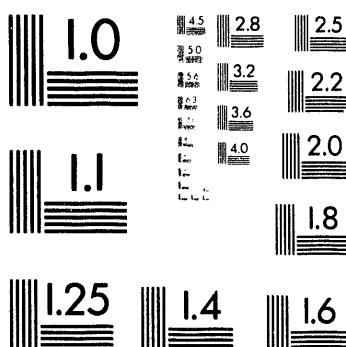


AIIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

(CLASSIFICATION)

DOCUMENT NO.

RL-NRD-1 2C

SERIES AND COPY NO.

DATE

November 30, 1964

GENERAL ELECTRIC

HANFORD ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON

REF ID: A6574
THIS DOCUMENT CONTAINS RESTRICTED DATA
DEFINED IN THE ATOMIC ENERGY ACT OF 1954.
ITS TRANSMISSION, THE EXPOSURE OF ITS
CONTENTS IN ANY MANNER, AND UNAUTHORIZED
PERSONNEL IS PROHIBITED.

TITLE

MONTHLY RECORD REPORT
RESEARCH AND ENGINEERING
N-REACTOR DEPARTMENT

OTHER OFFICIAL CLASSIFIED INFORMATION

THIS MATERIAL CONTAINS INFORMATION AFFECTING
THE NATIONAL DEFENSE OF THE UNITED STATES
WITHIN THE MEANING OF THE ESPIONAGE LAWS,
TITLE 18, U. S. C., SECS. 793 AND 794, THE TRANS-
MISSION OR REVELATION OF WHICH IN ANY MANNER
TO AN UNAUTHORIZED PERSON IS PROHIBITED BY
LAW.

AUTHOR

M. C. Leverett

CIRCULATING COPY
RECEIVED 300 AREA
DEC 11 1964
RETURN TO
TECHNICAL INFORMATION FILES

THIS DOCUMENT MUST BE LEFT UNOPENED OR WITH AN UNAUTHORIZED PERSON MAY HAVE ACCESS TO IT. WHEN NOT IN USE, IT MUST BE STORED IN AN UNLOCKED LOCKER OR REPOSITORY WHICH IS APPROVED GUARDIAN AREA. WHILE IT IS IN YOUR POSSESSION, IT MUST BE OBTAINED A SIGNED RECEIPT FROM AN APPROVED CLASSIFIED FILE. IT IS YOUR RESPONSIBILITY TO KEEP IT. ITS CONTENTS ARE WITHIN THE LIMITS OF THE PROJECT. IT IS PROHIBITED FROM ANY UNAUTHORIZED PERSON. ITS TRANSMITTAL TO, AND STORAGE AT YOUR PLACE OF RESIDENCE IS PROHIBITED. IT IS NOT TO BE DUPLICATED. IF ADDITIONAL COPIES ARE REQUIRED, OBTAIN THEM FROM THE REQUESTED ISSUING FILE. ALL PERSONS READING THIS DOCUMENT ARE REQUESTED TO SIGN IN THE SPACE PROVIDED BELOW.

DECLASSIFIED

54-3000-340 (3-57) ABC-35 RICHLAND, WASH.

MASTER

(CLASSIFICATION)

DISTRIBUTION OF THIS DOCUMENT IS UNLAWFUL

DECLASSIFIED

RL-NRD-1 2C

This document consists of
14 pages.

