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NOMENCLATURE

Lower-case Roman letters

a

b

€08,

8 Em

)

Vy, ¥y

Ve V4

AY

inner radius of the involute (see Fig. 1)

outer radius of the involute (see Fig. 1)

unit coordinate vectors directed along the a-axis, the z-axis, and
normal to the midsurface, respectively

Fanning friction factor

weighting functions used for the orthogonality method of solution of
the differential equations

fluid chanuel thickness

unperturbed channel thickness

plate thickness

local involute curvature =

~ | =

plate length

pressure in fluid acting on plate
local involute radius of curvature
time

plate deflection components in the directions tangential to the plate
midsurface

fluid velocity components

fluid velocities upstream (u) and downstream (d) of a sudden
expansion in channel cross section

Miller’s critical velocity [see Eq. (21)]
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w

Z

plate deflection normal to the plate midsurface

axial coordinate measured downstream from the channel entrance

Upper-case Roman Letters

(4]

[B]

[c]

t R ©Q ™

M, M, M;, = M,,

Ny Ny N = Ny
Q>

matrix of coefficients in the system of boundary condition equations

[see Eq. (67)]

matrix of coefficients in the system of boundary condition equations
[see Eq. (67)]

matrix developed from [4] and [B]; [C] = [B]” [A]
plate bending stiffness [Egs. (7)=(9)]

nondimensional fluid friction number = 2}%

integral coefficient [see Eq. (63))

plate-stretching stiffness [see Egs. (4)~(6)]
nondimensional plate damping coefficient [sce Eq. (30)]
plate bending and twisting moments

nondimensional density parameter [see Eq. (28)]

plate tensile and shear forces

plate shear force directed normal to midsurface

plate aspect ratio = E;
stability number; nondimensional unperturbed fluid velocity

nondimensional ratioc of plate stretching to bending stiffness =

{«)’k/D
plate deflection expansion coefficients [see Eq. (53)]



Greek letters

a
@
B
Br B2

12

€0, €0
1 2

Ky

I

Additional symbols

’

involute arc length running coordinate

total arc length of involute
axial wave number of perturbation [see Eq. (56)]

plate midsurface rotations

plate midsurface shear strain

plate midsurface axial strains

eigenvalue of Eq. (68) = if

plate midsurface bending curvatures due to perturbation
plate damping coefficient [see Eqs. (1) - (3)]

plate Poisson’s ratio

fluid density

plate density

plate midsurface twist due to perturbation

eigenvector of Eq. (67)

expansion function for the plate normal deflection

angular frequency of perturbation {see Eq. (56)]

the prime is used with variables to indicate that they have been
nondimensionalized

the tilde is used over the symbol for a variable to identify coefficients
of ei® - *!") [see Eq. (56)]

ix



o

ACKNOWLEDGEMENTS

The author wishes to thank G. T. Yahr for his support of this work, C. R. Luttrell and
R. C. Gwaltney for discussions of their earlier work in the same area, and W. F. Swinson for
discussion: of related experimental work. W. F. Swinson also performed a quality assurance
review of the equation development, and C. R. Luttrell performed a quality assurance review
of the computer program developed to carry out the calculations. W. R. Gambill, W. F.

Swinson, and C. D. West reviewed this report.



I P 81w w

ANALYSIS OF HYDRAULIC INSTABILITY OF ANS INVOLUTE FUEL PLATES

W. K. Sartory

ABSTRACT

Curved shell equations for the involute Advanced Neutron Source
(ANS) fuel plates are coupled 1o two-dimensional hydraulic channel flow
equations that include fluid friction. A complete set of fluid and plate
boundary conditions is applied at the entrance and exit and along the sides of
the plate and the channel. The coupled system is lincarized and solved to
assess the hydraulic instability of the plates.

1. INTRODUCTION

The Advanced Neutron Source! (ANS) is a highly enriched uranium fission reactor
presently under design at the Oak Ridge National Laboratory to produce neutrons for
research use. One primary objective is to achieve a high neutron flux. To meet this
objective, a small reactor core with a high fission heating density is required, which leads the
designers to seek high coolant velocities to remove the heat.

