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1 Overview

The High Aspect Ratio Design (HARD) for the International Thermonuclear Experimen-
tal Reactor (ITER) has Toroidal Field (TF) coils that are farther out frem the center of
the toroidal ring and more elongated than the previous design (CDA, [1]). These coils
should see higher forces than in CDA and were designed accordingly. The objective of
this work, conducted at LLNL and the MIT Plasma Fusion Center, was to determine
whether stress levels in the ITER-HARD design are acceptable. A global finite element
model, representing one of the coils, was modelled at MIT [2] to obtain stresses and
displacements both during operation of the TF coils alone, and during the End of Burn
phase with TF and PF (Poloidal Field) coils operating. At LLNL, a detail model of
the TF coil straight leg near the equator was used to obtain stresses and displacements
during TF operation only. Further detailed analysis of the winding pack of this model

was done to estimate stress concentrations in the conduit and insulation.

2 Global model of TF coil

The MIT Plasma Fusion Center modelled one of the reactor’s sixteen TF coils (Fig. 1)
under magnet loadings [2]. The bottom half of the coil case was left off due to symmetry,
but the bottom half of the winding pack was needed for magnetic force calculations. The
coil winding pack was modelled as an orthotropic material with averaged properties based
on the properties of the components: superconducting strands, conduit, and insulation.
The Young’s moduli and Poisson’s ratios were estimated from rule-of-mixtures arguments
[3]; the ANSYS finite element program [4] used these to estimate shear moduli for the
winding pack. The material properties used by LLNL and MIT are listed in Table 1. For
the MIT analysis, the winding pack was assumed free to slide inside the case.



Table 2 summarizes the results of this analysis and the LLNL analysis described
below. Stresses are given in terms of Tresca stress intensity, defined as the difference in
maximum and minimum principal stress. Apart from stress concentrations where the TF
intercoil structure joins the outer legs, the region of maximum stress is the nose of the
case near the equator (horizontal symmetry plane). The Tresca stress intensity here of
620 MPa. is comparable to the CDA stress of 609 MPa. The End of Burn operation phase,
when the PF and TF coils are both energized, adds out-of-plane loadings to the TF coils.
However, this does not have a great effect on the stresses in the straight leg near the
equator. MIT’s analysis showed [3] only a small (about 10%) excursion in stress between
TF only and End of Burn operation for the nose of the straight leg near the equator, even
though the stress magnitude there is high. Therefore, a static stress allowable should be
sufficient for this region, rather than a fatigue allowable.

The MIT report (2] also gives estimates of stress in individual components of the
winding pack from the averaged properties and volume fractions of each component.
They estimate a Tresca stress intensity of 510 MPa in the conduit, and 110 MPa and 20
MPa compressive and interlaminar shear stress in the insulation. These are misleadingly
low, as shown in Table 2. Detailed models of the winding pack are necessary to capture
stress concentrations.

3 Detail model of TF coil

In order to capture the details of stresses both in the case and inside the winding pack,
an intermediate 3D detail model of part of one TF coil was done at LLNL, followed by
a still more detailed model inside the winding pack. The detail model was of a 1.6 m
high part of the inner leg, starting at the equator (Fig. 2). The model used orthotropic
elastic properties for the winding pack (Table 1) and isotropic elastic properties for the
Incoloy case. The orthotropic properties of the winding pack were determined by three-
dimensional finite element analysis of a quarter-section of a conductor. The winding
pack was tied to the case so that there could be no relative motion. All stress analysis
was performed using the program NIKE3D with pre- and post-processors INGRID and
TAURUS [5, 6, 7].

The TF coils are wedged together at their inner straight legs, which have a keystone-

shaped cross section. When these D-shaped coils are energized, magnetic forces act



to make them more circular, so that the winding pack in the straight leg is stretched
vertically and also pushes towards the center of the toroid. There develops, then, a
vertical tensile stress.in the straight leg, and, because of the wedging together of the
coils, a hoop compression around the toroid. There is also some radial stress caused by
the winding pack’s pressing towards the center, but the h<.30p compression is the largest
stress, followed by the vertical tension. To model this wedging, the side walls of the case
were kept from spreading using symmetry planes. The coil model was, however, allowed
to move in the radial (y) direction. The coil was restrained from vertical (z) motion at
the horizontal symmetry plane, with an applied force on the 1.6 m high face to give the
vertical tension combined with displacement constraints so that the face remained planar.
Magnet forces pushing the inner leg inward were modelled as nodal forces on the winding
pack. Magnet loads had been determined by Bob Wong of LLNL using the program
EFFI [8]. It is interesting to note that since the magnet forces are not evenly distributed
over the coil, detailed knowledge of them is necessary for correct stress results.