MONTHLY RECORD REPORT

RESEARCH AND ENGINEERING OPERATION

N-REACTOR DEPARTMENT

Classification Cancelled and Changed To

DECLASSIFIED

November 30, 1964

By Authority of C.G. PR-2
D.S. Dennis, 4-21-94

By Jessi Maley, 5-10-94
Verified By PK Schmitz, 5-11-94

M.C. Leverett

DISTRIBUTION

1. F.W. Albaugh	16. J.E. Minor
2. T.W. Ambrose	17. J.W. Nickolaus
3. J.J. Cadwell	18. R.E. Nightingale
4. D.L. Condotta	19. R.S. Paul
5. F.G. Dawson	20. J.W. Riches
6. R.L. Dickeman	21. R.J. Shields
7. R.L. Dillon	22. R.H. Shoemaker
8. G.C. Fullmer	23. R.E. Tomlinson
9. O.H. Greager	24. R.E. Trumble
10. G.A. Last	25. E.E. Voiland
11. D.W. Leiby	26. O.J. Wick
12. M.C. Leverett	27. W.K. Woods
13. C.G. Lewis	28. D.C. Worlton
14. Milton Lewis	29. 700 Files
15. J.S. McMahon	30. Record Center

DECLASSIFIED

DECLASSIFIED

RL-NRD-1 2C

PLANT STATUS

Power Ascension Program

AEC approval was received November 6 to proceed with the ascension to 100 per cent power with certain restrictions pertaining to:

- Duration of operation at intermediate plateaus
- Operation within Operating Safety Limits
- Reduction in the boiler firing rate
- Reports from planned scram tests
- Maintenance of 10 mk shutdown margin under any credible operating condition

These restrictions were incorporated into the power ascension plans and the reactor was started up on November 7.

The reactor continued in operation at 3600 megawatts until November 17 when a planned scram test from this power level was successfully executed. The reactor was started up again on November 21, reaching 3600 megawatts on November 22. Operation at this power level was in effect at the close of the report period.

A careful reassessment of the performance of the plant and its capacity for going to full power was made. This assessment showed that the plant has the capacity for going safely somewhat beyond the full power without exceeding any existing process standards.

Dump Condensers

Examination of the internals of number one dump condenser was completed. Close examination of the steel fingers and the girdle which have been provided to restrain oscillation of the dump condenser tubes shows no indication of fretting or chafing, nor any other adverse indications. The remedial measures taken have evidently been highly effective.

Valve Stems

Further consideration of the 17-4 PH valve stems in the cell isolation valves, of which two have failed, has led to the decision to replace all 17-4 PH valve stems with Inconel-X valve stems. The replacement will be made as necessary over the next several months.

DECLASSIFIED

RL-NRD-1 2C

Physics Status

Equilibrium Conditions (November 23, 1964):

Reactor Power Level	3600 MW
Reactivity in Rods	7 mk*
Flattening Efficiency	83 %
Axial power distribution	Peak-to-average ratio is equal to or lower than a cosine distribution. This was lowered from a ratio about 20% higher than a cosine by a rod pattern change on November 21.
Horizontal Rod System Worth	67 ± 4 mk
Spike column loading	144 columns (no change)
Reactivity contribution of spike enrichment	6 mk

* The reactor is being operated with the inlet temperature approximately 15 F lower than the design value. This results in approximately 1 mk more reactivity than expected.

The power ascension sequence is being controlled to provide minimum shutdown margins of 10 mk or greater as required by Commission directive.

TECHNICAL ACTIVITIES

Nuclear Health and Safety

All documentation has been prepared in support of the power ascension program and the loading of 1.25 per cent enriched coproducer production test. Presentations were made before the subcommittee and full committee of the ACRS on November 6 and 12, respectively, to describe production test criteria and the 1.25 per cent coproducer test plans.

Coprodust Program

Physical Components Test Reactor Program: The PCTR experiments are proceeding on schedule and initial test data was received late in the month. Spline measurements, k_{∞} and dry lattice experiments were completed for the 1.25 per cent U₂₃₅ enriched fuel elements.

DECLASSIFIED

RL-NRD-1 2C

Physics Design - 1.95 Per Cent Coproduct Test: Several alternate physics designs are being studied for this test loading. The use of an unshielded 21-tube coproduct block in the reactor would cause a flux depression in the base load. At the same time the outer edges of the block would have an excessively high power-density. One means of balancing the load would involve the introduction of a buffer layer of 24 natural uranium channels around the coproduct block. Another alternate involves the addition of a second ring of natural uranium to completely suppress power peaking. Other expedients, such as the loading of lithium in the coproduct block, are also being studied.