Since the work of Stromquist and Sisman in 19482 it has been known that very high
fiow velocities past fuel plates can cause the plates to deform, buckle, and collapse. Excessive
fuel plate deformation can impede coolant flow and heat removal and thus must be avoided
in the reactor design.

An interesting explanation of the flow-induced buckling was proposed by Miller.®
Miller coupled a plate deformation equation with Bernoulli’s equation for the fluid. He

argued that if a small perturbation (due to an initial plate imperfection or to any other
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source) caused two adjacent plates to move closer together at some location, then the fluid
velocity between them at that location would be increased. According to Bernoulli's equation,
the fluid pressure between the plates would then drop, tending to force the plates even closer
together. At a certain critical velocity, the fluid forces tending toward plate collapse would
exceed the elastic forces tending to hold the plates in their design configuration, and the
plates would buckle.

Miller studied both flat and uniformly curved cylindrical plates” with different
boundary conditions along their supported edges. Patterned after the successful High Flux
Isotope Reactor (HFIR),* the ANS will use fuel plates with an involute shape (see Fig. 1).
Gwaltney and Luttrell® therefore extended Miller’s theory to involute plates by coupling
elastic finite-element models of the plates with Bernoulli’s equation for the fluid. They found
that the involute plates were much more stable than flat plates of the same span, because of
the stiffening effect of their curvature, but noi as stable as cylindrical plates with the same
average curvature.

At the time of Mille-’s original work, it was immmediately suspected that Bernoulli’s
equation might limit the accuracy of the stability predictions because it ignores fluid friction.
Thus, Johansson® modified the fluid equation of the Miller model to include friction and
found some effect on stability. Later analytical work by Scavuzzo’ and by Smissaert® also

included the effect of fluid friction on the Miller-type instability of flat plates.

“There is a contlict in terminology here. In solid mechanics, a plate is understood to be
flat, and a curved plate is called a shell. In nuclear design practice, the term fuel plate is used
regardless of curvature. In the present report, the curved involute fuel plates of the ANS and
similar curved fuel plates of other reactors will be referred to either as plates or shells.

2
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Fig. 1. Schematic representation of typical involute fuel plate. There is an array of
several hundred involute plates in each of two assemblies in the PS-2 core. The side plate
radii, @ and b, are referred to in this report as the inner and outer radii of the involute,
respectively. The inset shows the direction of the o axis, which is taken to be the first
coordinate axis. The corresponding coordinate direction is shown by the unit vector ;. The
second coordinate z and the second coordinate vector run into the page. The third
coordinate direction is shown by the unit normal vector &, in the inset. The curvature is
positive when ¢, points in the convex direction. A positive pressure loading p and a positive
bending moment M, are also shown in the inset.
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In &h: pfescn't analyses of Miller instability in ihe ANS, a linearized involute shell
model of the fuel plates is oﬁuél»ed with & lim:ariwdy hydraulic equation incorporating fluid
friction to assess the allowable coolant fow velocity. Other changes compared with previous
work include 2 fully two«dinﬁcmimna‘i (2-D) hydraulic model and the iucéxporation of both
inlet nnd.oudm fluid and ‘:platc boundary conditions. - Inertial and damping terms (time
dcrivutﬁm)‘ are abso ‘ingluded in the fluid nﬁd plate cquations, aithough computer cost

limitations prevent the full utilization of the inertial terni. Incorporation of inertial terms

and complete inlet and outlet boundary conditions allows the calculation of the normal modes

of vibration of the coupled fluid-plate system under fow conditions. These vibrational modes
and their associated frequencies and damping coeflicients are of interest in the ANS design

in their own right, in addition to their involvement in the Miller instability phenomenon,

Sy



2. EQUATIONS OF MOTION

Linearized shell equations using the approximations presented by Kraus® were used
in the present work. After simpliﬁcaﬁon to account for the fact that the involute fuel plates

are curved only in one direction, these equations result:

a [6M1 . aMlz] .0 [aMu . aM'4}_ ﬁ,l -
) r

e | Oe & & | oa &
_(_ g, P (1)
lp 3 Py -&y ’

