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NOMENCLATURE

Lower-ease Roman letters

• a inner radius of the involute (see Fig. 1)

b outer radius of the involute (see Fig. 1)

_1,_'2,_, unit coordinate vectors directed along the a-axis, the z-axis, and
normal to the midsurfaee, respectively

f Fanning friction factor

g, g,, weighting functions used for the orthogonality method of solution of
the differential equations

h fluid chamiel thickness

7/ unperturbed channel thickness

hp plate thickness

l
k local involute curvature --" -r

t plate length

p pressure in fluid acting on plate

r local involute radius of curvature

t time

ul, uz plate deflection components in the directions tangential to the plate
midsufface

v_, v2 fluid velocity components

v,, vd fluid veloeitie_ upstream (u) and downstream (d) of a sudden
expansion in channel cross section

. vM bfiUer's critical velocity [see Eq. (21)]
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w plate deflection normal to the plate midsurfaee

z axial coordinate measured downstream from the channel entrance .

Upper-case Roman Letters

[.,4] matrix of coefficients in the system of boundary condition equations
[see Eq. (67)]

[BI matrix of coefficients in the system of boundary condition equations
[see Eq. (67)]

[C] matrix developed from [.,4] and [B]; [C] = [BI "I [AI

D plate bending stiffness [Eqs. (7)--(9)]

F nondimensional fluid friction number = _

13 integral coefficient [see F-xi.(63)]

i K plate-stretching stiffness [see F.qs. (4)-(6)]

L nondimensional plate damping coefficient [see F.xt. (30)]
i 341, Ms Ml2 = M21 plate bending and twisting moments

N nondimensional density parameter [see Eq. (28)]

NI, Nz, Nlz = Nzt plate tensile and shear forces

Q2 plate shear force dkeeted normal to midsurfaee

R plate aspect ratio = __
!

S stability number; nondimemional unperturbed fluid velocity

T nondimensional ratio of plate stretching to bending stiffness =

F/)2g/D

IV. plate deflection expansion coefficients [see Eq. (53)] , .VlU

_ii
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Greek letters

• a involute arc length running coordinate

a total arc length of involute_r

13 axial wave number of perturbation [see Eq. (56)]

131,1_2 plate midsurfaee rotations

y 0 plate midsufface shear strain12

e0, e0 plate midsuffaee axial strains
1 2

eigenvalue of F-xi.(68) = iii

r_, _ plate midsurfaee bending curvatures due to perturbation

_. plate damping coefficient [see Eqs. (1) - (3)]

v plate Poisson's ratio

p fluid density

PP plate density

x plate midsurfaee twist due to perturbation

X eigenvector of Eq. (67)

0, 0. exparL_ion function for the plate normal deflection

angular frequency of perturbation [see Eq. (56)]

Additional symbols

' the prime is used with variables to indicate that they have been
nondimensionalized

' - the tilde is used over the symbol for a variable to identify coefficients
of el(p_''''') [see Eq. (56)]
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ANALYSIS OF HYDRAULIC INSTABILITY OF ANS INVOLUTE FUEL PLATES

W. IC Sanory

ABSTRACT

Curved shell equations for the involute Advanced Neutron Source
(ANS) fuel plates are coupled to two-dlmensional hydraulic channel flow
equations that include fluid f_fiction. A complete set of fluid and plate
boundary conditions is applied at the entrance and exit and along the sides of
the plate and the channel. The coupled system is lineadzed and solved to
assess the hydraulic instability of the plates.

1. INTRODUC'IION

Tile Advanced Neutron Source I (ANS) is a highly enriched uranium fission reactor

presently under design at the Oak Ridge National Laboratory to produce neutrons for

re,search use. One primary objective is m achieve a high neutron flux. To meet this

objective, a small reactor core with a high fission heating density is required, which leads the

designers to seek high coolant velocities to remove the heat.

Since the work of Stromquist and Sisman in 1948,2 it has been imown that very high

flow velocities past fuel plates can cause the plates to deform, buckle, and collapse. Exce_ive

: fuel plate deformation can impede coolant flow and heat removal and thus must be a_Joided

in the reactor design.

An interesting explanation of the flow-induced buckling was proposed by Miller. 3

Miller coupled a plate deformation equation with Bernoulli's equation for the fluid. He

' argued that if a small perturbation (due to an initial plate imperfection or to any other

o
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source) caused two adjacent plates to move closer together at some location, then the fluid

velocity between them at that location would be increased. At.cording to Bernoulli's equation,

the fluid pressure between the p!ates would then drop, tending to force the plates even closer

together. At a certain critical velocity, the fluid forces tending toward plate collapse would

exceed the elastic forces tending to hold the plates in their design configuration, and the

plates would buckle.

