i_lila t()th_,

tria.ngles and trapc,+zoids h+t,ve largest angle no tltore tha, tl 77r/,'q. lleJlce file tralmzoids _llay

lte triangulated with iu1 arbitrary diagonal a,nd acl)ieve la,rgest augle no I_tore (,llan 7?r/S.

lt t'enta.ins to triattgttlat(, the region .,IIJVU. lt tnay be that li - I." c,r ..I = I/. Also lh/re

Ilia3' Iter 1)(, a drawn edge .,li3, so thal the regiott degeuer;_.tes lt) AI,I"II; 'l'he folhm'i_g
col_stt'tlctioll lice(lm tie _noditications for these cases.

We introduce a vertex (7 ill the interior ()f the triangle. \,\:e l)la.ce (' so tltat ZC'I:I: -:

/_C(:V = rc/8. Since the edges used to subdivide a large inl)Ut a.ugle itr t,he v(,ry first

horn itera, tion are considered as any other tria.ngle edges throughout tlw re,ma.inder of the

algorithn_, we h;+ve tha.t AV(_ W is non-obtuse (but a,lso nou-confl)rmal), lt/nee ,_V U W <_

;,r/9 and LUI,'W = rc - LI.'(:I4; - LVH:|.r] > 37r/8. Similarly LVUW > 3rc/_, so such a, C

exists inside AUVW. We a,lso have tha.t LCUW a,nd LCVW ar 9 itr/ca.st rc/4.
• x¢il.ic( s\,Ve tria.ngul+_.te by itttroducing a.n edge from C to each of the Ste.iI_er and triangle ,," ' ' ,'

in region A UI/II. See I:igure 4 a,nd Section 5.2.

Lemma 11 l_egio_z ,,iI]VU nzay be lria,_zgulaled with, +noa_zgle larger tha_ 7rc/8.

3.2 Fixing triangles that have only large angles

It. ren+ains to consider triangles with every angle larger than r+/8, l,)sing a constructiol_

a,l_nost identical to that of Section 3.1. we may triangulate with uo angle larger thorn 77r/8

(see I:Jgurc 4). It is possible to use the. fact tha+t the _mgle at W is large to directly bound

the largest angle in the region WAI3. For region ]lBl/U, the proof of Lemnta, 11 holds with

slightly different angle bounds in various places, but with the same overall bound of 7rc/8.
See Section 5.3 for the details.

4 Conclusions
• .

There is a. trade+off between the cone angle of the horns a,nd tit(_,,nlt_lber of times tllat a

t:iangle edge is crossed. We state our cone angle to be rc/2. If the cone angle is _h, we

con.jecture that the techniques of Section 3 can be used to obtain triangles with largest

a,ngle at most .'37r/4 + qS/_l. On a, more general note, we ha,v/the following l)rol)lel_s.

What is the rela.tionshil) between the la,rg/st angle permitted in a triattgt_latiot_ and the

tlutnl)er of Steiner points necessary to a,chieve that bound'? ltow (lees this (lel)end on the,

type of input (e.g. convex l)olygon, simple polygon, polygon witll I_ol(`'+s,I)SI,(;)'."

The cardinality of our 1)SI,G (,ria, llgulations is within a log +; fa.ctor of worst+ (,as(, Ol)ti_ta,l.

ts there an algorith_l_ tltat is within a constant, fa,ctor of worst oas(' ()l)til_ta, l'? A _l_or(,'

i_ll,et'(,sl.ittg; o[)(,n [)tel)l/tri is the existence of a,n algoril, l_lt l,hat go.tl('_ral,('s l,ri;|tlgt|lal, iotts of

l)Sl,(;s ¢)r I)olyg()tls with ca,r(linality withi_t a factor of ol)titttal for lh(' given i_tl_Ut,.

tl



J
i

i

References

I. Ba.bu,_ka and A. K. Aziz [1976], On tile angle condition ill tile finite elenmnt method,
,5'IAM ,I. Num. Anal. 13:214-226.

R. Barnhill [198a], Computer aided surface representation and design_ Surfaces in CAGD,
R. Barnhill and W. Boehm, eds., North-Holland, 1-24.

M. Bran, D. Dobkin, and D. Bppstein [1991], Triangulating polygons without large angles,
submitted to International Journal of Computational Geometry _ Applications.

M. Bern and D. gppstein [1991] PolynomiM-Size Nonobtuse Triangulations of Polygons, "lth
A CM Symposium on Computational Geometry, pp. a42-aso.

