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Refining a Triangulation of a Planar Straight-Line Graph
to Eliminate Large Angles
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Abstract

Triangulations without large angles have a number of applications in numerical
analysis and computer graphics. In particular, the convergence of a finite element cal-
culation depends on the largest angle of the triangulation. Also, the running time of
a finite element calculation is dependent on the triangulation size, so having a trian-
gulation with few Steiner points (added vertices) is also important. Bern, Dobkin and
Eppstein [1991] pose as an open problem the existence of an algorithm te triangulate a
planar straight-line graph (PSLG) without large angles using a polynomial number of
Steiner points.

We solve this problem by showing that any PSLG with v vertices can be triangulated
with no angle larger than 77 /8 by adding O(v? log v) Steiner points in O(v? log® v) time.
We firsi triangulate the PSLG with an arbitrary constrained triangulation and then
refine that triangulation by adding additional vertices and edges. Some PSLGs require
Q(v?) Steiner points in any triangulation achieving any largest angle bound less than
7. Hence the number of Steiner points added by our algorithm is within a logv factor
of worst case optimal.

We note that our refinement algorithm works on arbitrary triangulations: Given
any triangulation, we show how to refine it so that no angle is larger than 77 /8. Our
construction adds O(nm+nplog m) vertices and runs in time O((nm+nplog m) log(m+
p)), where n is the number of edges, m is one plus the number of obtuse angles, and
p is one plus the number of holes and interior vertices in the original triangulation.
A previously considered problem is refining a constrained triangulation of a simple
polygon, where p = 1. For this problem we add O(v?) Steiner points, which is within
a constant factor of worst case optimal. The algorithms we present are very practical:
For most inputs the number of Steiner points and running time would be considerably

smaller than in the worst case.
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Figure 1: A triangulation refinement may require $2(nimn) Steiner points to have any constant
angle bound (left). In fact. a single Steiner path may require Q(np) Steiner points (right).

1 Introduction

1.1 Problem statement and motivation

We are concerned with finding a conforming or Steiner triangulation of a planar straight-line
graph (PSLG). That is, we scek a triangular graph, such that vertices of the input appear
as vertices of the output, and edges of the input appear as a union of edges of the output.

Steiner triangulations whose triangles have bounded shape are important for numerical
analysis, in particular for a mesh in a finite element method. Babuska and Aziz [1976)]
shows that the convergence of a finite element method depends on the largest angle of the
triangulation. Often one wishes to find a triangulation for a PSLG that is not a polygon.
For example, a semiconductor may have two differently doped regions. Hence a description
of the semiconductor wouid include an edge with the interior of the region on both sides.
Steiner triangulations without large angles are also of use in functional interpolation and
computer graphics (see Barnhill {1983]).

In addition to the shape of the triangles, another important criterion for a triangulation
is the number of triangles. For example, in a finite element method calculation the number
of triangles directly affects the running time. For many triangulation algorithms the numn-
ber of triangles produced depends on the inpui geometry or embedding, and not just the
cardinality of the input. Bern, Dobkin and Eppstein [1991] pose as an open problem the
existence of an algorithm to triangulate a PSLG without large angles using only a polyno-
mial number of added vertices (called Steiner points). Here “polynomial” is taken to mean
polynomial in the input cardinality, independent of the geometry.

1.2 Previous results

lor polygonal input there are many results concerning the construction of triangulations
without large angles. Bern and Eppstein [1991] shows how to triangulate an arbitrary
polygon so that no angle is obtuse by adding O(n?) Steiner points. Bern, Dobkin and
Fppstein [1991] shows how to triangulate various types of input polygons with various
angle bounds, using between O logn) and O(n'*) Steiner points. It is unknown if the
numbers of Steiner points added by these algorithms are worst case optimal, as the only
known lower bound for polygons and point setsis Q(n). Bern, Eppstein and Gilbert [1990]
shows how to triangulate a point set with no obtuse angles using only a lincar number of
Steiner points, which is worst case optimal. Ippstein [1992]) achieves this and simultancously



approximates the minimum weight Steiner triangulation.

Rupert [1993] shows how to triangulate a PSLG so that no angle is smaller than 7/9,
and hence no angle is larger than 77/9. However, any triangulation that achicves no small
angles is doomed to use a non-polynomial number of Steiner points, dependent on the input
geometry. There are several previous algorithms that achieve similar vesults (by dissimilar
techniques) for polygonal input. See Bern and Eppstein [1992] for a sumrary.

Edelsbrunner, Tan, and Waupotitsch [1990] shows how to generate a constrained trian-
gulation (one where no Steiner points are allowed) of a PSLG such that the maximum angle
is minimized. The technique used is edge-insertion, a global strategy that is a gencralization
of local edge flip. Mitchell and Park [1993] shows how to generate a covering triangulation
(one where no Steiner points are allowed on the input edges) of a PSLG such that the
maximum angle is approximately minimum, using a polynomial number of Steiner points.

1.3 Overview

We consider the problem of triangulating a PSLG so that no angles are large. We solve
this by first triangulating the PSLG with an arbitrary constrained triangulation, and then
refining that triangulation. Given any triangulation, we show how to refine it by adding
additional vertices and edges so that no angle is larger than 77 /8. Our construction adds
O(nm+ nplogm) vertices and runs in time O((nm+ nplogm)log(m+p)). We define p to be
one plus the number of holes aud interior vertices in the original triangulation. That is, pis
the number of two-dimensional connected components of the boundary of the region to be
triangulated, plus the number of vertices strictly interior to the region to be triangulated.
We define n to be the number of edges, and m to be one plus the number of chtuse angles
in the original triangulation. By Euler’s formula, in any constrained triangulation of a
PSLG with v vertices each of p, n and m is O(v). Hence the final PSLG triangulation has
O(v?logv) vertices and takes O(v?log?v) time.

Bern and Eppstein [1991] shows how to refine a constrained triangulation of a simple
polygon so that no angle is obtuse using O(n*) Steiner points. They provide a lower bound
example, due to Paterson, that illustrates the key concept in our algorithm. The example
shows that a triangulation refinement may require Q(n?) (actually Q(nm)) Steiner points
in order to achieve any angle bound less than . The example consists of a stack of {2(n)
long and skinny triangles capped by m = Q(n) triangles with obtuse angles directed into
the stack as in Figure 1 left. Fach obtuse angle in the cap requires a Steiner point on
the opposite triangle edge in order to refine the triangulation without large angles. This
induced Steiner point in turn induces a Steiner point on the next lower edge, ete. If the
figure is made sufficiently wide and short, the Steiner points induced for different obtuse
angles are far apart and can not interact with one another. Hence cach of the (n) obtuse
angle induces (1) Steiner points, for a total of 2(n?) Steiner points.

