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ABSTRACT

Compact, portable systems capable of quickly
identifying contaminants in the field are of great im-
portance when monitoring the environment. One of
the missions of the Pacific Northwest Laboratory is
to examine and develop new technologies for envi-
ronmental restoration and waste management at
the Hanford Site (a former plutonium production
facility). In this paper, three prototype sensing sys-
tems are discussed. These prototypes are com-
posed of sensing elements, data acquisition sys-
tem, computer, and neural network implemented in
software, and are capable of automatically identify-
ing contaminants. The first system employs an
array of tin-oxide gas sensors and is used to iden-
tify chemical vapors. The second system employs
an array of optical sensors and is used to identify
the composition of chemical dyes in liquids. The
third system contains a portable gamma-ray spec-
trometer and is used to identify radioactive iso-
topes. In these systems, the neural network is
used to identify the composition of the sensed con-
taminant. With a neural network, the intense com-
putation takes place during the training process.
Once the network is trained, operation consists of
propagating the data through the network. Since
the computation involved during operation consists
of vector-matrix multiplication and application of
look-up tables (activation function), unknown sam-
ples can be rapidly identified in the field.

1. INTRODUCTION TO THE PROBLEM

Enormous amounts of hazardous waste were
generated by more than 40 years of plutonium pro-
duction at the Hanford Site. There are an esti-
mated 1700 waste sites distributed around the 560
square miles of southeastern Washington that
comprise the Hanford Site.! This waste includes
nuclear waste (e.g., fission products), toxic chemi-
cal waste (e.g., carbon tetrachloride, ferrocyanide,
nitrates, etc.), and mixed waste (combined radioac-
tive and chemical waste). The current mission at
the Hanford Site is environmental restoration and
waste management.

As part of this mission, the Pacific Northwest
Laboratory is exploring the technologies required to
perform environmental restoration and waste man-
agement in a cost effective manner. This effort
includes the development of portable, inexpensive
systems capable of real-time identification of
contaminants in the field. The objective of our
research is to demonstrate the potential information
processing capabilities of the neural network
paradigm in sensor analysis. The initial portion of
this effort involves the development of three
prototype systems, where each prototype combines
a sensor array with a neural network. These
prototypes are discussed in this paper.

Artificial neural networks (ANNSs) are used in a
wide variety of data processing applications where
real-time data analysis and information extraction
are required. One advantage of the neural network
approach is that most of the intense computation
takes place during the training process. Once the
ANN is trained for a particular task, operation is
relatively fast and unknown samples can be rapidly
identified in the field.

2. SENSOR DATA ANALYSIS

Feature Values
(measurements: electrical
response, wavelength, etc.

Labeled Patterns
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isotope Identification, etc.)
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Figure 1. Sensor system combined with an ANN.

There are many real-time (rapid response) and
remote sensing applications that require an inex-
pensive, compact, and automated system for
identifying an object (e.g., target, chemical, iso-
tope). Such a system can be built by combining a
sensor array with an ANN. A generic system is
shown in Figure 1.

The quantity and complexity of the data
collected by sensor arrays can make conventional
analysis of data difficult. ANNs, which have been
used to analyze complex data and for pattern
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recognition, could be a better choice for sensor
data analysis. A common approach in sensor
analysis is to build an array of sensors, where each
sensor in the array is designed to responud to a
specific analyte. With this approach, the number of
sensors must be at least as great as the number of
analytes being monitored. When an ANN is com-
bined with a sensor array, the number of detectable
analytes is generally greater than the number of
sensors.

A sensor array is composed of several sensing
elements, where each element measures a differ-
ent property of the sensed sample. Each object
(e.g., target, chemical, isotope) presented to the
sensor array produces a signature or pattern char-
acteristic of the object. By presenting many differ-
ent objects to the sensor array, a database of sig-
natures can be built up. From this database,
training sets and test sets are generated. These
sets are collections of labeled patterns (signatures)
representative of the desired identification map-
ping. The training sets are used to configure the
ANNs. The goal of this training is to learn an
association between the sensor array patterns and
the labels representing the data.

When a chemical sensor array is combined
with an automated data analysis system (such as
an ANN) to identify vapors, it i< often referred to as
an artificial nose. Several researchers have devel-
oped artificial noses that incorporate ANNs for use
in applications including monitoring food and bev-
erage odors,3 automated flavor control,4 analyzing
fuel mixtures,® and quantifying individual compo-
nents in gas mixtures.® Several ANN configura-
tions have been used in artificial noses including
backpropagation-trained, feed-forward networks;
Kohonen's self-organizing networks; Hamming
networks; Boltzmann machines; and Hopfield net-
works.

3. CHEMICAL VAPOR SENSOR SYSTEM
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Figure 2. Chemical vapor sensing system.

The first prototype system, shown in Figure 2,
identifies and quantifies chemicals vapors. |t
employs an array of nine tin-oxide gas sensors, a
humidity sensor, and two temperature sensors to
examine the environment. Although each sensor is
designed for a specific chemical, each responds to
a wide variety of chemical vapors. Collectively,
these sensors respond with unique signatures
(patterns) to different chemicals. During the train-
ing process, various chemicals with known mix-

tures are presented to the system. In the initial
studies, the backpropagation algorithm was used to
train the ANN to provide the correct analysis of the
presented chemicals.

