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ABSTRACT

Octupole correlation effects in nuclei are discussed from the point of view
of many-body wavefunctions as well a8 mean-field methods. The light
actinides, where octupole effects are largest, are considered in detail.
Comparisons of theory and experiment are made for energy splittings of parity
doublets; E1 transition matrix elements and one-nucleon transfer reactions.
The strong correlation picture that emerges from the many-body approach is
found to provide a better description of octupole effects than does an octupole
deformation picture.

1. Introduction

The presence of strong octupole correlations in deformed nuclei is
signalled by dramatic changes in the nuclear excitation spectrum. In an
even-even nucleus, the signature is a low-lying 1- state. In an odd mass
nucleus, the signature is a parity doublet. The parity doublet consiste of &
pair of states that have the same spin, opposite parities and are almost
degenerate in energy. There should be a large E3 transition matrix
element between the two states. In the octupole deformation limit, the 1-
state is between the 01 and 2t states of the ground state rotational band.
In the odd mass case the members of the parity doublet would be
degenerate in energy. In Fig. 1, we show idealized rotational spectra of
nuclides with and without octupole deformation.

The first evidence for strong octupole correlation effects came from the
discovery of low-lying 1- states in alpha decay studies! of the light
actinides by Asaro and co-workers, The 1- states, near A = 226, are the
lowest known excited states in even nuclei, apart from rotational excitations.
In Fig. 2, we display the low-lying states of the Th isotopes. The low
excitation energy of the 1° states provides direct evidence for the presence
of strong octupole effects in these nuclei. However, the fact that the 1-
state is never found below the 271 rotational state, and rarely below the
4t state, argues against ground state octupole deformation in even nuclides.
The observation? by Kurcewicz et al., that the first 01 excited state in
224Ra is at 916 keV, which is much more than twice the energy of the 1-
bandhead at 215 keV, suggests that a vibrational picture is not adequate to
describe the strong octupole correlations in this region. Strong octupole
correlation effects in odd mass nuclides were noted® by Kroger and Reich
in their study of the 3/2% and 3/2" bands of 229Th.

Making use? of variational many-body wavefunctions, we addressed the
question of the effects of octupole correlations on the excitation energy of
0+ excited states in the light actinides. We then examinedd the possibility
of finding parity doublets in the odd mass nuclides of this region. This
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calculation predicts the existence of many parity doublets in the light

gczztéinides, and their splittings, particularly a ground state parity doublet in
“YPa,.

Evidence for a ground state doublet was found at Argonne by Ahmad®

et al. More recent studies’ suggest that the experimental status of this |
doublet should be reinvestigated. It was also found® that E1 transition

rates sre sometimes enhanced by several orders of magnitude in these
nuclides, relative to values found near A = 240,

A later approach to the nuclides of this region is octupole deformation.
Using the Strutinsky® method, Moller and Nix10 found that the inclusion of
octupole deformation gives ~ 1.5 MeV of extra binding energy in nuclides
near A ~ 222, This brings the calculated bindinﬁ energies into improved
agreement with measured masses. Later studies11,12 have shown that this
conclusion is modified substantially by the inclusion of higher deformation
modes. The spectroscopic features of octupole deformation13,14,15  have
been considered in detail by Leander and co-workers. This deformation
picture gives many interesting relations between matrix elements in odd and
even parity states. Hartee-Fock mean-field calculations using Skyrmel® and
Gognyl7 interactions have also been applied to studies of the light
actinides.

2. Many-Body Wavefunctions

The many-body approach® was the first to be used for treating
octupole effects. The wave functions are sufficiently general that they can
be used to describe the vibrational regime, the deformation regime, as well
as the correlation regime intermediate between the two. The Hamiltonian
that we use in these calculations is

H = Hs,p. + Hpairing * Hparticle-hole (1)

where
+ o+
Hoairing = = kE1 Sk, 1 APt (1a)

The deformed single-particle energies of Hs.p. were obtained from
experimental studies of the heavier actinides, where octupole effects are not
important.  The pairing inatrix elements are obtained from a density-
dependent delta force interaction18, which was found to give a good
description of the mid-actinide nuclides. The particle-hole interaction is of

the multipole-multipole form and is restricted to m = 0 terms of the
Legendre expansion, but can encompass all L values. In practice, we have
included the octupole, 29-pole and quadrupole multipoles. Our

wavefunctions have a product form

v - Nzri'ITz ¢ (19,1,7,) 2)
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where each of the terms in the product is, in turn, a sum of many
configurations. We have