Steiner path. The key concept in our algorithwn is the fact that if the final triangulation
is to have no large angles, adding a Steiner point on one edge of a triangle may induce the
addition of a Steiner point on another edge of the triangle. We call a sequence of induced
Steiner points a Steiner path. Besides being fairly intuitive, the fact that Steiner paths
are sometimes necessary can be proved as a direct result of a lemma about constrained
triangulations in Edelsbrunner, Tan, and Waupotitsch [1990] (see Section 2.1).



A variation on Paterson’s example provides additional motivation for Steitner paths in
Section 2. The stack and the cap can be replaced by triangles all having a vertex in commoun:
We huild the example of Figure 1 right by using p = Q(n) such constructions separated by a
middle stack of size Q(n). The Steiner path shown in Figure | right is required to intersect.
cach edge of the middle stack Q(p) times, Hence a triangulation with a single obtuse angle
may require Q(n?) (actually Q(np)) Steiner points in any refinement that achieves an angle
bhound less than w.

Algorithm. Qur algorithm is as follows. Given a PSLG, we triangulate it with an
arbitrary constrained triangulation algorithm, such as the minmax angle triangulation of
Iidelsbrunner, Tan, and Waupotitsch [1990]. Henceforth we consider that triangulation
as our input. lor each obtuse angle vertex of the input, we subdivide it into two acute
angles by adding the altitude from it to the opposite triangle edge. Hence all triangles
are non-obtuse (but also non-conformal), which is important for Section 3. These altitudes
introduce a collection Steiner points in the interior of triangle edges. Such points are called
non-conformal because they make the graph non-triangular. These non-conformal points
induce Steiner paths. Any fixed strategy of consecutively chosing the Steiner points on a
path is doomed to produce a very long path for some input. As we shall see in Section 2
helow, for a given desired angle bound there is some flexibility in picking the next Steiney
point on a path. We retain this flexibility, and consecutively determine an ever widening
region called a horn, such that there is some acceptable Steiner path from the initial vertex
to every point in the horn. Only later do we chose exactly which path we take from among
all those possible inside the horn. This allows us to bound the length of a particalar path
by O(np).

Eventually each horn will terminate either by intersecting the bonndary of the input or
a triangle vertex, by intersecting itsell in a special way, or by intersecting anothee horn. In
thie first case we create a Steiner path to some Steiner vertex on the input bounduary or the
triangle vertex. In the sccond case we resolve the large input angle by creating a Steiner
path that ends in a loop (see Figure 3 left). In the third case, we can create a Steiner path
to an intersection point of the two horns on a triangle edge (sce Figure 3 right).

Because of the third case our algorithm is iterative: We may have to create & Steiner
path for the intersection point, which we do in the next iteration. The number of Steiner
paths m; we need to introduce at iteration 7 decreases geometrically, so there are O(logm)
iterations. The collection of paths may intersect an input edge O(my; + p) times, which
is surprisingly close to our bound of O(p) for single path. Hence at ecach iteraticn we add
O(n(m;+p)) Steiner points, {or a total of O(nin+uplogm). Asa practical consideration, the
constant in this bound is relatively small. In particular, we derive an upper bound of 3nan +-
Suplogy, m + 20 /3 4 m Steiner points, and even this is not tight. Furthermore, ovsuming
wost inputs do not have long sequences of adjacent triangles with very small avzies, for
most inputs the refinement algorithm would add considerably fewer points (perfiaps only
S,

Wihen introducing a path, we just introduce vertices, and not edges between consecutive
vertices of the path. We do this because edges for two dillerent paths may cross interior to
a triangle. We introduce edges to make the graph conformal only after all paths have been
created. We resolve the crossings of Steiner path edges in two ways. Il two crossing edges
iave vertices near a small angle vertex of a triangle, we can swap vertices so that the edges



do not cross, and add a diagonal 1o triangulate the resulting quadrilateral. This strategy
does not work near the large angle vertices of a triangle, since paths involving all three of
the triangle edges may interact. So instead we introduce one vertex inside the triangle near
the edge opposite the small angle, and connect it with an edge to each remaining vertex on
the triangle boundary.

The remainder of this paper is organized as follows. Section 2 concerns the development
of the Steiner paths, and Section 3 describes how to fix the non-conformal input triangles.
In Section 4 we present sclected open problems. In the appendix, Section 5, we provide
the proofs for many of our lemmas and theorems and bound the running time.

2 Introducing Steiner points

2.1 Steiner path motivation

Consider refiniug a given triangulation so that no angle is greater than some bound. We
the following lemma from Edelsbrunner, Tan, and Waupotitsch [1990], where (7)) denotes
the maximum angle of a triangulation 7.

Lemma 1 Given a vertex set A, in any constrained triangulation T containing edge WV,
we have (7)) > maxgeq LWSV.

For a Steiner triangulation, the edge opposite a large angle of a triangle must be subdi-
vided in order to reduce the bound of this lemma (adding Steiner vertices elsewhere merely
increases A). So suppose we add a vertex S to subdivide an edge. Unless S is on the
boundary of the region to be triangulated, there may be a triangle edge VIV that subtends
alarge angle at 5. Hence to reduce the bound of the lemma we need to subdivide this edge
as well, etc., inducing a Steiner paih.

To gaiu some intuition about long Steiner paths, we have a sufficient condition on a
triangle 7" such that ZV.SW is not large: LVSW is at least the supplement of the smallest
angle of T'. Hence Steiner paths only continue through triangles with a small angle.

If LV SW is large, we wish to find an acceptable placement of S; on WV in terms of the
angles /V §5; and LW S8, such that the lower bound from Lemma 1 is reasonably small:
If we place 57 so that both of these angles are less than a > #/2, then the lower bound
from Lemma | is at most a. Requiring LV S§S, = LWSS| = 7 /2 leads to a single choice for
S1. This is too restrictive in that it could lead to long Steiner paths (e.g. infinitely long in
Figure 3 left). We chose a = 37/4, so that there is a range of acceptable placements for 5.

In fact, regardless of the choice of a, we need a global strategy for placing the §; that
takes into account the entire induced Steiner path: For any local strategy, there is an input
that leads to a very long Steiner path.

We do not fix Sy, but instead only consider it to be in the acceptable range, with the
freedom to go back and fix its exact location later. Hence we have more freedom in where
to place 55, or we may even discover a position for S; where Sy is unnecessary due to a
triangle vertex of Ty, The longer the path is, the more freedom we have in the placement
of the last Steiner vertex (sce Iigure 2). We are able to take advantage of this freedom to
prove that paths are only of length np. Recall that for Section 3, the first point S is always



Iigure 2: A horn (shaded) and its center path (dashed) terminating on its maw.

on the altitude containing the large angle vertex, and we consider that altitude to be as any
other triangle edge. We now formalize.