M. Bern and D. Eppstein [1992], Mesh generation and optimal triangulation, Computing in
Euclidean Geometry, D. Du, and F. Hwang, _ds., World Scientific.

M. Bern, D. Eppstein, J. Gilbert [1990] Provably Good Mesh Generation, Proc. Mst IEEE
Symposium on Foundations of Computer Science, 231-241.

g. Edelsbrunner, T.S. Tan, and R. Wa_upotitsch [1990], An O(n21ogn) Time Algorithm
for the MinM-_x Angle Triangulation, Proc. 6lh ACM Symposium on Computational
Geometry, 44-52.

D. Eppstein [1992], Approximating the Minimum Weight Triangulation, 3td AC'M-SIAM
Syrup. on Discrete Algorithms, 48-57.

S.A Mitchell and J. K. Park [1993], Approximating the MinMax Angle Steiner Triangu-
lation when only Interior Steiner Points are Allowed, manuscript, Org. 1422, Sandia
National Laboratories.

J. Rupert [1993], A New and Simple Algorithm for Quality 2-Dimensional Mesh Generation,
Proc. 4th A CM-EIAM Syrup. on Discrete Algorithms, pp. 83-92.

12

|



i

v y'..v1- -.-') ,
_-- ..zr ,

J-" ....... ; Qf,-- Y// ,;Y _-.-

,iV/ ..... /
A /,. "

S X P Y

Figure 5: In a cone, the maw is twice the center path (left). In a horn, tile maw is more
than the center path (right).

5 Appendix

Proof of Lemma 2. The cone forms a triangle ASXY with angle 90 ° at S. Let Z be tile

midpoint of SY, and P1 the midpoint of XY. Then AYPIZ is similar to AYXZ with ratio
1/2. Hence IZPll = ISX]/2, and ASP1X is isosceles. Thus the length ofSP1 as IXYII2.
See Figure 5 left. III

Proof of Lemma 3. We prove this inductively. For the first stage of the horn the lemma

is true by Lemma 2. Consider the center path point P at a given stage of the horn's
construction. Suppose that the theorem holds for the triangle edge containing P. We wish

to extend the theorem to the next edge. We define XY to be the maw at the current stage
and XtY ' to be the maw at the next stage. Define a = ZX'WX, the angle between the

successive triangle edges.
Let pt be the center path point at the next stage. Consider the point Q on X'Y' such

that PQ is parallel to YY'. If we consider the segment :XR also parallel to YY', we see
that Q is the midpoint of RY'. Hence P' lies closer to W than does Q. Furthermore, it

is straightforward but tedious to show that [P_W I > [PW by the law of sines. Hence we

have that [P--QQ> [PP'l. We use [PQI to bound PP'l because it is much easier to analyize.
Also, Pt approaches Q as X approaches W, so there is nothing to be gained by considering

PP'[ directly.
From the law of sines I_QQ/sina = ]-P-Wl/sin(rc/4-a). Since sin(a + b)= sin acosb +

sin bcosa, this simplifies to [_QQ[= IPW sin a/(cosa - sin a).
We wish to bound IPW in terms of the difference between the maw widths. Since

a _<7r/8 and /X'XW = _r/4, we have that IX'WI < IXW. This implies IX'Y'] > [XY I+

[Y'W -[YW[. As before, from the law of sines we have [Y'W = [YW/(cosa - sin a,).
Hence [X'Y'[- [XY[ > [YW[( 1 - 1).cos a-sin

Since [PI,V I < IYWI,combining the last equations of the preceding two paragraphs we

have IP--QI< ( x'Y'I- IXgl) sinc_ a X'r' .1-cos_sin < I [--]XY[ Hence at the current stage the
center path increase is less than the maw width increase, and by induction we are done. 1

Proof of Lemma 4. The perpendicular to the maw in the direction of horn growth must

make an angle change of at least rc. The maw cannot contain a vertex of a triangle. Hence

the center path length between the two intersections is minimized when one vertex of the
maw ahnost contains a triangle vertex V, and the maw ::pivots" around V, traveling through

13
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Figure 6: It is impossible for a center path to intersect an edge E twice without enclosing
a, vertex.

triangles containing V. In this case the center path lies outside a semi-circle of radius M

centered at V. Hence the center path has length at least 7cM/2. Thus from Lemma 3 we
have M' > M + 7fM2 > 2M. |

Proof of Theorem 1. [Continued]
The fact that each hop has a vertex of the input in its interior can be proved by con-

tradiction: Suppose that no vertex is interior to a hop. Since no input edge can cross E,
each input edge is crossed by the center path an even number of times. Furthermore, since

the input edges do not cross, there will be at least one "furthest" edge such tha, t the center

path crosses it twice consecutively; see Figure 6. But this is impossible by how the horn is
defined, hence a contradiction. |

5.1 Ideas related to the proof of Lemma 6

We need some measure of how quickly two horns approach one another when they follow the

same sequence of triangle edges. We formalize the distance between two horns as follows:

Inverse horn. An inverse horn is the region between two horns in a given sequence of
triangles. The inverse horn starts on a triangle edge that the two horns have in common.