¢ -
9,17, = B i (19,1.7,) 3)

where the sum includes all terms in the (j,,7;) subgroup that have a
specified value of J,, including all values of parity and particle number.
For the ground state of an even nucleus, we set J, = O for each subgroup.
To study the low-lying states of odd mass nuclides, we set J, = j; in a
single subgroup, fix the parity, and minimize the energy of the nucleus.
Before determining the variational parameters, Ci, we project those
configurations that have the desired particle number for both protons and
neutrons and the desired overall parity. The wvariational parameters are
obtained from the coupled, non-linear algebraic equations

] "
3T < P(Np,Nn,TI) ¥ [H]| P(Np,Nn, (1) ¥> = 0 (4)

Using this structure for each of the subgroups, we can handle up to five
doubly degenerate levels in each subgroup. By further factorizingl® the
amplitudes, we reduce the number of variational parameters associated with
each orbital and thereby can extend the space to include seven doubly
degenerate levels in each subgroup. A separate calculation is carried out
for the states of each parity and J;. It is worth noting that parity
projection prior to variation gives the same sort of improvement in
wavefunctions, that one gets by number projection in the treatment of
pairing interactions. As is the case for pairing, when the correlations are
weak or of moderate strength, projection before variation is important. We
further improve these wavefunctions by taking linear combinations of them.
The additional solutions are obtained by taking the octupole interaction
strength and the pairing strength as generator coordinates. In Figs. 3 and
4, we show the bandheads calculated with this approach for many of the
states in odd-mass nuclides of this region. The numbers by the arrows are
proportional to the squares of the E3 matrix elements between the states.

8. Octupole Deformation

The inclusionlO of octupole deformation in Strutinsky calculations gives
a needed extra binding in the A ~ 222 mass region. This improves the
agreement with measured masses; relative to calculations that include only
quadrupole and hexadecapole deformation. Later studies!l using the
Strutinsky method showed that 26 pole deformations also play an important
role in this region, and account for ~1 MeV of this extra binding. When
25 pole deformations are includedl2, together with octupole deformation,
one finds that the odd multipole deformation modes give ~1 MeV of extra
binding relative to the reflection symmetric minimum. In the A = 148
mass region, these minima are found20,2l to be even shallower. In Fig. 5,
we show qualitatively this difference in magnitude between octupole and
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quadrupole deformed minima. In view of the fact that the 1- state is
always well above the 2% state in all nuclides (and that the fact that
barriers between reflection symmetric and asymmetric shapes are about 1
MeV), one can infer that barriers of at least 1.5 - 2 MeV are necessary for
a deformation picture to hold. In odd mass nuclides, the octupole
deformed description# gives predictions of parity doublets and many
relations between matrix elements. Magnetic moments are predicted to be
equall3;14 and decoupling parameters in K = 1/2%* bands are equal in
magnitude?2 but opposite in sign. Transition probabilities between the
levels of two doublets should also be identical. By analyzing the single-
particle wavefunctions23;15 in terms of spherical components, it is possible
to make predictions of one-particle transfer cross-sections to the members of
an octupole deformed rotational band; which encompasses states of both
even and odd parity. The mixed parity single particle wavefunctions, that
are high J, and unique parity in the reflection symmetric limit are admixed
with low J states of opposite parity, and this nicely explains?4 the
reduction in alignment that is seen in the A = 220 mass region.

4. Studies of 329Pa and 337TAc

The effects of octupole correlations are more apparent in odd mass
nuclides than in even-even nuclides, because of pairing interactions. The
positive parity ground state band of an even nuclide has no broken pairs,
while all configurations that have negative parity have at least one broken
pair. This implies a shift in energy of the odd parity states relative to
the even ones. In an odd mass nuclide, the situation is quite different.
Both members of the parity doublet mmust have at least one unpaired
particle, and the situation is equivalent for states of both parities. Further,
the reduction in pairing strength arising from the level blocking of the
unpaired nucleon makes it easier for the octupole correlations to develop.
The squared E3 matrix elements, that are typically 50 units in the cven
nuclides, can bed as large as 90 units in the odd mass naclides.