2.2 Horns

Cone. Consider a Steiner point S on WU of AUVW. The cone at S consists of all points
P of AUVW such that ZPSW and £LPSU are at most 37 /4. Alternatively, the cone is the
intersection of AUVW and the infinite sector at S whose bounding rays make angle 7 /4
with WU. The angle between the bounding rays of the cone is 7/2. Sce Figure 5.

Maw. The maw of a cone is the portion of the cone on the boundary of AUVW,
excepting S itself. If triangle vertex V' is in the maw, then we know that the lower bound
from Lemma 1 is at most 37 /4, and there is no need to add any more Steiner points in this
path. Otherwise, the maw corresponds to the range of positions for placing 57 such that the
lower bound of Lemma 1 is at most 37 /4. In this case the maw consists of a line segment
contained in WV or UV; without loss of generality we assume WV throughout this paper.

Fach point in the maw defines an acceptable position for Sy, wkich in turn defines a
cone for the next triangle. The union of the maws of these cones defines an acceptable
placement for S,. That is, it defines a range of placements for Sy such that we can find a
placement of §; where the cone at S contains S;, and the cone at 5 contains 5. Thus we
define the following;:

Horn. We iteratively build the horn at 5 as a union of cones. We initialize by setting
the horn to be the cone at 5. At the next stage of the horn’s construction, we add the union
of the cones in the next triangle for all points in the maw at the current stage. We define
the maw of the horn at a particular stage to be the union of maws for the set of cones just
added. See Iigure 2.

Center and boundary paths. We define the center path of a horn to be the sequence
of line segments connecting the midpoints of the maws for consecutive stages, starting at
S. See Pigure 2. We call the two sequences of segments from the starting vertex of a horn
making angle /4 with each triangle edge boundary paths.

Terminating criteria. We continue the construction of the horn in stages until one of
the following occurs (the first three are considered case one in the introduction):

1. The maw contains a triangle vertex. As a heuristic, we also terminats if the maw
contains a Steiner path vertex of a previous iteration (see Section 2.5).

2. The maw is on a triangle edge where the next triangle has all angles at least 7 /8.

6
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Figure 30 A horn may self intersect (left). The horn shown will self terminate by Item
balter three more stages, since the horn from center path point P2, will contain 2,

A
collection of hiorns may merge (right). The horus for the next iteration are darkly shaded.
and Steiner paths are dashed.

3. The maw is on an edge of the boundary of the region to be triangulated.
& )

Lo The maw contains a center path point of a previous stage of the horn, and morcover

the hiorn defined from that center path point contains that center path point (see
Figure 3 left),

A0 The maw intersects a horn coustructed earlier in the current iteration, and either
the horns are oriented in the same direction, or in opposite directions and the maw
intersects a boundary path or center path of the other horn (see Figure 3 right).

When one of these termination criteria occurs. there is an acceptable Steiner path inside
the horu. By acceptable, we mean that the lower bound from Lemma | is guaranteed to
be no more thau 37 /4, and the cone from a Steiner path point contains the next point in
the path. Given a final Steiner point, it is casy to compute an acceptable path by working
from the final Steiner point back to the first point 8 of the horn. If the horn terminated

becanse of Ttem 4L then we must form a loop containing the distinguished center path point
as well (see Figure 3 left).

[n Ttem 1, the final Steiner point is the vertex contained in the maw, In Itom 2 and ltem
3 we may pick any point in the maw. In Itemn 5. we pick the point that is hoth in the maw
and on the boundary path of the other horn. (We may not actually use the corresponding
path. depending on whether any later horns in the current iteration terminate on it: see
Section 2.5). In Ttem -Lowe pick the center path point 22, that caused the horn to terminate.
2.3  Bounding a single path
L order 1o bound the number of times horns mayv intersect a given edee, we need some
lemmas about how quickly the maw of a horn grows in relation to its center path lengt .
Lemma 2 For the cone at S the width of the waw s twiec the longth of the conter path.



In general, the center point of the next cone is not the center point of the next maw,
so that the width of the maw is not always twice the center path length. However, we are
able to establish a smaller linear bound. See Figure 5 in Section 5.

Lemma 3 The width of the maw 1is greater than the length of the center path .

Lemma 4 Suppose a horn interscels an edge with maw width M and again at a later stage
with maw width M'. Then cither M' > 2M or the horn terminates as in Item 4.

We wish to bound the number of times a center path may cross a given edge. We first
show that successive center path points have some ordering along an edge.

Lemma 5 Suppose a horn intersects an edge E with center path point Py, and again al a
later stage with center path point Py. If the horn intersect I at a later stage with center
point Py between Py and Pa, then it self terminates as in ltem 4.

Proof. This proof illustrates a general technique we use often: We show that a center path
must be long, so that a maw is wide and hence either the center path is far away from some
feature or contains that feature.

Consider the horn from P; (whether or not Py really is the first point of a horn). Let
d be the distance from Py to P;. Let My be the maw width at P, where from Lemma 3
My > d. Let My be the maw width at P;. From Lemma 4 we have Mz > 2M,. Hence
My > 2d, and if P53 has distance to Py less than d, then the maw at Ps contains P; and the
horn terminates as in Item 4. B

We may use this lemima to analyze the number of intersections a center path may have
on an edge if all points of intersection lie on one side of the first center path point. But first
we need the following definition.

Hop. The center path between two points P; and P4y on an edge I, together with the
portion of E between P; and Py, forms the boundary of a compact set in the plane. We
call this set a hop.

Theorem 1 Suppose a horn intersects an edge E with center path point Py. Consider the
line L containing E. Then the horn may intersect E at most p times on onc side of P
before intersecting L on the other side of Py.

Proof. By Lemma 5, Py, Ps,...are consecutive along £, and hence the corresponding hops
have disjoint interiors. Fach hop contains a vertex of the input in its interior (see Section
5), and hence there can be at most p such hops. il

We now consider the case that all of the points of a center path on 2 to not lie on
the same same of the first such point. For this to happen, there needs to be a reversal.
[ntuitively, a reversal is two consecutive hops that travel in opposite directions.

Reversal. A reversal is the center path of a horn from a point P on edge 7 to a point
Py on L (or ) to a point Py on E, where Py and P, are on opposite sides of 2, and L is the
line through I. Also, the center path must not cross I at any point other than /4 between
P and P, (otherwise we may find a shorter reversal instead). See IFigure 7 in Section 5.
Just as for a hop, we say that a reversal contains the input vertices in the region bounded
by the center path from PP to P, and L.




