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Neural Network Workshop for the Hanford Community ) 1

Introduction to the Workshop

These proceedings were generated from a series of presentations made at the Neural Network
Workshop for the Hanford Community. The abstracts and viewgraphs of each presentation are
reproduced in these proceedings. This workshop was sponsored by the Computing and
Information Sciences Department in the Molecular Science Research Center (MSRC) at the
Pacific Northwest Laboratory (PNL). It was held on Wednesday 26 January 1994 from 8:00 am
to 5:00 pm in the Battelle Auditorium. It attracted approximately 90 participants from a variety
of organizations including Battelle Pacific Northwest Laboratories, Westinghouse Hanford
Company, Boeing Computer Services Richland, Siemans Power Corporation, Systek, Mohr and
Associates, NeuroDynamX, Washington State University (Pullman and Tri-Cities campuses), the
University of Washington, Eastern ‘Washington University, Eastern Oregon State College, the
U.S. Department of Energy, and Bureau of Reclamation.

Artificial neural networks constitute a new information processing technology that is destined
within the next few years, to provide the world with a vast array of new products. A major
reason for this is that artificial neural networks are able to provide solutions to a wide variety of
complex problems in a much simpler fashion than is possible using existing techniques. In
recognition of these capabilities, many scientists and engineers are exploring the potential
application of this new technology to their fields of study.

An artificial neural network (ANN) can be a software simulation, an electronic circuit, optical
system, or even an electro-chemical system designed to emulate some of the brain's rudimentary
structure as well as some of the learning processes that are believed to take place in the brain.
For a very wide range of applications in science, engineering, and information technology, ANNs
offer a complementary and potentially superior approach to that provided by conventional
computing and conventional artificial intelligence. This is because, unlike conventional
computers, which have to be programmed, ANNs essentially learn from experience and can be
trained in a straightforward fashion to carry out tasks ranging from the simple to the highly
complex.
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Neural Network Workshop for the Hanford Community

Purpose

The purpose of this workshop was to bring together individuals from the Hanford community
who potentially have a need to apply artificial neural network technology in their projects. The
mam objectives of this workshop were:

to provide an introduction to the field of neural networks

to explain how neural networks can be used in science and engineering

to demonstrate how to build a neural network application in software

to discuss sources of information about neural networks

to provide a set of example neural network apphcat1ons of interest to the Hanford
community

* to bring together people with interests in neural networks

Workshop Organizing Committee:
Paul E. Keller (509) 375-2254 pe_keller@pnl.gov

Lars J. Kangas (509) 375-3905 1j_kangas@pnl.gov
Richard T. Kouzes  (509) 375-6455 rt_kouzes@pnl.gov

Address:

Molecular Science Research Center
Pacific Northwest Laboratory
K1-87

P.O. Box 999

Richland, WA 99352

Facsimile: (509) 375-6631
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Neural Network Workshop for the Hanford Community

Workshop Itinerary (Wednesday 26 January 1994)

Tutorial Session
8:00 am - 9:45 am Battelle Auditorium
A

8:00 am - 8:05 am

Overview of the Workshop, Richard Kouzes,
Pacific Northwest Laboratory, Molecular
Science Research Center

8:05 am - 9:15 am

Introduction to Neural Networks, Paul E.
Keller, Pacific Northwest Laboratory,
Molecular Science Research Center ............ 5

9:15 am - 9:45 am

Developing an Application, Lars J. Kangas,
Pacific Northwest Laboratory, Applied Physics
CONEEN ..ttt 12

Morning Break
9:45 am - 10:00 am Auditorium Lobby

Overview Session
10:00 am - 12:00 pm  Battelle Auditorium
Paul E. Keller, moderator

10:00 am - 10:10 am

Opening Remarks, Richard T. Kouzes,
Pacific Northwest Laboratory, Molecular
Science Research Center

10:10 am - 10:50 am
Developments in Neural Network Chips,
Ronald Benson, NeuroDynamX, Inc. .......... 15