The nine tin-oxide sensors are commercially
available Taguchi-type gas sensors obtained from
Figaro Co. Ltd. (Sensor 1, TGS 109; Sensors 2 and
3, TGS 822; Sensor 4, TGS 813; Sensor 5, TGS
821; Sensor 6, TGS 824; Sensor 7, TGS 825;
Sensor 8, TGS 842; and Sensor 9, TGS 880).
Exposure of a tin-oxide sensor to a vapor produces
a large change in its electrical resistance.” The
humidity sensor (Sensor 10: NH-02) and the tem-
perature sensors (Sensors 11 and 12: 5KD-5) are
used to monitor the conditions of the experiment
and are also fed into the ANN.

The prototyped ANN was constructed as a
multilayer feedforward network and was trained
with the backpropagation of error algorithm bg
using a training set from the sensor database.
The parameters used to train this ANN are listed in
Table 1. This prototype was initially trained to
identify eight household chemicals: acetone,
correction fluid, contact cement, glass cleaner, iso-
proponal alcohol, lighter fluid, rubber cement
(Naphtha and Hexane), and vinegar. Another
category, “none”, was used denote the absence of
all chemicals except those normally found in the
air. This resulted in nine output categories from the
ANN. Figure 3 illustrates the network layout.

Table 1. ANN Training Parameters

Type: Backpropagation in batch mode
Architecture:  12-6-9 feedforward

Activation: Logistic

Learning Rate: 0.01

Momentum: 0.9
No. of Epochs: 15000
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Fig. 3. ANN used to identify household chemicais.

During operation, the sensor array “smells” a
vapor, the sensor signals are digitized and fed into
a computer, and the ANN (implemented in soft-
ware) then identifies the chemical. This identifica-



tion time is limited only by the response of the
chemical sensors, but the complete process can be
completed within a few seconds. Figure 4
illustrates both the sensor response and the ANN
classification of the system for a variety of test
chemicals presented to the prototype.
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Figure. 4. Sample responses and ANN classifica-
tions. The numbers correspond to sensors and
ANN outputs that are shown in Figure 3.
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4. OPTICAL SENSOR SYSTEM
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Figure 5. Optical sensor array system.

The second prototype system, shown in Figure
5, employs an array of optical sensors and identi-
fies the composition of chemical dyes in solution.
Light is passed through the dye solution and into an
array of seven optical sensors. Each optical sensor
consists of a silicon detector covered by a narrow
bandpass interference filter and is sensitive to a
specific wavelength of light in the visible and near-
infrared spectrum. The output of each sensor pro-
vides an input to the ANN. By examining the ab-
sorption of the liquid at different wavelengths, the
ANN is able to identify and quantify the dyes. Initial
tests with this system have just begun.

5. RADIATION SENSOR SYSTEM
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Figure 6. Gamma-ray spectrometer with ANN.

The third prototype system, shown in Figure 6,
contains a portable gamma-ray spectrometer and is
used to identify and quantify radioactive isotopes.
The gamma-ray spectrometer consists of a sodium
iodide (Nal) crystal, photomultiplier, pulse height
analysis circuit, and multichannel analyzer. There
are 512 channels of data produced by the spec-
trometer. All 512 channels are fed into the ANN.
The ANN is configured as an optimal linear asso-
ciative memory? where each neuron implements a
linear activation function. There is a single pro-
cessing layer in the ANN where the number of
output neurons is equal to the number of isotopes
being identified (eight in this case). This ANN is
shown in Figure 7 and described in Table 2.

One feature of this approach to gamma-ray
spectral analysis is that the whole spectrum is used
in the identification process instead of individual
peaks in the spectrum. For this reason, it is
potentially more useful for processing data from
lower resolution gamma-ray spectrometers (like
those employing Nal detectors).10

Table 2. ANN Training Parameters

Type: Optimal Linear Asscciative Memory
Architecture:  512-8 feedforward network
Activation: Linear

A
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Fig. 7. ANN used to identify radioactive isotopes.

This system was trained with the spectra of
eight radioactive isotopes: sodium (Na22),
manganese (Mn54), cobalt (Co57), cobalt (Co80),
cesium (Cs'37), europium (Eu'52-154) radium
(Ra226), and thorium (Th232), The spectra of these
isotopes are illustrated in Figure 8. Operation
consists of presenting an unknown sample to the
system, generating a gamma-ray spectrum, and
passing the spectrum to the ANN which produces a
classification of the unknown sample. The values
on thr, output neurons are proportional to the
quantities of each radioactive isotope found in the
sample. Figure 9 illustrates an example of the
classification and quantification of a sample
composed of equal amounts of Cobalté0 and
Cesium!37. The resulting classification by the ANN
correctly identifies the composition of the sample
as being composed of equal quantities of both
isotopes.

Figure 8. Gamma-ray spectra of each isotcpe in the
training set. There are 512 channels per spectrum.

N a22 Mn 54 Co57
Cob0 Cs137 Ey152-154
Ra226 Th232

Sensor Values ANN OQutput
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20001
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0

256 512 123456 78
Figure 9. Sampie spectra and ANN classification.

6. DISCUSSION

Three prototype systems that employ neural
networks for sensor analysis were presented. The
first prototype combined an array of tin-oxide gas
sensors with a neural network and was used to
identify common household chemicals. The sec-
ond prototype combined an array of optical sensors
and was used to identify chemical dyes in solution.
The third prototype combined a gamma-ray spec-
trometer with a neural network and was used to
identify radioactive isotopes.

Initial results demonstrated the pattern recog-
nition capabilities of the neural network paradigm in
sensor analysis. These prototypes also demon-
strated several advantages of this approach over
conventional analytical techniques including com-
pactness, portability, real-time analysis, and
automation. Further work will involve comparing
neural network sensor analysis to more conven-
tional techniques, exploring other neural network
paradigms, and evolving the preliminary prototypes
to field systems.
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