Miller studied both flat and uniformly curved cylindrical plates° with different

boundary conditions along their supported edges. Patterned after the successful High Flux

Isotope Reactor (HFIR), 4 the ANS will use fuel plates with an involute shape (see Fig. 1).

Chvaltney and Luttrell5 therefore extended Miller's theory to involute plates by coupling

II elastic finite-element models of the plates with BernouUi's equation for the fluid. They found

i that the involute plates were much more stable than flat plates of the same span, because of

i the stiffening effect of their curvature, but no_ as stable as cylindrical plates with the same

average curvature.

At the time of Mille'.'s original work, it was immediately suspected that Bernoulli's

equation might limit the accuracy of the stability predictions because it ignores fluid friction.

Thus, Johansson _ modified the fluid equation of the Miller model to include friction and

found some effect on stability. Later analytical work by Scavuzzo_ and by Smissaerts also

included the effect of fluid friction on the Miller-type i_stability of flat plate,_.

"There is a conflict in terminology here. In solid mechanics, a plate is understood to be
flat, and a curved plate is called a shell. In nuclear design practice, the term fuel plate is used
regardless of curvature. In the present report, the curved involute fuel plates of the ANS and
similar curved fuel plates of other teactoz_ will be referred to either as plates or shells.

2
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OFINL-DWG 90M-3973 ETD

1.27 mm TYPICAL
COOLANT CHANNEL

Fig. 1. Schematic representation of typical involute fuel plate. There is an array of
: several hundred involute plates in each of two as,_emblies in the PS-2 core. The side plate

radii, a and b, are referred to in this report as the inner and outer radii of the involute,

respectively. The inset shows the direction of the a axis, which is taken to be the first
g coordinate axis. The corresponding coordinate direction is shown by the unit vector _. The

second coordinate z and the second coordinate vector run into the page. The third
• coord/nale direction is _hown by the unit normal vector _,. in the inset. The curvature is

- positive when _, points in the convex direction. A positive pressure loading p and a positive
bending moment Ml are also shown in the inset.
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In the pre..tcnt analyses of Miller i_tability in lhc ANS, a Linearized ir_voluteshell

model of the fuel plates is co,uplcd with a lincarize.d hydraulic equation incorporating fluid

_c_ion to assess the allowable coolant flow v_locity. Other c:hangcs compared with previous

work iacltaie a fully _raional (2-D) hydraulic model and the in0orporatloz_ of both

inlet and outlet fluid aad plate boundary conditions. Inertial and damping terms (time

dcrivafi,,_) arc. also includod in the fluid and plate equa_ona, although computer cost

limitatiom prevent the full utilization of the inertia_ fermi. Incorporation of inertial tc,ms

and comp|etc inlet aM outlet boundary conditions allow.,,the calculation of the normal modes

of vibratkm of the coupled flui_t.platc system under flow oondit/ons. These vibrational modes

and thci_ mmociated frcclucncgcs and ,damping cocfticicnts are of interest in the ANS design

in _eir own right, iu addition m their involvement ,in the Miller instability phenomenon,
i



2. EOUA'IIONS OF MOTION

. Linearized shell equations using the approximations presented by Kraus9 were used

in the present work. After simplification to ac_.o_mtfor the fact that the involute fuel plates

are curved only in one direction, these equations result:

°=''/+'jlrl 4. ..--,--, . -- . ==

N,2- g:,, - K (1 - v) a'_P (6)

5



M 1 ,.D (_I + vK2)' (7) .

M2 .D (_2 . v_), (8)

M_2. M2_- D(1 -v)_/2, (9)

_1o 8ul w (10)aa r

au2 (11)

8u2 8u_ (12)
_nO= Oa 0z

a_ C13)
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The variable a L_the arc length coordinate mcaPured around the midsurface of the

involute plate starting at the inner radius of the involute (see Fig. 1); z is the axial coordinate

starting at the inlet; t is time; M_, M_, and Mt2 -- M2t are plate bending and twisting moments;

NI, 2_ and Nt2 = Nu are the tensile and shear forces; r (a function of a) is the unperturbed

radius of curvature of the midsuffaee of the involute; p is the fluid pressure on the plate; w,

u j, and u2 are the plate deflections; ), is a plate-damping coefficient; pp is the plate density;

h r is the plate thickness; K is a plate-stretehing stiffness; D is a plate-bending stiffness; _,is

Poisson's ratio; cl°, c°, and .r12° are plate midsurfaec strains; #t and #2 are plate midsufface

rotations; and _, K_ and r are plate midsurfacc curvatures and twist in addition to the initial

involute curvature. (At this stage in the equation development, there is just one fluid channel

on one side of a single plate. Adjustments will be made later for the more interesting

geometry of multiple plates with fluid channels on both sides of every plate.)