10:50 am - 11:30 am

Alternatives to Neural Networks: Genetic
Algorithms and Non-Linear Biased
Regression, Barry M. Wise, Pacific Northwest
Laboratory, Molecular Science Research
(0] 0] (=] U 20

11:30 am - 12:00 pm

Combining Neural Networks, Sherif
Hashem, Pacific Northwest Laboratory,
Molecular Science Research Center .......... 27

Lunch Break and Poster Session
12:00 pm - 12:40 pm Auditorium Lobby

Afternoon Session #1
12:40 pm - 2:40 pm Battelle Auditorium
Lars J. Kangas, moderator

12:40 pm - 1:10 pm

Parallel and Distributed Gradient Decent
Learning, |. Mehr, Zoran Obradovi¢, R.
Venkateswaran, Washington State University,
School of Electrical Engineering and
Computer SCIience............ccccccvvvvvvirvennininan. 31

1:10 pm - 1:40 pm

Neural Network Algorithms for VLSI
Design and Test Automation, Jack L.
Meador, Washington State University, School
of Electrical Engineering and Computer
SCIENCE ...vvevvveirrieieisieeiceerte e e 39

1:40 pm - 2:00 pm

Isotope Identification via Neural Network,
Paul Keller, Pacific Northwest Laboratory,
Molecular Science Research Center........... 45

2:00 pm - 2:20 pm

A Multicomponent Spectrum
Decomposition Network, Harry Bell, U.S.
Department of ENergy.....c.cccccoevevvviinniennn. 49

2:20 pm - 2:40 pm

Neural Network Based Chemical Sensor
Systems, Paul Keller, Pacific Northwes?
Laboratory, Molecular Science Research
072 1 (=] PO OO N 53

Afternoon Break and Poster Session
2:40 pm - 3:00 pm Auditorium Lobby

Afternoon Session #2
3:00 pm - 5:00 pm Battelle Auditorium
Paul E. Keller, moderator

3:00 pm - 3:20 pm

Integrating A Parallel Constructive Neural
Network Algorithm with an Expert System,
Justin Fletcher, Washington State University,
School of Electrical Engineering and
Computer SCIencCe..........ccc.ccvvivrevnmeiniicnenen, 58

3:20 pm - 3:40 pm
Turbine Engine Diagnosis Artificial Neural
Network (TEDANN), Lars J. Kangas, Frank L.



Neural Network Workshop for the Hanford Community

Greitzer, George M. Alexander, John A.
Sanches, Paul E. Keller, David D. Turner,
Pacific Northwest Laboratory...........ccc..c..u. 67

3:40 pm - 4:00 pm

Symbolic Reasoning with Neural Networks,
Morgan L. Yim, Pacific Northwest Laboratory,
Applied Physics Center............cccccvevnvenanenns 70

4:00 pm - 4:20 pm

Verification and Validation of Neural
Networks, James S. Dukelow, Jr., Pacific
Northwest Laboratory, Engineering
Technology Center...........cuuieiiciiirienenninnnes 76

4:20 pm - 4:40 pm

interference and Sequential Training of
Connectionist Networks: What can we do?
A. Lynn Franklin, University of Washington,
Department of Psychology ...........ccceueuvenee, 81

4:40 pm - 5:00 pm

Moderated Discussion of Applications,
Richard T. Kouzes, Pacific Northwest
Laboratory, Molecular Science Research
Center

5:00 pm

Concluding Remarks, Paul E. Keller, Pacific
Northwest Laboratory, Molecular Science
Research Center

Povster Session
. 12:00 pm - 12:50 pm

2:50 pm - 3:10 pm Auditorium Lobby

Object Oriented VLSI Design Automation
for Pulse Coded Neurai Networks, Paul
Hylander, Washington State University,
School of Electrical Engineering and
Computer Science