Lemma 6 The vertices contained by two reversals of a contor path are vol identical, unless
the horn terminates as in lem .

Proof. The proof lies in observation that if hops contains the same vertices and are oriented
in the same direction, then they grow closer together as the stages increase. This holds true
for two hops for the same Steiner path but different starting stages, and also for two hops
for different Steiner paths (used in the next subsection). The rate at which the distance
between them decreases can be bounded below in the same way that the rate of increase
of the width of a maw can be bounded below. Hence the proof reduces to showing that
the “center path” of the region between the two reversals is long, so that the outer reversal
must contain the starting center path vertex of the inner reversal. See Section 5. 1

Theorem 2 A horn may intersect a given edge at most O(p) limes.

Proof. The hops are partially ordered by containment. Hence there are at most 2p unique
input vertex sets contained in hops. We enumerate the hops by charging the vertex sets
for hops. Using a careful charging scheme, Lemma 6, and Theorem 1, each vertex set gets
charged only a constant number of times. See Section 5 for the full proof. H

2.4 Bounding the collection of paths

We now consider all of the horns in a given iteration, and how they interact. We seek a
bound on the number of times these horns may collectively cross a given edge. We consider
two horns with hops oriented in the same direction with respect to k.

Lemma 7 Suppose a korn H has two consecutive hops M and M, (not a reversal), and
another horn H' has two consecutive hops M' and My, such that M and M’ contain the
same input vertex set, and similarly for My and M{. If neither H nor H' self terminates
on M, M', My or M{ as in Item 4, then My and M{ intersect as in Item 5.

Lemma 8 Suppose a horn H has a reversal R, and another horn H' has a reversal R' with
hops containing the same vertexr sets as those of R. If neither horn terminates on R or R’
as in Item 4, then the two reversals intersect,

Theorem 3 The collection of horns may intersect « given edge at most O(p + m;) limes.

Proof. The proof is very similar to the proof of Theorem 2, and relies on on Theorem 2,
Lemma 7 and Lemma 8. See Section 5 for the proof. B

2.5 Introducing Steiner paths for the collection

The algorithm for constructing the Steiner paths is iterative. If no horn terminated by Item
5 we could construct the Steiner paths and no more iterations would be required. However,
if a horn terminates because of Item 5 then its last Steiner point may induce a path in the
next iteration. We have shown above that cach iteration will produce only O(n(m; + p))
Steiner path points, where m; is the number of horns in iteration i. We show below that
al cach iteration we reduce the number of horns by at least a factor of 3/4, so the sum of
the my is 3m. Furthermore, since the my; are bounded above by a geometric series, there is
only a logarithmic number of iterations in terms of .



Figure 4: How to triangulate a triangle with Steiner points on its boundary.

Theorem 4 The number of horns in the next iteration is at most 3/4 times the number of
horns in the current iteration. That is, m;y; < 3m;/4.

Proof. The proof of this theorem is a matter of carefully specifying exactly which paths
we create when horns intersect. Consider a horn H that intersects a horn H’, where H'
terminates because of one of Item 1 through Item 4. Then H induces a path in the next
iteration, but H’ does not. For the horns that terminate on a horn that also terminates
because of Item 5, we are careful that at least a constant fraction of these are merged
together. See Figure 3 right and Section 5 for the specification and proof. i

Theorem 5 A: most O(nm + nplog m) Steiner points are added.

3 Triangulating the non-conformal triangles

We now have a non-conformal triangulation in which some triangles have Steiner points on
their edges. We now show how to triangulate these triangles.

3.1 Fixing triangles that have a small angle

We introduce the Steiner path edge AB when the angle between the triangle edges con-
taining A and B is less than 7/8. We say such edges are drawn. The other Steiner path
edges are forever ignored. We have bounds on the angle that Steiner path edges make with
triangle edges.

Lemma 9 The angles at the intersection of « drawn Steiner path edge and a triangle edge
are between 7 /8 and Tr /8.

Lemma 10 Steiner puth edges may be drawn so that no two cross, while maintaining the
angle bounds of Lemma 9.

We now erase all Steiner path edges AB where both LUV A < 7/4 and LVUDB < m/4.

Since the edges do not cross, there will be an edge AB “closest” to VU that is not erased:
g ) g

10



Any edge with o vertex on S or BU will be erased. and any edge with a vertex on A1V
or BV will be drawn,

The remaining drawn odges interseet with AWV to form triangles and trapezoids,
together with the region between AB and UV, According to Lemma 9 and Lemma 10 the
triangles and trapezoids have largest angle no more than 77 /8. Henee the trapezoids may
be triangulated with an arbitrary diagonal and achieve largest angle no more than 77/8.

It remains to triangulate the region ABVU. It may be that 3 =V or .4 = /. Also there
may not be a drawn edge AB. so that the region degenerates to AWV The following
construction needs no modifications for these cases.

We introduce a vertex €' in the interior of the triangle. We place (" so that Z0CVU =
LCUV = w/8. Since the edges used to subdivide a large input angle in the very first
horn iteration are counsidered as any other triangle edges throughout the remainder of the
algorithm, we have that AVUW is non-obtuse (but also non-conformal). Hence £LVUW <
/2 and LUVW =m - LVUW - VWU > 37 /8. Similarly ZVUW > 37/8, so such a ('
exists inside AUVW. We also have that ZCUW and LCVW are at least 7 /4.

We triangulate by introducing an edge from C' to each of the Steiner and triangle vertices
in region ABVU. See Pigure 4 and Section 5.2.

Lemma 11 Region ABVU may be triangulated with no angle larger than 7w /8.

3.2 Fixing triangles that have only large angles

It remains to consider triangles with every angle larger than 7/8.  Using a construction
almost identical to that of Section 3.1. we may triangulate with no angle larger than 77 /8
(sce Figure 4). It is possible to use the fact that the angle at W is large to directly bound
the largest angle in the region W AB. For region ABV U, the proof of Lemma 11 holds with
slightly different angle bounds in various places, but with the same overall bound of 77 /8.
See Section 5.3 for the details.

4 Conclusions

There is a tradeoff between the cone angle of the horns and the number of times that a
triangle edge is crossed. We state our cone angle to be m/2. If the cone angle is ¢, we
conjecture that the techniques of Section 3 can be used to obtain triangles with largest
angle at most 37 /4 + ¢/4. On a more general note, we have the following problems.