Pa & rl|oa &
-[-A.‘?fl -ph f’ﬁ] @
a f az

2
Ef_n-c’:a’_ﬁs— -).E‘_z—phf:‘f <)

Oa @& o PP a2
N =K (‘10 + vez”) , (4)
N, =K (c.zo + vel°) , (5
, il ©)
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e = ili.z (11)
e
du, du, (12)
Lot i P
X, = _aﬁ , (13)
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The variable e is the arc length coordinate mearured around the midsurface of the
involute plate starting at the inner radius of the involute (see Fig. 1); z is the axial coordinate
starting at the inlet; ¢ is time; M,, M,, and M,, = M,, are plate bending and twisting moments;
N,, N, and N, = N, are the tensile and shear forces; r (a function of a) is the unperturbed
radius of curvature of the midsurface of the involute; p is the fluid pressure on the plate; w,
u,, and u, are the plate 2eflections; A is a plate-damping coefficient; p, is the plate density;
h, is the plate thickness; K is a plate-stretching stiffness; D is a plate-bending stiffness; » is
Poisson’s ratio; ¢,°, &,°, and v,,° are plate midsurface strains; 8, and 8, are plate midsurface
rotations; and «,, 5, and 7 are plate midsurface curvatures and twist in addition to the initial
involute curvature. (At this stage in the equation development, there is just one fluid channel
on one side of a single plate. Adjustments will be made later for the more interesting
geometry of multiple plates with fluid channels on both sides of every plate.)

The 2-D nonlinear hydraulic equations (treating the channel as flat) are:

i W JP (18)
ot dor & ’
dphv, dphv  dphvyv. 8 N 2
all . aal . azlzs_h{&_fp(vl *VZ)lnvl' (19)
dphv, Ophvyv, Ophvy 8 1”2 .
ot -+ aml -+ Z 35 - fofw’ + "22) Vo (20)
7



where p is the (constant) fluid density, h is the channel gap size, v, 'and v, are the fluid
velocity components in the « and z directions, and f is the Fanning friction factor.

We now manipulate the equations in several ways. We eliminate many of the
unknowns from the shell equations in favor of the three deflections. We linearize the
hydraulic equations by perturbing about steady, uniform axial flow. We also
nondimensionalize all of the equations. A natural choice of a velocity for
nondimensionalization is the unperturbed axial fluid velocity, but we chose instead the Miller
velocity:

12
180Dh

(21)
@'

where h is the unperturbed channel thickness and « is the total arc length of the involute.
The Miller velocity is the critical velocity that would be calculated by Miller’s theory for a flat
plate with the same arc length as the involute plate. A system of six coupled partial

differential equations iesults:

W e, . .
T W RS2 Lo sR™ om0, (22)
e L Xz FTE
vy’ ,’ 1 .9p° 1
RS_2. 2 = - SRFv,” - = RZ_ - 2 2°°Fw" , (23)
7 * N5 V2 T3l T3 W
r 3
' av.' ’ 24
R LN o Lsppy 1O @9
@ L 3 7 3
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The variables v, and v, are the fluid velocity p2rturbations nondimensionalized with
vy, ¢ = &/& z° =2z/t, t is the total length of the chanpel, R = a/t, 2° is a factor of 2

introduced inio Egs. (22) and (23) to account for the change from a single plate to an array
of plates in which adjacent plates deflect in opposite directions so that the perturbation in
channel thickness is twice the plate deilection, 2* is a factor of 2 introduced into Eq. (25) to
account for the fact that a fluid channel with a pressure perturbation is present on both sides

of the plate, S is the unperturbed fluid velocity divided by v,, and will be called the stability

number, w “ is the plate normal deflection divided by &, p’ is the fluid pressure perturbz tion

divided by % vy2, k° = ar is the involute nondimensionalized unperturbed curvature, 4,

and u,” are the plate tangential deflections divided by h, 7' = (@)°K/D, F = 2f ¢/ is the fluid

friction number,

12
Ne [J_.] L 28)
180p,) F
= d
1/2
o [%&’ ] | (29)
L- @ (30)
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‘The nondimensional curvature function can be shown 1o be
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where a is the inner radius of the involute and b is the outer radius (see Fig. 1).

Along the built-in sides of the plate, the boundary conditions are

w'=:__=ul'=u2'm0’ (32)

and along the sides of the channel

v’ =0, (33)

at o’ = 0and 1.

