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Introduction to the Workshop

These proceedings were generated from a series of presentations made at the Neural Network
Workshop for the Hanford Community. The abstracts and viewgraphs of each presentation are
reproduced in these proceedings. This workshop was sponsored by the Computing and
Information Sciences Department in the Molecular Science Research Center (MSRC) at the
Pacific Northwest Laboratory (PNL). It was held on Wednesday 26 January 1994 from 8:00 am
to 5:00 pm in the Battelle Auditorium. It attracted approximately 90 participants from a variety
of organizations including Battelle Pacific Northwest Laboratories, Westinghouse Hanford
Company, Boeing Computer Services Richland, Siemans Power Corporation, Systek, Mohr and
Associates, NeuroDynamX, Washington State University (Pullman and Tri-Cities campuses), the
University of Washington, Eastern Washington University, Eastern Oregon State College, the
U.S. Department of Energy, and Bureau of Reclamation.

Artificial neural networks constitute a new information processing technology that is destined
within the next few years, to provide the world with a vast array of new products. A major
reason for this is that artificial neural networks are able to provide solutions to a wide variety of
complex problems in a much simpler fashion than is possible using existing techniques. In
recognition of these capabilities, many scientists and engineers are exploring the potential
application of this new technology to their fields of study.

An artificial neural network (ANN) can be a software simulation, an electronic circuit, optical
system, or even an electro-chemical system designed to emulate some of the brain's rudimentary
structure as well as some of the learning processes that are believed to take place in the brain.
For a very wide range of applications in science, engineering, and information technology, ANNs
offer a complementary and potentially superior approach to that provided by conventional
computing and conventional artificial intelligence. This is because, unlike conventional
computers, which have to be programmed, ANNs essentially learn from experience and can be
trained in a straightforward fashion to carry out tasks ranging from the simple to the highly
complex.
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Purpose

The purpose of this workshop was to bring together individuals from the Hanford community
| who potentially have a need to apply artificial neural network technology in their projects. The

i main objectives of this workshop were:• to provide an introduction to the field of neural networks

] • to explain how neural networks can be used in science and engineering• to demonstrate how to build a neural network application in software
! • to discuss sources of information about neural networks

• to provide a set of example neural network applications of interest to the Hanford
community

• to bring together people with interests in neural networks

Workshop Organizing Co_ttee:
Paul E. Keller (509) 375-2254 pe_keller@pnl.gov
Lars J. Kangas (509) 375-3905 lj_kangas@pnl.gov
Richard T. Kouzes (509) 375-6455 rt_kouzes@pnl.gov

Address:
Molecular Science Research Center
Pacific Northwest Laboratory
K1-87
P.O. Box 999
Richland, WA 99352

Facsimile: (509) 375-6631

...... i, r ..... II _ ' II i ,, , j i
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Workshop Itinerary (Wednesday 26 January 1994)

Tutorial Sess,,ion Afternoon Session #1
8:00 am - 9:45 am Battelle Auditorium 12:40 pm - 2:40 pm Battelle Auditorium

•_- Lars J. Kangas, moderator

8:00 am- 8:05 am
Overview of the Workshop, Richard Kouzes, 12:40 pm - 1:10 pm
Pacific Northwest Laboratory, Molecular Parallel and Distributed Gradient Decent
Science Research Center Learning, I. Mehr, Zoran Obradovi_, R.

Venkateswaran, Washington State University,
8:05 am - 9:15 am School of Electrical Engineering and
Introduction to Neural Networks, Paul E. Computer Science....................................... 31
Keller, Pacific Northwest Laboratory,
Molecular Science Research Center ............ 5 1:10 pm- 1:40 pm

Neural Network Algorithms for VLSI
9:15 am - 9:45 am Design and Test Automation, Jack L.
Developing an Application, Lars J. Kangas, Meador, Washington State University, School
Pacific Northwest Laboratory, Applied Physics of Electrical Engineering and Computer
Center ......................................................... 12 Science ....................................................... 39

1:40 pm - 2:00 pm
Morninq Break Isotope Identification via Neural Network,

9:45 am - 10:00 am Auditorium Lobby PaulKeller,Pacific Northwest Laboratory,
Molecular Science Research Center........... 45

Overview .Session 2:00 pm - 2:20 pm
10:00 am - 12:00 pm Battelle Auditorium A Multicomponent Spectrum
Paul E. Keller, moderator Decomposition Network, Harry Bell,U.S.

Department of Energy ................................. 49

10:00 am - 10:10 am 2:20 pm- 2:40 pm
Opening Remarks, RichardT. Kouzes, Neural Network Based Chemical Sensor
Pacific Northwest Laboratory, Molecular Systems, Paul Keller, Pacific Northwest
Science Research Center Laboratory, Molecular Science Research

Center ......................................................... 53
10:10 am - 10:50 am
Developments in Neural Network Chips,
Ronald Benson, NeuroDynamX, Inc........... 15 Afternoon Break andPoster Session

2:40 pm- 3:00 pm Auditorium Lobby
10:50 am - 11:30 am
Alternatives to Neural Networks: Genetic
Algorithms and Non-Linear Biased Afternoon Session #_2
Regression, Barry M. Wise, Pacific Northwest 3:00 pm - 5:00 pm Battelle Auditorium
Laboratory, Molecular Science Research Paul E. Keller, moderator
Center ......................................................... 20

11:30 am - 12:00 pm 3:00 pm - 3:20 pm
Combining Neural NetworKs, Sherif Integrating A Parallel Constructive Neural
Hashem, Pacific Northwest Laboratory, Network Algorithm with an Expert System,
Molecular Science Research Center .......... 27 Justin Fletcher, Washington State University,

School of Electrical Engineering and
Computer Science....................................... 58

Lunch Break and Poster Session
12:00 pm - 12:40 pm Auditorium Lobby 3:20 pm- 3:40 pm

Turbine Engine Diagnosis Artificial Neural
Network (TEDANN), Lars J. Kangas, Frank L.
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Greitzer, George M. Alexander, John A.
Sanches, Paul E. Keller, David D. Turner, Turbine Engine Diagnosis Artificial Neural
Pacific Northwest Laboratory ...................... 67 Network (TEDANN), LarsJ. Kangas, Frank L.

Greitzer,George M. Alexander,JohnA.
3:40 pm - 4:00 pm Sanches,Paul E. Keller,DavidD. Turner,
Symbolic Reasoning with Neural Networks, Pacific Northwest Laboratory ...................... 67
MorganL. Yim, Pacific Northwest Laboratory,
Applied Physics Center ............................... 70 Ground Penetrating Radar Target

Recognition, Lars J. Kangas,GeraldA.
4:00 pm - 4:20 pm Sandness,Shawn J. Bohn,Pacific Northwest
Verification and Validation of Neural Laboratory,Applied Physics Center............ 84
Networks, James S. Dukelow,Jr., Pacific
Northwest Laboratory, Engineering ComputerAssisted Site Assessment
Technology Center ...................................... 76 (CASA), MorganL. Yim, Pacific Northwest

Laboratory,Applied Physics Center
4:20 pm - 4:40 pm
Interference and Sequential Training of Potential applications of neural networks
Connectionist Networks: What can we do? at the Environmental and Molecular
A. LynnFranklin, University of Washington, Sciences Laboratory (EMSL), Paul E. Keller,
Department of Psychology ......................... 81 RichardT. Kouzes, Pacific Northwest

Laboratory,Molecular Science Research
4:40 pm- 5:00 pm Center, Lars J. Kangas, Pacific Northwest
Moderated Discussion of Applications, Laboratory,Applied Physics Center ............ 87
Richard T. Kouzes, Pacific Northwest
Laboratory, Molecular Science Research Nonrecurrent associative memory model
Center based on a nonlinear transformation in the

spectral domain, Paul E. Keller, Pacific
5:00 pm NorthwestLaboratory, Molecular Science
Concluding Remarks, Paul E. Keller, Pacific Research Center, Mariappan S. Nadar,
Northwest Laboratory, Molecular Science Bobby Hunt, Anupam Goyal, University of
Research Center Arizona, Electrical and Computer Engineering

Department, and Eric VonColln, NRaD
................................................................... 91

Poster SesS.ion.
12:00 pm - 12:50 pm An optical neural network implemented
2:50 pm - 3:10 pm Auditorium Lobby with fixed, planar holographic

interconnects, Paul E. Keller,Pacific
Northwest Laboratory, Molecular Science

Object Oriented VLSI Design Automation Research Center, and Arthur F. Gmitro,
for Pulse Coded Neural Networks, Paul Universityof Arizona, Optical Sciences
Hylander, Washington State University,. Center ......................................................... 93
School of Electrical Engineering and
Computer Science

' i i , i i it i
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Introduction to Neural Networks

Paul E. Keller

Pacific Northwest Laboratory, Molecular Science Research Center,
Computing and Information Science

K1-87, P.O. Box 999, Richland, WA 99352
phone: (509) 375-2254 fax: (509) 375-6631 internet: pe_keller@pnl.gov

Processor Power and Connectivity Where Are Neural Networks Appropriate?
• pattern recognition

• decision

• forecasting

• mapping complex data sets

• modeling when the physical process is not known or

understood "good"

• optimization when a solution is acceptable
(sub-optimal)

• when the rules of a problem are unknown
_> • {processing information that humans process well}

Where Are Neural Networks Not Appropriate?
t.-

• when high precision is requiredo
rO • numerical calculations .

• when you already have a good physical model
• when a simpler solution exists

__ Topics Explored With Neural Networks

ato__ms, Finance (Credit Approval; Predicting Stock; Capital, Currency, and Commodity
Markets; Economic Modeling and Analysis; Check Processing)

• ' Business (Forecasting Markets and Sales; Modeling, Sales and Marketing Analysis;
molecules, \ Prediction of Workload, Delivery Schedules, Consumer Reaction, etc)

and proteins / E!eclri(;:alEngineering(Load Forecasting, Circuit Design, Power System
" _ Stability, Optimization of Electric Power Distribution, Adaptive Logic Elements

Processor Power Co...m..munica..tion(Adaptive Signal Processing, Echo Cancellation, Modems,

Noise Filtering, Data Compression, Speech and Handwriting Recognition)

Who is interested in neural networks? Foodand Agriculture (Food Inspection, Experiments in Agriculture,

• Biologists and Physiologist Food and Beverage Odor Monitoring, Analysis of Food Quality, etc.)

explore low-level and mid-level brain functions such D.p._s (Adaptive Focusing, Adaptive Optical Telescopes, Image Classification,

as memory, sensory systems, and motor functions Spectral Analysis,Optically Implemented Neural Networks, etc.)
Medicine and Health (Diagnostic Aides -- Myocardial Infarction, Image Analysis --

• Cognitive Scientists and Psychologists CT, MRI, Ultrasound, Drug Development, Chemical Analysis)

model high-level brain functions such as thinking and Education (Teaching ProblemSolving, Predicting Student Performance, Teaching
conscience Languages, Computer Aided Instruction)

• Engineers Manufacturing (Industrial Inspection, Process Control, Quality Control, Cptimizir, g
- pattern recognition -design Production Schedules, Process Planning and Manufacturing, etc.)

- signal processing - modeling Engi.neering(Fault Detection, Robotics, Artificial Limb Control; Control, Analysis of
- process control - robotics Mechanical Systems, Intelligent Alarm Processing, Glass Design)

• Computer and Information Scientists NationalDefense (Target Recognition & Tracking, Computer Aided Trans-lation,

- explore learning systems Pilot Training, Classifying Sonar and Radar, Guidance, Vehicle Control)

- apply neural networks to information processing CriminalJustice & Law...Enforcement(Predicting Parolee Recidivism, Finger

• Physicists and Chemists Print and Human Face Identification, Detection of Plastic Explosives)

- model physical and chemical systems Geology andGeophysics_(oilExploration, Recognition of Seismic Events,

- patternrecognition Prediction of Oil Reserves)
• Doctors and Health Scientists _ (Modeling Biological Systems Including Biological Neural Nets, Cell and

- diagnosis - pattern recognition Organism Identification, Data Analysis, Optimizing Experimental Results)

• Economists, Financial Analysts, and Statisticians Chemistry(Chemical Compound Identification, Spectral Analysis, Chemical SensorAnalysis, Polymer Identification, Determining Structure of Proteins, etc.)

analyze and predict economic indicators Physics(Modeling Nuclear Systematlcs, Particle and Radiation Pattern Identification,

• Applied Mathematicians Gamma Ray Spectroscopy, Modeling in Statistical Mechanics)

study neural networksin relationto complexand _.9__r_(Athlellc Training, Picking Horse Race Winners, NFL Score Prediction)

chaotic systems Other Applications (Legal Strategies, Ground Water Quality Control
• Electrical Engineers and Optical Scientists/Engineers Music Composition andAnalysis, Semantic Feature Analysis, etc.)

develop and build electronic and optical hardware
systems to implement artifical neural networks
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l.n,dividual Neuron and Connec..ted Synap.qes
Neu,r.al Network Fundamentals o w

1 inputs (dendrites)

processingelement

Neuron _ o, i2 (neuron),_--..--_---_ _ dendrites_som_

• o 04 w function

•_o 05 w. synapticconnectionswithstrengthswij

" Simple Model of Biological Neural Mechanisms Ineuron interconnection nonlinear_vrocessin_
neurons _ nonlinearprocessingelements [ *communication • summation

I * multiplication • nonlinear operation,/(u)synapses _ weightedinterconnectionsbetween N

neurons I w_oj y(_w_oj)
dendrites/axons ¢_ communicationchannels .........

neuralnetwork _ systemof highly interconnectednon- ActivationFunctions
linearprocessorsworkingin unison

f(u) f(u) f(u)

•  eura, T'- systemconstructedfromat leastthe simplistic I
modelof thebiologicalneuralnetwork ....... _ - & ' u

- ParallelDistributedProcessing(PDP)System StepFunction SigmoidFunction LinearThresholdFunction

- ConnectionistModel
Neural Network Systems Software Implementation

FeedforwardSystem • Series of Vector-Matrix Multiplications
InputLayer
(distribution) - Feed Values Into The Network
xI HiddenLayers O0

_(processing) Output Layer -- = X {Oj0 = Xj; for all j}

2 - Propagate To The Next Layer. _ ne___Jtl = W0o0 {netil = __._wijOoj0}

_'_,,_-_"_ k=3 = L - Apply Activation Function
2"--

k=2 o1 = .f(net 1) {oj1 = .f(netjl); for all j}_r,_dbackSystem

Neuron Layer " Propagate To The Next Layer
x (processing)

, ,, net2 = Wlo 1 {neti 2 = __..,wijloj1}

X2 W n _Wl= W13_4w w15 O Y2

>-"_' ,,2" _"1_ < _, _ ' ( ---_o - Apply Activation Function
,, *=, *,, J",, "2, z. _ 02 = .f(ne---!t2) {Oj2 = -f(netj2); for all j}

- "- #'" _'=,)'*_ *. y, _ - Feed Values Out Of The Network

,_ _**' _ g = 0 L {y j = oiL; for all j}
X5 W41 W42 W W4'45 _ 05 Y5

_ ,
_,, ,,
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" Tree Recognition Example
PatternRecognition Feature Diagram

.P_r_lJgJLo_ 40-_" ,., western larch
:,," =':,

• RecognizeTrends in Time SeriesData EE30- ..?...._, "_='-J_, * Measured Values of Sensed Objects

_o_ • Two Features Shown Here
20- western ,_, _p, - Needle Length- Cone Length• RecognizeKey Componentsin a GivenSituation ._ hemloc

® k_ white

Pattern Classification. _=10- "_ black spruce
spruce

° Recognize Objectsand AssignThem to the z 0 _ _ j , _ _ >
Appropriate Classes 0 10 2o 30 4o 5o 60

Cone Length (turn)

J DecisionBoundari#s

Learning _ _ _=_t_rn ° Boundaries Separate Measurement
•,-- Values of Different ObjectsE 30- I

• ExamplePatternsare Presentedto the Neural _= - Nearest Neighbor- Nearest Mean

Network andthe SynapticWeightsare Adjustedto _ 20" western./ _ white - EuclideanDistance

Produce the Desired Output _= hemi°ck ,t/b_arlk _] spruce - City Block Distance

• Maps the Input Pattern to the Desired Output Label _ 10" e
• Analogous to a Student Guided by an Instructor z 0 _

0 10 20 30 40 50 60
Cone Length (ram)

Unsupervised Euclid_an Distance M_._J_ _ C_CitvBlock Distance Metric

• Neural NetworkAssignsItsOwn Labelsor Classes _ 40-• Useful for FindingIntrinsicClasses or the Underlying 4 larch

_" _estern _western larch
Structure of the Data E 30-- 30-

• Also Knownas Self-Organization "-',-

• Analogous toa Student Deriving the LessonTotally _' 20- westernLI, _) 20- westernm []

on His/HerOwn _, hemlockl_ ) hemlock_
=) white white

10- V black spruce 10- black spruce

spruce _ spruce_" o I , , , , I -_ , , ,_
Pattern Classification o ,o .o ooo ,o .oCone Length (ram) Cone Length (ram)

bias = w0

_ Net Stimulus = w0+ wlf 1+ w2f2 = 0

f2

O

fl

feature labeled
values pattern fl fl

Sensing _ Neural +
System f2 Network o

z_ f2 3- Regions f;

• imaging system, spectrometer, chemical sensor array, etc.

Measurements(Features!

• wavelength, color, voltage, temperature, pressure, intensity, @ / Oshape, etc. fl fl

i Ii " II I , i i I
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,_ f2 f2_
A \ Decision / C"

_\ ++. _ ._ I
. .. _..+%+.+ /_ B
2...". "+ +i- "_',_--,-.+-,.--+' U". ," \ -_++ i-/++.+.+"'xx _..,_. ^_oo /4. "I":-I- "_ Xxx _,.,_ _

B I x ;_o;,_op° _'+ + + _t _°-°/'++ _+ +
._ OOOO-,. + _ I0/++ + +

... _ Z_ o / -t- .I. -p +
, +%_++ +..^ _'A..,,J + _ T+ -- /, / +'+++_,+ +++

" +++ + I

/ \ j,A

C" Step 2: Encode Convex Regions in Second Processing LayerStep 1" Encode Hyperplanes in First Processing Layer
• Convex regions encoded by intersecting (and-ing) half-spaces• Hyperplanes encoded by linearly combining inputs

° Each neuron encodes an individual hyperplane in feature space • Eachneuron describes a convex region in feature space

w,_/.dj]_F--_a = f(1._9 fl + 1.00 f2- 0._5) ab__

f1_ _2 _ d = f(-a + b- 0.5) D = A _ B
- \"'-_21_ w,, w12 bias1 e = f(a + b + c - 2.5) E = A _ B_ C

b = f(-0_29 fl + 1.00 f2" 0_40) f = f(b- c- 0.5) F = B r_
f2 w22 • 4 -- --

w21 w22 bias2 g ----f(-a- b + 0.5) G = A _ B
Layer --_.,"_"- C=f(-1,81 fl+ 1.00f2+0.41) C . _]_)-h.=f(a-b+c- 1.5) H=AnB_C

lStLayer _ _i =f(a-b-c-0.5) I=AnBc_C
f2 1stLayer 2ndLayer

"v.- 04 03 _1"
=tt: :*t: :it: =tt:

c- c- c" E
o (1) o.)

.,i,--*

(_ 13_ EL O_ Q..

Or) _m_

0 _e,_-Ip_

(1)

fl 13
Step 3: Combine Regions with the Third Processing Layer

, Arbitrary regions encoded by uniting (or-ing) convex regions _--O
* Each neuron encodes a labeled output

'4--' jeAeq T_I.

d >f(d + f- 0.5) I=DuF Z
e _.
f _,.../__ >.f(e + i - 0.5) 2=EuI

_e_e7 _ndul

g h - 0.5) 3 = H (1)Z =
i g - 0.5) 4=G _-_ _

2ndLayer _ Layer
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Artificial Neural,Networks Backpropacjation Algorithm
InputLayer

• Hopfield Network (distdbution)
Architecture: Feedback x, HiddenLayers
Learning: Supervised(Outer ProductFormulation) (processing) OutputLayerApplications: AssociativeMemory,Optimization _-_,_ _

x 2 (processing)InputData: Binary

•MultilayerPerceptron _ x, _=
Architecture: Feed Forward _ v_......_-._,._ _._._=_,,,,,¢_ v=_

Learning: Supervised(Backpropagationof Error) _- x, _
Applications: Pattem Classification -=
InputData: Continuous k= 2

• Boltzmann Machine k = 1
Architecture: Feedback
Learning: Supervised Batch Learning Process
Applications: Optimization
Input Data: Binary _, Pick a labeled patternfrom the training set and present it to

_"the network. (training pattern _ xp, target output _ tp)• HammingNetwork
Architecture: Combination of Feed Forwardand Feedback Propagate data forward and generate the output classification.
Learning: Supervised (output _ yP)
Applications: Pattern Classification
Input Data: Binary Calculate error between target classification and actual

classification.