What is the relationship between the largest angle permitted in a triangulation and the
number of Steiner points necessary to achieve that bound? How does this depend on the
type of input (e.g. convex polygon, simple polygon, polygou with holes, PSLG)?

The cardinality of our PSLG triangulations is within a log v factor of worst case optimal.
Is there an algorithm that is within a constant factor of worst case optimal? A more
interesting open problem is the existence of an algorithm that generates triangulations of
PSLGs or polygons with cardinality within a {actor of optimal for the given input.
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Figure 5: In a cone, the maw is twice the center path (left). In a horn, the maw is more
than the center path (right).

5 Appendix

Proof of Lemma 2. The cone forms a triangle ASXY with angle 90° at S. Let Z be the
midpoint of SY, and P; the midpoint of XY. Then AY P, Z is similar to AY X Z with ratio
1/2. Hence |ZP;| = |§X|/2, and ASP X is isosceles. Thus the length of SP; is [XY]/2.
See Figure 5 left. W

Proof of Lemma 3. We prove this inductively. For the first stage of the horn the lemma
is true by Lemma 2. Consider the center path point P at a given stage of the horn’s
construction. Suppose that the theorem holds for the triangle edge containing P. We wish
to extend the theorem to the next edge. We define XY to be the maw at the current stage
and XY’ to be the maw at the next stage. Define a = /X'W X, the angle between the
successive triangle edges.

Let P’ be the center path point at the next stage. Consider the point @ on X'Y’ such
that PQ is parallel to YY'. If we consider the segment X R also parallel to YY7, we see
that @ is the midpoint of RY’. Hence P’ lies closer to W than does Q). Furthermore, it
is straightforward but tedious to show that [P'W| > |PW| by the law of sines. Hence we
have that [PQ| > |PP’|. We use | PQ| to bound |PP’| because it is much easier to analyize.
Also, P’ approaches @ as X approaches W, so there is nothing to be gained by considering
|PP’| directly.

From the law of sines |PQ|/sina = |[PW|/sin(r /4 — ). Since sin(e + b) = sina cosb +
sin b cos a, this simplifies to [PQ| = |PW|sin a/(cos a — sin a).

We wish to bound |PW]| in terms of the difference between the maw widths. Since
a < 7w/8and LX'XW = /4, we have that | X'W| < |XW]|. This implies |X'Y’| > |XY| +
[Y'W| — [YW|. As before, from the law of sines we have |[Y’W| = |YW|/(cosa — sin a).
Hence |X'Y'| - | XY| > [YW|(omztess - 1)-

cosa—sin o

Since |PW| < |YW/|, combining the last equations of the preceding two paragraphs we
have | PQ)| < (XY = | XY ) = atams < [X'Y'] = |XY]. Hence at the current stage the
center path increase is less than the maw width increase, and by induction we are done. B

Proof of Lemma 4. The perpendicular to the maw in the direction of horn growth must
make an angle change of at least #. The maw cannot contain a vertex of a triangle. Hence
the center path length between the two intersections is minimized when one vertex of the
maw almost contains a triangle vertex V', and the maw “pivots” around V, traveling through
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Figure 6: It is impossible for a center path to intersect an edge E twice without enclosing
a vertex.

triangles containing V. In this case the center path lies outside a semi-circle of radius M
centered at V. Hence the center path has length at least #M /2. Thus from Lemma 3 we
have M' > M + «=M/2 >2M.

Proof of Theorem 1. [Continued]

The fact that each hop has a vertex of the input in its interior can be proved by con-
tradiction: Suppose that no vertex is interior to a hop. Since no input edge can cross E,
each input edge is crossed by the center path an even number of times. Furthermore, since
the input edges do not cross, there will be at least one “furthest” edge such that the center
path crosses it twice consecutively; see Figure 6. But this is impossible by how the horn is
defined, hence a contradiction. B

5.1 Ideas related to the proof of Lemma 6

We need some measure of how quickly two horns approach one another when they follow the
same sequence of triangle edges. We formalize the distance between two horns as follows:

Inverse horn. An inverse horn is the region between two horns in a given sequence of
triangles. The inverse horn starts on a triangle edge that the two horns have in common.
An inverse horn terminates when it contains a triangle vertex, or when the bounding horns
intersect. We assume that the horns have increasing stage as we increase along the sequence
of triangles, so that the bounding edges of an inverse horn are comming closer together.
Here we are concerned with the case that the two horns merely represent the same horn
at different stages. Later, when we bound the length of the collection of horns, we will
consider the case that the two horns to be distinct. We define the maw and center path of
an inverse horn in the same way as we did for a horn.

An inverse horn may have negative width, in which case it behaves exactly as a horn,
and the same lemmas and theorems about horn growth apply to how quickly an inverse
horn width may shrink. Otherwise, if an inverse horn has positive width, we shall see that
the analogous results hold, but the proofs needed are slightly different.

Lemma 12 M; < M — C;, where M is the initial maw width of an inverse horn, M; is ils
maw width at stage 1, and C; is the length of the center path to stage i.

Proof. We prove this inductively in a way very similar to Lemma 3. We define XY to
be the maw at a stage, and X'Y’ to be the maw at the next stage, where the triangle
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Figure 7: Here we show two consecutive reversals, their horns (darkly shaded), and the
inverse horn between them (lightly shaded). The inverse horn terminates with negative
width, where the two horns overlap.

edges containing these maws share vertex W. P is the center path point on X7Y7, We let
a = (X'WX and Q is defined to be the point on WY such that LQPW = = /4.

Then |X7Y7| = [Y'W| - |[X'W|. Since /WYY’ = 7/4 and o < /8, we have that
YW| < [YW|. Hence | XV < [YW]| = [X'W]| = |[XY] + [X T[] - [X7IV].

From the law of sines we have |X'W| = |[XW|sin Z/sin(% - a) = |[XW|/(cos @ —sin ).
Hence |X7V7| < |XY |+ |[WX]|(1 - 1/(cosa — sina)), or [WX| < {(|NY] - [XY"
sina)/(1 — cosa + sin ).

Define 2’ to be the center path point of the maw on X7Y7. It is clear from YW <
[YW| that |PP'| < |PQ|. Hence it suffices to bound [PQ]. Jrom the law of sines |PQ| =
|PW | sina/(cosa —sina). Hence [PQ| = (|WX]| 4 |XY]/2)sina/(cosa —sin «). Dropping
the | XY term and substituting in our equation for |W X from the previous paragraph, we
obtain |PQ| < (|IXY| - |XY|)sina/(1 - cosa + sina) < |[XY] - [XY].

Hence at each stage, the maw shrinks by at least the center path length, which completes
the proof. ¥

J(cosa —

We now formally begin the proof of Lemma 6.