Along the leading and trailing edges of the plate, there are assumed to be no
concentrated forces or moments. There appears to be five edge forces and moments that can

be set to zero at such an edge:

N, =0, (34)
N, =0, (35)
11
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(36)

M, =0,
My =0, (37)
0,=0, (38)

where Q, is the shearing force per unit length of edge directed normal to the midsurface of

the shell. It is known,” however, that only four independent conditions can be set.

N, =0, (39
Mo+ 220, (40)
aM, (41)
=0,
Qz Y da
M, =0. 42)

The shear force Q, may be eliminated using the equilibrium equation’

aA{2l aMZ (43)
Ot m
12
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to give

2 M M | (44)
Oa oz

in place of Eq. (41). Eliminating the unknowns from the boundary conditions in favor of the

displacements and nondimensionalizing,

ou,’ ou,’
vk'w’ + R=2 + v—L =0, (45)
0z oa’ ‘
r azw’ auz’ aul,
k' (2-2 e + T -1 R(v - 1)ee——
a r
s kR - Dl w0, (46)
oz’
» » cout o
~RI¥ v W LT e h Lo, (47)
oz"3 da’%z’ Oa’ 09z’ da’dz’
2,7 ’ au 4 ’
R O g Bk, (48)
az’? da’? da’ da’

atz” = 0 and 1. At the channel entrance (z° = 0), the rressure perturbation is related to

the velocity perturbation,

P +2L+C)Sv, =0, (49)

13



where C, is an entrance contraction loss coefficient that we shall take as 0.04° for rounded
plate leading edges with a radius of 4,/2.
We assume that the inlet flow is guided straight into the channel by ducting or vanes,

SO

v':o (50)

at the entrance (z* = 0). The channel exit condition requires further discussion.
At a sudden expansion in channel cross section, the Borda-Carnot equation'? is usually

recommended without any correction:

51
static pressure rise = %p(vf - V) - %p(v_ - (51)

wherz v, is the upstream velocity and v, is ‘tbe downstream velocity. Associated with this
equation, however, is a standard derivation.’® A fundamental assumption of the derivation
is that at a channel section located an infinitesimal distance downstream of the expansion, the
fluid pressure is uniform across the section, and that the fluid pressure in the upstream
channel drops (due to fluid friction) smoothly to the section pressure at the expansion
section. This assumption allows the Borda-Camot equation to be obtained by momentum
balance. Borda’s assumption is also the basis of the theory of jet pumps and ejectors in which

two fluid streams traveling at different velocities are introduced into a common channel. In

*For turbulent flow, Vennard" recommends C, = 0.04 when the entrance is rounded with
a radius of curvature 20.15 of the channel equivalent diam. However, Hobbs'? recommends
C. = 0 when the entrance radius is 20.13 of the channel equivalent diam. The ANS is
expected to use a plate-leading edge radius equal to 0.25 channel equivalent diameters
(0.5 hy).

14
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the present work, we apply the fundamental Borda assumption of uniform pressure to two
adjacent upstream channels of the involute exit. Then the pressure in each of the upstream:
channels extrapolates smoothly to the same common pressure at the expansion. Because the
pressure perturbation is assumed to have opposite signs in adjacent channels,

p =0, (52)
at the exit (z° = 1). |

Because the upstrcam contraction loss coefficient value of 0.04 does not seem very
definitely established in the literature ™2 and because no other authors have used Borda's
assumption in the abr ¢ way to get the downstream boundary condition, it seems worth
noting here that numerical experiments performed during the present work. indicate that for
the involute plate studied, a change from the present boundary conditions to the lossless
Bernoulli’s equation at the entrance and exit causes at most roughly a 10% change in the
calculated stability number.

If all solutions of the boundary value problem Eqgs. (22)-(27), (32)-(50), and (52)
decay in time, then the plate is stable. If any solution grows in time, then the plate is
unstable. The calculated critical value of the stability number is the value on the boundary
between stable and unstable regimes. The calculated critical stability number is generally a
function of the other nondimensional parameters: R,F,T,N,L, and the radius ratio of the

involute that determines the curvature function &k *(e°).