• Kohonen Self-Organ!zing Feature Map Network Error = -_ i=I ,Architecture: Combination of Feed Forward and Feedback _ (t_- y )2
Learning: Unsupervised Propagateerror __a__q_kwardsthrough network and calculate
Applications: Pattern Clustering changes to the synaptic weights that will reduce output error
Input Data: Continuous using the generalized delta rule.

• Carpenter-Grossberg Network if there are more patterns in the training set, loop back.
Architecture: Combination of Feed Forward and Feedback
Learning: Unsupervised (Adaptive Resonance Theory) Update synaptic weight values in the network.
Application: Pattern Clustering If output error high or maximum number of iterations not met,
Input Data: Binary (ART1), Continuous (ART2) -then loop back

inputs = ___

Mean Square Error slope (derivative) _:_,_- ....
aE/aw / ' :_*_'"'

/. • | --_Black Spruce (BS)

/ ConeLength---_q Neural Network --_Western Hemlock (WH)---_WesternLarch (WL)Needle
Lengt..j_ --_-White Spruce (WS)

/ Training Set
/ Cone Needle

W2 Length Length Tree B$ WH WL WS25mrn 11 mm Black Spruce 1 0 0 0
Current 26 mm 11 mm Black Spruce 1 0 0 0
Weights 26 mm 10 mm Black Spruce 1 0 0 024 mm 9 mm Black Spruce 1 0 0 0

New _ 20mm 13 mm Western Hemlock 0 1 0 0
Ideal Weights Weights \ 21 mm 14 mm Western Hemlock 0 1 0 0

19mm 8 mm Western Hemlock 0 1 0 0
Weight Change (L_W) 21 mm 20 mm Western Hemlock 0 1 0 0

28mm 30mm Western Larch 0 0 1 0
37mm 31 mm Westem Larch 0 0 1 0

AWji = 11o_iOj + .(_wji(n-1 ) 33 mm 33 mm Western Larch 0 0 1 032 mm 28 mm Western Larch 0 0 1 0

/ t ,X'_Out_' T _"_ 51ram 19mm White Spruce 0 0 0 1
50mm 20ram White Spruce 0 0 0 1

Weight Change put Previous 52 mm 20 mm White Spruce 0 0 0 1
Learning Rate Contains Momentum Update 51 mm 21 mm White Spruce 0 0 0 1Error

............ , ......... _p,
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Neural Network Approach to Tree Recognition Results with Neural Network

Iterations= 0 Iterations= 1000

MSE = 0.754 -- MSE= 0.235 ' / Cone Lengthgt__ BlackSpruce

._ X _'_._,i_=_ mrm Westerm Hem,gck
,,, ...... westernlarch r

i "" Wos,o.,aro
-1 +:'J._t_P+• " '_,_. NeedleLen =

wemem,,. _" _ we=era _ White Spruce =
hemlocki, _ _mv/ .&,o /"-=_'k .a,

,o']_ _J'_black s_ruce "_/ _'/X spruce Mean Square Error (MSE).I \,/ 'P_='
0 10 " 20 .30 40 50 60 0 10 20 30 40 50 80

: 0.8

Cone Length (ram) Cone Length (ram) 0.6

Iterations= 2000 Iterations= 3000 0.4

_ _/.\ MSE= 0.046 .o-'_X MSE: 0"009 :20'

.. • westernlarch , ,. westernlarch

,t.--.. • 30- 0 1000 2000 3000 4000

I hemlQc*k"_'_+l.. _. -"
hernlock=:_ \ white

_:_ \ whitee _ SPrC I'/+_t_/%lack X spruce )1" 40"-
+1 _/:=X c ...w.+,.+,e e _ :,:l'l.
Ol I I I I I" _ o I Eao-- _',=.'@'_[r

0 10 20 30 40 50 60 O 10 20 30 40 50 60 "j_. _,

Cone Length (mm) Cone Length (mm) _--_ western _/ X _I_"I_"
2O"

• he-ml_k_P¢, _ white

I

. z

0

O 10 20 30 40 50 60
Cone Length (ram)

0 0 0 _I

_ _ O;._X _ X I _. Output Signals _O__ "0.mO

r,q E_o ._
•- _ E

> a:Z _" o=" ,.- Emm
_'E: mo m x o o -=_._o.

_+___o _ f > _ o__-D c _- c (I)m =.'r-. _,_•_"+ _ =_ m= ,.,_+ _ m ,.. _,+ ,.:h,., '_v L- -- ¢"" IJ;=.=+®=+_.= Eom _ o_ o +++
oo+__o _ / _o _o__,o_ _+o+

_.- .'_ o,__.+_ _,+.. _ o=_-,'o m E= " o

o +'_.+=.- ,.. c+m O_
'_O _,.._ , N c_ O ::3r'03"-" , '.-,.,,,E E ('0 (_ O,) Q,_

t...I-- _ N--

_.=:: Q)_.,. E _ ('0 -• _) .-"_ _ ".,=,,, • ,,,• ,-,= ,:___ '-=' oo,-.-o + _o,-
•,-."_u..®,,._ _ m_ ,..= m_, _ _ ,-,_ ,o
o oo _;°+0'o+_ <.__=.__o_-__ _ 0..,o=>. =_oO_
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Hopfield Networks Maxnet-Hamming Net . "
Ne.,_onLayer )(1
(pt-cessing) Yl ,

•, . f
._ .= w=jw,j,,.._ o, . ,, _ _ £

x, _ , "3,*=j*,,jW,.,_ o, 1 y, _ _, _.
#_ I _"

!= Winner- "_

" Metric Calculation Take_ll
(Hamming Net) (Maxnet) -_

Applications: AssocistiveMemory Optimization
Architecture: Feedback Feedback
Developers: John J. Hopfield, 1982 John J. Hopfieldand David Tank, 1985 Applications:Pattern classification
Learning: Outer-Product Formul_tion Energy FunctionEncodedin Weights Developer:. R.P. Lipmann, MIT LincolnLabs, 1987 _'
Method: Deterministic Deterministic Architecture: Feed-Forward Followed by a Lateral Inhibition Layer _.
InputData: Binary or Continous Binary Coded Learning: Hamming DistanceMetric Formulation
Strength._: Can Retrieve Incomph.te SometimesFinds GoodSolutions Method: Deterministic

or Noisy Patterns to NP-Complete Problems Input Data: Binary
Weaknesses: Low Memory Capacity, Easily Trapped in Local Minima Strengths: HighimplementSstorage°ptimUmcapacityClassifierfor binary pattems ,_

Tends to Oscillate Weakness: Binary data

Kohonen Self-Organizing Feature Map Adaptive Resonance_Theory (ART)

t__ Applicatior,s: Pattem Clustering _ _ -_

Architectu=e: Single Processing Layer Interconnected to
__, o Input with Neighborhood Connections

Y2_ Learning: Unsupervised(Self-Organizing)
_ Method: Euclidean DistanceMetric "

__== Input Data Continuous '_
Strengths: Can Detect Inconsistencies in Data,

Good for Classification

= Ne_.bo,t_,d Weakness,;s: Lack of Theory for Developing ClusterSize,Connections Cluster Instability
Applications: Patternclustering(complicatedpatterns)
Developers: Stephen Grossberg,BostonUniversity,1978-86

GallCarpenter,NortheasternUniversity
Architecture: Bidirectionalbetweeninputandoutputlayersand oulputhas

lateralinhibition

LearningRule: AdaptiveResonanceTheory (ART)
TopologicalMapping ' Method: Unsupervised

InputData: Binary(ART1), Continuous(ART2,ART2a, ART3)
Strengths: " Able to learn newpatterns(formnew categories) '

Very sophisticated
Mostbiologicallyplausibleof the simplemodels

Weaknesses: Sensitiveto translation,distortion,and scale
Exemplars can change over time .-,
Likes to see pattern for long time ""
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Developing an Application

Lars J. Kangas ,.-.

Pacific Northwest Laboratory, Applied Physics Center, Computer Science Department
K1-87, P.O. Box 999, Richland, WA 99352

phone: (509) 375-3905 fax: (509) 375-6631 intemet: Ij_kangas@pni.gov

1. Collect data with instances of every class

2. .Convert data to a form acceptable to the ANN simulator

3. Split data into a training, validation and testing sets

4. Train network on training set until error in the validation set is
minimized

5. Test network with testing set to establish the performance

I itle: Glass Identification Database

Summary Statistics:
ocation: anonymous ftp to ics.uci.edu/pub/machine-learning-databases/glass Attribute: Min Max Mean SD Correlation with class

_ources: 2. RI: 1.5112 1.5339 1.5184 0.0030 -0.1642
3. Na: 10.73 17.38 13.4079 0.8166 0.5030

(a) Creator: B. German 4. Mg: 0 4.49 2.6845 1.4424 -0.7447
- Central Research Establishment 5. AI: 0.29 3.5 1.4449 0.4993 0.5988

Home Office Forensic Science Service 6. Si: 69.81 75.41 72.6509 0.7745 0.1515
Aldermaston, Reading, Berkshire RG7 4PN 7. K: 0 6.21 0.4971 0.6522 -0.0100

(b) Donor:. Vina Spiehler, Ph.D., DABFT 8. Ca: 5.43 16.19 8.957C 1.4232 0.0007
Diagnostic Products Corporation 9. Ba: 0 3.15 0.1750 0.4972 0.5751
(213) 776-0180 (ext 3014) 10. Fe: 0 0.51 0.0570 0.0974 -0.1879

•urpose: Class Distribution: (out of 214 total isstances)
The study of classification of types of glass was motivated by -- 163 Window glass (building windows and vehicle windows)
criminolo_'cal investigation. At the scene of the crime, the glass left -- 87 float processed
can be used as evidence...if it is correctly identified! -- 70 building windows

-- 17 Vehicle windows

tribute Information: -- 76 non-float processed
-- 76 building windows

1. Id number: 1 to 214 -- 0 vehicle windows
:'. RI: refractive index -- 51 Non-window glass
"LNa: Sodium (unit measurement: weight percent in corresponding oxide, as -- 13 containers

are attributes 4-10) -- 9 tableware
! Mg: Magnesium -- 29 headlamps, AI: Aluminum
,. SJ:Silicon
". K: Potassium
;. Ca: Calcium
, Ba: Barium

Fe: Iron

i Type of glass: (class attribute)
---1 building windows fioat...processed

m, 2 building-windows._non float._processed

-- 3 vehicle_windows_float_processed
-- 4 vehicle_windows_non_float_processed (none in th}s database)
-- 5 containers
-- 6 tableware
- 7 _',eadlamps ,
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63 1.52172 13.51 3.86 0.88 71.79 0.23 9.54 0.00 0.11 1 0.3704 0.3714 0.7416 0.3084 0,4554 0.09_ 0.344° O.OOCO0.2157
64 1.52227 14.17 3.81 0.78 71.35 0.00 9.69 0.00 0.00 1 0.9000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
65 1.52172 13,48 3.74 0.90 72,01 0.18 9.61 0.00 0.07 1 0.2652 0.3308 0.7884 0.4143 0.5625 0.1031 0.2416 0.0000 0.4118
66 1.52099 13,69 3.59 1.12 71.96 0.09 9.40 0.00 0.00 1 0.1000 0.9000 0.1000 0,1000 0.1000 0.1000 0.1000
67 1.52152 13.05 3.65 0.87 72.22 0.19 9.85 0.00 0.17 1 0.2360 0.3143 0.7840 0.5016 0.5446 0.1111 0.2361 0.0000 0.0000
68 1.52152 13.05 3.65 0.87 72,32 0.19 9.85 0.00 0.17 1 0,1000 0.9000 0.1000 0.1000 0.1000 0.1000 0.1000
69 1.52152 13,1,23.58 0.90 72.20 0,23 9.82 0.00 0.16 1 0.3316 0.3774 0.8686 0.:)489 0.4500 0.0886 0.2677 0.0000 0.1961
701.5230013.31 3.580.8271.990.1210.170.000.031 0.10000.90000.10000.10000.10000.10000.1000
71 1.51574 14.86 3.67 1.74 71.87 0.16 7.36 0.00 0.12 2 0.3104 0.4211 0.7595 0.3832 0.3982 0.0934 0.3123 0.0000 0.0000
72 1.51848 13.64 3.87 1.27 71,96 0.54 8.32 0.00 0.32 2 0.1000 0.1000 0.9000 0.1000 0.1000 0.1000 0.1000
73 1.51593 13.09 3.59 1.52 73.10 0.67 7.83 0.00 0.00 2 0.292() 0.2436 0.6058 0.4174 0.5464 0.1127 0,3532 0.0000 0.0000
74 1.51631 13.34 3.57 1.57 72.87 0.61 7.89 0.00 0.00 2 0.1000 0.9000 0.1000 0.1000 0.1000 0.1000 0.1000
75 1.51596 13.02 3.56 1.5,473.11 0.72 7.,c3 0.00 0.00 2 0.3012 0.2767 0.7728 0.3396 0,639_30.0966 0.2900 0.0000 0.1176
76 1.51590 13.02 3.58 1.51 73.12 0.69 7.96 0.00 0.00 2 0.9000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
77 1.51645 13.44 3.61 1.54 72.39 0.66 8.03 0.00 0.00 2 0.3876 0.2872 0.0000 0.,1237 0.7036 0.0612 0.5669 0.0000 0.0000
78 1.51627 13.00 3.58 1.54 72.83 0.61 8.04 0.00 0.00 2 0.1000 0.1000 0.1000 O.tO00 0.9000 0.1000 0.1000
79 1.51613 13.92 3.52 1.25 72.88 0.37 7.94 0.00 0.14 2 0.3408 0.5053 0.4878 0.4268 0.5107 0.0000 0.3615 0.0000 0.0000
80 1.51590 12.82 3.52 1.90 72.86 0.69 7.97 0.00 0.00 2 0.1000 0.1000 0.1000 O.I000 0.1000 0.9000 0.1000
81 1.51592 12.86 3.52 2.12 72.66 0.69 7.97 0.00 0.00 2 0.2844 0.5263 0.0000 0.5576 0.6339 0.0000 0.2965 0.5302 0.0000
82 1.51593 13.25 3.45 1.43 73.17 0.61 7.86 0.00 0.00 2 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.9000

0.2696 0.3098 0.7840 0.3894 0.6339 0.1063 0.2296 0.0000 0.0000
0.1000 0.9000 0.1000 0.1000 0.1000 0.1000 0.1000

Propagator: Network Summary

Date: Wed Jan 19 13_34:01 1994

Problem File Name: Untitled

Problem File Name: Untitled

Current Cycle: 33690

Current Training Error) 0.0507306

Current Validacicn Error: 0.195894

Best Error Cycle: 33216

Best Training Er=o=: 0.0523038

Best validaeion Er=or: 0.194968

Network Architecture

Number of Layers: 4

Nodes per Laye=: 9 21 15 7
Transfer FuncEic_s: Linear Sigmoid Sigmoid Sigmoid

Connectivity: Full
Connection File: _:/A

'Initial Weights: -0.50000000 .to 0.50000000

Learning Rule: Cumulative Delta

Random Seed: 756923880

Training Parame:_r_

Learning Rate: 0.30100000
MomenEum Factor: 3.91000000

Total Traning C_':ies: 40000

Minimum Traning Error: 0.00000000

Update Interval: 1

Training Patterns O=der: Random

Inpu_ Noise: No :_u_ Noise

Training File: =:',ann\gatordem\glass\gd.trn _65

Validation File: c:\ann\gatordem\glass\gd.val 25

Testing Parameters

Input Noise: No _nput Noise
Testing File: ¢:\ann\gatordem\glass\gd.val 25

, , M i l ,i i
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CONFUSION MATRIX

(Percent correct!

II

NeuralNetworkClassification

Class1 lg!a.,_._g!a.EE3._ .Q.aE__G!aEEg._g!a.,s.EZ
._ 87.5 12.5 0.0 0.0 0.0 0.0 0.0
.._ 10.0 80.0 0.0. 0.0 0.0 10.0 0.0

Actual ._ 33.3 33.3 33.3 0.0 0.0 0.0 0.0

Classification CJa.EE_ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 100.0 0.0 0.0

.C.JaEE_ 0.0 0.0 0.0 0.0 0.0 100.0 0.0

.CJBEEZ 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Chance = 100 / 7 = 14.3%
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Developments in Neural Network Chips

Dr. Ronaid Benson,President

NeuroDynamX,Inc.
P.O. Box323, Boulder,GO 80306

phone:(303) 442-3539 fax: (303) 442-2854 internet:ron@ndx.com

Hardware implementations of artificial neural networks can yield substantial
performancegainsover softwaresimulationsdevelopedand deployedon conventional
von Neumanncomputers. This is due to the inherentlyparallelprocessingarchitectures
of artificial neural networks. Dr. Benson will survey recent developments in VLSI
integratedcircuitsthat exploitboththis parallelismand the low power requirementsof
sub-threshold CMOS. Applications include motion-sensitive artificial retinas and
artificialcochleas for auditorysignalprocessing. Dr. Bensonwill also discuss neural
implementationsfor data fusionandsignalblending.

• Introduction to NeuroDynamX

Dr. Ronald Benson • General Purpose Neural Chips

President • Special Purpose Neural Chips

• Neural Chip for Source Separation

NeuroDynamX, Inc. • Conclusion

Boulder, Colorado

,, , Ill , , , ,,, ,
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• Sensory Processing

• Computationally Efficient

• Input Fusion

• Robust

General Purpose-..
Neural Chips -

Isv • Connections Per Second
FRONT

- ENDS • Connection Updates Per Second

,.c • Number of Connections
NEURAL

NETWORK - Architecture: Fully Connected

ENGINE • Power Hungry

Sr'ECZAL Acc_._or O_h_ • ETANN, CNAPS, Neural Accelerators
HARDWARE! Car_ Analog N,_-_ Pineda Chip, Ni 1000

Digital Chips
Ch ;.p._

: N E tj R O D Y:N A M X 0) °



Input

PerformanceCI°ckFrequency 33MHz, 25MHz I] i _2_

• Two Billion CPS • i__ _tt_,_t FPU 160MFbps _• Slow Weight Updates - - _.'"

• l 0,000 Weights PrototypeVectorSize 256 Dimx 5bi! _,

-i i ++o, +++,+++o,,) +
-64 Neurons, 128 Inputs __ _ ;_.__Z_.i.,.,_ x ,0,,I •--,ioov -'t _w,_,.'Jr,_ _. _._, C_.

Output _:

==,,L=_I,_, • i860 Accelerator
_k tmm 4.m._ =_.m • 45 Million CPS

21_m sztm _.mtm

ham,. .......... ,--- _ _.--c.-_,_15-_-_. ---...5:- :_.--_-__-'_ - 15 Million CUPS
ba_,,_,_,_,,_,,,_.m u6_-- _=,- ,_l,_ ; I ..... I "-.-.I,;,.'_,F a. I "-__._'_7.-I_ I -__._.-.._ - Network Size Limited Only by
km,,,m--t,.,,,+mlmm..,- m_- _='" i: 1%,_.""I",._1_i.'.'__

+;"t._ ?i[;__ Memory • >
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|.0..

0.8. I

0.6. ,, AW = +200mV _/] 1.0 .......