Critical Mass Evaluations - 1.25 Per cent Enriched Uranium: The exponential experiments on 1.25 per cent fuel are nearing completion. Three experimental points have been obtained for both the cutters alone and the spike assemblies. These points correspond to lattice spacings of 2.81, 3.1 and 3.4 inches. It appears that all three lattices are overmoderated and it has been decided to perform the experiment on the cutters for a close pack geometry. This experiment is scheduled for completion by December 1.

Fuels Fabrication: Fifteen tons of billets containing 1.95 per cent U²³⁵ have been received. Extrusions are underway and will be complete by December 3. The extruded uranium will be used to fabricate fuel elements for exponential experiments, critical mass experiments and for production test loadings. The same fuel elements will be used sequentially for the multiple purposes noted.

Melt-Down Experiments: Seven melt-down experiments have been completed. These experiments showed that the target does not become fluidized and that the lithium is largely retained in the alloy -- even at the high temperature of 1100 C. The aluminum and zirconium apparently react exothermally to form a high melting solid phase. Reactions of this type could not be found in the technical literature. Experimental work and analysis of the data is continuing.

Simulated Driver-Target Test: An important element of the in-pile fuel testing program during the next year will be the Simulated Driver-Target Test (SDT). In this test various uranium alloys will be tested in the same configuration -- that of the coproduct driver. Difficulty was experienced in the coextrusion of the first non-heat treated SDT billets. Additional billets, both heat treated and not, are on order and two to four columns of SDT fuel elements will be ready for charging during December or early January.

Coproducer Hazards Studies: Fuel melting time calculations made earlier on the 1.25 per cent test fuel and the 1.95 per cent twenty pound per foot case indicated that lighter weight fuels would melt at earlier times on total loss of cooling. Subsequent computer runs made to define lower weight limits based on melting time criteria for use in parametric studies contradict the earlier calculations.

DECLASSIFIED

RL-NRD-1 2C

The principal factor contributing to the apparent anomaly is the effect of heat capacity of the target and the geometry of the assembly. For a given active zone pressure drop varying weight of the driver requires changing the size of the target to maintain approximately the same flow area in the inner annulus. Thus the lighter weight driver designs involve larger targets having greater heat capacities which increase nearly in direct proportion to the increase in volume. In addition, the increase in target diameter results in a decrease in annular gap (thus a decrease in conductive resistance) and an increase in radiation heat transfer area.

Re-Evaluation of Reject Fuel

As a first step in re-evaluating fuel elements rejected during fabrication, those with large clad thickness variation are being considered. The variations occur mainly as localized clad thickening. The areas with greater than the specified 12 mils variation are no greater than 2 square inches and the variation is gradual. No step transitions in thickness have been observed in the fuels being considered for reactor charging.

Acceptance of outer fuel tubes with inner clad thickness variation in the 12 to 21 mil range would effectively increase the first and second load fabrication yield by two to three per cent. It is estimated that FY-1965 savings of about \$110,000 would result.

Studies indicate that these fuel elements could be safely irradiated in the two upstream and two downstream positions of each fuel column in the reactor. Thermal gradients in fuels in these positions are less than one-half the maximum, and the uranium temperatures and exposures would be sufficiently low to avoid excessive swelling. Efforts in fabrication development to eliminate clad thickness variation as a reject category will continue unabated however. Evaluations are continuing.

Graphite Program

An \$84,000 increase in the cost of graphite irradiations will require compensating reductions in other R & D programs. The R & D program report to the AEC, which covers the first six months of the fiscal year, will reflect the projected changes which will be required during the balance of the fiscal year.