15
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3. SOLUTION ALGORITHM
The coefficients of the linear partial differential Eqs. (22)-(27) and (32)-(52) are
independent of ¢’ and z° but depend on &’ through the curvature function k’. In the
present work, we use the orthogonality method' to treat the a’-dependence. Each of the

unknown functions is expanded in a series of coordinate functions of «”; for example,

w’(t’,z’,u') = i wn (t',z')¢,,(a ') ’ (53)

nel

where each coordinate function, ®,(a"), satisfies all required side boundary conditions on w”,

and similarly for the other five unknowns. The use of a six-term series is, of course,
somewbat arbitrary. Other numbers of terms were also tried, as will be discussed later. After
substitvting all such expansions into the differential equations, each differential equation is
multiplied by a sequence of weighting functions of «’g,(«’) and integrated with respect to
«’ from 0 to 1. This procedure leads to a system of partial differentiai equations with
constant coefficients in the independent variables ¢* and z* in which &” is eliminated as an
independent variable.

In the present work, polynominals were used both for the expansion functions and for
the weight functions. For example, the first expansion function for w’ was the same function

used by Miller for flat plates:

(e’ ) =a?1-a" ). (54

17
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The higher expansion functions were higher degree polynominals of the same general form.
The weight functions used to weight the shell deflection [Eq. (25)] were taken to be the same

as the expansion functions for w

g, (2") = &, (a"), m = 1 thru 6. (55)
Similar expansion and weight functions (satisfying differcnt boundary conditions) were used

for the other variables and equations.

We then seck solutions of Egs. (22) - (27) in the form

W, (t2") = wet-ur) (56)

and similarly‘for the other unknowns. The result of the substitution is a system of linear

algebraic equations for the unknowns W, etc.:

G(1,1,1,0)%, + RG(1,2,0,0)ip?, - 2'SRG(1,4,0,0)ipw
- 2’'RNG(1,4,00) (~i0)® =0 , (57)

RSG (2,2,0,0)i9, + RNG(2,2,0,0) (-iw)?,
= - SRFG(2,2,0,0)%, - %RG(Z,‘S,0,0)ipp - % 2'S’RFG(2,4,0,0)% , (58)
SRG(3,1,0,0)i89, + RNG(3,1,0,0)(-iw)¥,

18
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.- % SRFG(3 1,00)0, - % G(33.10) , G}

G(4,50,54, - TG(4,4,0.2% - vRTG(4.6,0,1)iZ,
- TG(4,51,1M, + R*G(45.1,1)(-p3), + G(4,53,1),
+ R'G(4,503)(-BW, - 2RG(4,4,2,0)(-p*W - R'G(4,4,0,0)p4%
+ 3G(4,5,1,4), + 3G(4,5230, - G(4,4,40W
=90 x 2"¢(4‘,3,0,0)p + TG(4,4,00)(~ie) + G(4,4,0,0)(iw)™ , (60)
G(550,7, + TG(54,03p + TG(S4,1,1

- R’G(54,1,1)(ip)» + 2G(55,1,6\, - G(54,3,1

. vRT%G(S,ﬁ,l,O)iWZ R%T%G(S,S,0,0)(ip)’a,

. R‘T%G(S.é,l,())ipaz + TG(5,5.2.00,

19
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- sz.;:G(S,S,O,Z)(iB)zdl . 1@2%6(5,5,2,0)111

«G(5,52.20, + 1;'2:r.éc;(5,5,o,o)(ip)%z1
= LG(5,500)(~-w), + G(550,0)(w)41, , (61)
vRTG(6,4,0,1)ipw + vRT%G(6,5,1,0)ipd1

- v:r%c;(s,e,z,o)a2 . RT%G(6,S,1,0)iﬂa',

. 132.0(6,6,2,0).:2 + R*TG(6,6,0,0)(iB)d,

= LG(6,6,0,0)(-iw), + G(6,6,00)(iw)4, . (62)

The G's are quadratures involving the expansion functions or \heir derivatives, the
weighting functions, and the curvature function in various forms.

The first argument of G is the equation index that runs from 1 to 6, referring to

Egs. (57-62), respectively.

20
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The second argument of G is the unknown index that also runs from 1 to 6. For

purposes of the second argument of G, the unknowns are arranged in the order:
Oy Oy B, W, I, i, .