Turbine Engine Diagnosis Artificial Neural
Network (TEDANN), Lars J. Kangas, Frank L.
Greitzer, George M. Alexander, John A,
Sanches, Paul E. Keller, David D. Turner,
Pacific Northwest Laboratory ............cc.c...... 67

Ground Penetrating Radar Target
Recognition, Lars J. Kangas, Gerald A.
Sandness, Shawn J. Bohn, Pacific Northwest
Laboratory, Applied Physics Center............ 84

Computer Assisted Site Assessment
(CASA), Morgan L. Yim, Pacific Northwest
Laboratory, Applied Physics Center

Potential applications of neural networks
at the Environmental and Molecular
Sciences Laboratory (EMSL), Paul E. Keller,
Richard T. Kouzes, Pacific Northwest
Laboratory, Molecular Science Research
Center, Lars J. Kangas , Pacific Northwest
Laboratory, Applied Physics Center............ 87

Nonrecurrent associative memory model
based on a nonlinear transformation in the
spectral domain, Paul E. Keller, Pacific
Northwest Laboratory, Molecular Science
Research Center, Mariappan S. Nadar,
Bobby Hunt, Anupam Goyal, University of
Arizona, Electrical and Computer Engineering
Department, and Eric VonColln, NRaD

An optical neural network implemented
with fixed, planar holographic
interconnects, Paul E. Keller, Pacific
Northwest Laboratory, Molecular Science
Research Center, and Arthur F. Gmitro,
University of Arizona, Optical Sciences

Center .....ccoveeeeeeervvveveenens frerrreter e taeaaneees 93
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Neural Nerwork Workshop for the Hanford Community

Introduction to Neural Networks

Paul E. Keller

Pacific Northwest Laboratory, Molecular Science Research Center,
Computing and Information Science
K1-87, P.O. Box 999, Richland, WA 99352
phone: (509) 375-2254  fax: (509) 375-6631 internet: pe_keller@pnl.gov

Processor Power and Connectivity

Where Are Neural Networks Appropriate?

biological
neural network

human
society

artificial
neural network

connection
machine

t

atoms,
molecules,
and proteins

mainstay
computer
echnology

-
—-

Processor Power

Who is interested in neural networks?

* Biologists and Physiologist
explore low-level and mid-level brain functions such
as memory, sensory systems, and motor functions

* Cognitive Scientists and Psychologists
model high-level brain functions such as thinking and

conscience
* Engineers
- pattern recognition -design
- signal processing - modeling
- process control - robotics

* Computer and Information Scientists
- explore learning systems
- apply neural networks to information processing
* Physicists and Chemists
- model physical and chemical systems
- pattern recognition
* Doctors and Health Scientists
- diagnosis - pattern recognition
* Economists, Financial Analysts, and Statisticians
analyze and predict economic indicators

*» Applied Mathematicians

study neural networks in relation to complex and
chactic systems

* Electrical Engineers and Optical Scientists/Engineers
develop and build electronic and optical hardware
systems to implement artifical neural networks

* pattern recognition

* decision

« forecasting

* mapping complex data sets

* modeling when the physical process is not known or
understood

* optimization when a "good" solution is acceptable
{sub-optimal)

* when the rules of a problem are unknown

* {processing information that humans process well}

Where Are Neural Networks Not Appropriate?

+ when high precision is required

* numerical calculations

* when you already have a good physical model
* when a simpler solution exists

Topics Explored With Neural Networks

Finance (Credit Approval; Predicting Stock; Capital, Currency, and Commodity
Markets; Economic Modeling and Analysis; Check Processing)

" Business (Forecasting Markets and Sales; Modeling, Sales and Marketing Analysis;

Prediction of Workload, Delivery Schedules, Consumer Reaction, etc)

Electrical Engineering (Load Forecasting, Circuit Design, Power System
Stability, Optimization of Electric Power Distribution, Adaptive Logic Elements
Communication (Adaptive Signal Processing, Echo Cancellation, Modems,

Noise Filtering, Data Compression, Speech and Handwriting Recognition)

Food and Agriculture (Food Inspection, Experiments in Agriculture,

Food and Beverage Odor Monitoring, Analysis of Food Quality, etc.)