We can illustrate most of these effects by considering the two nuclides,
229ps and 227Ac in detail. In Fig. 6 the theoretical and experimental
treatments of 229Pa are shown as a function of time. In Fig. 7, we show
a similar figure for 227Ac. The prediction® of a ground state parity
doublet with a spin of 5/2 in 229Pa motivated the experimental® studies.
Definitive evidence was found for a ground state spin assignment of 5/2,
and strong evidence for a ground state parity doublet. Recent studies? of
Grafen et al. have reopened the question of a ground state doublet and
this question is being reinvestigated. = Combining gamma ray data from
both experiments suggests that the 1/2- band is ~35 keV from ground?6; in
rather good agreement with the original predictions. The fact that the
ground state band is K = 5/2 in this nuclide, rather than K = 1/2, as is
the case in 231Pa, is due to the strong octupole correlations.

The data in 227Ac¢ are more extensive, as this nuclide is easier to
b

produce. In addition to spin assignments, there are one-particle transfer
data and observed Jecoupling parameters. It should be noted that there is
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no shifting of levels in the octupole deformed calculations of Ref. 25, 1In
Fig. 8, we show the comparison of structure factors measured?? in (4He,t)
and (’3He,d) reactions with the predictions of reflection symmeric and
reflection asymmetric potentials. It is quite clear that the reflection
symmetric potential is in considerably better agreement with the data for
most levels. The disagreements between the experimental data and the
reflection asymmetric picture in the peaks of the 1/2+ and 1/2- bands tells
us immediately that the octupole deformed model does not give the
decoupling parameters of these bands correctly, as the decoupling
parameters are simply related to the structure factors by

a=7"_ (_1)3‘1/2 CJZ
| (5)

In Table 1, we compare calculated and measured decoupling parameters in
this nucleus.

Table 1. Decoupling Parameters in 227 pc

No Octupole a) Octupole a) Many-Body b) Expt.c)
1/2+ 5.92 3.13 4.9 4.8
1/2' -1.76 3.13 -2.1 -2.2
a) Ref. 14

b) R. R. Chasman, Nuclear Structure, Reactions and Symmetries, p. 5,
ed. R. A. Meyer and V. Paar (World Scientific, Singapore, 1986)

¢) A. K. Jain et al,, Rev. Mod. Phys. 62 (1990) 393.

The many-body model provides a better description than does the
deformation picture. It should be noted that the octupole deformation
picture does provide a good description of the gy factors for the 3/2% and
3/2- bands in this nucleus. In the absence of octupole correlations, the
calculated valuesl4 are 0.50 for the 3/2- band and 1.50 for the 3/2%F band;
while the calculated values are 0.89 for both bands in the octupole
deformation limit. Experimentally, both bands are found to have gy values
of ~0.95. It is, therefore, somewhat troublesome that the reflection
asymmetric model does such a poor job of fitting the transfer data for
these two 3/2 bands.

5. E1 Transition Matrix Elements

gy
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5. El1 Transition Matrix Elements

In the early studies® of the light actinides, several cases of large E1
transition matrix elements were found. In Fig. 9, we show T(E1l) values
for several nuclides in this region. The important points are: (1) that
there are several cases where the T(E1) values are extremely large, in the
region of strong octupole correlations; (2) equally important, there are
variations of two orders of magnitude in this region.

The relation between the phases of the E3 and E1 transition matrix
elements connecting two states is that the two are usually in phase when
the E3 and El1 matrix elements are large. Also, transitions with large E3
matrix elements tend to have large El matrix elements. This means that
when one has e.g. a coherent sum for the E3 proton matrix elements, there
is also a coherent sum for the El proton matrix elements. The difference
between the two is that the E3 transition is isovector and the El1
transition is isoscalar. @ The proton and neutron contributions to the E3
transition are in phase because the proton-neutron octupole-octupole term in
the residual interaction is attractive. The form of the El matrix element
is

B(E1) = < ¥'| (El)proton - (Z/N) (El)neutron | ¥~ D? (6)
where
(E1)proton = pr&ton i i<710|j> A:AJ
orbitals 1,] (6a)

and there can be large cancellations between the proton and neutron
contributions to the E1 transition.