The third argument of G is a derivative order index on the expansion function that
runs from O to 4.
The fourth argument of G refers to the way in which the curvature function appears

in the quadrature. It runs from 0 to 7 and is defined as follows.

Fourth argument Curvature function
0 1.0
1 k’
2 k?
3 dk’
da’
4 d*’
da”
5 %k
da?
6 Pl
da’
7 g dk
da”?
21
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As an example,

GELLY) = [ gatk(a’) f‘%(u.“i‘,_) da’ . (63)

The G’s were evaluated numerically by Gaussian quadrature.

In addition to the four explicit indices expressed as arguments of G, there are also two
implied indices [the expansion index n from Eq. (53) and the weight index m on g] that are
suppressed in the equations to reduce the clutter. The expansion index » also appears on
each of the unknowns [as in Eq. (53)]. The summation convention is understood to apply to
n and the range convention is understood to apply to m. If n and m run from 1 to 6 (the
usual choice for most of the numerical work in this report), then there are six times as many
unknowns and six times as many equations as appear explicitly in Eqgs. (57)-(62).

The parameter § (the axial wave number of the perturbation) a)pears in Egs.
(57)-(62) with powers from 0 to 4. We now restrict its appearance to the powers 0 and 1

by introducing additional unknowns. For example, we define

W, = ipw (64)
W, = ipW, , (65)
W, = ifW, , (66)

and similarly we define one subsidiary variable associated with each of 4, and &, by
introducing another index to eliminate powers of . This substitution leads to five additional

unknowns. To obtain five additional equations, we supplement the system Eqgs. (57)-(62) by
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Eqgs. (64)-(66) and by the similar equations associated with &, and 4,. The system then
contains (explicitly) 11 unknowns and 11 equations. Taking into account the suppressed
indices, it contains 66 unknowns and 66 equations. After the appearance of f has been
restricted to powers 0 and 1, we move all terms involving g° to the left-hand side and all
terms involving g to the right-hand side. That leads to an eigenvalue problem of the form

[4)x = {[B]x, (67)
where [A4] and [B] are square, complex, non-Hermitian matrices, ¢ = if is the complex
eigenvalue, and x is a column vector of the unknowns of Egs. (57)-(62) supplemented by the
new unknowns introduced to eliminate high powers of . If n and m run from 1 to 6, then
[A] and [B] are 66 x 66 matrices. Multiplying Eq. (67) from the left by the inverse of [B], we

obtain the standard form
[Clx ={x. (68)

The eigenvalue problem Eq. (68) was solved in the present work with the standard

EISPACK! subroutine named CG".

"Although CG is an implementation of an old and highly respected algorithm, problems
were nevertheless occasionally encountered with it in the present work. These problems
always were associated with multiple eigenvalues. If a matrix possesses a complete set of
eigenvectors associated with a set of multiple eigenvalues, it is possible to define the
eigenvectors so that they are mutuaily orthogonal. However, CG does not do this.
Occasionally, the eigenvectors returned by CG for multiple eigenvalues were so far from
orthogonality that, from a numerical point of view, they were not linearly independent. It was
first believed that this result might indicate that the matrix [C] was deficient (lacked a
complete set of eigenvectors). However, the CG algorithm was then modified for multiple
eigenvalues to use repeated inverse iteration followed by Gram-Schmidt orthogonalization to
recalculate the eigenvectors. The vectors generated in this way were tested by direct
substitution into Eq. (68) and were found to be genuine eigenvectors and also to be
orthogonal and therefore linearly independent. It is concluded that CG, although old, is still
unnecessarily unreliable in the special case of multiple eigenvalues.
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The solutions (usually 66) of the special form of Eq. (56) obtained from the solution
of the eigenvalue problem must be superimposed to satisfy the upstream and downstream
edge-boundary conditions. The boundary conditions cannot be satisfied exactly by the present
approximate solution and are instead satisfied approximately in the sense of the orthogonality
method, just as the differential equations are satisfied in the orthogonality sense. For each
of the 11 boundary conditions, we form a series solution with unknown coefficients. Then
we multiply each boundary condition by one of six weighting functions and integrate with
respect to a” from 0 to 1 to obtain a set of 66 homogeneous, linear algebraic equations for
the coefficients. For a solution to exist, the determinant of the equation; must be (complex)
zero. If a value of the complex frequency w is found for which the complex determinant is
zero, then w gives the frequency and decay rate of a normal vibrational mode, and the
corresponding coefficients give the mode shape. Muller’'s method!® has been used to calculate
the complex frequencies.