Proof of Lemma 6. Consider a reversal R with center path points P, Py and I on L,
and another reversal R’ with center path points P/, ] and P from later stages of the horn.
Lot d =[PP} and d; = |PP,]. See Figure 7. We consider the horn defined from a center
path point 7. We suppose R and R’ contain the same vertices, and show a contradiction.

Suppose I, = ' as in Figure 7. Let My be the width of the maw at I%. Define the
horn from P’ and let M4 be its width at P5. If we assume that the horn from P does not
self terminate at % then M,/2 < dy.

Consider the inverse horn between the horns for 2 and . Let X be the center path
point of the inverse horn between Py and Py Then M7, the inverse horn width at X'
is 2| X Py| — My. The initial inverse horn width is d;/2. From Lemma 12 we have that
M < =dy ]2 = 2d — | X P3|, which we may reduce to 3|X | < My — dy /2 = 2d.
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I the horn from P’ does not self terminate at % then [N7%50 > My/1, and the above
reduces to dy /2 4 2d < My/4. Similarly, if the horn from 2 does not self terminate at /2
then My/2 < dy and this reduces to dy/2 + 2d < d;/2, a contradiction. Hence cither the
horn from £’ must self terminate at P, or the horn from P’ must sell terminate at %.

We have remaining the cases that P’ # P,. Suppose P’ is on the same side of P as Py.
Lither there is a reversal containing R on the path from P, to I, in which case we may
consider that to be R, or there must be at least one hop from £ to P’ not containing one
of the hops of K. Furthermore, the hop is contained in . The hop contains a vertex.
Hence R contains a vertex that R does not.

If " is on the opposite side of P as P,, then the path from P’ to Py contains a vertex
to the right of £, and hence not contained in the other reversal. B

Proof of Theorem 2. The center path of a horn does not self intersect, except to terminate
as in Item 4. Hence two hops are either disjoint, or one completely contains the other. That
is, the hops are partially ordered by containment. Hence there are at most 2p unique input
vertex sets contained in hops. We enumerate the hops by charging the vertex sets for hops,
such that each vertex set gets charged only a constant number of times.

If a hop is the smallest hop oriented in a particular direction along I, containing a given
vertex set, we charge that set for the hop. Each set may be charged once for cach hop
orientation, or a total of two times in this way. We now consider the case that two hops
contain the same vertex set.

Let J be the largest hop contained in a hop 1 such that [ and J are oriented in the
same direction along L, and they both contain the same vertex set. By Lemma 5 we have
that J precedes [ on the center path. If there is no hop following I, we note that I is the
last hop of the center path, and there can be only one such hop. We have two cases.

In the first case I and the hop I’ foilowing it is not a reversal. By applying Lemma 5,
we may show that I” can not contain any other hop, and hence we charge its vertex set for
[ as well. The set for I’ is charged at most once in this way, since there is only one smallest
hop containing the vertex set of 7', and [’ is that hop.

In the second case I and the hop 1’ following it is a reversal. If J together with the hop
J' following it is a reversal, then by Lemma 6, I’ contains a vertex set different from .J'.
Since J was chosen to be the largest hop, there can be no hop between J' and I'. Hence [
is the smallest hop containing its vertex set with its orientation along L, and we charge the
vertex set of I’ for 1. Otherwise, I’ contains both J’ and the hop preceding J, and these
hops are disjoint. Since J was chosen to be the largest hop, together with Lemma 3, I’ is
the smallest hop containing its vertex set with its orientation along L. Hence we charge the
vertex set of ' for [, and this set may be charged at most once in this way.

Thus every hop is either the smallest hop containing its vertex set for a given orientation
along L, oris succeeded by such a hop, oris the very last hop of a center path. A hop has
ouly one successor, and hence cach of the vertex sets is charged for at most 4 hops. There
are at most 2p vertex sets. Fach hop corresponds to one additional center path point on [,
Counting also the last crossing of L, a center path may cross a given edge at most Sp + 1
times. The constant “8” in this bound is not tight.

Proof of Lemma 7. Let /I cross I at points N, Y and Z. Let [/ cross F at X', Y/ and
Z'. Let t be the width of the inverse horn between I and M’ on YY7. It is casy to see
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that ¢ < |[XY]/2. I'rom Lemma 3 we have that the width of the maw of H at Z is at least
[XY|+[YZ[. Since we assume that H does not self terminate, we also have that the width
of the maw of # at Z is no more than 2|YZ|. Hence |YZ| > |XY|. From Lemma 12 the
inverse horn maw width on ZZ' is at most ¢t — /2 — |[Y Z| < =3|XY|/4 < 0, and the horns
intersect. W

Proof of Lemma 8. Label the points that the center paths intersect F as X,Y,Z, X', Y’
and Z' vespectively. Let ¢ be the inverse horn maw width on X X7, so t < |XX'|. Since
R' does not self terminate or terminate by containing X, then |XY'| < |[Y7Z’|. Hence the
inverse horn maw width at on ZZ' is at most ¢ — ¢/2 — [Y’Z’| < 0, and the horns intersect.

Proof of Theorem 3. The proof is very similar to the proof of Theorem 2, Recall that
there are m; horns. All the hops are disjoint, except that the final hop in each of the m;
horns may intersect with some other hop. For the remaining (not last) hops, two hops are
either disjoint, or one completely contains the other. That is, the hops are partially ordered
by containment. Hence there are at most 2p unique input vertex sets contained in hops.
We enumerate the hops by charging the vertex sets for hops, such that each vertex set gets
charged only a constant number of times.

If a hop is the smallest hop oriented in a particular direction along L containing a given
vertex set, we charge that set for the hop. Fach set may be charged once for each hop
orientation, or a total of two times in this way. We now consider the case that two hops
contain the same vertex set.

Let J be the largest hop contained in a hop [ such that [ and .J are oriented in the
same direction along L, and they both contain the same vertex set. Let H be the horn
containing J and H' the horn containing /. We rely on the proof of Theorem 2 for the case
that H = H'. So we assume H # H'. If the hops following I or J intersect, or [ or J is the
last hop, we note that this can happen only m; times in the collection of horns. Otherwise
we have two cases.

In the first case I and the hop I’ following it is not a reversal. Then from Lemma 7 I
contains a vertex set different from J', and we charge I to the vertex set of J'. Recall J
was chosen be be the largest hop contained in I. If J and J’ do not form a reversal, then
J' is the smallest hop containing its vertex set, except perhaps for a hop that is the first
hop of a center path. There are at most m; first hops, so they may be ignored. Otherwise
J and J’ form a reversal. If J’ is not the smallest hop containing its vertex set, then we
note that there is no pair of hops I; and ] inside J,J' that can also charge the vertex set
of J' in this way, and hence the vertex set of J' is charged at most once in this way.