An inverse horn terminates when it contains a triangle vertex, or when the bounding horns
intersect. We assume that the horns have increasing stage as we increase along the sequence

of triangles, so that the bounding edges of an inverse horn are comming closer together.
Here we are concerned with the case that the two horns merely represent the same horn

at different stages. Later, when we bound the length of the collection of horns, we will

consider the case that the two horns to be distinct. We define the maw and center path of
an inverse horn in the same way as we did for a horn.

An inverse horn may have negative width, in which case it behaves exactly as a horn,
and the same lemmas and theorems about horn growth apply to how quickly an inverse

horn width may shrink. Otherwise, if an inverse horn has positive width, we shall see that
the analogous results hold, but the proofs needed are slightly different.

Lemma 12 Mi < M - Ci, where M is the initial maw width, of aT_i,tverse horn, Mi is its

maw width at stage i, and Ci is the length of the center path to stagc i.

Proof. We prove this inductively in a, way very similar to Lemma 3. We define XY to

bc the ma,w a,t a. st_tge, a.nd Xq:' to be the m_tw at the next stage, where the tria.ngle

14
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Vigure 7" Here we show two consecutive reversa.ls, their horns (darkly sha.ded), a,nd the

inverse horn between thenl (lightly sha.ded). The inverse horn termina,tes with negative

width, where the two horns overla.p.

edges containing these maws sha, re vertex I4:. P is the center pal.h point on X'Y'. We let
o= /X'WX and Q is defined to be the point on WY' such thal LQI'I,F = 7r/,:l.

'rh_, Ix'Y'I - IY'WI- IX'WI. si,,c_zl4:YY' - _!4 _,.,d_, < _/,q.w,,},a.w,t,h,.t
IY'WI < IYWI. He,ice1..¥1}:11< IYwI- IX'Wl = IXYl + I.¥II"1- I..v'wI.

From the la.w of sines :ve have IX'W = XW sin 4/sin( ,_ -- o) = IXWI/(,:o_._- _i. _).
)Ience!X'Y'[ < IXYI + IWXl(J- 1/(cosc_-sin_)),or II'VN[< (IXS:l- [.¥'P'l)(,:os_,-
sinct,)/ (1 - cosct+ sin_).

i)efine P' to be the center p_Lth point of the maw on X'Y'. lt is clea.r froln ]Y'I'I:] <

IYWI th&t [Pl)'[ < IV01.Hen,'eit suffices to bound IV01. ),_,.o.,the l.w or si,es I/'01 =
I:m:l si,,_/(cos(.t.- si,,_,,).llenceIPOI-(IWXI + IXYl/2)sino/(cosa- si,,_,,).Dropping
the I.,VYIte,'m and substituting in our equa,tion for Iw.¥l from the previous pa,ragra,ph, we
ol,t_inIPC01< (IXYI- IX'Y'l)si,,_/(] - coso_t,+ si,,_) < I.¥_:1-I.¥'Y'I.

llence a,t each stage, the maw shrinks 1)y a,t lea,st the center path length, whicl, COl,,plel,es

tlm proof. |

We now forma,lly begin the proof of l,emnla, 6.

Proof of Lemnla 6. Consider a. reversed R with cent, er pa.til points P, l-)l a.nd /½ ell I,,

a,nd _ulother i'eversa.l R.' wil, h center pa.l,h points .P', l-'( alld l_ from lal(,r si,a.g(,s of l,lle llo)'n.

_.e(,,:- I>Z%l,,,d (z, - Iv/z_l. See_"ig,,,,,r. We,:,,,,side,"(,I,,,1,o,',,¢l,,_i,,.,)r,'o,,,., ,..,,(,,,,.
path l)oinl, l ). We SUl)l)ose H. a.))d I_' contain tile Sarllle \'(,rlic(:s, an(l sl)()w a. c()nl.ra.dicl.io)l.