Tests were conducted by Equipment Development to determine the manner in which the keys on the tube blocks in the reactor might fail as a result of longitudinal contraction of the graphite bars. The test setup simulated in-reactor conditions using full-size tube and filler blocks. In the four tests performed, the keys failed in shear at a 45 degree angle about as predicted. In one test, the filler block failed first and the corresponding

DECLASSIFIED

██████████ RL-NRD-1 2C

tube block key failed by wedging rather than shear. In each test considerable separation of the tube block was observed. Although not conclusive, these test results tend to confirm the theory that the reactor stack would rise rather than fall as a result of individual bar contraction.

Graphite Cooling System Water Quality

During the October outage the graphite cooling system was modified to permit the addition of deoxygenated makeup water to the top of the surge tank to prevent the accumulation of explosive concentrations of hydrogen and oxygen in the gas space at the top of the tank. The surge tank gas will be sampled during the next shutdown to determine the effectiveness of this modification.

Production test NR-30, Evaluation of Ammonia for Controlling Oxygen in the Graphite Cooling System was approved November 9. This test authorizes addition of ammonia to the graphite cooling system in order to determine its ability to remove radiologically generated oxygen. This step is being taken as a possible means for improved corrosion control.

Primary Coolant System Crud Measurement

The four crud monitor thermocouple trains authorized by PT-NR-14 were charged in the reactor October 16 to provide warning of catastrophic crudding that could damage the fuel load. The monitor trains have been performing without difficulty since reactor startup on October 24.

Irradiated Fuel Storage Criticality

Variations of the three basic storage modules were examined during the past month. The variations resulted primarily from desires to increase handling efficiency, or from the realization that CPD may not be able to dump 26 inch fuel into the dissolvers. In general the new variations increased handling efficiency but reduced fuel storage density when compared with the canister stacking method reported last month. It is believed that this work is now complete.

Fuel Element Enrichment Analyzer

A test has demonstrated the ability to differentiate between enrichments of N type fuel elements. This method measures the .184 mev gamma activity by analyzing each element for 15 seconds. The elements can be analyzed as they are loaded into each fuel magazine to insure proper enrichment loading, thereby enhancing nuclear safety. Cost of installation and fabrication would by \$10,000.

DECLASSIFIED

RL-NRD-1 2C

Control Rod Enhancement

Increases in the reactivity worth of the present NPR control system, through the use of B¹⁰ in place of Boron in B₄C may be impractical. AEC-Oak Ridge prices are \$3.00 per gram for B¹⁰ and will not be supplied in quantities in excess of one hundred pounds. N-Reactor control rods contain approximately 3000 pounds of B₄C or approximately 2400 pounds of natural boron. Based upon these numbers the material costs of modifying the control rods to incorporate this material would be approximately 3.3 million dollars.

This high cost, coupled with inherent uncertainties in calculations of control rod worths, further supports the need for the control rod tests proposed for the PCTR.

This PCTR program will be started late in December and the use of other absorbers in place of B¹⁰ will be considered as a part of the program.

Reactor Power Level Capabilities

Projections have been made from the eighty and ninety per cent levels to evaluate the ability to reach full design power level with currently applied process tube outlet temperature limits. These projections have shown that full power level can be achieved by raising operating rear riser pressures to 1450 psig, correcting the hot channel situation in tube 1155 and in controlling the next hottest tube, 1262. The validity of these projections is contingent on several principle factors.

- a. the ability to limit pressure surges after scrams to 140 psig or less.
- b. the ability to operate with the minimum reactor inlet temperature consistent with the secondary system steam requirements, 362 F.
- c. the ability to maintain flattening efficiencies achieved during operation at the eighty and ninety per cent levels.

The results obtained from the projections show that most of the available margin will be expended in reaching one hundred per cent power under current secondary system steam pressure requirements. If it becomes necessary to increase steam pressure, or, if it becomes desirable to gain more operating latitude, it will be necessary to either orifice the reactor or to increase primary loop flow capacity. A joint study to further delineate pertinent factors is being carried out by Research and Engineering Section and the N-Reactor Project Section.