The 2-D nonlinear hydratdic equations (treating the channel as flat) are:

aph% (lS)a___ +._..__ +._..__--0,
at /)a az

aphv, Ophv2 Ùphv,v2 h#_P fp(vt_ v_),r_t (19)
#t 0a az 0a

a,,,,v,,+,:,a v: j,aosd,,+ (20),-,-,.--,.- 4. 4.- == - ---,-. -- 4. 'V2 I,
at O= Oz az

e
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where p is the (constant) fluid density, h is the channel gap size, vt and v2 are the fluid

velocity component, in the ct and z directions, and f is the Fanning friction factor.

We now manipulate the equations in several ways. We eliminate many of the

unknown, from the shell equatiom in favor of the three deflections. We lincarize the

hydraulic equatiom by perturbing about steady, uniform axial flow. We also

nondimetmionalize ali of the equations. A natural choice of a velocity for

nondimemionalization is the unperturbed axial fluid velocity, but we chose instead the Miller

velocity:

" I 18oD] (21)

where _ is the unperturbed channel thickness and _ i_ the total arc length of the involute.

The Miller velocity is the critical velocity that would be calculated by Miller's theory for a flat

plate with the same arc length as the involute plate. A system of six coupled partial

differential equations tesults:

-.-.+ R --- - 2"SR .---- 2"RN--- = 0, (22)
Oa" _" az" Ot"

p,SLLL * = _ SRFv2, 1 1 2.S21,.Fw. (23)_" at" - _ ,n - _. ,

SRFv'- 1. Op" (24)
t

b
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. a3k" ,2w ,au2" .. Tk,OUl" a3ul"
---" " - - _ --": + R2k" "Oz,2Oc_,a ut Tk " vRTk 8z Oct Ot_

i

+ k "03ul"---.+ R 2ok" 02ul" - 2R2 04w" - 1_ 04w" + 302k" Oul"
Oa"3 Oa" &,2 az'20t_'2 az" aa "2 Oa"

. 3a_" _'" aa"a'w" Law__" 02w" (25)Oa--7---=,=90 x2"'p'+ at" +---'at'2

: k,O2k" , T__._'w . Tk "Ow" R2k Oaw" 2ak'k,OUl"
Ul 4. ° ,_._., - " . __,._Ota" Oa" &_,,_,2 Oa" Oa"

-k" O_v_...._"+ vRT 1 02u2 , _ j,R2T1 02ul "
Oa,s 2 Oa"/k' 2 az ,2

+ RT12 Oa'_" Oa "2 2 _z ,2 _ "-_

+k "202Ul"-_ + R2T I_..._.;_8_1" _ L_ + "_2Us " , (26)

vRTk ,Ow " 0_I " a2u2" Oza_, 1O_u2,.-- + uRT I - vT1 + RT 1 + T
_z" 20ot"Sz" 2 Oa,2 2Oo:"ilz" 2 Oa ,2

+ R2T_f_" = La U__2" + ----if'u2" (27)
,2 Ot" Ot,2_+

|
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The variables v( and v2'are the fluid velocity l:_rturbations nondimemionalized with

vM, o" = a/_, z" =z/t, _ is the total length of the channel, R = a/0, 2' is a factor of 2

introduced into P.qs. (22) and (23) to account for the change from a single plate to an array

of plates in which adja_nt plates deflect in opposit*., directions so that the perturbation in

channel thickness is twice the plate ddleetion, 2" is a factor of 2 introduced into F-xi.(25) to

account for the fact that a fluiO channel with a pressure perturbation is present on both sides

of the plate, S is the unperturbed fluid velocity divided by vM and will be called the stability

nu,r,be!:, w" is the plate normal deflection divided by _, p" is the fluid pressure perturbp tion

•

divided by =pvM2, k" = _r is the involute nvndimemionalized unperturbed curvature, u l2

and u2"are the plate tangential deflections divided by _, T = (E)2K/D, F = 2f t/_ is the fluid

friction 9u..mbeL

t
t s w

(-_)2 "-D"-hppe ],t2 , (29)
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The nondimensional curvature function can be shown to be

, k'(,_') = 1 b 2 (31)_ - 1 a "'1_,

where a is the inner radius of the involute and b is the outer radius (see Fig. 1).