O.4 0.6

0._ 0.4

- 0.0 ......... , 0.2

.0.2 .I_LI L i _'_ "_ _ " "0.20'0

•0.4 .0.4

-0.6, .0.4

.o.I " o'._ " o'_ ' io-1.o , .
-I,0 -0.8 -0.6 .0.4 .0,2 0.0 0.2 0.4 0.6 0.8 1.0

X X

Flliure 4.S Data er the mu|tlply char_cter|_tic or th_ _ynapse.
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• BiologicallyInspired vd

• Low Power- Subthreshold CMOS • 11T I _5`

• Silicon Retinas ,cx) .__] "
s

vg x

• Silicon Cochleas _"
- 5"

Basi_ MembeaM

Oval Window . .
• Rctun_ s McmlNa*c / _a

..... _-__ -'_. --_ : ,.. ---- _

sCt)= E(t)-CS(t)=[I +cl-'Ax(_)
• ,e.'. ;'- ''_* '

\
where E(t) is the measured signal ! ! i : " -- :.,,__

A is the mixing matrix _:': _ ...... :

X (_) is the actual signal E._ _ - R.,_W.d.-B.
) " .= and S (t is the separated signal. ._at,,t_,,. r_,.,. ,-, _..,_,tt.d .,_.,..,.pUB.d t, --p,--,,,, t_ _,,r

F'I4_ 1: "]_ I_ X 1_mct.w_k .nd _iclLenl,$ of th, bull_r n_n_bcin_ Ad_plt.d lr_m _ _1 _wlck

N.'E U R OD Y N AM X



to Neztral Networks:

Genetic Algorithms and Overview _,

Non Linear Biased Regression • Modelling techniques -_ 3 _,
DLF Artificial Neural Networks 5" _ _

- Genetic Algorithm _ ta

Barry M. Wise - Partial Least Squares -o _ _"linear ::r to

Battelle Pacific Northwest Laboratories polynomial inner relation _ r-" :"

Molecular Science Research Center splineinner relation --- o - _"

- °Locally Weighted Regression co _ _- _ "_

Neural Network Workshop • Test system _._ _• Model forms 'm_ o _
for the Hanford Community _ .o_ ©

January 26, 1994 • Res.lts _ _ _ _
Conclusions x .., _0=.

o

Noo-lo "_
t,D O "< a_

Neural Net_vorks DLF-ANN Training AlgoriNm _ ._-_ ®
cr _. :_

• Use Sequential QuadraticProgramming _l _ itoo
faster _ co a_ o

MLF Nctw0rk (/_ ,-.t- m

DLF Network - handles multiple functionality well _ _ _ =

- possible to incorporate constraints _ _ a_

• Large nets use Conjugate Gradient methods _ m _"

• Global minimization procedures? < _ ta

Linear Network 12o

t_
o

_
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Genetic Algorithm GA for Model Structure Selection -

• Basicgenetic algorithm for optimization: • Example" suppose z = F(x,y)
- encode potential solulions as binary "genes" • List all possible model terms
- initialize with randon_ population - x y XA2yA2 XA3yA3 xy

- test population against "fitness" criteria • Produce random initial population of models, 1
let fit solutions live and breed, let unfit die indicates term is used, 0 if term not used:

- stop when population or solutions converge - 1101001 _.
• In our example -0101011 -_(I)

- use to determine non-linear model structure - 1111100 etc.

- many possible model rorms • Fit models to part of data set by least squares _"
= - fitness criteria is predictive ability of model, _"

not fit to data • Test models' ability to predict remaining data
• Calculate prediction error, rank models

6
5

|. , i r]

"Breeding" Models Par6al Least Squares (PLS)
° PLS regression decomposes the matrix of

• Randomly select pairs of "fittest" models independent variables (U) into linear combinations of
variables with greatest covariance with the depende_t

• Randomly select "crossover point" and twist variables
11]01001 --> 1101011
01 [01011 --> 0101001 • PLS algorithm captures the most remaining

covariance between U-block scores and y at each step
• New population consists of Iittest models and

their offspring • PLS factors or Latent Variables are calculated step

• Check for convergence of population by step
• Cross-validation is used to determine optimum

• Allow for random "mutation" of genes number of LVs to retain for best prediction

7 8



The PLS Inner-Relation Spline-Partial Least Squares (SPL_PLS)
Inner-relation can also be spline of abritrary degree t:::

• PLS usually linear--a single coefficient relates
"scores" from independent and dependent block and number of knots _"

• Inner-relation can be made non-linear, such as a • SPL PLS algorithm used here iterates to obtain
polynomial used here -- PolyI'LS maxi-mum covariance with transformed scores _-

$plirm fit using 1 knot, and polynomials of degree 2

1.5 X-.vs. Y-Block. Secn'e.s,for F'o._t. Latent.Variable, . 1 _..
• _ + ***. .-*_ :::r.,l. 4,a _t]t_2 _4¢_#_*" * "_" Circlesshowknot location

l . g. _._..w-_. . ,., .t, • ,* .---

.¢_._"d .. __os + . _....j.

4. '¢" 4. - 3"_'" :=
.0 -0.5 . _ _+

-1 , + ++ .** + _. +

-2 #:" v, .%

-2.5 - 1.5 23

-4 -3 -2 - I 0 1 2 3 4 -4 -3 -2 - 1 0 1 2 3
Scoreon X-block latent variable2

Score on First X-BIt,zk LV 9 "]0

Locally Weighted Regression (LWR) Identification Test System
flow in

• LWRfindstrainingsamples"closest"tonewsamples Systeminput(u)/_
in dependent variable space and forms local model I

T

• Points further fi'om new sample weighted less Voltage to variable
• LWR routine used here: sFeed pump

- decomposes independent varibles with Principal level
Components (similar to SVD)

- forms linear local model Voltage from /
- Mahalanobis based distance measure level indicator

(Euclidean based on adjusted PC scores)
- Weighting function (1 - d3) 3 d furthest local point _ v

• Models cross-validated over: System output (y) flowout w ,o -
- number of local points _o

- number of PCs retained _2

_



Dynamic Model Forms GA Model Form

• Both Finite Impulse Response (FIR) and - Takes linear, squares, cubes and cross terms of ARX
Auto-Recursive eXtensive variable (ARX) forms used inputs. Selects from the following terms:

• FIR models use last six inputs: y(k) = C [u(k-1) u(k-2) u(k-3) u(k-4) u(k-5) y(k-1)
u(k-1)^2 u(k-2)^2 u(k 3)^2 u(k-4)^2 u(k 5)^2

y(k) = f [u(k 1), a(k 2),, u(k-6)] y(k.1)^2 u(k.1)^3 u(k.2)^3 u(k.3)^3 u(k.4)^3
• ARX models use last 5 inputs and last output: u(k-5)^3 y(k-1)^3 u(k 1)*u(k-2) u(k-1)*u(k-3)

y(k) = F [u(k-1), u(k-2),, u(k 5), y(k 1)] u(k-1)*u(k-4) u(k 1)*u(k-5) u(k-1)*y(k-1)
• u(k-2)*u(k-3) u(k-E)*u(k-4) u(k-2)*u(k-5)

• In non-linear systems, final steady-state may depend u(k-2)*y(k-1) u(k-3)*u(k-4) u(k-3)*u(k-5) s

on initial condition -> ARX form required u(k-3)*y(k-1) u(k-4)*u(k-5) u(k-4)*y(k-1)
• If system has no hysteresis, FIR form better for u(k-5)*y(k-1)] _,

forecasting several points ahead • Over 8 billion possible model structures, hundreds of a.•
possible cross-validation sets

13 14
_ ._L ._L_ I H |

Noise Robustness Tests
Identification Tests Performed • Progressively more noise added to output ot"

identification data set
• A series of six identification tests performed

• Models identified then tested on "noise free" data
• Models identified then tested on entirely new data set

Training Set 1 Output - No Noise Training Set 2 Output - Low Noise

15 / TrainingSet 10115 Test $e_ 10___ 10

Interpolation _o '"_: ,_ :[j_] =__test data _ f,..._-_r
o_. i_'_'___ _[J °o 5oo _ooo °o 5oo _ooo
0 500 1000 150o 0 500

Training Set 3 Output - Med. Noise Training Set 4 Output - High Noise.
I

15 Training Set 15 Test Set 10 101 "i[

Extrapolation ............ :,,_---_..._.1, [ " "..... " ..... :_"
test data 5 _,-_.--_L;-2JI_ [._,..... ,. ,..,. 5

[!0" 0
O; 0 0 500 1000 0 500 1000 CO

o soo _ot_ o _oo 16
15



Typical rl?aining Data Set Typical Test Data Set
I1)

_

12 .....

Output + noise - Actual and

i1 Output ,i ,_,,! / _l i d_ 1¢[-/ !r"----_! _¢,,./ .predictedoutput ,/--/'-i]

lJl II h ! '

IV ' " :::)Inp o _.
4 20 40 60 80 100 120 140 160 0 :20 40 60 80 100 120 140 160

Tune T'm_e

,_-
- 17 18

._.,_......,.,_. _'C',_"_'_"_1

Results for Interpolation Results from Noise Tests
and Extrapolation o.,

o.°1 | ]JI5------1 [] Interpolation _i'°' l|I [] Low Noise

-'_ [] Extrapolation _ 0.4 : [] Medium Noise

_ " 0.3: [] High Noise

_ x x x x x _, x _ _ _ _ _ _ z z <
< < < < < < < _ _1 _ < <

_ -_ _, ,,,=.nv -_ < <
-- d. Model Form and Identification Method _'

_x, _. c.. ._1 I_1

- _ _a Note: shows best of -_

_ Note: shows best of Model Fonn and Identification Method GA and ANN results 20,
CA and ANN results 19 -



--:-_ .... = . _ ..... :: _._-o_._.- .... -- _ _ .... _-- - "_--_:_ii_+"_v "---, ...... T--i ............

; I I I

<_ _':--_+i _ mr++'+,__ 1,_J'_ t) _ .... '

Non-Linear Methods Only Variability in GA Solutions _=

o.+;IF:' " ++• _ [] G^Su.A
¢n 0.12 Low Noise co 2.5 _.

0.,- _°,,.m.o..ot----1111 _ []°'_
"_ " [J_ [] High Noise . L.JI _ +. [] [] OAS°.C +0.08 _" , _"

0.06- __ .N lira GA Mac B "_• . ¢_

0.04-" _ 1 El GA Mac C ",Z "

oo2:. _ z o.s _ []DLF-ANIq =o ! E
x= _ x x _ x o.... ..,--_ ira.ram_ =
< < < < < < Interpolation Extrapolation No Noise Low Noise MediumNoise High Noise _.

_, =. =. z z o IdentificationTest
o_" .,, ._ < _
m m t_

ModelForm and Idc_tificationMethod ,_
Note: shows best of Note: shows best
GA and ANN results 21 of ANN results 22

".__"__"'_'_1 _ +_+'+""'"+"°"'"=_

Variability in GA Solution Final GA Model Forms
Close Up • Terms used in "low noise" solution highlighted

y(k) --C [u(k-1) u(k-2) u(k-3) u(k-4) u(k-5) y(k-;I)
ANN ~0.5 u(k.1)^2 u(k-2)^2 u(k-3)^2 u(k-4)^2 u(k-5)^2

0.2:l I [] oAs,,.A _----1 T ,_
o.,+7 I mo^_°.,I--/ /_ Y(k'l)^2u(k'l)^3u(k'2)^3u(k'3)^3u(k'4)^30.16 "

_o.,,! I [] o^_°,cE1 l u(K-S)^3y(k.1)^3u(k-1)*u(k-2)u(k-1)*u(k-3)

i u(k-l)*u(k-4) u(k-1)*u(k-5)u(k-X)*y(k-1)

- (k-3) uCk-2)*u(k-4) u(k-2)*u(k-5)
u(k-2)*y(k-1) u(k-3)*u(k-4) u(k-3)*u(k-5)

u(k-3)*y(k-1) uCk-4)*uCk-5) u(k-4)*y(k-i)°-°_-_m_ i [] DL_-_ V----Illi_I_-Pli'III-1 u(k-5)*y(k-1)]

oo1=,,i i.....O=o_,m_m mo i • 20 out of33 terms used
Interpolation No Noise LowNoise Medium Noise High Noise • Solution quite consistent from run to run

IdentificationTest
• Selectedterms not what I would have guessed!! _o

Nole: shows best 24
¢}I"ANN l'i'Stllls ?_

I



Results Conclusions
• ARX models more effective at one-step ahead

predictions, as expected • Model structure is critical

• DLF-ANN model structure appropriate" for this type • If you've got the time and computer power, .
of prqblem, most consistently good results DLF-ANNs good choice for this problem

• GA works very well when test and training sets • Good promise in genetic algorithm, some very good
similar, but results can be highly variable when they results and computationally efficient

are not • Use Poly-PLS for very fast, generally acceptable
• Note: GA selects model structure results

• Poly-PLS generally "acceptable," very fast

• Poly-PLS models better than SPL PLS in all cases _--
• LWR quite affected by noise, result of subset

selection?

25 26

Concerning Neural Networks Common "'Deficiencies"
Marvin Minsky Warns:

• Lack of an appropriate "benchmark" from other
accepted approach

"They write a paper saying, • Showing the best of many solutions

'Look it did this,' and they don't say, • Confusingfitandprediction
'Look, it can't do that.'

• Little discussion of effect of"meta-parameters"
Most of them are not doing good science,

• No account of similar approaches that failed
because they're hiding the deficiencies."

Scientific American, November 1993

- 27 "28 _
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Combining Neural Networks

Sherif Hashem

Pacific NorthwestLaboratory,MolecularScienceResearchCenter,
Computingand InformationScience

K1--87,P.O. Box999, Richland,WA 99352
phone:(509) 375-6995 fax: (509) 375-6631 internet:s_hashem@pnl.gov

Neural network based modelingoften involvestrying multiplenetworkswith different
architecturesand/ortrainingparametersin orderto achieveacceptablemodelaccuracy.
Typicallyone of the trainednetworksis chosenas bestwhilethe restare discarded. In
this talk, we discussthe use of the optimal linearcombinationsof a number of trained
networksinstead of onlyusingthe best network. Optimallinear combinationscan also
be appliedto combinedneuralnetworkand non-neuralnetworkmodels.

OUTLINE MODEL CONSTRUCTION

• Model Construction. • Modeling problem: Given a (process) data set, construct a

model that "closely" approximates the underlying process.
• Combining Models.

• Modeling involves:
• Optimal Linear Combinations of Neural Networks.

- Searching for the "true" model.
- Definition.

- Computing (estimating) the model parameters.
- Combination weights.

• As a result, a number of estimated models ate often constructed.

• Benefits of Combining: Typically, one model is chosen as best, while the rest are discarded.

- For well-trained networks.

- For poorly trained networks.

• Ill Effects of Collinearity.

• Concluding Remarks.

............ !11 '
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MODEL CONSTRUCTION OPTIMAL LINEAR COMBINATIONS OF

NEURAL NETWORKS

Neural Network Model "7 "1

r =:..(2) )( C_/. _--'_.:

lVlodeling involves selecting:

• A network topology. OLC of Neural Networks

p
• A learning technique. Y = _ ai Yi = _q7.

i=1

• Current approach: Train many NNs, then pick the "best."

• New approach: Optimal Linear Combinations (OLC) of NNs.

COMBINING MODELS COMBINATION-WEIGHTS

• Simple (unweighted) averaging: Laplace 1818. Optimality Criterion:

p Minimize the Mean Squared Error (MSE) over observed data.
Given YI,...,Yp, use g = _ FliP.

i=1

MSE= e,(r(,_)- ?):.
• \V(:ight(_clavet'agi,lg: Bates -rod Granger !969, and Pded 1969

The MSE-optimal weights:
-- P

Given Y1,...,Yp, use Y = _ veiN, where .Y:ai = 1.
i=l , 5* = 'I)-tO.

• Optimal linear combinations: Granger and Ramanathan 1984.
where

Given Yl,..., _, use F" ---a0 + _ aiY/. _ = [¢ij] = [E(yi(X) yj(X))]pxp and G = [0i] = [g(r(.,k')yi(,_))]pxl.
i=l

In practice: Given a data set 7), estimate (7*using

Ivl

k=l

Ivl
_ = g (r(_'k)v_(=_))291 vi.

k=l

,i
, i , ,

, ,



| , f

Neural Network Workshop for the Hanford Community 29

OTHER, FOR,MS OF MSE-OLC BF_NEFI_SOF COMBINING

FOR WELL-TRAINED NETWORKS

A. UnconstrainedMSE-OLC witha constantterm. EXAMPLE i

= ]__iYi= &tip. • Problem: Considerapproximating
i=0

B,ConstrainedMSE-OLC witha constantterm. r(X) = sin[2_"(I- X)2], whereX E [0,i].

-- P P

Y = _ c_iYi = c_t}_, _ c_i= 1. • NN model:
i=0 i=1

- Topology: Two 1-3-1, two 1-2-2-1, & two 1-4-1 NNs.C. Constrained MSE-OLC without a constant term.

- Training algorithm: Using Error Backprop for 5000 iterations.

i---1 i=1 - Training data: 10 uniformly distributed data points.

D. Convex IvISE-OLCs: - MSE-OLC fitting data: same 10 points.

- p p • Resultant true MSE:
Y "- E o_i _i -- _t_,_, E o_i -- 1, ]. > oq > 0.

i=1 i=1

- Best NN (NN6): 0.044.

- Simple averaging: 0.072.

- MSE- OLC: 0.00020;

99+ 7o less than NN6 or simple averaging.

BENEFITS OF COMBINING BENEFITS OF COMBINING

FOR WELL-TRAINED NETWORKS FOR POORLY TRAINED NET%VOI::LKS

EXAMPLE 1 (Cont.) EXAMPLE 2

2 | , , , , , • Problem: Consider approximating

,.5 mSE-OLC^verage--- r(X) =sin[27r(1 - X)_'], whereXE [0,11.

1
• NN modeh

o..5 - Topology: Two 1-3-1, two 1-2-2-1, & two 1-4-1 NNs.

- Training algorithm: Using Error Backprop for 2000 iterations.

.¢ - Training data: 10 uniformly distributed data points.

- MSE-OLC fitting data: same 10 points.

• Resultant true MSE:
-1

..... , , , , - Best NN (NN6): 0.219.
o 0.2 0.4 0.6 0.s l

X - Simple averaging: 0.241.

- MSE-OLC: 0.000060;

, 99-+- °'/oless than NN6 or simple avet_tging.
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ILL EFFECTS OF COLLINEARITY

MSE-OLCs:
BENEFITS OF COMBINING "'"

? = =a'?.
FOR POORLY TRAINED NETWORKS i=I

Unconstrained MSE-OLC Weights:
EXAMPLE 2 (Cont.)

2I , , i ,

[ _=_'(_ .?-- where
A verage ....

15- MSE.0L-C-- ] _ = [¢ii]= [E(yi(,_)yi(,,Y))]pxpand6)= [0i]= [E(r(,_)yi(X))]m,l.

I - I Constrained MSE-OLC Weights:
0.8

,;.= i'/(i"a-1f),
0

where a = [¢oij] = [E (6i(Z) 61(Z))] is a p × p matrix, and i' is a

0.5 p x 1 vector with all components equal to one.

.1 Computational Ill Effects:

l._ Near singular matrices (inversion, sensitivity, round-off errors).

._ _ I , _ Statistical Ill Effects:
0 0.2 0.4 0.6 0.8

x Collinearity can undermine the robustness (generalization ability)

of the MSE-OLC.
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Parallel and Distributed Gradient Decent Learning

i. Mehr,Z. Obradovib,R. Venkateswaran

WashingtonState University,Schoolof ElectricalEngineeringand ComputerScience
Pullman,WA 99164-2752

phone:(509) 335-6601 fax: (509) 335-3818 internet:zoran@eecs.wsu.edu

First part of the talk describesa distributedlearningalgorithmwhich usescooperative
effortsof several identicalneural networksfor moreefficientgradientdescent learning
(join work with R. Venkateswaran). In contrastto the sequentialgradientdescent, in
this algorithm it is easy to select learning rates such that the number of epochs for
convergence is minimized.It has been implementedon a network of heterogeneous
workstationsusingp4. Resultsare presentedwhere few learnerscooperate and learn
muchfaster than if they learnindividually.

Second part of the talk describes a highly parallel learning approach based on repetitive
bounded depth trajectory branching (joint work with I. Mehr). This algorithm has
objectives of improving generalization and speeding up convergence by exploring a
number of alternative trajectories in parallel in order to find one that avoids local minima.
The experimental results show an improved generalization compared to the standard
back-propagation learning algorithm.
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Contents Cooperation

for

• Distributed Learning Distributed Learning
Venkateswaran, R. and C)bradovi_, Z. (un-

der review) "Efficient Learning through

Cooperation." 1994 World Congress on

Neural Networks, San Diego, CA.

Venkateswaran, R. and Obradovi_, Z. (under

review) "Efficient Learning through Cooper.-

. Highly Parallel Learning ation." 1994 World Congress on Neural Net-

Mehr, I., and Obradovic_, Z., (1994) "Par- works, San Diego, CA.

allel Neural Network Learning Through Repet-

itive Bounded Depth Trajectory Branch-

ing," Proc. IEEE 8th Int. Parallel Pro-

cessing Symposium, Cancun, Mexico.

Cooperative Learning:
Drawbacks of Back-Propagation:

• Several slave processes run the standard

• Slow Learning back-propagation algorithm concurrently

controlled by the master process.

• Local Minima Problem

• All slave processes work on neural net-

• Learning Rate Determination works of identical topology, each using a
local copy of the training set.

System Topology

MAS ._

prove generalization through cooperative ef-

forts of several identical neural networks.
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The Algorithm: Cooperation Models

1. Master initializes weights. • Epoch-based Cooperation

Slaves cooperate after a specified number

of epochs (one era). The master forms a
2. Master broadcasts weights to slave=.

new hypothesis after each era by averag-

ing these weights.
3. Slaves adjust the weights using BP.