In the second case I and the hop I’ following it is a reversal. Since J was chosen to be
the largest hop contained in /, we have that I’ is the smallest hop containing its vertex set,
except perhaps for a hop that is the first hop of a center path. As before, this later case
may be ignored. Hence we may charge I to the vertex set of ['.

Fach of the 2p vertex sets is charged at most twice for cach orientation direction, and
for at most two hops for each orientation. Hence we have at most Sp hops, and at most
m; crossings at the begining of a horn, for a total of 8p + m; crossings. As in the proof of
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Proof of Theorem 4. To prove that the number of Steiner paths at cach iteration decreases
geometrically, we must specify exactly which acceptable Steiner paths we create. We have
a number of cases, depending on why a horn I terminated, and on the horns that intersect
it.

Case 1. H terminates because of Item 1, Item 2, Item 3 or Item 4. Then we introduce
the acceptable Steiner path described in Section 2.2. This does not generate a horn in the
next iteration.

Case 2. H terminates because of Item 5, and the horn H’ it terminates on is oriented
in the opposite direction along the maws’ common triangle edge. (Note that H' must not
have terminated becruse of this case as well, but we may erase any path for H' already
created because of Case 1 above.) Then we may construct the Steiner path described in
Section 2.2 for each horn. This does not generate a horn in the next iteration.

Case 8. H terminates because of Item 5, but the horn H' it terminates on is oriented in
the same direction along the maws’ common triangle edge. There is an acceptable Steiner
path for both horns to a point of the intersection P as in Section 2.2. However, we may
have to construct a horn from P in the next iteration. We have several subcases we must
consider in order to exactly bound the number of horns in the next iteration.

Subcase A. k > 2 horns intersects H' on the same boundary path of H’. This subcase
may apply to each boundary path of H'. Among all the horns intersecting H’, there is
one generating an intersection point P furthest from the starting vertex of H'. We may
construct a Steiner path for each horn intersecting H' to a point P’ on the boundary path
of H'. We may also construct one path for H’ from its starting vertex through each P’
terminating at P. Thus we had & > 2 horns in this iteration, and one horn from P in the
next.

Subcase B. H is the only horn terminating on a particular boundary path of H’, and no
Steiner path has been previously created for either H or H’. We introduce the acceptable
Steiner path for H and H’ to their intersection point P on the boundary path of H. We
have two horns in this iteration, and may have one from P in the next.

Subcase C. H is the only horn terminating on a particular boundary path of H’, but
a Steiner path has been created for either H or H' by the previous cases or subcases. If
a Steiner path was introduced on the boundary path of H that intersects H', and either
no Steiner path was introduced for H’ or one was introduced on the boundary path that
intersects H, we complete the Steiner paths as in Subcase B. Otherwise we do nothing.
The horn without a Steiner path will generate a horn in the next iteration. A horn /' that
terminated because of Case 1 or 2 may have at most two horns terminating on it that meet
this subcase. Otherwise, a horn H’ may have at most one horn terminating on it that fits
this subcase for which we do nothing.

We now count m;4q, the number of horns in the next iteration. Let my; be the number
of horns in the current iteration. Let & be the number of horns terminating as in Case 1
or Case 2, and [ be the number of horns terminating as in Subcase A or 3. Then we have
[/2 horns in the next iteration, plus ¢, the contributions from Subcase C. Hence we have
mipr < U/2 4 q, where & 414+ ¢ = m; and ¢ < 2k 4 1. The worst case is achieved when
l=m;/2 and ¢ = . Hence myy < 3m;/4. B

Proof of Theorem 5. Ior cach horn in an iteration, we generate at most three Steiner
paths in it; one on each boundary path, and one in its interior. Combining this with
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Figure 8: The angles between triangle edges and Steiner path edges are bounded (left).
Uncrossing edges only improves angles (right).

Theorem 3, we generate at most O(m; + p) Steiner points on each of the n edges at each
iteration. Since the number of horns must be an integer bigger than one, from Theorem 4
we have at most logy /3 m iterations, and the sum of the np terms is O(nplog m). Similarly,
since the m; are bounded above by a geometric series, the sum of the nm; terms is O(nm).

5.2 The angle bound for triangles that have a small angle

Proof of Lemma 9. Suppose the path is directed from A to B as in Figure 8 left. Such
a Steiner path edge is contained in the cone at A. Hence the angles at A, 6; and 8 are
bounded between 7 /4 and 37 /4. The triangle edges meet at vertex W, where a = LZAWB <
7/8. Let angle 3 = LWBA, then §y =7 —a -6y > 7 —7/8 — 3n/4 = n/8. Similarly,
p1 < ©—0-n/4=3r/4. This bounds its supplement, 32, between 7/4 and 77 /3. &

Proof of Lemma 10. Consider any pair of edges AB and C'D that cross in triangle
AUVW as illustrated in Figure 8 right. We may swap vertices, forming Steiner path edges
AD and CB that do not cross. It is easy to bound the new angles at A by the original
angles: LDAV < (DCU and LDAW < /BAW. We may similarly bound the new angles
at B,C and D. B

Proof of Lemma 11. There are four natural subregions of Region ABV U to consider.

Region UVC. Consider any triangle ACXY with X and Y lying on UV. Now
LXCY < (VCU < 7x/8. Assuming U is closer to X than Y, ZCY X is at most the
supplement ZCUYV, or 7w /8. Similarly for ZCXY.

Region ABC. This region consists of the single triangle AABC, or is empty if no edge
AB is drawn. Now ZCBA < LUBA < 7r/8 by Lemma 10. Similarly for ZC'AB. The worst
case for LACB is when B =V and LUV A = w/4. But then LCVA = LUVA- (UVA =
7/8. Hence LAC B is at most the supplement of this, or 77/8.

Regions ACU and BCV. Consider the triangle ACXY. Then ZXCY is at most
LUC A, which in turn is at most the supplement of ZCUW, or 37 /4. Suppose U is closer
to X than Y. Then ZC XU is also at most the supplement of ZCUW, or 37 /4.

It remains to bound ZCXY. The worst case is when Y = A and ZUVX = = /4. See

[Figure 9. Since ZCXY is the supplement of ZC XU, we seek a lower bound on the latter.
g ppleme \ U, OW( on 1

|CU| _ |CX] |CV] _ |CX]
sin/CXU ~ sinlCUX’ sinZCXV — sinlCVX'

Irom the law of sines, we have and Since

ACVU is isosceles we have
sin ZCUX

sin LZCXU = si XV ———.
sin ZCXU =sin LCX TSR
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Figure 9: Angle CXY is bounded for any triangle in region ACU.