Along the built-in sides of the plate, the boundary conditions are

aw " , , (32)
W" = =U 1 =U 2 =0,

and alongthesidesof thechannel

. (33)VI =0,

at a" = 0 and 1.
=

Along the leading and trailing edges of the plate, there are assumed to be no

concentrated forces or moments. There appears to be five edge forces and moments that can

be set to zero at such an edge:

N 2 ,_O, (34)
=

Ns, --o, (35)

p

=

I 11
|
I
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(36)

g2=o,

t

_2, - o, (37)

Q2" 0, (3s)

where Q2 is the shearing force per unit length of edge directed normal to the midsufface of

the shell. It is known? however, that only four independent conditions can be set.

N 2 -- 0, (39)

M21
_2, + -- " o, (4o)

/.

(41)
Q2 + "---'_'/'21. 0,8a

u 2 . o. (42)

The shear force Q2 may be eliminated using the exluilibdum equation 9

E

Q2 " "---i_1421+-"-_2 (43)
83



. to give

aM21 aM2 (,4,4)2 ,-.....--+ -....._ ,, 0
' 8¢ 8z

in place of Eq. (41). Eliminating the unknowns from the boundary eonditiom in favor of the

displacements and nondimensionaliziag,

vk'w" + RSU_2" + vaUl" = 0, (45)
cgz" 8or"

_..__i..o, (46)
+ k'2R(v- I)oz"

R28_w" 83w" 8k" 8ul" 82ul" (47)- ----+(v-2)_ + +k'--------O,
Oz"s 8a'2az • 8_" Oz" 8a" az"

_ R2£w_._" v82w. 8u," Ok" (48)- ----+vk'-----+ " -0
8z "2 8a "2 aa" va_'ra'ul '

at z" = 0 and 1. At the channel entrance (z" = 0), the -ressure perturbation is related to

the velocity perturbation,

p" + 2(1 . Ca)_'v2" " 0, (49)

I •
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where C, is an entrance contraction loss coefficient that we shall take as 0.04" for rounded

plate leading edges with a radius of hpl2.

We assume that the inlet flow is guided straight into the channel by ducting or vanes,

so

vI = 0 (50)

at the entrance (z' -- 0). The channel exit condition requires further discussion.

At a sudden expansion in channel cross section, the Borda-Carnot equation ]°is usually

recommended without any correction:

1 2 1 (51)
static pressure rise , _p(v, - v_) - _p(v, - Vd)2 ,

where v, is the upstream velocity and v_ is the downstream velocity. Associated with this

equation, however, is a standard derivation.1° A fundamental assumption of the derivation

is that at a channel section located an infinitesimal distance downstream of the expansion, the

fluid pressure is uniform across the section, and that the fluid pressure in the upstream

channel drops (due to fluid friction) smoothly to the section pressure at the expansion

section. This assumption allows the Borda-Camot equation to be obtained by momentum

balance. Borda's assumption is also the basis of the theory of jet pumps and ejectors in which

two fluid streams traveling at different velocities are introduced into a common channel. In

"Forturbulent flow, Vennard 11recommends C, = 0.04 when the entrance is rounded with
a radius of curvature 20.15 of the channel equivalent diam. However, Hobbs le recommends
C, = 0 when the entrance radius is :,0.13 of the channel equivalent diam. The ANS is
expected to use a plate-leading edge radius equal to 0.25 channel equivalent diameters
(0.5h,).

14
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I

• the present work, we apply the fundamental Borda assumption of uniform pressure to two

adjacent upstream channels of the involute exit. Then the pressure in each of the upstream

channels extrapolates smoothly to the same common pressure at the expansion. Because the

pressure perturbation is assumed to have opposite signs in adjacent channels,

p" ffiO, (52)

attheexit(z"= I).

Becausetheupstr;_amcontractionlosscoefficientvalueof0.04doeanotseem very

definitelyestablishedintheliteratureu,z2and becauseno otherauthorshaveusedBorda's

assumptionintheabc,eway to getthedownstreamboundarycondition,itseemsworth

noting here that numerical experiments performed during the present work. indicate that for

the involute plate studied, a change from the present boundary conditions to the lossless

BemouUi's equation at the entrance and exit causes at most roughly a 10% change in the

calculated stability number.