Qptics (Adaptive Focusing, Adaptive Optical Telescopes, Image Classification,
Spectral Analysis, Optically Implemented Neural Networks, etc.) B
Medicine and Health (Diagnostic Aides -- Myocardial Infarction, Image Analysls --
CT, MRI, Uttrasound, Drug Development, Chemical Analysis)

Education (Teaching Problem Solving, Predicting Student Performance, Teaching
Languages, Computer Aided Instruction)

Manufacturing (Industrial Inspection, Procass Conirol, Quality Control, Cptimizin
Production Schedules, Process Planning and Manufacturing, elc.)

Engineering (Fautt Detection, Robotics, Artificial Limb Control; Control, Analysis of
Mechanical Systems, Inteiligent Alarm Processing, Glass Design)

National Defense (Target Recognition & Tracking, Computer Aided Trans-lation,
Pilot Training, Classifying Sonar and Radar, Guidance, Vehicle Control)

Criminal Justice & Law Enforcement (Predicting Parolee Recidivism, Finger
Print and Human Face ldentification, Detection of Plastic Explosives)

Geology and Geophysics (Oil Exploration, Recognition of Seismic Events,
Prediction of Oil Reserves) .

Biology (Modeling Biological Systems Including Biological Neural Nets, Cell and
Organism Identification, Data Analysis, Oplimizing Experimental Results)
Chemistry (Chemical Compound Identification, Spectral Analysis, Chemical Sensor
Analysis, Polymer Identification, Determining Structure of Proteins, etc.)

Physics (Modeling Nuclear Systematics, Particle and Radiation Pattern Identification,
Gamma Ray Spectroscopy, Modeling in Statistical Mechanics)

Sports (Athletic Training, Picking Horse Race Winners, NFL Score Prediction)

QOther Applications (Legal Strategies, Ground Water Quality Control
Music Composition andAnalysis, Semantic Feature Analysis, etc.)

i T ' [T ) [
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Individual Neuron and Connected Synapses

Neural Network Fundamentals ° Wy .
—_ inputs (dendrites)

processing element
(neuron)

Neuron

o dendrites \S$0M3
RS

o 47
P dendrites B

output (axon) 9,

synapse Neuron

.
>

dendrites

outputs of other neurons

«» Simple Model of Biological Neural Mechanisms  [peuron interconnection
neurons <> nonlinear processing elements * communication * summation )
. . . * multiplication * nonlinear operation, f(u)
synapses <« weighted interconnections between N
neurons Wi0; Fwyop
‘ £

dendrites/axons < communication channels

neural network < system of highly interconnected non-

linear processors working in unison Activation Functlons

flu) fta) flw )
e s [ .
» Artificial Neural Network |
- system constructed from at least the simplistic I (
model of the biological neural network > ~ »
- Parallel Distributed Processing (PDP) System Step Function Sigmoid Function Linear Threshold
- Connectionist Model :
Neural Network Systems Software Implementation
Feedforward System * Series of Vector-Matrix Multiplications
Input Layer
(distribution) . - Feed Values Into The Network
X, idden Layers 0 - 0 — .- :
(processing) Output Layer ) X {Oj XJ: for all ]}
(processing) o
—g g - Propagate To The Next Layer
& 5 net! = W0o0 {net! = ):wijo 0%
B “ - Apply Activation Function
1= 1 1_ 1). i
o' = f(net o;! = f(net); for all
¥=eedback System o= ) : { J # ) ) B
Neuron Layer - Propagate To The Next Layer
(processing)
x ° 4 n_elz =W1o1 {netiz = ZWU1 Oj1}
- Apply Activation Function
0? = f(net?) {0 = f(net?); for all j}