Each slave uses its own learning rate

(difFerent from others). • Time-based Cooperation
The era is specified as a duration of time.

If all slaves run for the same duration, no

4. Periodically, slaves cooperate, machine will be idle.

• The communication graph is simple. • Dynamic Rates Cooperation

Initial learning rates spread uniformly in

• The number of communications is small. (0,1) range. After few eras, the learn-

ing rates range is reduced around the cur-

rently best rate.
• Suitable for a distributed implementation.

Two-Spirals Epoch-based Results
Pattern Classification Results

Problem : Two-Spirals Problem.

Problem: To classify 'A', 'I' and '©' Dimension : 2 Classes: 2

Dimension: 2 Classes: 3 Architecture : 2-5-1 Examples: 40

Architecture: 2-9-3 Examples: 16 Learned : 100% Era(epochs): 100

Learned : 100% Era(epochs): 50

One Node

I 0.05 I 0.1 10.1510.2 10.251o.31 o.3s 1
One Node , -,_ n v oa , _o_ , _=o_ . _ ' _- _ - -A__" '
t u.v, i u'va I u,_ 1 1251 u'_a I 0.175 I ......... ' .......... '
i T08 1 112951 1179 I 1419 I >1°°°° I

Two Nodes Cooperation

Two Nodes Cooperation 0051 0 35 0 15 0.35 0.25 0 3510.05, 0 5
0.05, 0.15 C).1, 0.15 0.01, 0.15 0.05, 0.175 .... ' ' I1099 1040 1374 985 2691 2122 1777 1920

Three Nodes Cooperation
Three Nodes Cooperation 0.1, 0.3, o.5 0,15, 0.25, 0.351
.0.05, 0.10, 0.15 0.01, 0.1, 0.2 1775 2103 ...... I

1149 1148

Four Nodes Cooperation
Four Nodes Cooperation 10.1, 0.2, 0.3, 0.4 I

10'05' 0'1' 0"15'0'211 946 I 2498 I

,i i_ , i ,I i ,
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Homogeneous vs Heterogeneous Analysis of Experimental Results

Problem : Two-Spirals Problem.
• Cooperative approach is better.

Dimension : 2 Classes: 2

Architecture: 2-5-1 Examples: 40

Learned ' 100% Era(msec)' 400 • Select r/1 and ri2 such that

7"/1< r/rain < r/2

DEE5000, DEC5000) System
0.05, 0.35 0.15, 0.35 0.251 0135 0.05, 0.5 • For a heterogeneous system time based

40 J 34 ! ....28 '' 27 ..... cooperation is better.

(DEC5000, HP9000/735) System
0.05, 0.35 0.151 01:35 0.25, 0.35 0.05, 0.5 • Larger rate should be assigned to faster

6 ....... 6 J 6 5 machine.
.......................

(HP9000/735, DEC5000) System
0.05, 013S 0.i5, 0_35 0125, 0.35 0.05, 0.5

.........

22 6 7 21
...........

ObJective"

Branching
Explore a number of learning trajectories in

for parallel in order to find one that avoids local

minima.
Highly Parallel Learning

E 't . branching angle ral

/ branching angle ct*,

Eo ... - .... A better trajectory

,.. O ra ov, , ......i.... ' "Neural Network Learning Through Repetitive , _'"'-.;.',:, \ [ _ Standard trajectory

Bounded Depth Trajectory Branching," Proc, E4[ ...... i .... i ...... ;7.:.'..'..-.._.
IEEE 8th Int. Parallel Processing Symposium, : " : _ -

x 1 x2 x3 x4 x
Cancun, Mexico.
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The General Branching Algorithm (5) Using a cross-validation test on all existing

trajectories select _r of those and aban-

don the remainder.
(1) Initially follow a single learning trajectory

corresponding to the standard algorithm.

(6) Starting from _r selected trajectories of

step 5 continue constructing and exploring
(2) Generate new branching points after a spec-

ified number of learning steps, new trajectories on new branching points
until B trajectories are constructed,

(3) At each new branching point start explor-

ing new learning trajectories in addition to (7) Continue with step 5 until the training er-
ror is within a prespecified tolerance or for

the existing ones.
a prespecified number of steps.

(4) Continue with step 2 until B trajectories

are generated.

Short Term Branching Algorithm Long Term Branching Algorithm

The idea" Generate new branching points at- The idea" Generate a new trajectory at the

ter presentation of each training pattern, end of each epoch.

1 We;gilts initialization

WeiihU initializaliun Trajectories = l
Trajectories • |

{ 'u_.,.,.,.=o..p.,,...J [ u._al.=in,a,,p--.....}

Traji.,ctories= _| Trajeclorie=,=2"Tr,,jectorles [ Select_1trajectories Spilteachor M selectedIrJjecloriesin two

I "]" Trajectories ,=hl Trajectories = Trajectories . .%1

Yes No 1

l { Computeerror functions }I

[ Computeerror r-nelionll } -- __

Ye_ NO

Yu No I

__ I , Select the beat trajectory }

[ Slicer the blair trajectoryJl.:nd0t' truinl.ll lend ul' trainin,

i i i i
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A sequential implementation is very expensive

--_ (B4. +...4.3)+

flog2P] Long Term Algorithm Analysis

A parallel algorithm is more suitable for a A sequential is still very expensive

highly parallel system rather that distributed Ts,l ._ B+3 3f,:+ 3to
'stem implementation since --_/'" 2 F-_-

Tp,s tt tc + t_,
--_,14. 4-

Ts "_P Cp flog2 P] Parallel implementation is time efficient since

TP'I "_ i 4- tt 3 (tc 4- tv)
Here" -_/_ _4- Bce

- the number of available processors;

- the net update time by standard alg; Here:

- a network parameters transfer time; ce - the computing between two updates by

_ - a single C-V test time; the standard algorithm.

tc - branches selection time after a C-V step.
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Trajectory Construction Methods

4. [bl,...,bp] = [al,'",a]-l,2aj,aj+l,'",ap],

A new trajectory where ] is given by aj -- rnax{ai}.

W + z_W* = [wl + bl,..., wp + bp]

is constructed using one of following methods: 5 Compute bi ,a_._E_E77, _ r/, where 77• -- --17 OWl'

and "q* are the learning rates for the stan-

dard back-propagation trajectory and for

1. Compute bi -- 0 if i = j and bi = ai oth- the new trajectory.

erwise, where j is given by aj -- rain{ai}

and {ai} are the standard BP updates. Methods Comparison
Algorithm Run time I Error

Back-propagation 45 min. 10%
_Method 1 45 min. 46%

2. Compute 6i = 0 if i = j and bi -- ai other-
Method 2 45 min. 40%

wise, where j is given by aj = max{ai}. Method 3 45 min. 44%
Method 4 45 min. 40%

_/Vlethod 5 45 rain. 45%
3. [bl,'", bp] = [0,..., 0, ak+l,..., ap] where

k is the largest integer such that the angle

between AW and A_V* is less than 45 °.

Standard Back-Propagation Training Epochs Comparison
Data Spirals Breast CancerI

Configuration 2-6-1 10-10-1 i 1 , i i iJ " _ I
Learning rate 0.05 .... "0.05 ..... i_ ,i .........................]...................................................i[-Iklumber of patterns 100 250 } ,o ..............._,............',..................i, !, , i

I Training error " 21% 4% ._ .....:-_z_\.....t........_.........:.............,............,...........: ..............:
Generalization 73% 76% _ _, 60 ........,-v-_-,.,i _-------_,' : ' ' 't t'

_ Epochs 50000 25000 "_" _o .......
.... i _ • _ _-,, , .......

Nun time 45 rain. 65 rain. ,.o ........._'i"..............!...............i_ ' ' ' -!................_......."

Short Term Branching Algorithm
Data Spirals Breast Cancer 10000 ,.ooo0 30000 40000 50000

epochs

Configuration 2-6-1 10-10-1
-- ,- ...... ,

'_ea rning rate 0.1 0.4 Sl_ndardbackpropagalion
Jumber of patterns 100 250
Training error 18% "] 3.5% "' - .... Branching algorilh,n (sequential or parallel)

; Generalization 77%"' 78%

t-EPochs 7000 5000
Sequential run time 14 hours 24 hours
:_arallel run time 47' rain. 63 rain.

i
, ,, i
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Computing Time Comparison

i I t i ,I i , _ i _ Analysis of Experimental Results
! I ! i i i i •

._.l L____.I...... 'L......................!........L.... L..................

,0 I !, i i| !T "'-. i t
=_ 60 -.r.--,-----'_-- .... L........_..........................-L......J--............... e Branching improves the back-propagationI | I I '_ _ ! I i I I I
•-. I: I ! _I'* ! ! ! I I I

•- i I _ _ "-,. _ I i generalization40.-i._l .......L_ i..............:.;._-..-.._..........._........._........._..... L...... •• j --1, i--. i ' ,I. I , _ _ _ -.,. , i i
I! i i ! i ! i'-.! ! i "

_ _ "'_. ' • Parallelization improves the branching al-- ! i i i i'--_ .....
gorithm efficiency.

1 2 3 4 5 6 7 8 9 10

time [hours]

Standardbackpropagation • The branching idea is applicable to other

learning algorithms.
...... Branching algorithm (_equential implementation)

............ Branching algorithm (parallel implementation)

Conclusions

Both approaches (distributed and highly par-

allel) show:

• improved efficiency

• improved generalization.
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Neural Ne.WvorkAlgorithms for VLSI .......,=..n" ,=i,',,',_rid Test Au_o,',,atlon.... .

Dr. Jack Meador
WashingtonState University,Schoolof ElectricalEngineeringandComputerScience

Pullman,WA 99164-2752
phone:(509) 335-5363 fax: (509) 335-3818 internet:meador@eecs.wsu.edu

The complexnature of VLSI designhas for some timedemandedthe useof computational
toolswhich can assist with importanttasks suchas cell placementand wire routing. The
developmentof testingalgorithmsfor manufacturedICs is also typicallytoocomplex for an
unassisteddesignerto tackle. This presentationaddressesthe experimentalapplicationof
existing and new neural network algorithms to basic problems in VLSI design and
automation. Although VLSI applicationsare the prime focus here, the extension of the
basicconceptsto otherapplicationdomainswillalsobecomeevident.

In the mostgeneral sense, IC test involvesthe determinationof circuitfunctionalitybased
upon an observedresponseto a stimulus. The value of IC test has been establishedfor
many years in the digitalcircuitdomain. DigitalIC test design focusesprimarilyupon the
determinationof a stimulusset whichadequatelyexercisesall internalportionsof a circuit.
Any deviation whatsoever from a correspondingset of output responses signifies a
malfunction. The design of an adequate stimuluscan be cast as a discrete optimization
problem which has been approached in a varietyof ways includingthe use of Hopfield
neuralnetworks.

Once a stimulusis determinedfor a digitalsystem,testingcan proceedrelativelyindepen-
dentof parametricvariationin the devicefabricationprocesssincedigitalcircuitfunctionis
inherently immune to such variation. Analog and mixed-signalIC test does not enjoy a
similarluxury. The fundamentalnatureof analogcircuitryand itssensitivityto randompro-
cess variationmakes the test problemsomewhatmorecomplex. It becomesnecessary to
cast analog and mixed-signal IC test as a statisticalpattern recognitionproblem. One
approach to solvingthis problemis to use a trainablepattern classifierwhich minimizes
mean squareerrorfor a giventrainingset. Feedforwardneuralnetworkclassifiersnaturally
fit this kindof problem. One difficultyassociatedwithfeedforwardnetworktrainingfor this
task involvesthe need to execute a largenumberof accuratecircuitsimulations. This first
part of the presentation will briefly introduce a technique for reducing the number of
simulationsneededwhile acceleratingnetworktrainingand retainingnetworkaccuracy.

The design of a digital integratedcircuit also typicallyinvolvesthe determinationof the
placement and interconnectionof a vast numberof smallcomponents. Althoughusually
possible, it is typically impracticalfor designersto determine all aspects of component
placements and interconnectionsby hand given typical engineering cost constraints.
Becauseof this, algorithmsfor automaticallydetermininga large percentageof component
placementsand interconnectionsare used to helpoffloada substantialportionof the task
ontoengineeringworkstations.

With increasedIC size and densitycomes greatersystemcomplexity. Existingplacement
and routingalgorithmsthus become increasinglyconstrainedby their inherentsequential
nature. Neuralnetworkalgorithmsorganizedto solvesuchproblemsprovideone approach
for parallelsolutions. The secondpartof thispresentationwillprovidean introductionto the
applicationof a new variationof the Kohonenfeaturemap algorithmto the parallelsolution
of these and relatedoptimizationproblems.
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Overview

VLSITest Digital v,s, Analog Test
problem statement

Digital Test
prior work "stuck-at" fault models

simulation sampling for neural test patternsynthesis
diagnostic training

high fault coverage

VLSl Cell Placement and Routing Analog/Mixed-Signal Test
problem statement

catastrophicand parametric fault

prior work models

classifier synthesis
elastic nets for maze routing

low classificationerror

,'Neural Network Algorithms for /Neural Network Algorithms for
,:,'/VLSI Design and Test Automation 2 //VLSI Design and Test Automation 3

Digital Test Pattern Synthesis Analog/Mixed-Signal Test[Chakradhar 91]

Fault ClassifierDesign

Simulation Sample TrainabPe Pattern Classifier

Production Test

._ _,J,t OOOOOOO

oO,, ,oo., ., oI_Io
OldlOn o

oo oO__) -)0000000

IC Measurements Trained Classifier Fault Discrimination

/."Neural Network Algorithms for

//Neural Network Algorithms for ./ VLSI Design and Test Automation 5
7 VLSIDesig,'I a,'ld TestAutomation 4

I , I _lpl II '
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Statistical Pattern Recognition
Hidden Parameter Prediction [Lin 901[Meador 911

[Starzyk 90] M ...,:.
..._ ._.,:...-, -

.......................... * _" * *,_...T

M=f(P) -__
.•,, L..,,_

_/e_ i'
. _ -¢

"t " _",/t,Iz

fail ! pass fail P

fail ! pass fail P FFN approximates a Bayes statisticaldecision

FFN computes an approximation of f -1 Training set derived from Monte Carlo
simulation of fab process statistics

Training set derived from all FFN consistently performed as well or
combinations of worst-case acceptable better than traditional classifiers, also
parameter deviations requires much fewer FLOPS to perform

a classification

Training set does not capture fab Computationally expensive to generate
process statistics training set, also expensive to train FFN

, j_Neutal Network Algorithms for , ."Neural Network Algorithms for, VLSI Design and Test Automation 7
,-" VLSI Design and Test Automation 6 _"

Boundary Sampling Boundary Sampling with
[wu04] Performance Based Faults

M [Wu94a]
M

..

fail

......... _ ' pass

_1]1

fail I pass I fail P fail -
I p

FFN approximates a Bayes statistical

decision FFN approximates a Bayes statistical decision

Training set statistics biased toward Training set developed using orthogonal arrays
important boundaries centered on important boundaries
More efficient use of simulation time Fault definitions are in measurement space

Faster network training Important boundaries in parameter space are
determined by low-order response surface
modeling

_l_leural Network Algorithms for ""-/" Neural Network Algorithms forVLSI Design and Test Automation 9
--j."VLSI Design and Test Automation 8
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Hopfieid Network Based Cell
Cell Placement and Wire Placement

Routing in VLS! [Sriram90]

t

,/
....

approximate solutions to rain-cut placement
via hierarchical graph quadrisectioning

requires O(n2) connections for n modules

./'-Neural Network Algorithms for
/'Neural Network Algorithms for VLSI Design and Test Automation I 1

..,//VLSI Design end Test Automation fO

Kohonen Feature Map Based Maze Routing
Cell Placement

[Hemani 90][Shen 92][Blight92]

two parts:
traveling salesman
shortest path with obstacles

,/"Neulll Network Algorithms for .'Neural Network Algorithms for
.,-" VLSl Design end Test Automation t2 /- VLSI Design and Test Automation 13

i , , , i i i , i i , ,i II
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" Hopfield Network
approach to the TSP "Elastic Net" approach to the

[Hopfield 85] TSP
[Durbin 87]

Programming

f ....

.N'2 distances between cities T2 3

Operation
Coo

$_tem

Energy

.... J

Constrained unsupervised adaptation

" : 8yslem State
i_aleueamum fec._e¢li_tqm_

Network size grows with N2

, .f/Neural Network Algorithms for ,.,_tfNeural Network Algorithms forf VLSI Design end Test Automation 14 ., VLSIDesign and Test Automation 15

"Stochastic Elastic" approach Hopfield Network approach to
to the TSP Path Planning

[Meador 93] [Chan 93]

80.0 , ,

60.0 Q _ v_.

00 I°'°0.o 2;.o 4.0 ' _;.o 80.0

1-D Kohonen feature map -- network size
propc_rtional to number of cities
fixed local interconnections for simplified
VLSI implementation Network size proportional to grid area

,,, ,."Neural Network Algorithms for _."Neural tJetwork Algorithms for
,, ..J'VLSI Design and Test Automation 16 //VLSI Design and Test Automation 17

. . , , '11 ii i i i i i
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•Elastic Net approach to Path Summary
Planning
[Meador ??] Digital test pattern synthesisusing Hopfield

networks

3o.0 . Hidden parameter prediction for analog circuit
test using feedforward networks

J Statistical pattern recognition for analog circuit

20.0 o ° o _'-_./ ° ° ' _ ' test using feedforward networkso Hopfield Network Based Cell Placement

10.0 _/ • " Kohonen Feature Map Based Cell Placement

Hopfield Networks and Kohonen Feature Maps
for attacking wire routing problems

, i i ,,
°'°,o.o 0% ,o.o 2o.o _o.o

Network size proportional to number of
"bends" needed

;./Neural Network Algorithms for -.-/"Neural Network Algorithms for
_;" VL$1 Design and Test Automation 18 /" VLSI Design and Test Automation 19
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Neural Network for Isotope Identification

Paul E. Keller

PacificNorthwestLaboratory,MolecularScience ResearchCenter,Computingand
InformationScience

K1-87, P.O. Box999, Richland,WA 99352
phone:(509) 375-2254 fax: (509) 375-6631 internet:pe_keller@pnl.gov

An optimal linear associative memory (OLAM) neural network that can be used to
identifyradioisotopesfromtheirgamma-ray spectrais presented. The OLAM is useful
in determining the composition of an unknown sample when the spectrum of the
unknownis a linear superpositionof knownspectra. The neural networkapproach is
useful in situationsthat requirefast responsebut where precisequantificationis less
important. One feature of this technique is that is uses the whole spectrum in the
identificationprocessinsteadof individualpeaks. For this reason, it is potentiallymore
useful for processing data from lower resolutionspectrometers. This approach has
been tested with data generatedby Monte Carlo simulationsand with field data from
bothsodiumiodideand germaniumdetectors.

Goals 1. Classify Primary Counts and
• Examinethe Applicabilityof NeuralNetworksinIsotope

Identification(from a gamma spectrometer) . Scattered Counts
• Test a NeuralNetworkwithSimulatedData - Examinea few narrowwindowsinthe spectrum

• Test a Neural NetworkwithField Data - Uses FeedforwardNetworkTrained by Backpropagation

Unknown Identified
Object Isotopes

' etect_°r MultiChannel _ Neural _ l_l
Analyzer (MCA) Network

D
(Nal, Ge) L ,,,

___ Primary Count
_._ Scatter Count

Approaches

Researchers ....Inst!tut!on Neural .Network

Koohi-Fayegh, Universityof Perceptronwith
Green, et. al. Birmingham(UK) LinearOutputs

,,,,, •,

Olmos, Diaz, CIEMAT OptimalLinear
Perez, et. al. (Spain) AssociativeMemory

.. _ ,,.