DECLASSIFIED

RL-NRD-1 2C

In-Reactor Thermocouples

The thermocouple fabrication and testing will be completed during early December and charging will be completed during the first available outage. These thermocouples will provide important empirical information conditions within the reactor. Such information will be used to establish important guidelines for effective and safe operation, process tube temperature limits and other heat balance considerations. They will also help to determine the reactor power level capabilities discussed above.

Steam Flow Distribution Study

The possible pressure and flow differences in the secondary steam system resulting from unbalances in steam input and steam outlet flows is under study. The model has been programmed for the digital computer and results have been obtained for selected cases. The results indicate that under the worst possible conditions, steam pressure differences in the order of twenty pounds per square inch can exist. Additional cases will be studied to cover the expected conditions of operation with combinations of steam generator cells in service and the export generators in operation.

Potential Methods for Po²¹⁰ Production

A review has been made of the possible techniques for Po²¹⁰ production in N-Reactor.

Four methods are identified. The most readily available method uses the 68 peripheral channels to irradiate bismuth. This could produce as much as 725 grams of Po²¹⁰ per year at a cost of less than \$1000 per gram, as previously reported.

A single tube (or coproduct) configuration with a Bi₂O₃ flow splitter would produce about 250 grams of Po²¹⁰ per year, and would be neutronically superior to using an aluminum flow splitter. The cost of the Po²¹⁰ thus made has not been estimated.

The reactivity loss of the proposed single tube with an aluminum flow splitter is 8 mk. Potentially this could be reduced by 4 mk if Bi₂O₃ replaced the aluminum. As a result of this change in fuel design, N-Reactor would produce about 250 grams of Po²¹⁰ per year. Thus, the irradiation of Bi₂O₃ rather than aluminum in the flow splitter would reduce reactivity losses by \$200,000 per year and produce Po²¹⁰ against which about \$100,000 of the remaining cost could be allocated; thus contributing to the advantages of the single tube design and N-Reactor's Po²¹⁰ production capability.

A third possible technique is the substitution of bismuth for uranium in the normal process channels. This approach will produce polonium at a somewhat higher cost due to the sacrifice of plutonium production and reactor power level. If the reactor were operated at 4800 megawatts with maximum tube

DECLASSIFIED

RL-NRD-1 2C

[REDACTED]

power limits of 6000 kilowatts, 250 tubes could be used for Po²¹⁰ production. This would reduce the reactor power level to 3500 megawatts. Po²¹⁰ production would be about ten grams per process tube per year. The maximum which could be produced by this technique would be about 2500 grams. The "cost" of the Po²¹⁰ would depend on the value assigned to the plutonium not produced.

A fourth technique with the potential of producing large quantities of Po²¹⁰ is the utilization of the 640 cross coolant channels. Conceptually these channels could be overbored to a 2-inch diameter. In the overbored graphite channels about 90 tons of bismuth could be irradiated to produce about 2000 grams of Po²¹⁰ per year without any reduction in uranium inventory or reactor power. The reactivity losses due to bismuth in the cross coolant channels would be about 10 mk.

The study to further refine the various technical parameters and economic bases is continuing.

Alternate Fuel Cycles for Power-Only Operation of N-Reactor

The first phase of this program, comparing the fuel cycle costs of uranium metal and thorium oxide cycles to the reference uranium oxide cycle is essentially complete. The economic calculations show that the reference uranium oxide fuel could compete successfully with either the thorium-oxide or uranium metal cycles. The uranium metal cycle holds potential for improvement which would provide for its use during an interim period.

Work on the plutonium enrichment case is continuing. Physics data has been acquired for the 1.0, 1.5 and 3.0 w/o PuO₂ cases. These data will be analyzed and compared to the UO₂ fuel case.