Input Signals

speudig 3ndng

- Feed Values Out Of The Network
y= QL {y ] = OjL; fOl’ all j}
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Pattern Recognition

i
e Recognize Trends in Time Series Data

Decision

*  Recognize Key Components in a Given Situation

Pattern Classification
*  Recognize Objects and Assign Them to the
Appropriate Classes

Learning

Supervised ‘

«  Example Patterns are Presented to the Neural
Network and the Synaptic Weights are Adjusted to
Produce the Desired Output

e Maps the Input Pattern to the Desired Output Label

e Analogous to a Student Guided by an Instructor

Unsupervised

*  Neural Network Assigns Its Own Labels or Classes

»  Useful for Finding Intrinsic Classes or the Underlying
Structure of the Data

*  Also Known as Self-Organization

¢ Analogous to a Student Deriving the Lesson Totally
on His/Her Own

f2

x2 Pattern Classification

feature labeled
values pattern
. f I
Sensing f‘—, Neural 2 >
» 2 t r °
System > Ne wo k ——S—N :

Sensing System .
* imaging system, spectrometer, chemical sensor array, etc.

r n res
* wavelength, color, voltage, temperature, pressure, intensity,
shape, stc.

Needle Length (mm)

Needle Length (mm)

Tree Recognition Example

Cone Length (mm)
\ isi

A Eeature Diagram
40
T o, Western larch
LN L)
E a0 Pk « Measured Values of Sensed Objects
.a » Two Features Shown Here
- Needle Length
§ 20 n’:;‘&“k & o - Cone Length
g %@ white
§ % black spruce
z spruce -
0 T T T T
0 10 20 30 40 50 60

40
« Boundarles Separate Measurement
30 westerm larch Values of Different Objects
- Nearest Neighbor
20 - Nearest Mean
western white - Euclidean Distance
1o hemlock spruce - Cllty Block Distance
0 T T T
0 10 20 30 40 50 60
Cone Length (mm) .
o—j\ Euclidean Distance Metiic A City Block Distance Metric
4 4
western larch westem larch
301 30+
20~ western ® 20 westlern
o hemlock‘ @ white o hem och white
! black spruce black spruce
spruce - spruce -
T T U T T T T T T T >
0 10 20 30 40 S0 60 0 10 20 30 40 50 60
Cone Length (mm) Cone Length (mm)
bias = wy

f,

fa

=
o—2"

Net Stimulus = wg + W4f; + wofy =0

fa

fay
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t2

L.

\

>l
£

Cn
Decision ;\\ E
\ Boundaries

X —> o
c‘): _A_),i 1 - f1
Step 1: Encode Hygerplanes in First Processing Layer Step 2: Encode Convex Regions in Second Processing Layer
« Hyperplanes encoded by linearly combining inputs « Convex regions encoded by intersecting (and-ing) half-spaces
« Each neuron encodes an individual hyperplane in feature space * Each neuron describes a convex region in feature space

a=f(1.39f, +1.00f, - 0.85
f( 39 0t +)

d=f(-a+b-05) |D=ANB
e=f(a+b+c-25) [ E=AnBNC

W14 Wi bias,
b=f(-0.429 f1+1.20f2—0f0) f=f(b-c-0.5) F=BNC
Wa1 Wao biasp g=f(-a-b+0.5) G=ANnB

¢ =£(-1.81 f; + 1.00 f, + 0.41) h=f(a-b+c-15) |H=ANBNC
i=f(@a-b-c-05) |[I=ANnBNC

1t Layer 20d Layer

t2

Decision
Boundaries by o R X
’ o c c c
1 5 @ @ @
= = = =
x X — « o @ ]
D) a o a. a
£— O c
= 95
n 3=
) Sa
o
O 18fe g€
-
p S
O
e
o -
f, DG_S 1efen puc
Step 3: Combine Regions with the Third Processing Layer X
* Arbitrary regions encoded by uniting (or-ing) convex regions 6
* Each neuron encodes a labeled output =
I - 18he 1
d@ f(d+-05) [1=DUF 2
ew , E
£ @ ' fle+i-05) |2=EuUl 3]
o 5 JakeT indu|
9 f(h-05  |3=H D e
h@ zZ R
P @ @—f(g-0.5) 4=G 89