The first serious efforts28 to calculate these El1 matrix elements were
made in the framework of the Strutinsky method. In this framework, the
El matrix element is given as

2

B(E1)= -3—1—6 <V ((ED)p - (B1))psot - Z/N (E1 - El)neutron | %) ||

+ (E1) liquid drop (7)

There, it was found that such calculations must be adjusted to account for
the fact that the deformed Woods-Saxon potentials used to generate energy
levels and matrix elements do not include in any way the depletion of E1
strength that is absorbed by the isovector giant dipole resonance. This
depletion is treated in an average way by reducing the shell contributions
to the E1 moment by a factor of 3.6, i.e. an order of magnitude in
transition probability. Additionally, it was found that the liquid drop
contribution to the E1 moment must be reduced about 15% from the
conventional value, in order to get a good fit to the data. However, usin
a standard set of parameters for the droplet model, it was pointed out2
that there is a neutron skin contribution to the liquid drop El1 moment
that is comparable in magnitude and opposite in sign to the charge
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redistribution effect, giving an order of magnitude reduction to the liquid
drop E1 moments posited in Ref. 28. Recently, it has been noted30, that
the droplet parameters can be readjusted within acceptable limits, to give
droplet correction to the El1 probabilities of the needed magnitude. In any
event, this approach to the calculation of E1 moments should be regarded
as a two parameter theory that does reasonably well.

Quite recently, El1 matrix elements have been obtained3l in a
microscopic calculation with parity projection. The calculation is done with
a standard Gogny force, which does give a reasonable treatment of the
giant dipole. There are no adjustable parameters here and the results are
in good agreement with measured E1 values. In Fig. 10, we compare the
values of le calculated for the Ra isotopes with experimental32 studies.
The no free parameter Gogny interaction seems to be doing a better job
than the two-parameter shell correction approach. It remains to be seen if
the large E1 moments that are calculated for 228Ra and 230Ra, with the
Gogny force, are confirmed by experiment.

6. Summary

The octupole degree of freedom is manifested in a dramatic way in
nuclear spectra, particularly in the light actinides. Here the octupole
correlations are strong, but not sufficiently strong to be described accurately
by a simple deformation description. The deformation approach does,
however, provide a very useful qualitative insight into many octupole
phenomena, and provides surprisingly accurate results in many instances.
The many-body approach, that puts the pairing and particle-hole modes on
an equal footing, provides a somewhat better picture of this region.

I thank I. Ahmad for many interesting and illuminating discussions on
the subject of octupole correlations. Some of the calculations discussed here
were cairied out on the NERSC computer facility. This research was
supported by the U.S. Department of Energy, Nuclear Physics Division,
under contract W-31-109-ENG-38.
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Figure Captions

Figure 1: Idealized Rotational Spectra without and with Octupole Deformation.
' Figure 2: Excitation Energies of 1-, 2+ and 471 States in the Th Isotopes.
Figure $: Many-Body Calculation of Bandheads in Odd-proton Nuclei. The numbers

beside the arrows are proportional to the squares of the ES matrix elements.
The % denotes levels known at the time of the calculation.
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Many-Body Calculation of Bandheads in Odd-neutron Nuclei. See caption
for Fig. 3.

Calculation of Typical Binding Energy gains for Quadrupole and Octupole
Deformation obtained with the Strutinsky Method. The deformation axis is
eg for the quadrupole case and ey for the octupole case. The gain in
binding energy for the octupole is relative to the reflection symmetric
minimum, '

Experimental and Theoretical Bandheads in 229Pa. The spectra are time

ordered, with the earliest on the left. Bold lines are used for experimental
spectra. (a) Ref. 5. (b) Ref. (8): (c) Ref. (15): (d) Ref’s (7) and (26):
(e) Ref. (25).

Experimental and Theoretical Bandheads in 22TAc. See caption for Fig. 7.
g:): Table of Isotopes, C. M. Lederer et al. (John Wiley and Sons, New

ork,1978): (b) Ref. 5: (c) Ref. 14: (d) Itef. 27: (e) Ref. 15: (f) Ref.
25.

Comparison of Experimentally measured Structure Factors with Reflection
Symmetric and Reflection Asymmetric Calculations.

E1l Transition Rates in Weiskopf Units.

Comparison of g£xperimental and Theoretical E1 Transition Probabilities.
3 2 1,12
[}i’;] Ql <IcK0110 i I :K>

The squares are the experimental points given in Ref. 32. The diamonds
are the calculations of Ref. 31. The circles are the calculations of Ref. 28.
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