IN-PLANT TESTS

The status of Production Tests in the N-Reactor is as follows:

PT No.	Document No.	Title, Author, Date	Status		
			Approved	In Progress	Com- pleted
2	HW-80369	Routine Graphite Sample Irradiations, D.H. Curtiss, 1/3/64		X	X
3	HW-81478	Routine Monitoring of Graphite Oxidation in N-Reactor, D.H. Curtiss, 3/26/64		X	X
4		(rough draft - not issued)			
5		(rough draft - not issued)			
6	HW-81339	The Use of Isotope Producing Rods in N-Reactor, R.A. Chitwood, 3/17/64		X	X
7	HW-81029	NPR Shield Evaluation; Shield Plug Measurement During Startup Test N-2 J Greenborg, RA Bennett, 3/2/64		X	X
8	HW-81327	Coproducer Demonstration Test(1.25) T.W. Evans, 5/4/64	X		
9	HW-81609	Low Goal Irradiation of Fuel Elements with Varying Amounts of White Oxide on Surface, A.C. Callen, 3/30/64		X	X
10	HW-82136	N-Reactor Corrosion Monitoring, RJ Evans and BS Kosut, 5/25/64		X	
11	HW-82074	105-N Fog Spray Control Valves, DR Resner and JL Benson, 4/30/64		X	X
12	HW-82241	Copper Base Alloy Corrosion Program, B.S. Kosut, 6/4/64		X	X
13		(rough draft - not issued)			

PT No.	Document No.	Title, Author, date	Status		
			Approved	In Progress	Com- pleted Final Report
14	HW-82385	Irradiation of Thorium-Uranium Crud Monitor Elements in N-Reactor, W.K. Kratzer, 5/21/64	X	X	
18	HW-82659	Primary Loop Pressure Relief Valves (RV-2-1 and 2) Relief and Reseating Pressure Test, K.L. Berrett, 6/11/64	X	X	HW-83175 (Interim Repor
20	HW-82933	Hydraulic Actuators for RWSV-805 Valves, C.L. Goss, N.R. Miller, 6/23/64	X		X
21	HW-83200	Optimization of Secondary Coolant Supply Operational Modes, F.J. Mollerus, Jr. 7/8/64	X	X	
21	HW-83216 SUP	Supplemental Testing Procedure, PT-NR-21, Surge Tank Pressure Control Test, F.J. Mollerus, Jr., 7/8/64	X		X
21	HW-83442 SUP	Supplemental Testing Procedure, 184-N Turbine Generator Tests, F.J. Mollerus, Jr., 7/27/64	X		X
21	HW-83857 SUP	Supplemental Testing Procedure, PT-NR-21, Pressurizer Level Control Test, E.E. Leitz, 8/28/64	X		X
23	HW-83389	Horizontal Rod Scram No. 2, Power Ascension Program, N-3, E.E. Leitz, 7/22/64	X		X HW-84066
26		(not issued)			
27		(not issued)			
28		(rough draft - not issued)			
29	HW-84239	Full Load Dump Condenser Characteristics, F.D. Frisch, 9/29/64		(Test cancelled by RLOC-AEC)	

UNCLASSIFIED

RL-NRD-1 2C

PT No.	Document No.	Title, Author, Date	Status		
			Approved	In Progress	Com- pleted
30	HW-84232	Evaluation of Ammonia for Con- trolling Oxygen in the Graphite Cooling System, W.K. Kratzer, 9/24/64	X	X	
31		(cancelled)			
32	HW-84367	Exposure of Corrosion Coupons in N-Reactor Process Tubes, W.K. Kratzer, 10/5/64	X		
33	HW-84401	In-Reactor Enthalpy Imbalance Measurements, P Riggle, 10/7/64	X		
34	RL-NRD-26	Horizontal Rod Scram No. 5, Power Ascension Program, N-3, D.L. Renberger, 10/26/64	X		X