Note that ZCV X = n/8 and LCUX = LVIUW — n/8 > n/4. Hence LCUX > (CV X, so
that ZCXU > LCXV. Now (VXU =7—(LUVX—-/VUX > 7/4.Since LCUX+LCVX =
(VXU, wehave LCXU > n/8. Hence LCXY < 7r/8. I

5.3 The angle bound for triangles that have only large angles

Consider fixing a non-conformal triangle that has all angles at least w/8. One way to
triangulate such a triangle is as follows. First, introduce a Steiner point at the intersection
of the angle bisectors. Second, introduce an edge between that point and each triangle
vertex and Steiner vertex on the boundary of the triangle. Any triangle formed may have
largest angle at most the supplement of half of the smallest angle of the triangle, or 157/16.

However, we can take advantage of the special structure of the Steiner points we intro-
duced in order to triangulate with no angle larger than 77 /8. The method is very similar to
that used for a triangle with a small angle, but its description is necessarily different. We
do not have the same description of drawn edges. Moreover, the angle that a cone makes
with an edge may be close to the angle of the triangle at W, so that the proof of Lemma
9 will not hold. Fortunately, it is possible to use the fact that the angle at W is large to
directly bound the largest angle in the region WAB. For region ABV U, the same proof as
for a triangle with a small angle holds, with slightly different constants in various places,
but the same overall bound of 77 /8.

Consider a triangle AUVW whose smallest angle occurs at W, but is greater than 7 /8.
We create a list R of the vertices on WV, including W and V, sorted from W to V. We
create I for WU similarly. We draw edges from L to R as follows. We draw an edge from
the top of L to the top of 2. If W is closer to the top of L than to the top of I2, then we
pop I, otherwise we pop R. We repeat until ZUV A < 7/4 and LVUB < 7 /4, where A is
the top of L and B the top of K.

As in Section 3.1, denote the drawn edge closest to UV by AB. The region WAD is
triangulated, and region ABV U is untriangulated.

Region WAB We first analyze the triangles of region WAD. Consider the triangle
formed by W and the first edge drawn, AW A B;. Sece Tigure 10. Now (W By A, and
LW Ay By are bounded by the supplement of ZUWV , or 7w /8. Any triangle of the sequence
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may be analyzed in the same way. Without loss of generality, consider a triangle AA; B; A; 44,
where W is closer to A; than to B;. Since ZUWYV < /3, we have {BiA;Aiy1 < 271 /3. Now,
LA;B;Aiy; < LW B;U. But this is at most the supplement of ZVWU, or 7x/8. Similarly,
LA A1 B < (WA 1V < T /8.

Region ABVU. As in Section 3.1, we introduce a vertex C inside AWUV such that
LUVW = (VUW = 7/8. We then intreduce an edge from C to each Steiner and triangle
vertex in region ABV U. Again we have four natural subregions regions to consider.

The analysis differs slightly from Section 3.1 in that ZVUW and ZUVW may be smaller.
We have (LVUW =7 — LUVW - LUWYV, and W was chosen so that LVUW < LVWU.
Hence LVUW > 7 /4, whereas in Section 3.1 the bound was 37 /8. Similarly for ZUVW.

Also our construction is defined differently. We first show that there is no Steiner point
S in the region on WU such that ZUVS > w/4, except perhaps for A itself. This fact
was immediate in Section 3.1 by construction, but must be proven here. Suppose there
were such a point. Since there is no drawn edge SV, we must have that |WV| < |WS§].
Hence (WVS > (n — LUWV)/2. But then LWVU > (7 ~ LUWV)/2 + /4 > Tn /12, a
contradiction to the fact that we introduced edges to make all triangles non-obtuse. This
also shows that either ZVUB < /4 or LUVA < /4.

Region UV C'. The analysis of region UV C is identical to that of Section 3.1.

Region ABC. We do not have Lemma 10 to bound ZCBA and LABC'. Suppose
LCAB > (CBA. Hence W is further from A than from B, and the above shows that
LUVA < m/4. The worst case is when LUV A = w/4, and the analysis of region ACU
below shows that ZCAB < 7n/8.

The worst case for LZACB is when B =V and LUV A = 7 /4, since either ZVUB < /4
or LUV A < /4. As in Section 3.1, then LCVA = LUVA ~ LUVA = /8. Hence LACB
is at most the supplement of this, or 77 /8.

Regions ACU and BCV. This differs from Section 3.1 in that the upper bound on
LVUW and LUVW is w/4 instead of 37/8. Consider any triangle ACXY. The same
argument as in Section 3.1 shows that ZCUW < 7x /8, instead of 37 /4.

Consider the argument in Section 3.1 that ZCXY < 7x/8. Here we have that ZCU X
LVUW — /8 > 7 /8, instead of /4. However, since ZC'U X is still greater than £C'V X

il
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7 /8, the proof remains correct.

5.4 Combining the cardinality bounds of Section 2 and Section 3

Theorem 6 Any triangulation can be refined with at most O(nm+nplog m) Steiner points
so that no angle is larger ihan 7 /8. Here n is the number of edges, m onc plus the number
of obtuse angles and p the number of holes and interior vertices in the orviginal triangulation.

Proof. I'rom Theorem 5 we have O(nm 4 nplogm) Steiner points added on triangle edges.
We have an additional O(n) vertices in Section 3 by adding one Steiner vertex in the interior
of cach non-conformal triangle. #

Theorem 7 Any PSLG with v vertices can be triangulated with no angle larger than 7Tr /8
using at most O(v?logv) Steiner points.

Proof. By Luler’s formula, any constrained triangulation of the input PSLG has at most
3v edges and 2v triangles. Each triangle can have one obtuse angle. Hence n, m, and p are
all bounded by a constant times v.

5.5 Bounding the running time

Theorem 8 Any triangulation can be refined in time O((nm + nplog m)log(m + p)).

Proof. Ior each edge of a triangulation, we maintain a sorted list of the Steiner points it
contains. This list is of length O(m + plogm) after O(logm) iterations. When we grow
a horn to a new edge, it then takes O(log(m + p)) time to determine if a Steiner point or
triangle vertex on that edge is contained in the horn maw, and if not the interval in which
to place a new Steiner point. Creating the Steiner path when a horn terminates then takes
time linear in the length of the path. Triangulating a non-conformal triangle takes time
linear in the number of Steiner points on its boundary of the triangle. N
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