Ogawa, Hose, University Backpropagation*
Niskizaki (Japan)

......
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2. Gamma-Ray Spectroscopy Neural Network Layout
Purpose: Determinationof IsotopeCompositionof a Sample

From itsGamma Ray Spectrum input Layer
Neural Network: Optimal Linear Associative Memory (l/channel) OutputLayer(1/isotope)
Configuration: Single Layer Feed-Forward Network with Linear Nodes Chanm,1
TrainingSet: Gamma-Ray Spectra Channel_ I,=o_ 1
Inputs: 1 forEach Channel fromGamma Ray Spectrum Channel3
Outputs: 1 forEach Stored IsotopeSpectra Channel4 Isotope 2

Channel 5 Isotope3

Spectrum is Linear ........
Superposition of Spectra Channe,M.o ,,o,o...=

ChannelM.2 IsolopeN-I

A - B I ChanneIM-1ChannelM IsotopeN

NumberofInputs= Numberof Outputs=
Numberof Channels Numberof Isotopes

j C

j _A Transformation

/ =

B

C

B Transformatio

Optimal Linear Associative Memory _ A
TraJnincl Patterns

22Na The training set consists of
gamma ray spectra from 7

,so isotopes. These spectra
,o0 were generated using a

Monte Carlo simulation for a
5o point source placed 10 cm

o_so ,oo- from a Germanium detector. Neural Network Layout
0 tso 200 250 "'"" i ,I

24Na 5iCr Input Layer output Layer

_ _ / (1/channel) (1/isotope)

'_ _ 'so_ Channel 1,oo _ ,o0 Channel 2 22Na

Channel 3 24Na
so so Channel 4

Oo so ,oo ,_ 200 =_o o so ,o0 ,so 2oo =so Channel 5 slCr

- 54Mn 57Co _ S,Mn
;tO0 ' 200 '

Channel 276 sTCo
_so _so Channel 277

,o0, ,o0 Channel 278 s°C°

Channel 279 137Cs
so )_... I 5o Channel 280

i
0

O so ,O0 150 _ 2SO 0 SO t00 tso 2O0 250

6OCo 137cs
moo

ISO tso

to0 _ tOO

0 SO 100 iS0 200 2so 0 SO ,O0 ,S0 2O0 ;tS0

I
, rl , II I ,, I
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Trainina Patterns Neural Network Layout '
The trainingset cons_ts of gamma ray spectrai

from 8 Isotopes. These spectrawere collectedI Input Layer Output Layer
In the field with calibration sources placed 11 (l/channel)
meter from a Sodium Iodide detector. EachI (1Asotope)

....spect_m Is composedof 512 channelsof data, I ChanneIchannel21 Na22

Channel 4
Channel 5 Co57

-'%/ co6O
Channel Cs137-- Channel
Channel Eu 152-154

I__L_A ! "_ Channel510ChannelChanne1551121 Th232Ra226

.__ - Simple

Training Consistsof a Matrix Orthogonalization Process

- Fast
4096 channel Input with 10outputs can be down in
100-150 mS on an Inte1486DX at 33 MHz.

Spectrum ANN Output - UsesWhole Spectrum
Mixture of Cobalt60and Cesium137

sooo _ - PotentiallyUsefulwith Low Resolution

4o00 _l Spectrometers (e.g., Nal)

3000

2ooo Areas for E,urtherWork
1000

0 256 5:12 - Compensation for Gain Shifting

Spectrum ANN_Output - Allow a Variety of Source Geometries.... (e.g.,pointsource,broadsource)
Mixtureof Co60, Cs 137 and Eu152"154

15000

12000 __

9000

6000

3000 Misclassification

O. 2'56 5i2

Spectrum ANN.Output
Mixture of Na22,Co6°, Cs 137 and Eu 152"154

15000

, ooo
9000

6000

3000 Misclassification
_ . , ,

1 256 512
t
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A Multicomponent Spectrum Decomposition Network

HarryBell

U.S. Departmentof Energy,RichlandOffice
K6-05, P.O. Box550, RIchland,WA 99352

phone:(509) 376-9623

An algorithmand associated perceptron-likenetwork are presented for the spectral
decomposition of a multicomponent spectrum given a series of data vectors.
Incorporatedis ablad hocalgorithmof EdmundMalinowski'sfor the determination_f the
likely numberof underlyingadditivecomponentsin a data matrix. The algorithl,,uses
principal components analysis to determine the eigenvalues and associated
eigenvectors. The Malinowski routine selects the minimal orthogonal basis set to
reconstruct noise-free data vectors. At this point, any linear combination of this
orthogonal basis set that results in "realistic" spectra can be explored. There are
numerous "realistic" constraints that could then be used in further narrowing the
possibilitiesfor an optimal linear combinationof the initialbasisvectors, amongthese
are: smoothness,unbiaseddeviationsabout a reconstructeddata vector (maximizing
the number of deviationsign changes), and positivityof the signal(if negative data is
physicallyunrealistic). A genetic algorithmis used to fully explorethe space of linear
combinationsto arrive at a most likelyrealisticbasisset. Althougha neural network is
not necessaryfor a solutionto thisproblemitaids invisualizationof the problemand in
suggestingfurtherenhancements to the algorithm.

,t

I. Acknowledgements
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o Dr. Suzanne Clarke, discussions on PCAand

analysis of spectra
o DOE, time to give presentation (not sponsorship
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"" II. Problemstatement
• For eachof K compositemeasuredspectra

"" measuredat J energylevelsper spectrum,(data
matrixs+kfor allj = 1 to J and k = 1 to K)

"" find numberof significantcomponents.I, their
concentrations,C+kand absorptivities,w+j

41.14 -

/

.... s/.- _ c,.•.,,,
I. 1'2

'-" o Appliesto linearchemicalspectroscopies(eg.
UV-VIS)alsomay be applicab]eto otherkinds+

._.

' • - _' ',_ ........ of ana]ysis.
II 41 14) ll Ill 121 14e leo ! II III

° Potentialapplicationsfor mixtureanalysis
with uncalibratedand/orephemeralsolution
species.

Figure 9 - Example of a composite spectrum - a sum
of three gaussian curves

III. Step 1 - Howmanv real components in the mixture

given by...$,k(measured spectra)?NFuchprogress in this area in the last few
decades

•=. Equals the numberof significant eigenvalues of
the covariance matrix-

K

covi, = _ si,"s_,
k.1

° Effective algorithms are readily available
1. Barry Wise PNL(earlier presentation at

this workshop)
2. Edwin Malinowskio Factor Analysis in

Chemistry, 2nd ed. contains a Matlab
implementation.



V. Straigillperceptronapproach
. ............ o Both individualCikand wU treated as . "

,......., independent unknowns
ConcenL r6t Ions Absorpt I v i L I es Summa t, I on, 5pec%rl

(,,,,_,) (.,,,,,,) o Reduced co a simple,well-defined(but vast) .

(also unknown).@ @ @ +__ optimizationproblemo May need to reduce the search space since too
many unknowns

• Solve for both concentrationsand

© (9 © *L_L_I'
absorptivitiesusing gradient descentmethods

(_ (_ (_ _ ; ,-_ Vl. Alternative-ofcovariancematrixdirect manipulationof eioenvectors.
o Principaleigenvectorsof the spectra

covariancematrix (COVu) form a basis for the

@ @ @ [ _ _-+ _ abs°rptivities' wu"o Need to find a linear combination of these
basis vectors minimizing the following:

(_ !. Resultingabsorptivitiesthat are negative

(_ @ @ _ ; _ 2. Resultingconcentrationsthat are negative3. Highly correlatedabsorptivities
: Still a high dimensionaloptimization

(9 dimensionsfor a 3-componentsystem).

@ @ @ ] -_____ Vll. manipulationlterativeprocedure- direct eigenvector1. select linear combinationof eigenvectors,
candidateabsorptivities.

Figure8 - Basicnetworkstructure- a perceptron 2. -generateconcentrationsbased on these
absorptivitiesusing linear regression

withoutthesquashingfunctionwithunknowninputs, 3. determinevariousmetrics on the

Cik, (connections are not drawn), absorptivities and concentrations such as:
a. extent of correlation between the

candidate absorptivities
b. positivity of absorptivities
c. positivity of concentrations

= 4. evaluate an objectivefunction using above
performancemetrics

5. repeat startingat step 1 if objective
function is unsatisfactory. -"
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Neural Network Based Chemical Sensor Systems

Paul E. Keller

Pacific NorthwestLaboratory,MolecularScienceResearchCenter,
Computingand InformationScience

K1-87, P.O. Box999, Richland,WA 99352
phone:(509) 375-2254 fax: (509) 375-6631 intemet:pe_keller@pnl.gov

Compact, portable, and inexpensive systems capable of quickly identifying
contaminants in the field are of great importancewhen monitoringthe environment.
One approach is to combine a sensorarraywith a neural network. One advantage of
this approach is that most of the intense computationtakes place during the training
process. Once the neuralnetworkis trainedfor a particulartask,operationconsistsof
propagatingthe data throughthe neural network. In this presentation,two prototype
chemical-sensingsystemsare discussed. These prototypesare currentlybeing used in
an evaluationof the applicationof neural networksto chemicalsensoranalysis.

One prototypeconsistsof an arrayof tin-oxidegas sensorsand can be used to identify
chemical vapors. Althougheach sensor is tuned to a specificchemical vapor, each
respondsto a wide variety of chemicals. Collectively, these sensors respond with
uniquesignatures(patterns) to chemical vapors. Duringthe trainingprocess, known
mixturesof variouschemical vaporsare presentedto the system. The responsesof all
the sensorsprovidea set of trainingpatternsforthe neuralnetwork. Duringoperation,
the system can rapidly identify the composition of a vapor provided that the vapor is
composed of chemicals used during the training process.

The other prototype consists of an array of optical sensors that can be used to identify
liquids by their absorption spectra. Light is passed through the liquid and into the
sensor array. By examining the absorption at different wavelengths, the neural network
is able to identify the chemicals in the liquid. Each optical sensor is composed of a
silicon detector covered by a narrow bandpass (10 nm) interference filter and is
sensitive to a specific wavelength of light.

featurevalues labeled pattems
(measurements: electrical (e.g., chemical composition,

response, wavelength, etc.) isotope identification, etc.)

Sensing.System

Neural
Network
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Neural Network. Based Artificial Noses

Application Sensor Array Neural Network Institution
Identification of Whiskey 8 Quartz Resonators • Fuzzy LVQ Tokyo Institute of
by Odor • LVQ Technology, Japan

• Backpropagation
Gas Identification 3 Tin Oxide Sensors • Backpropagation Tokyo Institute of
(NH 3, Acetone, Hexane) Technology, Japan

'"Identification of Ions in PVC Membrane • Bacl<propagation Dublin City University,
Blood (Na +, K+, etc.) Sensors Ireland

....

Identification of Ions 7 Ion Selective • Counterpropagation
(Na +, K+, Ca +, Mg+) Electrodes (ISE) • Backpropagation

• OLAM & Backprop.*
Food and Beverage 12 Tin Oxide Sensors • Backpropagation University of Warwick,
Odor, Perfume, and • England
Alcohol Identification

Gas Identificaiion (H 2, 6 Metal Oxide Field • Backpropagation LinkSping Institute of
NH3, Ethanol, Ethylene) Effect Transistors Technology, Sweden

(MOSFET)
Analysis of Motor and 10 Tin Oxide Sensors • Hopfield, Oak Ridge National Lab,
Turbine Fuels • Hamming USA

• Boltzmann
i

LVQ = Learning Vector Quantization OLAM = Optimal Linear Associative Memory
•Orthogonalized input equivalent to the Optimal Linear Associative Memory (OLAM)

Optical Sensor Array Determine Concentration of Different Dyes

DetectorHead - MeasureAbsorptionat 6 Wavelengths
(_ - Feed Response Values at These 6 Wavelengths

into Neural Network

/
7 Signalsto Data Wide Ban_LightSource AcquisitionSystem

(Halogen) Cuvette Holder _ _ 415nm
ConcentrationofA

500 nm
ConcentrationofB

610 nm _ =2.415 nm 110nm bandpass) 665 nm
3. 500 nm (lOnmbandpass) ConcentrationofD
4. 610 nm (10nm bandpass) 842 nm
5. 665 nm (lOnm bandpass)
6. 842 nm (lOnm bandpass) 940
7. 940 nm (lOnm bandpass)

(ValuesRangeFrom0to5Volts)
Sensor LayoutSampling Response

IllII SensorPhysicsGroup,Automationand

MeasurementSciencesDepartment
APC.PNL
TomSloane
JerryBemdt
KurtStahl

I I I I I I I _ _.400 nm 900 nm

, i, ,, , Ii ,i i , m , , , . ,
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• Chemical Sensor Array

13 Sensors

,, - 1. TGS 109 ,, "=_;'i.il.oooo TO,,,ol3. TGS 813 • .;,;:;,__,

4. TGS 821
(__E_ 5. TGS 822

6. TGS 822 !_:_::":ii'_'
7. TGS 824
8. TGS 825

-_ _ 9. TGS 842
"_ \10. TGS 880

'_t,11.NH-2 Humdity Sensor
\12. Thermistor

_,13. Thermistor

Computer &
Data Acquisition

13 Sensor Outputs

UlB ArtificialNose:Untitled
File Edit Configure Mode Window Help
PNL: Model 01 O Standby _ Probe O' Collect O Train O Test O Operate

,, i i i ll,i

002', Temporal Response of Select Sensors Sensor Layout' I

50= [_ ,""',

., , ,®®®
25_.i

I ; - , , ,,,,,,w_. -- .... :-- -!

Probe Markers !

o_. , Io,,_:_<;:.:ii ammliiii[it. )
0 s 9 $ 18S ..................................:...............::...............':...................................,,, , i

Sensor Status Current Sensor Response
1 ,o,I ,,ot ''1 ''_ I ";I "-' I "-' ! *" I '_'zI ,o i_.,.i '_1 _ I
_01'"' I 0.001,.,'I 0.,,t '.,' I 0._,t0:,t ,.,,t '.,,t ,.0,1,.,, I ,.,' I ,.,,]

' [] Sensor ID/Analyte

Time: 818:16;21.
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System Results

Chemical Chemical Identified
Vapor SensorArray Chemical Sensor,Values ANN Output

_,_. ® @ ® ® _ ---- None
(_ _ _ (_)_)_ Neural _._._,.Network

123456789

Neural Network Lavou_t
one

• ,m,, None ,
Sensor Inputs .

Acetone ,

Correction Fluid
- . _ DucoCement .

Tt___Qr"JA _

_ GlassCleaner ,

I _ ightelFl'uid• lean
............: ........"" __ RubberCement

Vineaar _

.Training Parameters
Type: Backpropagation in Batch Mode Rubber CementArchitecutre: 12-6-9
Activation: Logistic
Learning Rate: 0.01
Momentum: 0.9
No. of Epochs: 15000

Vineaar
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Real-Time Data Analysis via Artificial Neural Network

• Fast Classification:Mosttime isspenttrainingthe neural network

• Operation:

Processing Small Medium Large
Rate System System System

Software Implementations: (16-16-16) _ (4096-4096-4096)

Intel 80386/16MHz 4.4,,104CPS 15 mS 3.0 S 13 min*

Intel80486/33MHz 1.1,105 CPS 6 mS 1.2 S 5.1 min *
VAX 8600 2.0o105 CPS 7 mS 68;0 mS 2.8 min*

Sun SPARCstation 10 1.3.106 CPS 440 IJ.S 100 mS 26 S *(69)

DECstation 5000 1.3,,106CPS 570 _S 100 mS 26 S *(45)

Electronic Hardware Implementations:

ExploreNet 3000 w/SNAP-64 1.0o109CPS ~ 130 I_S --35 mS
Adaptive Solutions CNAPS <5.0o109 - ~26 uS <7 mS

CPS

Intel 80187 <1.6o1010 - -8 uS <2 mS

" CPS

Optical Hardware Implementations:

Planar Holograms & Light 2.2o1011 - - 200 uS
Modulators CPS

Planar Holograms & Laser 4.5°1013 - - 1 I_S
Diodes CPS

CPS: Connections per Second
* Projected processing time assuming more than 128 MBytes of free memory. Actual
processing times, where available, are noted in parenthesis.

.................. 'H Ill ' ' ' '" " II ' qll' '
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Integrating A Parallel Constructive Neural Network
Algorithm with an Expert System

JustinFletcherandZoranObradovi_

WashingtonState University,Schoolof ElectricalEngineeringandComputerScience
Pullman,WA 99164-2752

phone:(509) 335-2217 or (509)838-0164 fax: (509) 335-3818
intemet:jfletche@eecs.wsu.edu

An improvedparallelconstructiveneuralnetworklearningalgorithmis presentedwhich
generates a near-minimal architecture. Traditionalneural network learning involves
modification of the interconnection weights between neurons on a pre-specified
network. Determiningthat networkarchitectureisa challengingproblemwhichcurrently
requires an expensive trial-and-errorprocess. Ratherthan learningon a pre-specified
network topology,a constructivealgorithmalso learnsthe topologyina mannerspecific
to the problem. Experimentalresultsare presentedthat indicate that a near-minimal
architectureis created withimprovedgeneralization.Secondly,the integrationof expert
systemswithconstructiveneuralnetworkalgorithmsis examined. The motivationis to
combine pre-existing knowledgeabout the problem domain with informationderived
from examples. The concepts of knowledge-basedsystemsand machine learningare
combinedby integratingan expertsystemwiththe constructiveneuralnetwork learning
algorithm. Two approaches are explored: embeddingthe expert systemdirectlyand
converting the expert.system rule base into a neural network. This initial system is then
extended by constructively learning additional hidden units in a problem-specific
manner. Results indicate that combining pre-existing knowledge with knowledge gained
from examples may result in improved prediction quality.

References
:grating Constructive Neural

work Algorithms and Expert
Systems 1. Fletcher, J., Obradovi(i, Z, (1993) "Com-

bining Prior Symbolic Knowledge and Con-

al Network Workshop for the Hanrord structive Neural Networks," Connection Sci-

Community ence Journal, vol. 5, No 3-4, pp. 365-375.

January 26, 1994

2. Fletcher, J., ObradoviE, Z. (1993) "Par-

Justin Fletcher allel Constructive Neural Network Learing,"

hool of Electrical Engineering and IEEE 2nd Int. Symp. on High-Performance

Computer Science Distributed Computing, pp. 174-178.
ington State University, Pullman WA

99164-2752

3. Fletcher, J., Obradovig, Z. (under review)

jfletche_eecs .wsu. edu "Constructively Learning a Near-Minimal Neu-

ral Network Architecture," IEEE Int. Conf.

on Neural Networks.
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Introduction to Neural Networks

Contents Neural Network: weighted graph

Feed-forward NN: weighted directed graph
• Introduction to Neural Networks

• Introduction to Hybrid Systems I L___--_J l

• Introduction to Constructive Neural !_

Network Algorithms D _ " • • _] Input

• Hyperplane Determination from Examples Weighted sum: n

Alone
Binary neural network

• Integration with Expert Systems Activation function g(x) ' R -, {0, 1},

0 if x<tg(=)= 1 if =>_t

for some t E R.

Relationship between Hyperplanes Introduction to Hybrid Systems
and Hidden Units

Rationale• An expert system contains pre-existing
• knowledge.

• The knowledge may be incomplete orHyperplane COn t rad ict ory.

• By combining the expert system with a

machine learning approach' (a constructive

(_ neural network algorithm) the overall

Hidden Unit
performance of the system will be improved.
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Techniques for Integration

Embed a Neural Network into an
• Embed a neural network into an expert Expert System

system
N_al M_k b_ N_

Pdl
N

• Convert the expert system to a neural

network [ ,_, _

• Integrate the results of multiple cJassifiers , __-_--......
Rub

Ill p(ll, ........ -- ,yl _ [ ,'_
'_IlINilullllMll,xhlrhll |l=)l• Integrate the expert system without I

conversion

Convert the Expert System to a
Neural Network

A:B,C ,, integrate the Results of Multiple
B: not F,G , c ClassifiersB; not H

c:l,j _._ _ o 1, , [ "ip,',
R_le Base ' i

,I

F C H I J K :_"

And/Or Graph M_N'- - - _I]R'Y rw_
St Ba'ed Neur_uer

_,,t I

Neural Network
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Introduction to Constructive Neural

Network Algorithms Integrate the Expert System
Topology Selection ObJectives Without Conversion

• Large enough to define separating surface Integrated System
v i#

• Small enough to generalize well __'__ Constructed

[ x ert-I,,Traditional NN Learning

• P re-specifled architecture System I _ _.J " " " 2.J

I[11 _J

• Supervised learning

• Modification of connection weights

• Training and test sets

Constructive NN Learning

• Architecture learned to fit problem

i
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Hyperplane Determination from
Examples Alone

Steps:
Determine separating hyperplanes as close to

the optimal separating hyperplanes as

possible. 1. Determination of points on separating

hyperplanes

I. .....,I" "." :% "
t"% * ,_ _t • .o *** • "o'_ oo oO o

IK.+,_. \.. :... ,.. \o_ .
It:_.._ "_ • "0 + " "_°o _ o, 2. Determination of candidate hyperplanes
I "." "_r .o. • x • • from separating points,. : -- ..,.., .'
..." ._,_,:.r... • .:._ ..,_ .