2nd Layer 3d Layer
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Artificial Neural Networks

Backpropagation Algorithm

* Hopfield Network Input Layer
Architecture: Feedback x(|d Istribution) Hidden Layers
Leaming: Supervised (Outer Product Formulation) Q 4
Applications: Associative Memory, Optimization Output Layer
Input Data: Binary (processing)
@ g
* Multilayer Perceptron g g
Architecture: Feed Forward 2] @
Leaming: Supervised (Backpropagation of Error) a 3
Applications: Pattern Classification = H
Input Data: Continuous
* Boltzmann Machine
Architecture: Feedback .
Learning: Supervised Batch Learning Process
Applications: Optimization
Input Data: Binary > Pick a labeled pattern from the training set and present it to

» Hamming Network

the network. (training pattern = x, target output = ")

Architecture: Combination of Feed Forward and Feedback Propagate data forward and generate the output classification.
Learning: Supervised (output = yP)

Applications: Pattern Classification

Input Data: Binary Calculate error between target classification and actual

» Kohonen Self-Organizing Feature Map Network

Architecture: Combination of Feed Forward and Feedback
Learning: Unsupervised

Applications: Pattern Clustering

Input Data: Continuous

¢ Carpenter-Grossberg Network

Architecture:

Learning: Unsupervised (Adaptive Resonance Theory)
Application: Pattern Clustering
Input Data: Binary (ART1), Continuous (ART2)

inputs

o—Wi

Combination of Feed Forward and Feedback

o—2—"

Mean Square Error

A Y
Weight Change T \ Output
Learning Rate

i =1 9; 0 +

slope (derivativ
E/ow

/
/

T
Current
|~ Weights

Weight Change (AW)

Contains

n
Error Momentum

outputs

7

U.Awii(n'1)

™

Previous
Update

classification.
s & op P2
Error= 3 ]Z(ti- yi)
=1
Propagate error backwards through network and calculate

changes to the synaptic weights that will reduce output error
using the generalized delta rule.

|_If there are more patterns in the training set, loop back.

Update synaptic weight values in the network.

If output error high or maximum number of iterations not met,
~then loop back

|=-Black Spruce (BS)
—=Western Hemlock (WH)
—-Western Larch (WL)
White Spruce (WS)

Cone Length —

Needle Length—|

Neural Network

Training Set

Cone Needle
Length Length
25mm 11 mm
26 mm 11t mm
26 mm 10 mm
24mm 9mm
20mm 13 mm
21mm 14 mm
19mm 8 mm
21 mm 20 mm
28mm 30 mm
37mm 31 mm
33mm 33mm
32mm 28 mm
51mm 19mm
50 mm 20 mm
82 mm 20mm
5tmm 21 mm

2

OOOOOOOO—*—‘—*—‘OOOOE
e

OOOO—*—*—‘—‘OOOOOOOOE
=

-A-A—h-*OOOOOOOOOOOOE
N

Tree

Black Spruce
Black Spruce
Black Spruce
Black Spruce
Western Hemlock
Western Hemlock
Western Hemlock
Western Hemlock
Western Larch
Westemn Larch
Western Larch
Western Larch
White Spruce
White Spruce
White Spruce
White Spruce

COO0OO0OTO0OOO0OOOOO 4+ —+ =]
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Hopfield Networks Y Maxnet-Hamming Net . -

Neuron Layer
{prcessing)
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Input Signals
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Metric Calculati Winner-

etric .acu ation Take-Al

(Hamming Net) (Maxnet)
Applications: Associative Memory Optimization
Architecture: Feedback Feedback o o
Developers: John J. Hopfield, 1982 John J. Hopfield and David Tank, 1985  Applications: Pattern classification
Learning: Outer-Product Formuliution  Energy Function Encoded in Weights Developer: R.P. Lipmann, MIT Lincoln Labs, 1987
Method: Deterministic Deterministic Architecture: Feed-Forward Followed py a Latera} Inhibition Layer
Input Data: Binary or Continous Binary Coded Learning:  Hamming Distance Metric Formulation
Strengths: Can Retrieve Incomplcte Sometimes Finds Good Solutions mgmog;ta' gier::rrym'“'snc

or Noisy Patterns to NP-Complete Problems > . - .