Suppose 1-"2= P' as il, l:igiure 7. I,et M,__be the width of l lIe lllaw al 1_,2. l)e[iz)e (,1)(,
horn frolll 10', and Icl. ' /M 2 I)e its wi<l(.ll al. /)_. If we a.ssuine l.llal Iii(' Ii{)l'll fl'()ll_ 1>does not

self terlllina,t(', at /L (,ll(_'llM.2/2 < di.
(,oilsld(.r l,he illverse horn b(,l.ween l,lt(.',horlls for 1) altd l >'. l,(,l .\ l)e l.l_e (:(:nl,(,r l)a,l.]l

' _e ,, •I)oint of l,he inverse laor,l t)(l,x_c_n I>,2and I_. Thc'n J_l I tilt.' inverse horlt width ai X

is 21XI-',2 [ - M.2. 'l'he initial inve.rse horn width is d_/2. l,'ronl l,e_a 12 we llave l,ltat

M / < -d_/2 - 2d --IX Iz_[, whicl_ we _nay reduce to :_1.\ t'21 < ._1., - d_/2-- 2d.
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Ii tl_(, Ii<,_._ fro1_l I" does _ot self tei'nlina.U, at 1_ tl_(,n [-\l:.'l > _ll.e/.I, a.t_(I tl_e a.1)(,ve
reduces l.o (/i/:2 4-:2(/ < A,/.2/.<I. Silnila.rly, if the horn fr<)ll_ 1) does 1let self terlllina.l,e a.l, /"2

then _'1;I.2/'2< di and this reduces to di/:2 -4-2(I. < di/2, a. contra.dictioll, llence ell/lcr lh(,

horn from 1) must self terminate at P,>.or the horn from 1:>_lnust _clf terminate at />._
\¥e heNe remaining the cases that P/_ P,,_. Suppose P_ is on tile san le side of I ) a.s P,z.

Either there is _ reversal containing .1_on the path from I-),_.to pl, in which ca.se we nlay

consider that to be I_', oi" there must be a.t least one hop from 1)2 to P' not conl, ainillg oil('

of the hops of /_. l;urthermore, tlm hop is conta.ined in 1?,'. The llop conl, aills a. vertex.
llence R' conta.ins a vertex that 17.does not.

If P' is on the ol)posite side of P a.s 1_2, then the path from 1)' to I_ contains a, vertex

to t;he righi, of 1)1, a.nd hence not collta.ined in the other reversal. II

Proof of Theorem 2. 'l'he center path of a. horn does not self intersect, except to termin_te

as in Item 4. llence two hops are either disjoint, or one completely contains the other. Tha,t

is, the hops are partially ordered by conta.iI_ment. Itence there are at most 2p unique input

vertex sets contained in hops. We enumerate the hops by charging the vertex sets for hops,

sucll that each vertex set gets charged only a constant number of times.

If a hop is the smallest hop oriented in a, particular direction along I; containing a. given
vertex set, we charge that set for the hol). Each set may be c]_a.rged once for each hop

orienta.tioil, or a. total of two times in this way. We now consider the {:ase that two hops
contain the same vertex set.

Let .] be the largest hop contained in a hop 1 such that I and J are oriented in the

sanle direction along L, and they both conta,in the same vertex set. By l,emma 5 we haw'

tha, t J precedes I on the center path. If there is no hop following I, we note thai I is th_'

last hop of the center pal, h, _nd there can be only erie such hop. We ha,ve two cases.

In the first case I and the hop I' following it is not a reversal. By applying l,enlma 5,

we nlay sl\ew tha, t I' can not contain any other hop, and hence we charge its vertex set for

1 a.s weil. The set for I' is charged al, most once in this way, since there is oi_ly one sn_a.llest

llop containing the vertex set of I', and I' is that hop.

In the se¢'o_d case I and the hop I' following it is a, reversM. If J together with the hop
.1' following ii. is a reversal, then by I,emma 6, I' contains a vertex set different froln J'.

Since J was chosen to be the largest hop, there can be no hop between J' and I'. I{ence I'

is tl_e smallest he 1) containing its vertex set with its orientation along L, and we cha,rge the

vertex set of I' for I. Otherwise, I' contains both ,1' and the hop preceding J, and l,hes(,

hol)S a.re disjoint. Since ,1 was chosen to be tile largest Ilop, together witl_ I,e.mma. 5, I' is

the smallest hop containing its vertex set with its oriental, ion a,io_g L. ]levite we charge l,l_e

vertex set of 1' for l, and l.]_is set Ina,y be cha.rged a,t most o_lce in this way.