PERSONNEL CHANGESAdditions

V. J. DeJong, Engineer, transferred to Process Engineering, effective November 1.

Removals

None

SIGNIFICANT REPORTS

HW-83892 Copper-Base Alloys in the N-Reactor Graphite Cooling System,
W.E. Gurwell and B.S. Kosut, 11/30/64 (Unclassified)

HW-83828 SUP1 N-Reactor Summary Scram Reports,
E.E. Leitz, 9/30/64 (Confidential)

RL-NRD-59 Predicted N-Reactor Plant Heat Balances,
V.J. DeJong, A.J. Ebens and L.D. Smith, 11/6/64 (Confidential)

UNCLASSIFIED
C-12

RL-NRD-23 Secondary System Instrumentation Modifications for Conversion,
A.A. Maupin and D.W. Leiby, 10/21/64, (Unclassified)

RL-NRD-20 Comments: Target Element Thermal Stress Tests,
A.E. Guay, 10/20/64 (Secret)

RL-NRD-28 Need for Hydrogen Addition to N-Reactor Primary System Coolant,
W.K. Kratzer, 10/26/64 (Confidential)

RL-NRD-32 Preliminary Results and Recommendations on Copper Base Alloys
in the N-Reactor Primary System,
B.S. Kosut, 10/28/64 (Unclassified)

RL-NRD-83 Confinement System Stack Monitoring Modification Requirements,
J. W. Vanderbeek, 11/23/64 (Unclassified)

VISITORS

H. S. Isbin, Consultant, from University of Minnesota, visited Hanford November 12 and 13 to discuss heat transfer studies; R.H. Shoemaker - contact.

W. G. Wehmeyer and H. Hovila, of Engineered Industrial Systems, Seattle, Washington, visited Hanford November 18 to discuss bridge cranes under the C and D elevators with A. A. Maupin.

H. C. Neilson of the Boeing Company, Seattle, Washington, visited Hanford November 23 to discuss the radiological consequences of possible release of tritium with M. M. Hendrickson.

TRIPS

B. S. Kosut attended the ASTM Officers Meeting held October 27, in conjunction with the Canadian Institute of Mining and Metallurgy and Pacific Northwest Metals and Minerals Conference at Vancouver, B.C.

D. W. Leiby, M. C. Leverett, R. E. Hall and R. E. Trumble attended meetings at Burns and Roe, Inc., Hempstead, L.I., New York, November 11. Contact was Ivan Gabel. Discussions were on N-Reactor conversion.

D. W. Leiby and R. E. Hall visited Bailey Meter Co., Cleveland, Ohio on November 12 to discuss N-Reactor conversion.

R. E. Hall visited the Philadelphia Electrical, Philadelphia, Pennsylvania, November 11.

J. R. Bolliger and R. E. Trumble visited the Bonneville Power Authority, Portland, Oregon, October 29 to discuss the Phase II hazards review.

UNCLASSIFIED

RL-NRD-1 2C

M. C. Leverett and R. E. Trumble made presentations before the ACRS in Washington, D.C. on November 5 and on November 12 on N-Reactor production test criteria and the coproduct production test.

M. C. Leverett, J. L. Benson and J. W. Riches attended the joint ANS-AIF meeting in San Francisco November 30 through December 2.

SECURITY VIOLATIONS

None

INVENTIONS

All Research and Engineering personnel engaged in work that might reasonably be expected to result in inventions or discoveries advise that to the best of their knowledge and belief, no inventions or discoveries were made in the course of their work during November, 1964. Such persons further advise that for the period herein covered by this report, notebook records, if any, kept in the course of their work have been examined for possible inventions or discoveries.

M.C. Leverett
Manager
Research and Engineering

MC Leverett:LCC:vb

UNCLASSIFIED
C-14

100
500
1000
5000
10000

DATE
ENDED
10/18/94