If ali solutions of the boundary value problem Eqs. (22)-(27), (32)-(50), and (52)

decay in time, then the plate is stable. If a_n..gsolution grows in time, then the plate is

unstable. The calculated critical value of the stability number is the value on the boundary

between stable and unstable regimes. The calculate.d critical stability number is generally a

function of the other nondimensional parameters: R,F,T,N,L, and the radius ratio of the

involute that determines the curvature function k'(a ').

)
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. 3. SOLUTION ALGORITHM

The coefficientsof thelinearpartialdifferentialF_.qs.(22)-(27)and (32)-(52)are
A

independentof t"and z"but dependon _t"throughthe curvaturefunctionk'. In the
r

present work, we use the orthogonality method 13 to treat the u'.dependence. Each of the

unknown functions is expanded in a series of coordinate functions of tr'; for example,

6 (53)
w (t ,z ,_') - w. ( ,z ),.(_ )

where each coordinate function, 4_.(_ '), satisfies ali required side boundary conditions on w.

and similarly for the other five unknowns. The use of a six-term series is, oi course,

somewbat arbitrary. Other numbers of terms were also tried, as will be discussed later. After

substitt'ting ali such expansions into the differential equations, each differential equation is

multiplied by a sequence of weighting functions of u.g,,,(u') and integrated with respect to

a' from 0 to 1. This procedure leads to a system of partial differential equations with

constant coefficients in the independent variables t • and z" in which a" is eliminated es an

independent variable.

In the present work, polynominals were used both for the expansion functions and for

the weight fimctions. For example, the first expansion function for w'was the same function

used by Miller for flat plates:

,_(,z") - _'2(1- _")2. (54)

17
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The higher expansion functions were higher degree polynominals of the same general form.

The weight functions used to weight the shell deflection [Eq. (25)] were taken to be the same
t

as the expansion functiom for w

g.C.' ) =*.(_' ), m = 1 thru6. (55)

Similarexpansionandweightfunctions(satisfyingdifferentboundaryconditions)were used

fortheothervariablesandequatiom.

We thenseeksolutionsofF_.qs.(22)-(27)intheform

w.(t. z')._e<_'-",'), (56)

and similarly for the other unknowns. The result of the substitution is a system of linear

algebraic equations for the unknowns _. etc.:

, G(1,1,1,0)¢_+ RG(1,2,0,0)/[_¢2 - 2"SRG(I,4,0,O)if_O

-2"_w0,4,0,0)(-i_,),v-o, f57)

_G (2,2,0,0)/_Q 2 + RNG(2.2,0,0) (-io)¢ 2-i

1 2,S2RFG(2,4,0,0)$, (58)| ' = - SRFG(2,2,0,0)Q 2 - RG(2,3,0,0)iISp" -!

sR_(3,1,o,o)i_t . _ra(3,1,o,o)(-i.,)Q_

18
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(59)
• 1 SRFG(3 1,0,0)¢I 1 G(3,3,1,0g

G(4,5,0,5_- TG(4,4,0,2)'&- vRTG(4,6,0,1)/._fl'2

- TG(4,5,1,1_+ R2G(4,5.1,1)(-#2)a_+ G(4_5,3,1)a_

. RzG(4,5,0,3)(-_2)a_- 2RZG(4,4,2,0)(-Ii2)b0- R4G(4,4,0,0)_hO

+ 3G(4,5,1,4)II_+ 3G(4,5,2_)_l - G(4,4,4,0)a"_

- 90 x 2"'G(4,3,0,0_. TG(4,4,0,O)(-it_),_, G(4,4,0,0)(ito)2_, (60)

G(5,5,0,7)a'l + TG(5,4,0,3)_0. TG(5,4,1,1)_0

qi - R_(5,4,1,1),(ifl)2_O• 2G(5,5,1,6)a_- G(51t,4y3,1)_

_2

a

=

=.

-: . RT G(5,6,1,0)/_a2+ TG(5,5_,0)a_

-

=m

i

-'2_

" 19
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21 + R2_G(5,5,2,0)a:- vR _G(5,5,0,2)(i13)2_I

+G(5,5,2,2)t2"I + R2T2G(5,5,0,O)(i_)2flt

. = LG(5,5,0,0)(-i_)a:+ G(5,5,0,0)(i_)2_:, (61)

vRTG(6,4,0,1)i[i_+ vRTI G(6,5,1,0)il_a:

-vT2G(6,6,2,0)a2+ RT½G(6,5,1,0)ipat

+ T2G(6,6,2,0)t_2 + R2TG(6,6,0,O)(i_)2fl2

,, LG(6,6,0,0)(_i_2 + G(6,6,0,0)(i_)_2 " (62)

The G's are quadratures involving the expansion functiorL_or t_eir derivatives, the

weighting functions, and the curvature function in various forms.