'['hlls C\'z,,,(.l\ ]lep is either tl_e s_l_a,llest t_c)1)co_l, ailling its vertex set for a ,,ivo_ ()ri_,_lta.ti()lt, e-_

all)rig L, or is succeeded by such a. hop, or is 1,1_every last l_op ofa conl,(,_ l)allt. A he l) has

ol_ly ()1_{,successor, a,_d hence ea.cl_ of tile v_._l'l.exsets is cl_arged for at I_os_. _1l_ops. 'l'llerv

are al l)l()sl, 21) vertex sets. I"a,cll l_oI) corresponds (o o_te a.dditiona.l c(,nter path p()i_l ()lt L.

(:_)l)ll(,i_lg a.lso l.h(, la,st crossing of L, a. C(?lll.el"l)a.tl_ lllay cross a girl')) edge a.l 1)lost Nl) 4. 1

I,illl('s. The COilSl.a,ill, "£" iii tllis I)ound is not tigl_l. |

Proof of LemnTa 7. l,et 11 cross E at [)oilll.s A', }" a.11d Z. 1,el Ii' cross t'.' a.t X', Y' and

Z'. l,et t. be the width of the inverse horl_ Imtwee_l II ",Hid 1I' on YY'. lt is easy 1,o s('._'
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that t < ]XY]/2. From I,emma 3 we have that the width of the ma,w of H a,t Z is a.t least

[XY I + [YZ[. Since we assume that II does not self termina.te, we a.lso ha.ve tha.t the width
of the maw of/7 at Z is no more tha, n 21Y 01.Hence IF'Z-7-1> IxYI. ];'rom l,em,na 1.2 the

inverse horn maw width on ZZ' is at most t - t/2 -I_'zI < -31 1/4 < 0, and the horns
intersect. II

Proof of Lemma 8. Label the points that the center paths intersect E as X, Y, Z, X', Y'

and Z' respectively. Let t be the inverse horn maw width on XX', so t < IXX'I. Since
R' does not self terminate or terminate by containing X, then IXY'I < IY'Z' I. I-[ence the

inverse horn maw width at on ZZ' is at most t - t/2 - [Y'Z' I < 0, and the horns intersect.
|

Proof of Theorem a. The proof is very similar to the proof of Theorem 2, Recall that

there are mi horns. All the hops are disjoint, except that the final hop in ea.ch of the mi

horns may intersect with some other hop. Eor the remaining (not last) hops, two hops are
either disjoint, or one completely contains the other. That is, the hops are partially ordered

by containment. Hence there are at most 2I) unique input vertex sets contained in hops.
We enumerate the hops by charging the vertex sets for hops, such that each vertex set gets

charged only a constant number of times.
If a hop is the smallest hop oriented in a particular direction along L containing a given

vertex set, we charge that set for the hop. Each set may be charged once for each hop
orientation, or a total of two times in this way. We now consider the case that two hops
contain the same vertex set.

Let J be the largest hop contained in a hop I such that I and .1 are oriented in the

same direction along L, and they both contaii, the same vertex set. Let H be the horn
containing J and II' the horn containing I. We rely on the proof of Theorem 2 for the case

that H = H'. So we assume H ¢ H'. If the hops following I or J intersect, or I or J is the
last hop, we note that this can happen only mi times in the collection of horns. Otherwise
we have two cases.

In the first case I and the hop I' following it is not a reversal. Then from Lemma 7 I'
contains a vertex set different from J', and we charge I to the vertex set of J'. Recall J

was chosen be be the largest hop contained in I. If J and J' do not form a reversal, then
J' is the smallest hop containing its vertex set, except perhaps for a. hop that is the first

hop of a center path. There are at most mi first hops, so they may be ignored. Otherwise
J and J' form a reversal. If J' is not the smallest hop containing its vertex set, then we

note that there is no pair of hops II and I[ inside J, ,]' that can also charge the vertex set
of J' in this way, and hence the vertex set of J' is charged at most once in this way.

In the second case [ a,nd the hop 1' following it is a reversal. Since J was chosen to be
the largest hop contained in I, we have that I' is the smallest hop cont_tining its vertex set,
except perha, ps for a, hop that is the first hop of a center path. As before, this later case

may be ignored. Itence we may charge I to the vertex set of l'.
Each of the 2p vertex sets is charged at most twice for each orientation direction, and

for at most two hops for each orientation. Iience we have _tt most Sp hops, _md a.t _nost

77Zi crossings at the begining of a, horn, for a total of 8p + 'mi crossings. As in the proof of
'l:heorem 6, the "8" is not tight. |
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Proofof Theorem 4. 'lh prove that the nu,l_l_)(.,rof St,einor l)atlls a,t ea('h iteratio,l (h:(:reas(,s
geolnotri('ally, we must sl)ecify exactly which accet)ta/)le St(:iner l)atlls we cr(,al.e. W(: ha.re
a nunlber of cases, del)ending on why a horn II terminated, and Ol] rh0 h()l'llS that intersect
it.