:, ..:. , _ ,-0:. _ ,.: ,. • x.• •, \.. -..,.'. %•

"3": :._:'• °_0"-°_'\x''''l''_'' d ,.'_" "_'_• 3. Creation of hidden units from selectedL °0o° _'- • " hyperplanes
• • I •°° l°

t • • • | - - • "%__ _ ,.. X'o,°, 0,, -\.., ..
o0° , °_o _o o . -.... "

o _o o_-.• ,o,,,. , o,P /0o%,. \
• .• o •'_o Ooo; o -:,_ .0 • _0 _ ;,oO
0 • 0 0 o Ib 0 0 •• 0 0 o Ib "0 O- •



Creation of Hidden Units from
Selected Hyperplanes

The first hidden unit is created from the

candidate hyperplane which best classifies the

training data. A hidden unit is constructed from the
separating hyperplane.

• e l e
• 141 • • 0 -- _' • 0

I • , , ._k • • ••,, o '6_° o° (_o o.l
I . ;. " '. ." .". ". • _ o8;I outputunit
I..%+... ,.. ,. "oO 0/el • • • • • • •

I. • . • o o/r• " - . . • • R • _ HiddenUnit_
• : . . . " . 5 • o "7"

• • " i . ." " -..t " . ,.. +,,p,,<ro1_ (Constructed From
•" • o_ • ° • t .. _ o Separatin_Hyperplanes)
'. " o_°. .:..'. ..".7"...0•

• o• • • ol • )L_I •

"si 0" . • o o • ,,._ • • • 0o o
• • • • • o.:::o "; , •_ ,+,u.,,,

1 _ o/ " •-l " • ---

':," " "_.o. " +'"+ ': _"
• • ,.• / O"o" .• •• . ., .. '-..: .,

• e_"" i- -0_ o • 0 • _ L •

oo2 "_ o - oo,p, " •
/#',-• o ,o°_'100 " "
• 00 00% oo00 _ _'.O %08o o o o

.0 .0_...+..0,.o• ,9o o° o = 0,% o o_ oo
0 O 0 O_ 0 0

o OOO00 00 ,_O,_ooo o = 8 ° o oo
o o o ql cpi

i i i i i I i i
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Remaining nyperpJanes are crea_eQ Dy

parallel evaluation of each of the candidate

hyperplanes with the existing hidden units.

This process is repeated until no significant

classification improvement on the training data

is obtained. Output Layer Weights

" I .-I . . . \oVL'o o • o
• ..._,_ .. _ ...:. ._-___o ..o o:
. ;. " ;. ." ." . "/'\X. o.e° The pocket algorithm is used to determine the_ ,,__, _ • _ J \\o o

• _ ) • . . T_. -\\" ° output layer weights.._ Q • ,I g, • L'- • - "_- •

4,¢..._.. ,/ _ .Ni.¢ oo

....... #
ZP.::.''...

_I - ° • •

. ....._.'_.... ._
• " °" ../L,,,,<.L" o_-¢_."_, . •

. ../ o.o_-_o_o _'_;k -o-
° _ 04"°°'0 .-_ ;.'%0.

.../. ° _(. 0,o; 0_ .
:/ "o ° ° .,

The resultant separating surface is determined M 0 N K'S Problems
by final training of the output layer weights.

_,_ ........ , • Binary classification problem

' N" : O_o o • Six features/• , .1_< * o _ ° o

i ,il , i.° ° °S /
_o o • Problem 1' DNF

_--_° °. ° o°°0 o0___;,I°: • Problem 2' Similar to parity
0 0 0 0 0 I_ qD 0

O O0 "_ 0 O

/ 00 °0 0° : _°_ %*° ° :._ " ° °l • Problem 3: DNF with 5% noise. .. . _I" ' .... "-. _ I

o ° ° o OoO°O °o _. °1, .'I_•
"LL__ ° ° o ° _° ° .0_ 0.0 ,-ol
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Sequential Results

Percentage accuracy on the MONK's problems

Average #_ of Average

Accuracy Hidden Units Train I Test Parallel Hidden Layer Construction....Problem 1 ....... 4.8 99.19 96.66

Problem 2 6.3 73.60 66.73

Problem 3 5.7 96.14 94.00 Master / Slave Architecture

I o_ooooo 1

Average _ of Best Case 1811nl81
Accuracy Hidden Units Train Test I_lililSI Master
....Problem1 4:8 100.00 100.0 I_'Q°Q°aL'_'_J°°I

Problem 2 6.3 78.11 68.98 _I_7//_/_ __---.._ S]aves
l.-_lf _..o/_1.._ qll'..

Problem 3 5.7 98.36 97.22

Average # of Worst Case INlillI81 INlilll_l IP_lilllNI
Accuracy Hidden Units Train Test 1o,---,o_ _o_T_____=, ,o,----,o,|ooo_oooi lOOOooooj I,OOOOOOOI

P#oblem 1 4.8 97.58 88.43
Problem 2 6.3 62.13 63.89

Problem 3 5.7 93.44 87.50
.....

Parallel Hidden Unit Creation

• Master reads in data

• Master broadcasts data

• Master selects first hyperplane

Repeat

Implementation
• Master broadcasts hidden unit

The implementation was developed using p4
• Slaves request candidate hyperplanes to in a distributed environment of DECStation

evaluate 5000s, then ported to the CalTech

Touchstone DELTA.

• Master selects best candidate hyperplane

and creates hidden unit

while significant performance improvements
i i

i i , '
t , aiR '

, , ,
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Integration with Expert Systems

Parallel Results
Expert System Conversion

Percentage accuracy on the MONK's Create an initial network from the rule base
problems

similar to Towell et. al.

Sequential Train Test -
--Problem i 100.00 85.42- Convert the rule base

if (_v|nls._lequlte ,rid income.adequitz) then tnvestJtocks

Problem 2 81.07 70.37 ,_,,,_,,,....i,,,._,q,,t, th..... i,,,._,q,,t,
if ;u_ets.hilh then ssvinls.adequate

Pro blem 3 94.6 7 72.6 9 if (dependent.i ..... ._lequ,te and .... inlls.ste_ly) then ineome._lequ,t©

if debt.low then incom©.adequate

i((savinzs _. dependents X 5000) then dependent.savinip.adequ-te
....

" Dist Parallel Train Test ifci..... _ 25000 + dependents × 4000) then dependent.l ....... dequ,te• it'(_ets _> income X lO) then a._ets.hish

Problem 1 100.00 84.72 i'(debt.p,yments<i ..... XO.30) then debt.low

Problem 2 94.67 72.69 into an and/or graph.
Problem 3 96.72 72.92

invest.stocks

Touchstone Tl:ain Test--
Problem 1 100.00 80.79 ,,,i,g,.,eq_,t, _....._,q.,te

Problem 2 92.31 71.30 _ ,_Problem 3 100.00 77.55 . ,e,e,e.,....,.,...de,o.,.0.,._[::::::.." . .,o-

Transform and/or graph into initial network.

Performance on MONK's problems
Addition of Hidden Units to
Integrated System Problem 1

Tra in Test
Examples Alone 94.35 85.19

If the expert system cannot correctly classify a CLIPS 100.00 86.34

given data point, CLIPS & Examples 91.13 87.04 i

Problem 2
1. Determine a separating hyperplane. Train Test

Examples Alone 95.27 73.61
CLIPS 98.82 68.06

2. Construct a hidden unit from the CLIPS & Examples 100.00 81.02

separating hyperplane.

Rroblem 3
Train Test

3. Repeat as required. Examples Alone 91.80 75.69
CLIPS 100.00 93.98
CLIPS & Examples 92.62 93.98

, ,, i , i i , i i iii
, , i ,
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Turbine Engine Diagnosis Arttflcial Neu,a, Network (TEDANN)

LarsJ. Kangas1, FrankL. Greitzer2, GeorgeM. Alexander2, JohnA. Sanches2,
PaulE. Keller3,4,DavidD. Turner4

1PacificNorthwestLaboratory,AppliedPhysicsCenter,ComputerScienceDepartment
2pacificNorthwestLaboratory,TechnologyPlanningandAnalysisCenter

3pacific NorthwestLaboratory,MolecularScience ResearchCenter
4Northwest Association of Colleges and Universitiesin Sci=nce(NORCUS)

K1-87, P.O. Box 999, Richland, WA 99352:
phone: (509) 375-3905 fax: (509) 375-6631 internet: Ij_kangas@pnl.gov

The US Army Ordnance Center and School and Pacific Northwest Laboratory are
developing a turbine engine diagnostic system for the M1A1 Abrams tank. This system
employs Artificial Neural Network (ANN) technology to perform diagnosis and prognosis
of the tank's AGT-1500 gas turbine engine. The initial diagnostic system prototype is
referred to as "TEDANN" for Turbine Engine Diagnostic Artificial Neural Networks.

Monitored faults:

1. BouncingMain MeteringValve
2. StuckMain MeteringValve
3. Fuel FlowError (otherthantype 1 and2)

Monitored sensor values:

1. Turbine inlet temperature
2. Ambient temperature
3. Compressor Speed
4. Turbine speed
5. Fuel flow requested
6. Actual flow requested
7. Fuel flow solenoid current





Battelle

' " 'l ......... a - _

Fuel System Replacement (Index) =z

q Tools and Supplies Electro-Mechanical Fuel System

Removal o_

1. Oisconnecl connectorplug P33 and assemblies

2. Move cable, hose assembly antt lube assembly. ._
3, Move control assemblies _,
4. Remove and inspect tube assembly "

-, ,,_
5. Remove hoses, hose divider and tube tee. ¢D

B. Disconnect hose assemblies and tube assen_ )Jr......... _:

7. Remove fuel system and reconnecttubes.

8. Inspect parts for damage, replace as requirecInstallation =i

1. Install Fuel System. 1. Disconnect ,k =_

Connector Plug P33 fi I
2. Install controls in brackeL (1) end Tube '_
3. Connectcontrolsto lever. Assemblies (2.3).
4.Connect tubes end hose. ""
5. Install tube.

6. Install hoses, valve and tee. a. Disconnect connector plug P33 (1) from
7. Install tubes end connector plug. connector (4).
8. Connectthree hoses. O

9. Install engine step plate. 1
10. Install tube assembly and flow valve brackel b._.,..Disconnect tube nut (5) from tube (6). Slep 1 (a)

Remove flared conical seal (7).
| .....

c_=. Disconnect tube nut (8) from tube nipple .
(9). Remove flared conical seal (10).

Pacific Northwest Laboratory =
Figure 5. Examples of on-line maintenance pages. ©
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Symbolic Reasoning with Neural Networks

Morgan L.Yim

Pacific Northwest Laboratory, Applied Physics Center, Computer Sciences Department
K7-28, P.O. Box 999, Richland, WA 99352

phone: (509) 375-2319 intemet: ml_yim@pnl.gov

Rule-based expert systems are symbolic reasoning systems. Many use a form of rules
called production rules in an IF-THEN format. These are often based on propositional logic
where the conditional parameters take on true or false values. The action clause sets a
system state with a true or false value. The limitations of this method can be reduced when
confidence factors are utilized within each rule. This addition permits to the rule-based
system to reason symbolically about uncertainty, or about incomplete information.

Neural networks can be used in a symbolic fashion which exhibit results similar to expert
systems which are constructed by a more complex methodology. Reasoning with
incomplete information is automatic with a neural network. Moreover, this approach can be
more efficient as compared with a rule-based system. This neural network approach
generally evaluated rules in constant time, independent of the number of rules represented.
Rule-based production systems generally evaluate rules in linear time as a function of the
number of rules in the system.

A high-order reasoning system can be constructed using neural networks by the use of an
interacting hierarchy of neural clusters. Each neural cluster is capable of solving a portion
of a large problem. Each cluster shares its conclusions with other clusters at more abstract
levels until a solution is fOundto the problem.

We have demonstrated the concept of symbolic reasoning with neural networks by using it
to identify potential problems with a circulation pump/motor subsystem of a central heating
plant. The demonstration of this software will be available in a poster session.

Symbolic Reasoning with Symbolic Reasoning with
Neural Networks Neural Networks

Morgan L. YIm

Computer Sciences Department • Production rule based expert systems
Applied Physics Center

Battelle Pacific Northwest Laboratories • Neural network approach
Rlchland, WA 9.9352 • Circulation pump-motor assessment

I will be talking about the use of neural networks as symbolic
reasoners.

I will review how an expertsystem can be built using a
productionsystem.
Then I will show how a neural network can be used to do likewise.

Finally, I willtalk about a prototype which uses this methodto
perform an assessment of circulation pump/motors.

, i ' II , i i II I , '
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Neural network approach Neural network approach
tiger

- has hair

• Symbolic representation of domain knowledge - givesm,k
- has pointed teeth

• Reasoning objectives are Identified - hasclaws
• Attributes of objectives are Identified - hasforward-seteyes
• Teach the NN to associate attributes with - hasblack stripes

objectives - has a tawny color

• One or more objectives can be Identified zebra
• Precision depends on the availabilityof attributes - hashair

- gives milk
- has hoofs

- has a white color

- has black stripes

1 Neural networks can be used to perform symbolic, rule-style Here we want the system to decide between two reasoning
reasoning, objectives, a tiger and a zebra.

They exhibit results similar to rule-based systems and can be Next, we collect the attributes of each animal.
constructed more quickly and simply. Then we will teach the neural network the relationships between

, The first step is to identify the reasoning objectives. What do we the animals and their corresponding attributes.
', want the system to conclude? While each has attributes which uniquely identifies them, some

Next, identify the attributes of the objectives. What does the attributes are shared between them.
system look for to support its conclusions?

Then teach the neural network the relationships between the
objectives and their attributes.

Reasoning with incomplete information is automatic with a neural
network.

With incomplete information,the NN will identify several related
objectives.

ttwill arrive at a single conclusion when sufficient information is
present.

Neural network approach
Neural network approach

tiger
- has hair ...... _ has hair

- gives milk _ gives milk

• Simple cross-correlation learning method - has pointed teeth _ has pointed teeth
- has claws _ has claws

• Binary representation of input patterns - hasforward-seteyes _ hasforward-seteyes
• Bipolar representation of learned patterns - hasblackstripes _ hasblackstripes

• Linear threshold of weighted outputs - has a tawny color .... _ has a tawny color
zebra

- has hair

- gives milk
- has hoofs _ has hoofs

- has a white color _ has a white color

- has black stripes

Cross-correlation is used to train the neural network. In preparation to train the neural network, all the attributes are
combined into a single list.

Bipolar values, 1 and -1, are used to represent the presence or
absence of an attribute. All duplicates are removed, so there is a single occurrance for

When the neural network is queried, a linear threshold function is any attribute.
used. This defines the input nodes of the neural network.

The number of objectives, the animals, defines the output nodes.

In this case, we have an neural network having 9 input nodes and
2 ouLoutnodes.

' I], LL L
I '
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Production rule based expert Production rule based expert
systems systems

IF animal is a mammal
• Rules have antecedents and consequences animal has pointed teeth
• Antecedents take on boolean values animal has claws

animal has forward-set eyes
• Consequencesset a boolean state THEN it is a carnivore
• Rules can be augmented for uncertainty

IF animal is a carnivore
animal has black stripes
animal has a tawny color
THEN it is a tiger

Rule-based expert systems are symbolic reasoningsystems. This is an example what one might see in a expert system.

Many use a form of rules called production rules in an IF-THEN The conclusion part of the rule is true when all the conditions are
format, true.

These are often based on propositional logic where the The conclusion isthen used in another rule as a precondition for
conditional parameters take on true or false values, consideringadditional information.

The action clause likewise, set a system state with a true or false
value.

The limitations of this method can be reduced when confidence
factors are utilized within each rule.

This additionpermits to the rule-based system to reason
symbolically about uncertainty, or about incomplete information.

Production rule based expert
Production rule based expert systems

systems

IFanimal is a mammal (.9)
animal has pointed teeth (.1)
animal has claws (.7)
animal has forward-set eyes (.6)
THEN it is a carnivore (.7)

IF animal is a carnivore (.7)
animal has black stripes (.6)
anlmal has a tawny color (.9)
THEN it is a tiger (.9)

Wh,_nonly incomplete information is available, the rules of an This is an illustration of a rules network.
expert system can be augmented with numericvalues. Herewe can see graphically how confidence factors propagate
Sometimes statistical techniques are used, like Baysian or from ruleto rule to arrive at a conclusion.
Dempster-Shaeffer. The rectangles indicate information coming from outside the
Sometimes a confidence factor is used. system.

In any case, some method for combining the numericvalue is The ovals indicate derived information from rule firings.
used to determine a total value for the rule.

Then a comparison is made to determine whether the given rule
can fire.

When fired, the rule not only set:_a new system state but also
propagate the conclusion value to subsequent rules.

r, , i , ,I, i I I _ II I " "
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Neural network approach Neural network approach
tiger zebra

- has hair 1 - has hair 1

- gives milk 1 - gives milk 1

- has pointed teeth 1 - has pointed teeth -1

- has claws 1 - has claws -1

- has forward-set eyes 1 - has forward.set eyes -1

- has black stripes 1 - has black stripes 1

- has a _awny color 1 - has a tawny color -1 I
- has hoofs -1 - has hoofs 1 I
- has a white color -1 - has a white color 1

This is the training pattern for recognizing a tiger. This is the trainingpattern for recognizinga zebra,

Given complete set of attributes, the 1Sindicate the presence of Here we notice that the zebra shares some attributes with the
tiger attributes, tiger.
The -ls indicate the attributes which do not apply tothe tiger. Other tiger attributes clearly do not apply to the zebra.

Neural network approach Neural network approach
Tiger Zebra

_ -1 E:-x --
1 E 1 "1 [7 1 "1 1 • E °1 1 "] "1 1

1 1 -1 1 -1 1
1 -1 _ 1 -1

1 -1 ii 1 1 -1

1 -1 1 -1 1

._111_ 1 -1 -1 1 -1

-1 1 1 -1 1

-1 1_.j 1 -1 1
w

A cross correlation is made with the tiger training vector and a Similarly, the pattern for the zebra is cross correlated.

vector representing the two animals. This time, the tiger's position is set to -1 and the zebra's to 1.
The tiger position is set to 1 while the zebra is set to -1.

The result is a matrix which represents the correlation of the
The result is a matrix which represents the correlation of the zebra's attributes with the zebra.
tiger's attributes with the tiger.

i

, , , Iq , , ,, , i I1_ , , I I I i I ' t I' i i I I iii I_
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Neural network approach Neural network approach

Tiger Zebra NeuralNetwork NeuralNetwork

1 .1 ._ 1" o 1-11ooolo11_ o ol

1 ., 1 o + X o o, _ E., ,.
] 1 . 1 -1 2 -2 "rfansl,te 2 -2 I " _]

+ 1 •l _ 1 -1 ,,.. 2 .2 2 -2 I ThtelholdFunctlonJ_

1 -1 I, L-.1.1 "" 2 .2 hashair 2 J-22 T+

1 .1 .1 1 o o ' o,..mllk 0 0 I--0 1hel pointed teeth

1 -1 1 -1 2 -2 h. clews 2 -

-1 1 ! -1 1 -2 2 has Iorward.lat eyee -2 Tranelale

' [-1 has black slrlpoa
[ 1 1 -2 2 has a tawny color -2

-- -- -- has hoo|s -- Zebra
has a white color

_ J

The two resulting matrices are added together to form the neural Binaryvalues, 0 and 1 are used to represent attribute observations.
network. These observationsare represented in a vector and correlatedwith
The NN is now ready for use. the NN.

•The result from the NN is a vector representing the strength of
correlation between the observed attributes andthe learned
attributes.

By pickingthe largest value with a threshold function, the NN can
indicate its best conclusion given the provided information.

Neural Clusters Circulation pump-motor
assessment

"_i heating plant pump
Central circulation

• Assessment based on Instrumented data

• Known trouble signatures stored in the NN

......"17! _i -- _-_ " Produces reportof suspected problem

• Recommends solutions and list costs

/
le*wl_il eylt _ _ I_e=h

I t \

One such large problem is the diagnosis efa circulation pump/
The neural network justdescribed could be thought of as a neural motorsubsystem of a central heating plant.

cluster. This subsystem is instrumented in such a way that data for
A cluster is a neural network capable of solvinga subproblem, essential attributes are collected.

A cluster can propagate its conclusions to other clusters to A neuralnetwork is used to monitor for known trouble signatures.

contribute to the total solution. When trouble is detected, a report is generated about the
A neural lattice is a collection of neural clusters arranged in a suspected problems.
cooperative fashion to subdivide and to solve a large problem. The solutions and cost for each are listed fcr decision-making.

i

.... Ill , , ii .... , , _l ,
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Circulation pump-motor

_ assessment
......... --" Detects problem mecl_anlsmsin pumps

• Recognition of problem signatures
,l_,=* p*_.l I_ " I

"_ '_"-"" I "=" • Symbolic representation of signatures........ • Numeric data pre-processed Into symbols\_

/ /_:J_ ] _:T._ J • Prototype demonstration available

Ir.,w., _..