The most reliable method of approaching coupled fluid-solid stability problems® seems
to be to choose a number of normal vibrational modes (those of lowest real frequency) and
to follow their complex frequencies from a fluid velocity of zero where stability is assumed
to every-increasing fluid velocities until the fi... ¢t mode becomes unstable (the first root crosses
from the negative imaginary half plane to the positive imaginary half plane or the
corresponding decay rate changes from positive to negative). Even if such an approach is
followed, it cannot be proven on the basis of numerical calculations that some mode higher
than those studied does not become unstable first. In the present work, a large number of
nitodes were followed during a preliminary phase of the investigation that was confined to flat

fuel plates. It was {ound that the instability corresponded to monotonic collapse (divergence)
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of the plate rather than to unstablg flutter; that is, the complex frequency crossed from the
negative to the positive imaginary half plane by passing through the origin.

In the later stages of this work that were devoted to involute plates, the
computational cost of following a large number of normal modes from zero coolant velocity
to the point of instability seemed prohibitive. Therefore, it was assumed that instability of
involute plates also occurred by monotonic collapse (consistent with the theory of Miller and
the work of all previous investigators of hydraulic instability). The complex frequency was set
to (complet) zero, and the stavility number (the nondimensional coolant velocity) was
incremented gradually from a small value until the determinant (which was rez! to numerical
precision) changed sign. The critical value of the stability number was then taken to lay in

the interval that contained the si;n change.
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4. NUMERICAL RESULTS

The computational method described has been applied to the ANS core designs and

to other experiinental geometries.

The ANS core design is still evolving. In January 1989, a tentative two-part core

design, P8-2, was developead that used two sets of involute plates with different radii. The

inner subcore haa these nominal dimensions and properties:

inner involute radius
outer involute radius
involute arc length
plate leng.h

plate thickness

plate density

coolant gap thickness
coolant density
coolant viscosity

plate elastic
modulus

Poisson’s ratio
coolant velocity

A

il

102 mm

168 mm

87.35 mm

494 mm

1.27 mm

3390 kg/m® (with estimated fuel)
1.27 mm

1096.65 kg/m®

6.51 x 107 Pa « s

6.89 x 10" Pa

0.33
51.4 m/s’
01'

*The design coolant velocity for PS-2 was 27.4 m/s. Wiin the design margin of 0.8/1.5
included, the plates must be stable up to 51.4 m/s.

TThe amount of plate solid damping is not known at this time, but overall damping is
believed to be dominated by flaid dissipation.
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The following nondimensional parameters are then obtained:

F =298
R = 0177
T = 56,767
N = 16.49
b e
L=90

Some results of stability calculations are represented in Fig. 2 as a plot of thc
calculated stability number vs the fluid friction number F. Recall that the stability number
is the ratio of the critical fluid velocity to the critical velocity that would be calculated by
Miller’s equation for a flat channel of the same arc length. In addition to the PS-2 inner core
results, the stability number for flat fuel plates (b/a = 1.0) with the same arc length and the

same other nondimensional parameters as the PS-2 design is also shown for comparison.
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Fig. 2. Effect of fluid friction on hydraulic instability of fuel plates of ANS PS-2
geometry.
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5. DISCUSSION OF RESULTS

The lower curve of Fig. 2 for flat plates shows that, as the fluid friction is reduced to
zero, the critical stability number calculated by the present algorithm goes essentially to 1.0
in agreement with the frictionless theqry of Millér.’ As the fluid friction number is increased,
the calculated stability number increases. ':I'he increase is significant and exceeds a factor of
2 at a friction number of 5 or 6. The theory of Johannson,® which included fluid friction,
also predicts some effect on calculated stability; however, the effect predicted by Johannson
depends on assumptions that must be made about the shape of the plate deflection
perturbation occurring. The present theory, which calculates and uses the shape of the most
unstable eigenfunction of the fluid-plate system, gives an unqualified prediction of the friction
effect.

