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1 Purpose and intended audience

The main purpose of this tutorial is to introduce the Minimal length encoding (MLE)
method to computational biologists who are designing sequence analysis algorithms, to
computer scientists who are iaterested in learning more about macromolecular sequence
analysis, and to biologists who are more advanced users of the sequence analysis pro-
grams. The first two groups will be fully prepared to grasp all the technical details of the
presentation. A small part of the tutorial may not be fully accessible to all the members
of the third group, but care will be takea to explain general ideas in less technical terms
and to provide illustrative examples. An emphasis of the workshop will be on the use of
the MLE method as a tool for comparative analysis of inference programs in computa-
tional biology, with an ultimate purpose of providing more methodological coherence to

• the emerging field of computational biology.

2 Background

The most widely accepted general formal model of inductive inference is based on the
assumption that inference is a process of compression of observations. According to this
model, a newly discovered theory is preferred over the old ones if it leads to a more concise
decription of experimental observations. A theory is represented by a computer program

' MASTER -REcE,vEoJUL 1It199_
IIIgiI_NUTfONOFTHISDOCUMENTIS UNLIMITElil

OSTI. • • , ..s,4 j



i .

of minimal length that outputs the observations. The process of inference is viewed as
. the search for the shortest programs.

A whole new field of algorithmic information theory, which deals with minimal length
encoding by computer programs, has emerged (the most recent books on tl_e t6pic in-
clude [18, 11, 25, 8]). The concepts of randomness, complexity, structure, specificity, and
information have all found their precise definitions in this theory. MLE has been explic-
itly applied to the problems of image recognition, categorization, supervised learning of
decision trees, decision lists, inductive logic programming, grammatical inference, and in
many other domains. A sample of the many applications was presented at the 1990 Stan-
ford Spring Symposium on the Theory and Applications of Minimal Length Encoding.
The Symposium included a joint session with the AI and Molecular Biology Symposium
where several applications of MLE in molecular biology were presented [21, 9, 6, 1].

Biologists applying the parsimony principle (Occam's Razor) for evolutionary recon-
structions and the mirfimal edit distance criterion for macromolecular sequence alignment
come closest to using MLE explicitly. Most often, the principle is applied implicitly, e.g.,
through preference for causal explanations that postulate fewer causes, or for models that
have fewer variables. More recently, the sequence alignment [4, 2, 32], sequence catego-
rization [20],evolutionary reconstructions [3, 24, 14], and a variety of DNA and protein
pattern discovery problems [23, 19, 28, 16] have all been approached by explicitly apply-
ing MLE. The main advantage of an explicit application of MLE is that the inductive
assumptions are stated explicitly in terms of a language for encoding the observations and
can be modified to suit the application at hand.

The tutorial will have three goals: (1) outline the basic results of classical Shannon
information theory that provide the necessary background, and then cover the basic results
from algorithmic information theory that are relevant for the application of MLE; (2)
provide an overview of the successful applications of MLE in molecular biology; and (3)
compare different approaches to the same inference problem by reducing the approaches
to their MLE equivalents.

An emphasis of the tutorial will be on demonstrating the potential of MLE to serve
as a tool for comparing different approaches to the same inference problem (goal 3).
Three standard inference problems will be chosen. For each problem, an MLE method
will be presented as well as the methods that are not explicitly stated in terms of MLE.
The competing methods will then be compared by rephrasing them in terms of MLE.

: The assumptions that are hidden in different approaches to particular inference problems
will be made explicit by defining languages used for encoding the observations. The

_ assumptions that underlie different approaches will then be compared.
The ultimate goal of the tutorial is not to present the MLE-based methods as yet an-

other class of inference programs, but to demonstrate that the generality of MLE provides
a common framework for comparison of the multitude of apparently different programs
that are used for similar inference tasks in molecular biology.
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3 Plan

The tutorial will consist of four parts. The first part will introduce the basics of Shannon
information theory and of Mgorithmic information theory. The remaining _hre'e parts
will focus on three standard inference problems in molecular biology: discovering simple
sequences, sequence comparison, and evolutionary reconstructions.

3.1 Basics of Algorithmic Information Theory

The basic concepts of Shannon information theory will be covered as a necessary back-
ground: the definitions of entropy, relative and mutual information, as well as the source

coding theorem will be explained at the level of an introductory textbook (e.g., [11]).
The basic concepts of algorithmic information theory [7, 18, 11, 25] will be covered

next. The concept of randomness (complexity) of an individual object, as opposed to the
concept of the randomness of a set of objects (as defined in Shannon's theory), will be
explained.

The concept of universal inference will be introduced by explaining the meaning of
the universal coding theorem. The relationship of MLE and the standard statistical
method of hypcthesis testing, as well as Bayesian inference, will be discussed. Compu-
tational limitations of universal inference and the consequent need for inductive bias will
be explained. Algorithmic significance will be introduced as a practical MLE method for
pattern recognition.

3.2 Simple sequences

Selected methods for identifying "simple" DNA and protein sequences [31, 10, 26, 27, 29])
will be surveyed, as well as the MLE-based method [22]. Selected non-MLE methods will
be defined in terms of MLE and the underlying assumptions will be made explicit by
specifying encoding schemes. The validity of the hidden assumptions will be examined
to determine the domains of applicability of individual methods. Finally, we apply the
concept of algorithmic mutual information to determine the effect of complexity of two
compared sequences on the significance of their mutual similarity.

• 3.3 Sequence similarity

Starting from Altschul's information-theoretic analysis [5], we will study the BLAST
scoring scheme. By rephrasing the BLAST score in terms of encoding length, we will
demonstrate that the significance of BLAST scores can be established via algorithmic
significance and without any sophisticated statistical analysis [15]. We then apply the
MLE method to get further insight into the encoding scheme that is implicit in the
BLAST scoring scheme: we compute optimal PAM matrices (or sets thereof), and we
show that the relationship between the minimal length of a significant matching segment
and the evolutionary distance can be explicitly determined. Following a recently proposed
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MLE method for sequence alignment [2, 32] we show how insertions and deletions can
be combined with PAM matrices while still guaranteeing the algorithmic significance
of matches (something not achieved in the standard statistical significance framework).
Finally we show that the apparent great difference between global and local-alignment
methods [30] can be reduced to a very small difference in the encoding schemes that are
implicit in them.

3.4 Evolutionary reconstructions

MLE methods for evolutionary reconstructions based on non-aligned [3]as well as aligned
[24] sequences will be described. It will be shown that standard weighted parsimony
[12, 13] and compatibility [17] methods for evolutionary reconstructions correspond to
two opposite variantc of a single encoding scheme. The reconstruction of Alu evolution
[14] will be used as a case study to demonstrate the advantages that are offered by MLE.
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This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer*
ence herein to any specific commercial product, process, or service by trade name, trademark,

" manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
" mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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