The first argument of G is the equation index that runs from 1 to 6, referring to

Eqs.(57-62), respe_ti_ly.
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. The second argument of G is the Unknown index that also runs from 1 to 6. For

purposes of the second argument of G, the unknowns arc arranged in the order:
t

_1, ¢2,f, 10,al, az .

The third argumentof G is a derivativeorder index on the expansion function that

runs from 0 to 4.

The fourth argument of G refersto the way in which the curvaturefunction appears

in the quadrature. It runs from0 to 7 and is defined as follows.

Fourthargument Curvaturefunction

0 1.0

1 k"

2 k"2

4 dZk"
i

da ,z

5 d3k"
da,3

6 k,dk_
de"



As an example,

f I ddp(a') da'. (63)G(4,1,1,I)= 0g(a')k'(a') da" i

The G'swereevaluatednumericallybyGaussianquadrature.

InadditiontothefourexplicitindicesexpressedasargumentsofG, therearealsotwo

impliedindices[theexpansionindexn fromEq.(53)and theweightindexm on g]thatare

suppressedintheequationstoreduce,theclutter.The expansionindexn altoappearson

eachoftheunknowns[asinEq.(53)].The summationconventionisundelztoodtoapplyto

n and therangeconventionisunderstoodtoapplytom. Ifn andm runfromI to6 (the

usualchoiceformostofthenumericalworkinthisreport),thentherearesixtimesasmany

unknownsand sixtimesasmany equationsasappearexplicitlyinEels.(57)-(62).

The parameter# (theaxialwave number of the perturbation)a)pearsin Eqs.

(57)-(62)withpowersfrom0 to4. We now restrictitsappearanceto thepowers0 and I

by introducingadditionalunknowns.Forexample,we define

Wt - i[_, (64)

_2 " i_t , (65)

_s " il3_2, (66)

and similarly we define one subsidiary variable associated with each of as and a2 by

introducing another index to eliminate powers of #. This substitution leads to five additional
m

_-7
,, unknowns. To obtain five additional equations, we supplement the system Eqs. (57)-(62) by

! .
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. Eqs. (64)-(66) and by the similar equations associated with a1 and t22. The system then

contains (explicitly) 11 unknowns and 11 equatiorm. Taking into account the suppressed
J

indices, it contains 66 unknowns and 66 equations. After the appearance of j0 has been

restricted to powers 0 and 1, we move ali terms involving/l ° to the left-hand side and ali

terms involving pl to the right.hand side. That leads to an eigenvalue problem of the form

[.41x= lbl,,, (67)

where [,4] and [B] are square, complex, non'Hermitian matrices, _"= ip is the complex

eigenvalue, and x is a column vector of the unknowns of F_Ns.(57)-(62) supplemented by the

new unknowns introduced to eliminate high powers of/L If n and m run from 1 to 6, then

[A] and [B] are 66 x 66 matrices. Multiplying Eq. (67) from the left by the inverse of [B], we

obtain the standard form

. [c]x = ex. (68)
a

The eigenvalue problem F.xI. (68) was solved in the present work with the standard

EISPACK 1_subroutine named CG'.

: "Although CO is an implementation of an old and highly respected algorithm, problems
were nevertheless occasionally encountered with it in the present work. These problems
always were associated with multiple eigenvalues. If a matrix possesses a complete set of
eigenvectors associated with a set of multiple eigenvalues, it is possible to define the

= eigenvectors so that they are mutually orthogonal. However, CO does not do this.
Occasionally, the eigenvectors returned by CO for multiple eigenvalues were so far from
orthogonality that, from a numerical point of view, they were not linearly independent. It was
first believed that this result might indicate that the matrix [C] was deficient (lacked a
complete set of eigenvectors). However, the CG algorithm was then modified for multiple
eigenvalues to use repeated inverse iteration followed by Gram-Schmidt orthogonalization to
recalculate the eigenvectors. The vectors generated in this way were tested by direct
substitution into Eq. (68) and were found to be genuine eigenvectors and also to be

: ' orthogonal and therefore linearly independent. It is concluded that CO, although old, is still
unnecessarily unreliable in the special case of multiple eigenvalues.

ib
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The solutions (usually 66) of the special form of Eq. (56) obtained from the solution

of the eigenvalue problem must be superimposed to satisfythe upstream and downstream
i

edge-boundaryconditions. The boundaryconditions cannot be satisfiedexactlybythe present

approximatesolution and are instead satisfiedapproximatelyin the sense of the orthogonality

method,just as the differential equations are satisfied in the orthogonalitysense. For each

of the 11 boundary conditions, we form a series solution with unknown coefficients. Then

we multiply each boundary condition by one of sixweighting functions and integrate with

respect to a" from 0 to 1 to obtain a set of 66 homogeneous, linear algebraic equations for

the coefficients. For a solution to exist, the determinant of the equations must be (complex)

zero. If a value of the complexfrequency ¢ is found for which the complex determinant is

zero, then _ gives the frequency and decay rate of a normal vibrational mode, and the

correspondingcoefficientsgive themodeshape. Muller'smethodIshas been use0 to calculate

the complex frequencies.