The lower curve is not smooth but comprises a series of segments. These different
segments are believed to be associated with different axial modes of the marginally stable
disturbance. These mode shifts deserve turther study because such transitions are sometimes
associated with the appearance of thé oscillatory or flutter form of instability. The study of
oscillatory modes, however, is beyond the scope of the present work.

The upper curve of Fig. 2 applies to PS-2 inner core involute plates. At small values
of F, it is a factor of ~6 higher than the curve for flat plates because of the stiffgning effect
of the curvature (recall that the stability number of the present work is nondimensionalized
by dividing the critical velocity by the flat plate Miller velocity).

The upper curve also shows an improvement in the calculated stability with increasing

fluid friction number; however, on a percentage basis, the friction effect is much less than
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with flat plates. At the PS-2 ﬁominal friction number of 2.98, the calculated stability number
is ~6.75, which corresponds to a dimensional calculated critical velocity of ~46.5 m/s. The PS-
2 inner subcore plates at the design velocity of 27.4 m/s would then be operating at ~59% of
‘their calculated maximum stable velocity, which is just beyond the target desfgn margin of
~ 0.8/1.5. As the friction number goes to zero, the present involute calculations differ (by
<10%) from the frictionless calculated results of Gwaltney and Luttrell.® This difference is
believed to be due to the difference in fluid boundary conditions used. It is not known at this
time why the involute curve of Fig. 2 is smooth whereas the flat plate curve comprises several
distinct segments.

As seen from Eq (31), the curvature of a mathematically perfect involute has a
singularity at the origin of the involute. Of course, real formed plate-, cannot have an infinite
curvature at the origin, and the actual target shape for the forming process differs slightly
near the origin from the mathematical involute. Although the singularity is a mathematical
fiction, the question still arises as to whether slight deviatioiis from the singularity have a large
effect on the stability of real plates and also whether such slight deviations have a large effect
on this and other computational algorithms. Luttrell’” has studied the effect of a small
change in the shape of the plates near the origin of the involute using the ADINA? finite-
element program and has concluded that there was little effect on the predictions of the
Gwaltney-Luttrell® stability algorithm. In the present work, the quadratures involving the
curvature function have been performed using Gauss-Legendre integration. This method uses
nodes that exclude the origin and is exact for certain interpolation polynominals. The
interpolation polynominals are never singular. Thus, the results of this work might be

interpreted as applying to ‘platm with a nonsingular polynominal curvature shape that
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approximates the involute shape to a varying degree depending on the number of nodes
chosen. The sensitivity of the present method has been studied by repeating the calculations
using differing numbers of Gaussian nodes (which approach the origin by differing distances).
No unusual sensitivity of the calculated critical stability number to changes in the number of
the Gaussian nodes or in their proximity to the origin was noted.

Most of the calculations of the present work were performed using a six-term
expansion, Eq. (53), for each unknown function. A few exploratory calculations were also
made with fewer terms. These indicate that four terms are usually adequate. Four terms are
needed to approximate the rather complicated deflection shape taken by the involute under
load. The hydraulic equations are believed to require only one term. Numerical experiments
on flat plates show that only one term is needed for the geometry for both the plate equation
and the hydraulic equation. It is likely that if the first term of the involute plate deflection
equation were specifically chosen to represent the deflection shape of the involute under
uniform pressure load, then a one-term series for both the plate and hydraulic equations
would be adequate for the involute geometry, too. A great savings in computing time and

in storage requirements over the present work would then result.
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6. SUMMARY

A technique has been developed for analyzing the hydraulic instability of ANS fuel
plates of involute shape. Fluid friction is included in the analysis. Fluid and plate entrance
and exit and side-boundary conditions are applied, and normal vibrational modes of the fluid-
plate system are calculated. As the fluid velocity is increased, in most cases the first
vibrational mode becomes unstable only after its frequency drops to zero as d’.cussed by
Miller,® so the instability takes the form of a monotonic collapse rather than a flutter of
growing amplitude. There is some indirect evidence, however, that unstable flutter might
occur first for very short plates (length less than span).

Under ANS flow conditions, fluid friction increases the calculated critical velocity by

~17%. The effect of fluid friction is calculated to be much greater on a percentage basis for

flat plates.
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