Fig. 3 shows the displaced mesh for TF operation, with the coil displaced inward.
Figs. 4, 5, and 6 show the x-, y-, and z-stresses in the coil cross section. Fig. 7 is a plot
of the Tresca stress intensity (0mez — Omin)- The highest Tresca stress intensity is 606
MPa, in the nose of the case, below the allowable of 800 MPa and comparable to the
CDA and MIT stresses.

In order to determine stresses inside the winding pack, a detailed section of the pack
was modelled. Fig. 8 shows the finite element mesh of a quarter of a conductor, including
the superconducting strands, Incoloy conduit, glass-epoxy insulation and epoxy fill in
the corner. Table 1 shows the properties used for these materials. This detailed model
represented a conductor at the center of the pack, near the inner edge, where stresses
are high but shear stress is very low, and deformation should be fairly uniform between
conductors. Therefore, the outer surfaces of this mesh were constrained to remain plane,
with pressure boundary conditions taken from the previous detail model. The resulting
stresses were high in both the conduit and insulation (Fig. 9). The maximum Tresca
stress intensity in the conduit was 1260 MPa, well above the allowable of 800 MPa. Stress
components in the insulation were examined to determine the worst-stress location. This
was found to be near the corner of the conduit, with 230 MPa normal compressive stress
and 140 MPa interlaminar shear, above the interlaminar shear allowable of 33 MPa.

These high stresses would not be apparent from estimating stresses from an averaged-
properties model.



4 Implications for design

The stresses in the ITER-HARD coil case are comparable to those in the previous, CDA,
design, and below the allowable stress. Since there is only about a 10% difference in
straight-leg stress when out-of-plane loading is combined with in-plane loading, static
stress allowables can be used rather than fatigue allowables to size the TF coil straight

leg.

Detailed analysis of the winding pack gives stresses in the conduit and insulation

significantly above the allowable stresses. Since previous structural analyses were not

detailed enough to include stress concentration effects, the peak stress estimates for
previous ITER TF coil designs may also be too low. A new design of the winding pack
giving lower stresses is needed.
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Table 1

Material Properties Used in LLNL and MIT Models

LLNL Properties of Coil Components

Superconducting strands

Ex = 0.6 GPa ny =1 Pa Vxy = 0.01
Ey = 0.6 GPa Gy, =1Pa Vyz = 0.01
Ez = 30 GPa Gyz =1 Pa Vyz =0.01
Insulation
Ein-plane = 30 GPa G = 8.6 GPa V=0.3
Ethrough-thickness = 15 GPa
Epoxy fill
E = 8.0 GPa V=0.3
Incoloy conduit
E = 184.2 GPa U = (0.2987
LLNL Calculated Average Winding Pack Properties
Ex = 36.0 GPa ny = 3.3 GPa ny =0.177
Ey = 38.0 GPa ze = 9.7 GPa 'sz =0.132
Ez = 84.5 GPa Gyz = 10.1 GPa ‘)yz =(0.140
MIT Estimated Average Winding Pack Properties
Ex =42.7 GPa ny = 15.5 GPa ‘)xy =0.33
Ey = 40.2 GPa ze = 20.1 GPa sz =0.33
Ez = 63.2 GPa Gyz = 21.3 GPa Uyz =02
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Fig. 1. MIT Plasma Fusion Center global model of the TF coil (from Myatt and

Bobrov 1992 [2]).




I T
-
@)
I
\ symmetry
planes

,“‘\‘ N

N .
Tree———
’ N NN
Y S

NANANA R W

Fig. 2. LLNL intermediate detail model of the TF coil, representing the straight
leg near the equator,



ITER-HARD coil in case
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Fig. 3. Displaced mesh for TF coil operation. Magnet loadings push the straight
leg towards the center of the toroidal ring.
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