Case i. H terminates because of Item 1, Item 2, Item 3 or Item 4. Then we introduce

the acceptable Steiner path described in Section 2.2. This does not generate a horn in the
next iteration.

Case 2. H terminates because of Item 5. and the horn H' it terminates on is oriente(1

in the opposite direction along the maws' common triangle edge. (.Note tha.t H' must not
ha,ve terminated bec_'alse of this case a.s weil, but we may erase any l)ath for H' already

created because of Case 1 above.) .Then we may construct the Steiner path described in
Section 2.2 for each horn. This does not generate a horn in the next iteration.

Case 3. H terminates because of Item 5, but the horn H' it terminates on is oriented in

the same direction along the maws' common triangle edge. There is an acceptable Steiner
path for both horns to a point of the intersection P as in Section 2.2. However, we may
have to construct a horn from P in the next iteration. We have severM subcases we must

consider in order to exactly bound the number of horns in the next iteration.

Subcase A. k >_2 horns intersects H' on the same boundary path of H'. This subcase
may apply to each boundary path of H'. Among all the horns intersecting H', there is

one generating an intersection point P furthest from the starting vertex of H'. \¥e may
construct a Steiner path for ea.ch horn intersecting H' to a point P_ on the boundary path

of H'. We may also construct one path for H' from its starting vertex through each P'
terminating at P. Thus we had k >_2 horns in this itera, tion, and one horn from P in the
next.

Subcase B. H is the only horn terminating on a particular boundary path of H:, and no
Steiner path has been previously created for either H or H'. We introduce the acceptable

Steiner path for H and H' to their intersection point P on the boundary path of H. We
have two horns in this iteration, and may have one from P in the next.

Subcase C. H is the only horn terminating on a. particular boundary path of It', but

a Steiner path has been created for either H or H' by the previous cases or subcases. If
a Steiner path was introduced on the boundary path of H tl,at intersects H', and either

no Steiner path was introduced fox"H' or one was introduced on the boundary path that

intersects H, we complete the Steiner paths as in Subcase B. Otherwise we de nothing.
The horn without a Steiner path will ge.nerate a horn in the next iteration. A horn H' tlta,t

terminated because of Case 1 or 2 may have at. most two horns terminating on it that lneet
this subcase. Otherwise, a horn H' may have at most one horn termina.ting on it that fits
t;his subcase for which we de nothing.

We now count llZi+l, the nun_l)er of horns in the next itera.lion, l,et mi be the number

of horns in the current iteration. Let k be the number of horns terminating as in C,ase 1
or t_,a,.'c2, and l 1)e the number of horns terminating as in Subcase A or B. Then we have
I/2 horns in the next iteration, l)lus q, the cont.ril)utio_ls from Subcase C. llell('(' we ha.v(,

'llli+ 1 _ 1/2 + q, where k + 1%- q = 'm,i and q <_ 21: + 1. 'l'he worst case is a.chieved xvllell

l = mi2 and q = I. Ilence 'm,i+l <_371_,i/4. |

Proof of Theorem 5. For ea.ch horn in a.n iteration, we genera.tc at most three Steiner
paths in it; one on each boundary pa.tll, and one in its interior. Combining this with
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Figure 8" The angles between triangle edges and Steiner path edges are bounded (left).

Uncrossing edges only improves angles (right).

Theorem 3, we genera,tc at most O(mi + p) Steiner points on each of the n edges at each
iteration. Since the number of horns must be an integer bigger than one, from Theorem 4

we have at most log4/3 m iterations, and the sum of the np terms is O(nplog m). Similarly,
since the mi are bounded above by a geometric series, the sum of the nmi terms is O(nm).
|

5.2 The angle bound for triangles that have a small angle

Proof of Lemma 9. Suppose the path is directed from A to /3 as in Figure 8 left. Such
a Steiner path edge is contained in the cone at A. Hence the angles at A, 01 and 02 _tre

bounded between 7r/4 and 37r/4. The triangle edges meet at vertex W, where a, = /AWB <_
r/8. Let angle /_1 "- /WBA, then /_1 -- 71"- _- 0 1 _ 71 -- 7I"/8- 3_-/4 = 7r/8. Similarly,

til _<7r- 0- 7r/4 = 37r/4. This bounds its supplement,/32, between 7r/4 and 77r/8. |

Proof of Lemma 10. Consider any pair of edges AB and CD that cross in triangle

AUITW _s illustrated in Figure 8 right. We may swap vertices, forming Steiner path edges
AD and CB that do not cross. It is easy to bound the new angles at A by the originM

angles: /DAV <_ [.DCU and ZDAW <_ /BAW. We may similarly bound the new angles
at B,C' and D. |

Proof of Lemma 11. There are four natural subregions of Region ABVU to consider.