.... / ......
/

,
By the use of neural networkas a symbolic reasoner,we were
ableto detect problem mechanisms in circulation pump/motors.

This was accomplished through the recognitionof problem
signatures by the neural network.
The signatures were representedsymbolically for Input into the
neuralnetwork.

The signatuies relate to the numeric values taken from
measuring instruments attached to the pump/motor.

Finally, we have available the prototype software for the pump/
motor application.
Pleasecontact me tor a demonstration.



Neural Network Workshop for the Hanford Community 76 .

V"'"'"""" ,,o,.,,=, ,=_8,",',rorkso, ,,,,,o,,,,,, an8 VaXlda']onof "-'"-'

james S. Dukelow,Jr.

BattellePacificNorthwestLaboratories,EngineeringTechnologyCenter
K8-37, P.O. Box999, Richland,WA 99352

phone:(509) 372-4072 internet:js_dukelow@pnl.gov

This talk considersthe intersectionbetweenthe softwareengineeringprocessand the
design, training, and testing of artificialneural networks. This common ground is of
interestbecause neural networksoffer a numberof capabilitiesof interestfor nuclear
industry applications, including safety-related applications, but the process of
developi_4gand testinga neural networkdoes not appear to fit well into the software
engineeringprocessas implementedinthe existingbodyof softwarestandards.

An artificial neural network consistsof a collectionof generally identical processing
elements, the artificial neurons, each with input and output lines. For purposes of
specificity, we can consider the. artificial neurons to be arranged in a layered
architecture, with an input layer receiving information from the outside world,
multiplexingit, and passing it on to a "hidden"processinglayer, which itself passes
processed data on to an outputlayer for furtherprocessingand outputto the outside
world. The layers are generallyrichlyconnected(i.e., each neuronin a given layer is
connected to each neuron in the adjacent layers) and the connecting lines have
associatedconnection"weights",whichcan be modifiedduringthetrainingor "learning"
process. Under appropriateassumptions,a neuralnetworkcan be trainedto learnthe
relationshipbetween a set of input/outputpairs(x1,Yl), (x2, Y2),..., (Xn,Yn),called the
"trainingset", where each xi is an element of k-dimensionalEuclideanspace, Rk, and
each Yi is an element of Rm. For instance, we could have each Yi= f(xi) for some
functionf mappingRk intoRm.Detailed,mathematically-orienteddescriptionsof various
neural networkarchitectures,"learningrules",andapplicationscan be foundin Ref. 1.

Neural networkshave been developedand usedsuccessfullyforapplicationsin pattern
recognition,optimization,approximation,adaptivefiltering,data fusion,machine vision,
voice recognition,and processcontrol. Recentyearshave shownincreasinginterestin
the nuclear industryin potentialapplicationsof neuralnetworksto indu.'_tryneeds. An
indication of this interestcan be found in the proceedingsof the 1992 Workshop on
Neural NetworkComputingforthe ElectricPowerIndustry,cosponsoredby the Electric
Power Research Institute and the International Neural Network Society (Ref. 2).
Precisely because of verificationand validationconcernsin the regulatedenvironment
of the nuclear industry, all of the fielded applicationsof neural networks to electric utility
industry problems are limited to fossil facilities or to the transmission and distribution
network.

For several reasons, verification and validation of neural networks are seen as possible
impediments to nuclear industry applications, particularly safety-related applications.
For many existing applications, the neural network development has had a distinctly
empirical or experimental flavor; considerable judgment may be required in the choices
of the neural network architecture, the "training data set", the "training test data set", the
"validation data set", and the stopping point for the training effort. The neural network
development process is significantly different from the software development process
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for "",,',"",o_" ,.,,.,.,,.,=,_.,.°0software =..ndis not wel!-support.ed by ext,=_0-_soffwere
consensusstandards. It is normalfor many fieldedneural net applicationsto give the
wronganswersome fractionof the time, a situationviolatingthe spirit,if not the letterof
existing standards. This presentation will attempt to expand on the thoughtful,
qualitative discussion of some of the issuesof verificationand validation of neural
networksfoundin Ref. 3.

The behaviorof a neural networkarchitectureis generallydeterminedby the transfer
functionsof its neurons(i.e., the mappingof theirinputintotheiroutput),by the learning
rule, and by the architecture, itself (i.e., by the way in which the neurons are
interconnected). Numerousrecent resultsin the literaturehave been able to describe
this behavior as a mathematicaltheorem on the existence and/or constructionof an
approximationto a member of someappropriatelydefinedfunctionspace, that is, as a
result in approximationor optimizationtheory. This presentationwill discusssome of
these results, including the Kolmogorov Mapping Theorem and various Universal
ApproximationTheorems(Refs. 1 and4).

The bottomline question:Are adequate V&V methodsavailableto justifyuse of neural
networksin safety-criticalapplications? It isthe author'sconvictionthat a combination
of the methodsdiscussedin the Petersonreport(Ref. 3) with the recently-developing
theoreticalbasisfor characterizingneural networkbehaviorform a potentialframework
for rigorousjustificationof safety-relatedapplicationsof neural networks. In addition,it
will be important that ;he body of consensusstandards not rule out neural networksby
virtue of inflexible application of rules more appropriate to the environment of procedural
software in which the standards were developed.
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Interference and Sequential Training of Connectionist Networks: What can we do?

A. Lynn Franklin

University of Washington, Department of Psychology
Seattle,WA

phone:(206) 543-6695 intemet:alfrank@u.washington.edu
and

PacificNorthwestLaboratory,Technology,Planning,andAnalysisCenter
K8-17, P.O. Box 999, Richland,WA 99352

Connectionist networks have been successfully used to perform a wide variety of
informationprocessingtasks. While these accomplishmentsmay be impressive,each
has been required to submitto two fundamentalconstraints. First, the configurations
chosen to implement each network are generally selected through a less than
sophisticatedtrial and errorprocess. A second,and more important, issue isthat each
of these networksmustbe trainedin a repetitivesweepfashionwithall knownexamples
being presented. The introductionof newexamplesgenerallyrequiresretrainingon all
previously learned examples, along with the new example. Without retraining,
connectionistnetworksare susceptibleto interference(degradationof performance) on
previouslylearned examples. This dependenceon sweep learning,which is not typical
for humans, indicates existing learning algorithmshave yet to capture the learning
mechanismsof biologicalneuralnetworks.

This paper discusses one approach for trainingconnectionistnetworks, suppressive
specialization,that addressesbothof these issues. The basic concept of suppressive
specialization will be presented alcqg with several case studies demonstrating the
impact of this approach on interference. In addition, several issues that result from the
ability to use sequential training will be introduced.

Agenda

• objectives, motives, and definitions
• examples of interference
• suppressive specialization
° demo

Objectives

• Interference/Sequential Training
• Selection of Hidden Layer Units

I n fl i i , I' , , _ I ' I I
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Input Output Target 0 1 0 0 0 1 0 0 0.04 0.97 0.04 0.04 {
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SequentialTraining Following Sequential Training

Training Training
Set Evaluate Output After Training

Set Evaluate Output After Training

1000 1000 0.97 0.04 0.04 0.04 1000 1000 0.97 0.04 0.04 0.04

0100 0100 0.04 0.97 0.04 0.04 0100 0100 0.04 0.97 9.04 0.04

0010 0010 0.04 0.04 0.97 0.04 0010 0010 0.04 0.04 0.97 0.04

0001 0001 1000 0.97 0.04 0.04 0.04
-- 0 1 O0 0.04 0.97 0.04 0.04

O0 1 0 0.04 0.04 0.97 0.04

000 1 0.04 0.04 0.04 0.97

= I_



Ratcliff Performance 4'
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0010 0010 0.04 0.05 0.94 0.02 Suppressive Specialization _,,

0001 1000 0.77 0.01 0.01 0.90

0 1 O0 0.01 0.75 0.01 0.92 • Hidden Layer Pool

O0 1 0 0.01 0.01 0.73 0.92 • Lateral Inhibition

0 0 0 1 0.03 0.04 0.04 0.95 • Plasticity Adjustment 9
..... • Cooperation Function

1 1 1 1 0.02 0.03 0.04 0.95

0110 0.00 0.36 0.33 0.91

Four Bit Encoder
SuppressiveSpecialization

Input Evaluate Output After Training

I 1000 1000 0.97 0.01 0.02 0.02
Input Output Target 0 1 O0 0 1 O0 0.01 0.95 0.01 0.01
-- -- 0010 0010 0.01 0.01 0.97 0.02

'-0 I 0 - ___ __ ooo_,oooo._o.o_o.o,o.o,
°-0 ,,_e,_,a_e_O-- 0 0'000"0_0"_0"0_0"0'00,00.0_0.0,0._,0.0_

--_ 0 000_0"0_0"0_0"0_0"0_0 _ 0

--0 0 - _ °_°°°_°'_°"o I ,, . o o_oo.o_o.:,o.o,o.o_
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Ground Penetrating Radar Target Recognition

Lars J. Kangas, Gerald A. Sandness,ShawnJ. Bohn

Pacific NorthwestLaboratory,AppliedPhysicsCenter,ComputerScience Department
K1-87, P.O. Box999, Richland,WA 99352

phone:(509) 375-3905 fax: (509) 375-6631 internet:Ij_kangas@pnl.gov

A feasibilitystudywas performedforOsaka Gas Company,Japan usingArtificialNeural
Networks (ANNs)to recognize undergroundutilitypipes from images generated by
groundpenetratingradar.

____

,_,, _

_,_

Figure I. Ground penetrating radar image.

w
of individual radar ping returns side-by-
side. The vertical dimension of the image
is depth in the ground (approximately 8
ft), with the surface on the top. The
horizontal dimension represents the run
along a line on the surface (approximately
30 ft).

Input layer

Hidde'n layer

Output layer

I I

I L _ ___ Objects

L _ _ __. No Objects

Figure 2. Each individual radar ping is analyzed by an ANN for
pipes. The input to the ANN is the peak-to-peak values in the

phase component of a Fourier transformed radar ping. The ANN
output determines whether there is a pipe in the ping.

_ ,i i i rl ii I
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Frtqu.cncy , Frequency

Figure 3. Peak-to-peak magnitudes in the phase components of Fourier transformed radar pings. The left
and right graphs are pings without and with pipes, respectively. The ANN uses the differences in these
graphs to determine whether there is a pipe in the pin 8.

!

_=_'"_..._

t._- .

_,_.'

_._.._ -'_".__'

_ _,,=.4_ (" Inputlayer

_ Hiddeh layer

Figure 4. Radar image showing the pings which were
determined to have signatures of pipes in the ANN
in Figure 2. Only these pings will be further Output layer"
processed for pipe recognition.

I _ Coefficient 170

I

I

I ''

I _ Coefficient 6
_.. Coefficient 5

Coefficient 4

Coefficient 3

Coef[iclent 2

_.. Coefficient !

Figure 5. A radar ping is analyzed in an ANN to determine at which depth
in the ping there is a signature from a pipe. The ping signal is
sampled into 170 coefficients. The ANN output is the recognition of a
pipe signature at every coefficient. This scheme allows multiple pipes
to be recognized in a single ping.
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Figure 6. Image reproduced from the output of the ANN Figure 7. The image in Figure 6 after

in Figure 5. The dark colors represent recognition of synthetic aperture processing.
pipe signatures.
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=_= Figure 9. The graph shows how confident the ANN

system is in recognizing a pipe at different

-4 - r , , _ _ , t signal-to-noise ratios. The graph shcws results

O.OOe+O 2.00e+6 4.00e+6 6.00e+6 8.00e+6 1.00e+7 from using both the peak-to-peak magnitudes of

Frequency (Hz) the phase and the magnitude components of Fourier

tranformed radar pings.

Figure 8. The three graphs show the unprocessed

radar ping, the magnitude and phase components of

the Fourier transformed radar ping.
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Neural Network Applications in the Environmental and Molecular Sciences
Laboratory (EMSL)

Paul E. Keller, RichardT. Kouzes,LarsJ. Kangas

PacificNorthwestLaboratory,MolecularScience ResearchCenter,
Computingand InformationScience

K1-87, P.O. Box 999, Richland,WA 99352
phone: (509) 375-2254 fax: (509) 375-6631 internet: pe_keller@pnl.gov

The construction of the Environmental and Molecular Sciences Laboratory (EMSL) at
the Pacific Northwest Laboratory is about to begin. This facility will assist in the overall
environmental restoration and waste management mission at the Hanford Site by
providing basic and applied research support. This poster identifies several applications
in the Environmental and Molecular Sciences Laboratory where neural network
solutions can potentially be beneficial. These applications include real-time sensor data
acquisition and analysis, spectral analysis, process control, theoretical modeling, and
data compression.

Mission of the EMSL
v

The Environmental and Molecular Sciences Laboratory (EMSL) will be an essential part of our ability to provide the necessary
technology solutions to achieve environmental restoration objectives, including

• developing new technologies to solve environmental restoration andwaste operations problems

• developing technology to improve environmental restoration and waste management effectiveness, efficiency, and safety by
establishing the scientific basis for contaminant transport in groundwater, surface water, soil, and atmospheric systems

• enhancing educational programs and initiatives by providing the necess_,rycapabilities to support cooperative educational and
training programs with academic institutions and DOE national laboratories

• encouraging collaboration and technology transfer among Federal agencies, State and local governments, industry,
academia, and.the international community by operating as a national DOE user facility open to all scientists.

Neural Network Fundamentals ,,

Simg_ Model of a Neural Network

neurons_ nonlinearprocessingelements
synapses_ weightedinterconnectionsbetweenneurons

dendrites/axons<=>communicationchannels

neuralnetwork<=>systemofhighlyInterconnected,nonlinearprocessorsworkingin unison



Sensor Data Acquistion and Analysis,
feature values labeled patterns MonitorinaConditions in (ProDosedl Permanent Storaoe Facilities o_-Two facilities have been

(measurements:electrical (e.g.,chemicalcomposition, proposed for permanently _"

response,wavelength,etc.) isotopeidentification,etc.) storing waste from the o_
"l_ -'_'_-_-I_ ili Hanford Site. Low level

Sensing System ] _ > waste would be mixed with _"

_L,.' Neural > grout and stored in an _

> underground vault. High
Network > level waste would be vitrified _'

- - - > and stored in an underground ._
repository. ANNs could be ¢B

• used to monitor the condition .Repos=tory of the stored waste.
•

_ P_

There are many real-time and remote sensingapplicationson the Hanford Site Potential Applications oc_
includinginsitumonitoringof contaminants,andchemicaland isotopeidentification. • Artificial Noses: _]

: Many of these applicationsrequirean inexpensive,compact, and automatedsystem Artificial noses (chemicalsensorarray coupled to an automatedchemical
for identifyingandmonitoringthe objectof interest(e.g., chemical,isotope). Sucha identificationsystem)willbe usedtoexamineandIdentifychemicalwastesamples ,_
system could be constructed with a sensor array and an automated pattern andcontaminationontheHanfordSite. ArtificialnosesthatincorporateANNshave
recognitionsystem(suchas a neuralnetwork). In hazardousenvironments,these beenusedinapplicationsincludingmonitoringfoodandbeverageodors,automated
systemshave a distinctadvantageover traditionalsamplingand laboratoryanalysis flavorcontrol,analyzingfuelmixtures,andquantifyingindividualcomponentsin gas
methodssince an environmentcan be monitoredwithoutriskto human operato,s, mixtures.
The complexityof the data collectedby large sensor arrays makes analysiswith • Sensor Calibration and Validation:
conventional methods difficult. ANNs, which are relatively easy to train for analyzing The development of new sensors requires that a methodology for sensor calibration
complex data, are likely to be a better choice for sensordata analysis, andvalidationbe established.ANNshavebeenusedinspectralpeakvedtication

and will be considered for both the calibration and validation of new sensors,

[ particularly for new complex sensors that may perform better than established

InSitu Waste and Contaminant Identification I W_$te Storaoe Tank Monitorino calibration and validation methods. IThere are an estimated 1700 waste sites High level waste is currently stored in 149
_ distributed around the !400 square ] single-shell and 28 double-shell, subsurface • Hot-Cell Monitoring:

kilometers (560 square miles) of south- I tanks. An ANN could be used to monitor the Another project on the Harlford Site involves the deployment of a multHnstrument
eastern Washington that comprise the I conditions of the stored waste and alert array of fiber optic sensors, radiation sensors, and ultrasonic devices into hot cells.
Hartford Site. This waste includes nuclear I operators of abnormalities.
waste (e.g., fission products), toxic ,
chemical waste (e.g., carbon tetrachloride, I

" ferro-cyanide, nitrates, etc.), and mixed I
: waste (combined radioactive and chemical I Approaches

waste). An ANN coupled to a sensor = SubsurfaceWaste ° Backpropagation, Feed-Forward Networks
array (artificial nose) could be used in the _ StorageTank • Kohonen's Self-Organizing Networks
contaminant identification. I • Hamming Networks

13?Cs CCI4 _ Fc(CN)6"4 I • Boltzmann Machines
_OSr_ = • Hopfieid Networks<_Co • _Pu C6HI20 NO3- It

,L

t
QO

= CO "



Spectral Analysis Process Control . "aL

MassSpectrometry NuclearMagneticResonanceSpectroscopy GroutTreatment HartfordWasteVitrificationPlant .
Facility

I

M_ SensingSystem : _"

resonance mass spectrometers, and several high-field and ultrahigh-field nuclear AnalysisSystem = DerisionSystem
magnetic resonance spectrometers. These instruments will be used inthe analysis
of large macromolecules, such as enzymes, to be used in environmental , , '_
remediation.

i The cleanup of Hanford will require that many controls be maintained over complex IPotential Applications chemical processes. It would be difficult for human operators to closely monitor all1• Automated Identification of Spectral Data: I key process parameters for a sophisticated chemical process in real-time. It is more
The chemical composition of a sample is determined from its '. ""ctral signature. ANNs _effective to use automated systems in the process control and use human operators
have been successfully used to classify spectra from various mooalities including infrared I in a supervisory capacity. ,,
spectroscopy, mass spectrometry, and NMR spectroscopy

• Interpretation of Important Features in Spectral Data: Potential Applications
A specificprobleminthisarea is locatingthe spectralpeaksof the lowestmolecular-weight • Process Control:
monoisotopein a mass spectrumof a large organicmolecule. Potentially,an ANN could ANNs allowcontinuous,high-levelmonitoringof all processsensorsand can functionas
be trainedto look at the distributionaroundthe variouspeaks in the mass spectrumand adaptivecontrollers, in manysystems,performancedegradesover timedueto deterioration
inferthe locationof the lowestmolecular-weightmonoisotope, of the system components. To compensate, operational parameters are dynamically

adjusted to optimizesystem performance. An ANN can be used to monitorthe process,
make decisions about system operation,and adjustthe appropriatecontrolsto keep the

Approach process operatingwithoptimalefficiencyand safety. An advantageANNs have overmore

• Backpropagation, Feed-Forward Network: traditional adaptive controllers is that the ANN can be continuouslyupdated with new
Often, the backpropagationalgorithmis used to train a feed-forwardANN for this informationbyusinga dynamicieamingapproach. i

application.A trainingsetoflabeled spectraaregeneratedandpresentedtothetraining

algorithm,whichiterativety_es thesynaptJcweightsintheANN. Approach
• Optimal Linear Associaffve Memory: • Backpropagation, Feed-Forward Network:

Theoptimallinearassociativememoryhasbeenusedtoclassifycomponentsingamma The backpropagationalgorithmis commonlyused to trainANNs in processcontrolwith the
rayspectra.TheANNstorespatterndataina morecompactformthanthe databasethat trainingset composedof historicaldata aboutthe process. ANNshave beenused invadous
resultsina moreelf=dentsearch.Also,whenitis implementedin a true paralleldistributed processcontrolapplicationsincludingprocessfaultdiagnosisandtemperature, m
process%system,their_entpa_i_moltheANNprovidesfora ve_ rapidsearch, co



.......... lilllh

Theoretical Modeling Dc, ta Compression
Molecular Structure Modeling Energy Level Prediction &

SpectrumPrediction The amount of data generated in the planned EMSL is likely to be overwhelmin!l;
therefore, construction of novel systems capable of compressing large quantities of

' data is necessary.

;_ Potential Applications
• Principal Component Analysis (PCA): _oin an analyticalsystemcurrentlyinuse, photoncountingof fluorescentmoleculesis

, Frequency performed. This procedureproducesa two-dimensionaJhistogramor imagebitsOfthe -_'_ d
fluorescingsurface.The sizeofthegeneratedimageis 1024by 1024pixelsat 16 per ._ ]pixel, which isequivalentto 2 millionbytesofdata. Largerimageswillbe generatedby _,,

systemsinthe EMSL. An examinaUonofthestructuresinthe Imageshowsthatonlya "
Nuclear Mass Prediction .._ i

_2o. A fundamental understanding smallamountof informationwouldbe lostif a largeamountof datacompressionwas ¢o i
of the processes that occur in performed.A recogniz_approachindatacompressionof thisformtstotile_'3eimageinto

-=-_0o. " _<_ the complex environment of subimagesandthencompresseachindividualsubimagebyusingPrincipalComponent

8o. hazardous waste is necessary Analysis. _.