The most reliablemethod of approachingcoupled fluid-solidstabilityproblems16seems

to be to choose a number of normal vibrational modes (those of lowest real frequency) and

to follow their complex frequencies froma fluid velocity of zero where stability is assumed

to every-increasingfluidvelocitiesuntil the fr tmode becomesunstable (the f'_t root crosses

from the negative imaginary half plane to the positive imaginary half plane or the

corresponding de.cayrate changes from positive to negative). Even if such an approach is

followed, it cannot be proven on the basis of numerical calculations that some mode higher

than those studied does not become unstable firsL In the present work, a large numberof

_i_odeswere followed duringa preliminaryphase of the investigationthat was confined to flat

fuel plates. It was f_und that the instabilitycorresponded to monotonic collapse (divergence)
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• of the plate rather than to unstable flutter; that is, the complex frequency crossed from the

negative to the positive imaginary half plane by passing through the origin.

In the later stages of this work that were devoted to involute plates, the

computational cost of following a large number of normal modes from zero coolant velocity

to the point of instability seemed prohibitive. Therefore, it was assumed that instability of

involute plates also occurred by monotonic collapse (consistent with the theory of Miller and

the work of ali previous investigators of hydraulic instability). "I1aecomplex frequency was set
=

to (eomple!0 zero, and the stat_ilJty number (the nondimensional coolant velocity) was

incremented gradually from a small value until the determinant (which was re_l to numerical
l

precision) changed sign. The critical value of the stability number was then taken to lay in

the interval that contained the sic,rachange.

r
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. 4. NUMERICAL KESULTS

The computational method described has been applied to the ANS core designs and
q

to other experimental geometries.

The ANS core design is still evolving. In January 1989, a tentative two-part core

design, PS-2, was developext that used two sets of involute plates with different radii. The

inner subcore haa these nominal dimensions and properties:

inner involute radius = 102 mm

outer involute radius = 168 mm

involute are length = 87.35 mm

plate leng'.h = 494 mm

plate thickness -- 1.27 mm

plate density = 3390 kg/m3 (with estimated fuel)

coolant gap thickness = 1.27 mm

coolant density = 1096.65 kg/m 3

coolant viscosity = 6.51 x 10-4 Pa • s

plate elastic = 6.89 x 101°Pa
modulus

Poisson's ratio = 0.33

coolant velocity = 51.4 m/s"

_. = 0t

"The design coolant velocity for PS-2 was 27.4 m/s. Wilh the design margin of 0o8/1.5
included, the plates must be stable up to 51.4 m/s.

rI'he amount of plate solid damping is not known at this time, but overall damping is

il believed to be dominated by f'.aid dissipation.
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The following nondimensional parameters are then obtained:

F = 2.98

R = 0.17'7

T = 56,767

N = 16.49

b
- = 1.647
a

L=0

Some results of stability calculations are represented in Fig. 2 as a plot of thc

calculated stability number vs the fluid friction number F. Recall that the stability number

is the ratio of the critical fluid velocity to the critical velocity that would lm calculated by

MiI,ler's equation for a flat channel of the same arc length. In addition to the PS-2 inner core

results, the stability number for flat fuel plates (b/a - 1.0) with the same are length and the

same other nondimemional parameters as the PS-2 design is also shown for comparison.
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. Fig. 2. Effect of fluid friction on hydraulic instability of fuel plates of ANS PS-2
geometry.
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5. DISCUSSION OF RF_ULTS

, The lower curve of Fig. 2 for flat plates shows that, as the fluid friction is reduced to

zero, the critical stability number calculated by the present algorithm goes essentially to 1.0

in agreement with the frictionless theory of _ller. 3 As the fluid friction number is increased,
;, t,

the calculated stability number increases. The increase is significant and exceeds a factor of