: Region UVC. Consider any triangle ACXY with X and Y lying on UV. Now

/XCY <_ /VCU <_ 77r/8. Assuming U is closer to X than Y, ZCYX is at most the
supplement /CUV, or 77r/8. Similarly for ZCXY.

Region ABC. This region consists of the single triangle AABC, or is empty if no edge
AB is drawn. Now/CBA <_ZU/3A <_7_r/8 by Lemma 10. Similarly for/CAB. The worst

case for ZACB is when B = V and LUVA = ?r/4. But then LCVA = LUVA- LUVA =
_r/8. Hence LAC/3 is at most the supplement of this, or 77r/8.

Regions ACU and BCl / . Consider the triangle ACXY. Then LXCY is at most
]- ,Zf CA, which in turn is at most the supplement of LCUW, or 37r/4 Suppose (,; is closer

to X than Y. Then LCXU is also at most the supplement of LCUI,V, or 3_r/4.

Ii, remains to bound LCXY. The worst case is when Y = A and LUVX = 7r/4. See

: Figure 9. Since LCXY is the supplement of LCXU, we seek a lower bound on the latter.

IU-OI _ IC'---gl , and lC'VI - Io..X'l SinceFrom the law of slims, we have sin Lcxu - si,, ZCIJX si,,/CXV -- sin/CI'..Y '
ACVU is isosceles we have

sin ZCXU = sin ZCXV sin ZCUX
sin/CVX

19
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Figure 9: Angle CXY is bounded for any triangle ill region ACU.

Note that LCVX = 7r/8 and LCUX = LVUW - 7r/8 >_7r/4. Hence LCUX > LCVX, so
that LCXU > LCXI/. Now LVXU = 7r-LUVX-LVUX > rr/4. Since LC'UXNLCVX =

/_VXU, we have LCXU >_ 7r/8. Hence LCXY <_77r/8. I

5.3 The angle bound for triangles that have only large angles

Consider fixing a non-conformal triangle that has ali angles at least 7r/8. One way to
1;riangulate such a triangle is as follows. First, introduce a Steiner point at the intersection

of the angle bisectors. Second, introduce an edge between that point and each triangle
vertex and Steiner vertex on the boundary of the triangle. Any triangle formed may have

largest angle at most the supplement of half of the smallest angle of the triangle, or 157r/16.
Itowever, we can take advantage of the special structure of the Steiner points we intro-

duced in order to triangu, late with no angle larger than 72r/8. The method is very similar to
that used for a triangle with a small angle, but its description is necessarily different. We

do not have the same description of drawn edges. Moreover, the angle that a cone makes
with an edge may be close to the angle of the triangle at W, so that the proof of Lemma

9 will not hold. Fortun_Ltely, it is possible to use the fact that the angle at W is large to

directly bound the largest angle in the region WAB. For region ABVU, the same proof as
for a triangle with a small angle holds, with slightly different constants in various places,

but the same overall bound of ?rr/8.
Consider a triangle LkUVW whose smallest _ngle occurs at 14/, but is greater th_n 7r/8.

We create a list R of the vertices on WV, including W _nd V, sorted from W to V. We
create L for VdU similarly. We draw edges from L to 17._ts follows. \,\;e draw an edge from

the top of L to the top of R. If W is closer to the top of L than to the top of R, then we

Imp L, otherwise we pop R. We repeat until LUVA _<7r./4 and Ll,"lll3 <__r/:l, where A is
the l,op of L _nd B the top of 1_.

As in Section 3.1, denote the drawn edge closesl, to }II." by .;11---_.'l'he region I¥A13 is

t|'i_ulgulated, and region ABVU is untria, ngula, ted.
I A/3. (,onslder the triangleRegion I,VAB We first artalyze the triangles of region ,V -' '

formed by W and the first edge drawn, /_I/VA1B1. See Figure 10. Now LI,I/HIAI;uld
/-14Z/llB1 are bounded by the supplement of ZUl'lzV, or 77r/8. Any triangle of the sequence
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may be analyzed in the same way. Without loss of generality, consider a triangle AAiBiAI+I,

where W is closer to Ai than to Bi. Since LUWV _< rc/3, we have LBiAiAi+I < 2rc/3. Now,

gAiBiAi+l <_ LWBiU. But this is at most the supplement of/VWU, or 7rc/8. Similarly,

LAiAi+IBi <_ LI'VAi+I V < 7rc/8.