; eo. ./,,fJ in the development of efficient c)

_.,,o._oo'_ _o _ and c°s' effective systems f°r I ] o

, environmental remediation. By Approach
N =o_i::;p_ simulating molecular structures * Backpropagation, Feed-Forward Network:

and dynamics, one can gain ANNehavebeentrainedwiththebackpropagation_ toperformeflidentPCAdala '_"
r_ _o _oo_o _o _6o insight into these processes.

N (NeutronNumber) ,, I compressioninreal-time.

Potential Applications
, Prediction of Mass Excess in the Nucleus of Isotopes

• Pattern Recognition of Molecular Structures

• Modeling Chemical Systems CO nclu.einns

• Determination of Protein and Other Molecular Structures This poster has identified several real-time data processing applications

• Prediction of Spectral Data in the planned EMSL that can potentially benefit from ANNe. These

• Prediction of Energy Levels applications include sensor data acquisition and analysis, spectral analysis,

= process control, data compression, and theoretical modeling.

Approaches We are currently working on prototype evaluation to determine if ANNe

• Boitzmann Machines and Hopfield Networks:. are appropriate for the aforementioned applications. This involves

= Several theoreticalmodels in molecularscience involvesearch and optimization. For development of software ANN simulators and exploration of the capabilities
example, molecular structures can be determined by optimizinga set of structural

parameters for a set of physicalconstraints. While generally producingsuboptimal and limitations of ANNe to these applications. If ANN solutions are judged
: results, Boltzmann machines and Hopfield Networks have been used to generate appropriate after the evaluation, then a dedicated ANN hardware system will

approximate solutions in relatively sho=tcomputation times when compared with more be considered.
rigorous optimization techniques.

• Backpropagation, Feed-Forward Network:.

Backpropagationtrained ANNe have been used to predict the secondaryand tertiary .,
structuresof proteins, co "

i
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Comparis0n of Nonrecurrent Associative Memory Models Using Image Data

Paul E. Keller1, MariappanS. Nadar,2BobbyHunt,2EricVonColln,3AnupamGoyal2

1pacificNorthwestLaboratory,MolecularScience ResearchCenter
K1-87, P.O. Box999, Richland,WA 99352

phone:(509) 375-2254 fax: (509) 375-6631 intemet:pe_keller@pnl.gov

2Universityof Arizona,Electricaland ComputerEngineeringDepartment,
NeuralAnalysisand ImagingLab,Tucson,AZ 87521

phone' (602) 621-6178 internet:nadar@nail.ece.arizona.edu

3NRaD, Code 7304, San Diego,CA 92152-5000

Three optimalassociativememoriesare comparedbytheir abilityto recall image data. The
first model is the classical optimal linear associativememory. The second model is an
optimalnonlinearassociativememorythat usesa secondorderpolynomialmappingof the
inputdata. The thirdmodel is composedof a nonlineartransformationin the inputpattern's
spectral domain followed by the classical optimallinearassociative memory. Computer
simulationswithimaqesare usedto evaluatethe performanceof the three models.

:LO_)timal Linear Associative l_emoTv 3,Dptimal Linear Associative Memory with Non-Line.ar
• Teuvo Kohonen, "Correlation matrix memories," IEEE Transactions on Preurocessin_ in the Svectral Do_ail_

Computers, vol. C-21, p. 353, 1972. * B. Hunt, M. Nadar, P. Keller, E. VonColln, A. Goyal, "Synthesis of a
Nonrecurrent Associative Memory Model Based on a Nonlinear

• The optimal linear associativ e memory (OLAM) is based on a simple matrix Transformation in the Spectral Domain," IEEE Transactions on Neural
associative memory model. It is an improvement over the original matrix Networks, vol. 4, pp. 873-878, 1993.memory in that it projects an input pattern onto a set of orthogonal vectors
where each orthogonal vector represents a unique pattern (exemplar). " This model is composed of a nonlinear transformation in the spectral
With linear activation functions, the training is a straight forward matrix domain followed by the standard optimal linear associative memory. In
orthogonalization process where each pat tom from the training set is made this poster, the input space is transformed by taking the Fourier transform
to project onto a separate, unique orthogonal axis in the output space, of the input and setting its magnitude to unity.

Z = d)(X) where 4_ is phase portion of the Fourier domain
The prime motivation for performing this transformation is the importance

Wei__htSpecification of the phase of the Fourier domain representation of images in the recovery
1. Form input and target matrices. Arrange input patterns as columns in of images. This Fourier domain phase-only transformation of the input
an nxp dimensional matrix X and target patterns as columns in an mxp space combined with the OLAM is denoted as a phase associative memory
dimensional matrix T. (PAM) in this poster. ._

2.Generateinverseofthe inputpatternmatrixX. SinceX isgenerallynot WpAM = yzt

a squarematrix'a pseud°'inversetechniqueisusedt°generateXt" i_ _I_ _ __

3. Form synaptic weight matrix, i FourierTransform =4 StandardOptimal
_=__.._ LinearAssociative if.WOLAM= TXt where t indicates pseudo-inverse Set Magnitudeto 1 Memory (OLAM) ._

• ,= [
o

Resultso Input and Output Signal-To-Noise
xg__/ _ Ratios for Distorted Images (in dBs)

/vXZ_,,_t)-------_ _ Distortion Input OLAM SAM PAM

_ x__.j******'_ _ 1. Flipped Hair Style 4.54 6.89 7.99 15.75

_ "-_/J_-.___. 2. Left Half of Face 2.62 4.65 5.33 13.51
// ..,-,'"_ - _ 3. No Face 6.23 7.66 11.00 15.89

4. Sunglasses 5.18 12.01 12.15 12.99

2_Ovtimal Non-Linear Associative Memory Input and Output Signal-To-Noise
• T. Poggio0"On optimal nonlinear associativerecall," Biological Ratios for Noisy Images (in dBs)

Cybernetics, vol. 19, pp. 201-209.

Gausslan Noise Input OLAM SAM PAM• The Optimal Non-Linear Associative Memorj, is a modification to the
OLAM that uses a polynomial mapping of the input space. The input space SNR 20 20.0 35.65 36.63 22.14
is transformed by:

J Z(X) = Po +Pl (x) + P2(X,X) + PsOf,X,X) + ... + Pd(X,X,...) 6, SNR= 10 10.0 25.65 26.64 16.59

7. SNR = 0 0.0 15.65 16.68 12.08
where Po,Pl,P_....,Pd,arepolynomialcoefficients.The synapticweights

are specified in a manner similar to the OLAM. 8. SNR= -10 -10.0 5.65 6.98 1.22
WsAM= YZt

In this poster, a second order polynomial associative memory (SAM) is 9. SNR =-20 -20.0 -4.35 -3.20 --

used. SNR =-30 -30.0 -14.35 -24,11 --
Z(X)= Po + Pl(X)+ ps(X,X)
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Images Recalled From Three Associative Memories
• ,-

(a) Input Image Co) OLAM Recalled (c) SAM Recalled (d) PA.M Recalled (a) Input Image (b) OLAM Recalled (c) SAM Recalled (d) PAM Recalled

(a) Input Image (b) OLAM Recalled (c) SAM Recalled (d) PAM Recalled (a) Input Image CO) OLAM.Recalled (c) SAM Recalled (d) PAM Recalled

3. No Face 6. Added Gau_sian Noise (S.NR =110 dB)

(a) Input Image Co) OLAM Recalled (c) SAM Recalled (d) PAM Recalled (a) Input Image Co)OLAM Recalled (c) SAM Recalled (d) PAM Recalled

7, Added Gau ssian Nois.e (SNR = odB) Conclusion
For Distortions of the Images (e.g., partial removal
or modification), the OLAM with spectral domain

• preprocessing (PAM) performed best of the three
techniques tested.

(a) Input Image CO)OLAM Recalled (c) SAM Recalled (d) PAM Recalled

For Noisy Images, the Second Order Associative
Memory (SAM) performed best, though only slightly

• better than the standard OLAM.

The spectral domain processing used in the PAM
(phase of the Fourier transform) produces a system

• sensitive to high spatial frequencies. These
frequencies contain much of the unique detail of an

(a) Input Image CO) OLAM Recalled (c) SAM Recalled (d) PAM Recalled image. Large scale modification of the images
(distortions) is a low spatial frequency effect. Adding
noise, affects the high spatial frequencies more than
the low spatial frequencies. This explains the
performance of the PAM.
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An Optical Neural Network Implemented with Fixed, Planar Holographic
Interconnects

PaulE. Keller1andArthurF. Gmitro2
1PacificNorthwestLaboratory,MolecularScienceResearchCenter,Computingand

InformationScience
K1-87, P.O. Box999, Richland,WA 99352

phone:(509) 375-2254 fax: (509) 375-6631 intemet:pe_keller@pnl.gov
and

2Universityof Arizona,OpticalSciencesCenterandDepartmentof Radiology
Tucson, AZ 87521

phone: (602) 626-4720 fax: (602) 694-2521 internet: gmitro@zen.radiology.arizona.edu

A key element of most neural network systems is the massive number of weighted
interconnections used to tie relatively simple processing elements (neurons) together in
a useful architecture. The inherent parallelism and interconnection capability of optics
make it a likely candidate for the implementation of the neural network interconnection
process. While there are several optical technologies currently under investigation, this
poster presents an optical system that combines fixed planar holographic interconnects
and opto-electronic neurons.

An analysis of this architecture shows a potential interconnection capacity of 45 millicrJ
synaptic connections for a planar hologram. The dynamic range of each synaptic
connection is about 38:1 (approximate precision of 5 bits). Higher interconnection
densities can be achieved by accepting a lower dynamic range. For opto-electronic
neurons employing laser diodes, processing rates of 45 to 720 trillion connections per
second can potentially be achieved.

An experimental optical system employing binary amplitude holograms is also
presented in this poster. This experimental system encodes a Hopfield _uto-associative
memory and demonstrates the ability of this optical architecture to implement the
structure of the neural network.
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. (1) Investigate Feasibility of Constructing an
Optically Implemented Neural Network
that uses Fixed Planar Holographic
Interconnects

(2) Evaluate Planar Holographic
Interconnection Technology

(3) Develop New Computer Generated
Holograms Techniques for the Proposed
System

(4) Evaluate Necessary Opto-Electronic
Components

(5) Demonstrate a Prototype System

(6) Determine Potential Capabilities and
Limitations of This Approach

Feedforward Neural Network Feedback Neural Network
Neuron Layer
(processing)
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Optical, Implementation
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Optical Interconnections
Why use Optical Interconnections? ° Connection (synaptic) weights are stored in

no interaction between optical beams the diffraction pattern of the hologram
diffraction pattern

traversing the same space synaptic weights produced by

-, __ _ for a single neuron subhologram\_" _i _ I subholo gram

" H_ (_,n)

\ I _a_ _] FoX_.uur \ ! Wijkl 'hkl(X,Y)' =
\ ,t_ :c • Fourier transform holograms map angles

_lUa_ce " H_a_ne _ Trans_:L Plane to detector locations

Lens subholojrams _ _ F

" Each neuron output has its own hologram _euro_I,==,=_=..,..f ='=--__......____ _._ __

This prototype illustrates how holographic interconnects output states _ _
encoded on I __'_V----.__

can be used to connect one layer of optical sources to light beams s___._._ _ ._
another plane of optical detectors: An individual neuron _[_.........__
emits a beam of light that illuminates a single :4

subhologram. The Fraunhoferis diffractiOnof patternsetof Ibm="__ __--produced by the subhologram composed a ..._._-_ neuronmlight beams that connect this output signal to each 'put

detector. The intensity of each beam arriving at the j (detector)

detector plane represents the strength of the synapti-. • Superposition of light beams on detector
connection between two neurons. (incoherent assumption)jh __

Opto-Electronic Neurons
Why use Opto-Electronic Neurons? * Bipolar weights are encoded by spatial

nonlinear operations are inefficient in separation of positive weights and negative
optical materials weights falling on the detector cell

Collection Electronic

o P_o_e_o_ De tector/M odul ator Op to-E1 ectro ni c N euro n
Li Photodetectors

(input summing ports)

Be_ _ ,_k[J'] :_ o +V
excitatorysign

(light beams)_[_ :i R ModulatorCell(outputport)

inhibitory signa_ • .':i>::i:-i.

Detector Source _ - V Output Light Beam
Plane Plane

• The synaptic weight of each connection is Detector/Emitter Opto-Electronic Neuron
represented by the power falling on a v_,..

detector cell _P-,,,_plt°_' ,.,summing ports) • r'

This figure illustrates a prototype opto-electronic neuron excitatorysign_ Photoemitters,

(output port) iplane. Each neuron consistsofa pair ofinputdetectors (lightbeams_ _ " OutputLight,_,Beams

(which convert optical signals to electronic), a non- _,t_ _ > _rlinear electronic amplifier that implements a neuron
activation function, and an output light source or spatial inhibitory si :...... _',--'-"-7_!_ Nonlinear Difference ,'

ulgn_ Dearns)/-_tl_ Amplifier <"

light modulator. The intensity of the output beam / -- (activationfunction) _i_
encodes the stateofthe neuron.
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Operation of the Experimental System
The following sequence of patterns was generated with the optical system
when it was configured as a Hopfield autoassociative memory. The
Hopfield network is a single layer feedback system where the synaptic
weights are specified by using an outer-product rule. This network tries to
associate each pattern presented it with a pattern stored in the network.
This example, illustrates how a corrupted or noisy version of the letter A is
recalled by the network. The letter A is one of the stored patterns.

III I III III I IIIII I

Initial Network State
• Output o_ the Array of Neurons
• NoisyVersion of the Letter 'A'
• View of the Light Source Plane
Light SourceGrid Emitted Intensity
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iOptical Interconnect Process (Diffraction) I

Diffraction Pattern
• Onputto Array ef Neurons
• View of the Detector Plane
• 8 by 8 Grid of Detector Cells

DetectorGrid Detected Intensity
mmmmUlmmmimaamananmanm
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ilBBBlUU
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FNeuronThresholding Process<Electronic)1

New Network State
•Output oftheArrayofNeurons
•Letter'A'isAlmost Flecalled
• View of the Light Source Plane

[--] Neuron Output is 'On' (emitting light)

Hi Neuron Output is 'Off' (not emitting light)

IOptical InterconnectProcess (Diffraction) i

, , , a i , i 'rl ii i , , , t J
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' J Diffraction Pattern
• Unputto Array of Neurons
• View of the Detector Plane
• Each Cell is Composed of 2 Detectors

DetectorCell
sum of positive_

weights

sum of negative
weights

I Neuron Thresholding Process (Electronic)I

New Network State
• ©utput of the Array o_ _eurons
• Letter 'A' is now Perfectly Recalled
• View of the Light Source Plane
• With 10 Pixels Incorrect, the Network

Perfectly Rgcalledthe Stored Pattern
in 2 Iterations

IOptical InterconnectProcess (Diffraction) !
"1

Diffraction Pattern
• Qnputto Array of Neuron_,
• View of the Detector Plane

Greater Excitation Greater Inhibition

Neuron Thresholding Process (Electronicil

Final Network State
• Output of the Array c_ _uron_
• Stabilityhas now been Reached
• View of the Light Source Plane

Previous State Current State
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Experimental Opto-Electronic Photogr.a.phs of the
Neural Network Experimental System

Computer

Input to the Layer Output of the Layer
of Neurons of Neurons

s4deo_Ional v_ signal

Hughes Liquid /
Polarizing Crystal Light

Ar+ Laser Beam Splltter Value

Hologram
Plane

Mirror Side view of the experimental opto-electronic neural I
network. The high intensity projection CRT and liquid I
crystal light valve are pictured on the right. The video]

Relay Lens Transform camera is pictured on the left. The argon ion laser isI
Lens pictured in the background. I

I
This figure illustrates the complete opto-electroni_
neural network configured for the feedback architecture. I
While this experimental system is not practical for the I
implementation of real-world applications, it is useful in I
proving the technology and for evaluating the I

performance of holographic optical interconnects. /

Interconnection Holograms

i Di_rusio,Proce, Top view of the experimental opto-electronic neural]

network. The high intensity projection CRT and liquid[
crystal light valve are pictured on the right. The video]

Arra f6 Holograms

Producedwiththe camera is pictured on the lower left. The argon ion|
laser is pictured on the top. |

Binary Search Process /Kodak 649F I
t

This holographicplate contains the synaptic weights for two complete
Hopfield associative memoryneural networks. This plate was is used
in the experimental opto-electronicneural network. There are two
arrays of holograms. One array of 64 holograms for each neural
network. Each hologram is 1 mm square in size and encodes the
weights interconnecting a single neuron to all other neurons in the
network. These hologramsare computer generated. The arrayon the
left was generated by using a randombinary search proce§s,and the
array on the right was generated by using the error diffusion process.
This holographicplate was producedduring a two step photographic
process. The size of each hologrampixel is 4tnn by 4#m.
IL I ! ii i i H i I

n , , , r , , , , , ,l , 11 , , i , ' , i i, , , , i i I F I III I ' I ii



. Neural Network Workshop for the Hanford Community 9.9

Potential Capabilities of
Planar Holographic Optical

Neural Networks

Neurons Synapses Approx. Coding Processing Power
per per Precision Device Rate per

Layer Layer (CPS) Neuron
, . ,., .=

26,912 7.2x108 3.9 - 4.2 VCSEL 7.2x1014 180 - 220
bits _W

SLM 7.2x1011

....13,448 1.8x108 4.3 -4.9 VCSEL 1.8x1014 90 -110
bits _W

SLM 1.8x1011
,,,

6728 4.5x107 4.9 -5.2 VCSEL 4.5x1013 57 - i30
bits ...... _W

SLM 4.5xi010
............

CPS =,ConnectionsperSecond

VCSEL = Vertical Cavity Surface Emitting Laser Diode
• switching rates exceeding 1 MHz
• speed limited by detectivity
• power dissipation limitations

SLM = Spatial Light Modulator
• switching rates of 1 - 5 kHz

Conclusions Additional Work

• Small Scaled (64 neuron) Neural Network was P. Keller and A. Gmitro, "Operational Parameters of an Opto-Electronic

Implemented and Demonstrated with an Optical System Neural Network EmployingFixed Planar Holographic Interconnects",
Proceedings of the World Congress on Neural Networks, Volume 4: pp. 799-
802, (International Neural Network Society, Washington, DC, 1993).

• Performance of Optical System was Similar to Computer
Simulations of the System P. Keller and A. Gmitro, "Computer-generated holograms for neural networks:

analysis of on-axis and off-axis diffraction geometries," Applied Optics,
Volume 32, pp. 1304-1310 (1993).

• Advantages of This Approach:
• True Parallel Processing P. Keller and A. Gmitro, "Design and analysis of fuxed planar holographic

interconnects for optically implemented neural networks," Applied Optics,
• Very Fast Volume 31, pp. 5517-5526 (1992).

Processing Rates Upto 720 Trillion Connections Per Second

• Can Implement Large Systems
P. Keller and A. Gmitro, "Computer generated planar holograms for optical

- Upper Limit of 6,800-27,000 Neurons Per Layer neural network implementations," Annual Meeting of the Optical Society of
America, Albuquerque, NM, 25 September 1992.

• Disadvantages of This Approach:
• No On-line Learning P. Keller and A. Gmitro, "Design and Demonstration of an Opto-ElectronicNeural Network using Fixed Planar Holographic Interconnects," in Topical
• Limited Dynamic Range Meeting on Optical Computing, Technical Digest Series, Volume 6, (Optical

- 40:1 (equivalent digital precision of 5.5 bits) Society of America, Washington, DC, 1991) pp. 80-83.

• Immature technology (currently not practical)

A. Gmitro, P. Keller, G. Gindi, "Statistical performance of outer-product
associative memory models," Applied Optics , Volume 28, pp.1940-1948 (1989).

• Since training must be done off-line and generation of the
interconnection hologram is computationally expensive,
optical neural networks constructed with fixed, planar A. Gmitroand P. Keller, "Space-Valiant Interconnects Via Multifaceted

Planar Holograms, "Annual Meeting of the Optical Society of America, Santa
holograms are best suited to situations where very high Clara,CA,4 November1988.
speed processing is required, the trained system is to be
mass produced, and infrequent or no relearning is
anticipated.
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