2 at a friction number of 5 or 6. The theory of Johannson, 6 which included fluid friction,

also predicts some effect on calculated stability; however, the effect predicted by Johannson

depends on assumptions that must be made about the shape of the plate deflection

perturbation occurring. The present theory, which calculates and uses the shape of the most

unstable eigenfunction of the fluid-plate system, gives an unqualified prediction of the friction

effect,

The lower curve is not smooth but comprises a series of segments. These different

segments are believed to be associated with different axial modes of the marginally stable

_. disturbance. These mode shifts deserve _'urther study because such transitions are sometimes

i associated with the appearance of the oscillatory or flutter form of instability. The study of

oscillatory modes, however, is beyond the scope of the present work.

i The curve of Fig. 2 applies to PS-2 inner core involute plates. At small values

upper

of F, it is a factor of --6 higher than the curve for flat plates because of the stiffening effect

of the curvature (recall that the stability number of the present work is nondimensionalized
by dividing the critical velocity by the flat _ Miller velocity).| -

I The upper curve also shows an improvement in the calculated stability with increasing

J

fluid friction number; however, on a percentage basis, the friction effect is much less than

|



with flat plates. At the PS-2 nominal friction number of 2.98, the calculated stability number

is -6.75, which corresponds to a dimensional calculated criticalvelocity of -46.5 m/s. The PS-

2 inner subcore plates at the design velocity of 27.4 m/swould then be operating at -59% of

their calculated maximum stable velocity, which is just beyond the target design margin of

0.8/1.5. As the friction number goes to zero, the present involute calculations differ (by

< 10%) from the frictionless calculated results of C_nvaltneyand Luttrell. s This difference is

believed to be due to the difference in fluid boundary conditions used. It is not known at this

time why the involute curve of Fig. 2 is smooth whereas the flat plate curve comprises several

distinct segments.

As sun from Eq. (31), the curvature of a mathematically perfect involute has a

singularity at the origin of the involute. Of course, real formed plat_'; cannot have an infinite

curvature at the origin, and the actual target shape for the forming process differs slightly

near the origin from the mathematical involute. Although the singularity is a mathematical

fiction, the question still arises as to whether slight deviations from the singularity have a large

effect on the stability of real plates and also whether such slight deviations have a large effect

on this and other computational algorithms. Luttrelit? has studied the effect of a small

change in the shape of the plates near the origin of the involute using the ADINA Is finite-

element program and has concluded that there was little effect on the predictions of the

Gwaltney-LuttreU s stability algorithm. In the present work, the quadratures involving the

curvature function have been performed using Gauss-Legendre integration. This method uses

nodes that exclude the origin and is exact for certain interpolation polynominals. The

interpolation polynominals are never singular. Thus, the results of this work might be
i

interpreted as applying to plates with a nonsingular polynominal curvature shape that
8
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. approximates the involute shape to a varying degree depending on the number of nodes

chosen. The sensitivity of the present method has been studied by repeating the calculations
¢

using differing numbers of Gaussian nodes (which approach the origin by differing distances).
I

No unusual sensitivity of the calculated critical stability number to changes in the number of

the Gaussian nodes or in their proximity to the origin was noted,

Most of the calculations of the present work were performed using a six-term

expansion, Eq. (53), for each unknown function. A few exploratory calculations were also

made with fewer terms. These indicate that four terms are usually adequate. Four terms are

needed to approximate the rather complicated deflection shape taken by the involute under

load. The hydraulic equatiom are believed to require only one term. Numerical experiments

on fiat plates show that only one term is needed for the geometry for both the plate equation

and the hydraulic equation. It is likely that if the first term of the involute plate deflection

equation were specifically chosen to represent the deflection shape of the involute under

uniform pressure load, then a one-term series for both the plate and hydraulic equations

would be adequate for the involute geometry, too. A great savings in computing time and

in storage requirements over the present work would then result.
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. 6. SUMMARY

, A technique has been developed for analyzing the hydraulic instability of :MqS fuel

plates of involute shape. Fluid friction is included in the analysis. Fluid and plate entrance

and exit and side-boundary conditions are applied, and normal vibrational modes of the fluid-

plate system are calculated. As the fluid velocity is increased, in most cases _he first

vibrational mode becomes unstable only after its frequency drops to zero as c_Leussed by

Mil!er,s so the instability takes the form of a monotonic collapse rather than a flutter of

growing amplitude. There is some indirect evidence, however, that unstable flutter might

occur first for very short plates (length less than span).

Under A.NS flow conditions, fluid friction increases the calculated critical velocity by

-17%. The effect of fluid friction is calculated to be much greater on a percentage basis for

flat plates.
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