Region ABVU. As in Section 3.1, we introduce a vertex C inside _I,VUV such that
LUVW = LVUW = rc/8. Vie then introduce an edge from C to each Steiner and triangle

vertex in region ABVU. Again we have four natural subregions regions to consider.
The analysis differs slightly from Section 3.1 in that LVUW and LUVW may be smaller.

We have LVUW = rc- LUVW - LUWV, and W was chosen so that LVUI/V <_ LVWU.

ttence LVUW _>_/4, whereas in Section 3.1 the bound was 3_/8. Similarly for LUVW.
Also our construction is defined differently. We first show that there is no Steiner point

S in the region on WU such that LUVS > 7r/4, except perhaps for A itself. This fact

was immediate in Section 3.1 by construction, but must be proven here. Suppose there

were such a point. Since there is no drawn edge SV, we must have that II/I/VI _< II¥,_ I.
Hence LWVS > (Tr - LUWV)/2. But then LWVU > (rc - LUWV)/2 + _/4 >_7rc/12, a

contradiction to the fact that we introduced edges to make all triangles non-obtuse. This
also shows that either LVUB < 7r/4 or LUVA <__r/4.

Region UVC. The analysis of region UVC is identical to that of Section 3.1.
Region ABC. We do not have Lemma 10 to bound LCBA and LABC. Suppose

LCAB > LCBA. tlence W is further from A than from B, and the above shows that

LUVA _< rc/4. The worst case is when LUVA = rr/4, and the analysis of region ACU
below shows that LCAB < 77r/8.

The worst case for LACB is when B = V and LUVA = 7r/4, since either LVUB < 7r/4
or LUVA < r/4. Asin Section 3.1, then LCVA LUVA- LUVA rc/8. Heucc L/(.tt

is at most the supplement of this, or 7rc/8.
Regions ACU and BCV. This differs from Section 3.1 in that the Ul)l)er bound ou

LVUW and LUVI,V is rc/4 instead of 3rc/8. C,onsider any triangle /_C'XY. The same

argument as in Section 3.1 shows that LCUW <_7rc/8, instead of 3rc/4.

Consider the argument in Section 3.1 that LCXY < 7rc/8. Ilere we have that LCUX =

LVUW - rc/8 > rc/8, instead of rc/4. However, since L6.[ .X is still greater than ACVX
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_/S, t,lle proof reJllaills correct.

5.4 Combining the cardinality bounds of Section 2 and Section 3

Theorem 6 A i_,_1trmngulcttioT_ caT_be reJined with at most O( ,.m + ,p log m ) .5'tei,er poi,,t._
so t/mt 1lo (ingle is larger ihaT_77r/8. Here n is the 7_umber of edgcs, m o lw phts the ,.u,tber
of obtTtsc _mgles (rod p the nu.m,ber of holes altd iT_,teriorvertices in the origi,al tria,g'ulatimz.

Proof. Froln Theorem 5 we have O(nm + np log m) Steilmr points added on, trial@e edges.
We have a,n additional O(7_,)vertices in Section 3 by adding one St einer vertex in the interior

of each non-conformal triangle. II

Theorem 7 Any PSLG with v vertices caTzbe triangulated with _o a l_glc larger thal_ 77r/8
usiTzg at most O(v21og v) Steiner points.

Proof. By Euler's formula, any constrained triangulation of the input I'SLG has at most

3v edges and 2v triangles. Each triangle ca,n h_tve one obtuse angle, llence ,, m, and p are
ali bounded by a constant times v. /

5.5 Bounding the running time

Theorem 8 A,,y triangulatioTt caT_be re.fi_wd in time O((_,m + ,p log m)log(m + p)).

Proof. For e_ch edge of a triangulation, we maintain a sorted list of the Steiner points it

contains. This list is of length O(m + plogm) after O(logm)iter_Ltions. Whell we grow

a horn to a new edge, it then takes O(log(m + p)) time to dctermive if a Steiner point or
tria,ngle vertex on that edge is contained in the horn maw, and if not the interval in which

to place a new Sl,einer point. Creating the Steiner pa.rh when a horn terminates then takes

tilne linea,r in the length of the path. Triangulating a non-confc)rnlal triangle takes time
linear in the number of Steiner points on its boundary of the tria,ngle. 1
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