Weaknesses:  Low Memory Capacity. Easily Trapped in Local Minima Strengths:  Implements optimum classifier for binary pattems

High storage capacity

Tends to Oscillate Weakness: Binary data

Kohonen Self-Organizing Feature Map

Applications: Pattern Clustering
Architecture:  Single Processing Layer Interconnected to

g Input with Neighborhood Connections
€ Learning: Unsupervised (Self-Organizing)
g Method: Euclidean Distance Metric

Input Data Continuous
Strengths: Can Detect Inconsistencies in Data,
Good for Classification

Reighbaraeod Weaknesses: Lack of Theory for Developing Cluster Size,
Cluster Instability
/ Applications: _Pattern clustering (complicated patterns)
Developers: Stephen Grossberg, Boston University, 1978-86
Gail Carpenter, Northeastern University
Architecture: Bidirectional between input and output layers and oulput has

latera! inhibition

N

Learning Rule:  Adaptive Resonance Theory (ART)

N

/,,_’)‘,,/_44 Topological Mapping " Method: * Unsupervised
é;:\";,‘ Input Data: Binary (ART1), Continuous (ART2, ART2a, ART3)
2 '.'%‘ Strengths: Able to learn new patterns (form new categories)
< Very sophisticated
/ Most biologically plausible of the simple modeis

Weaknesses: Sensitive to translation, distortion, and scale
Exemplars can change over time
Likes to see pattern for long time

3%
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Developing an Application
Lars J. Kangas

Pacific Northwest Laboratory, Applied Physics Center, Computer Science Department
K1-87, P.O. Box 999, Richland, WA 99352

phone: (509) 375-3905  fax: (509) 375-6631 internet: lj_kangas @pnl.gov
1. Collect data with instances of every class
2, Convert data to a form acceptable to the ANN simulator
3. Split data into a training, validation and testing sets
4. Train network on training set until error in the validation set is
minimized

5. Test network with testing set to establish the performance

iitle: Glass Identification Database

Summary Statistics:

ocation: anonymous fip to ics.uci.edu /pub/machine-learning-databases/gIass Attribute: Min Max  Mean SO Correlation with class
2. RI: 1.5112 1.5339 1.5184 0.0030 -0.1642
sources: 3. Na: 10.73  17.38 13.4079 0.8166 0.5030
(a) Creator: B. German 4. Mg: 0 449 26845 1.4424 -0.7447
— Central Research Establishment 5. AL 029 35 1.4449 0.4993 0.5988
Home Office Forensic Science Service 6. Si: 69.81 7541 72.6509 0.7745 0.1515
Aldermaston, Reading, Berkshire RG7 4PN 7. K: 0 6.21  0.4971 0.6522 -0.0100
(b) Donor: Vina Spiehler, Ph.D., DABFT 8. Ca: 543 16.19 8.957C 1.4232 0.0007
Diagnostic Products Corporation 9. Ba: 0 3.15 0.1750 0.4972 0.5751
(213) 776-0180 (ext 3014) 10. Fe: 0 0.51  0.0570 0.0974 -0.1879

urpose:
The study of classification of types of glass was motivated by
criminologizal investigation. At the scene of the crime, the glass left
can be used as evidence...if it is correctly identified!

Class Distribution: (out of 214 total instances)
-- 163 Window glass {building windows and vehicle windows)
-- 87 float processed
-- 70 building windows
-- 17 vehicle windows
-- 76 non-float processed
-~ 76 building windows
-- 0 vehicle windows
-- 51 Non-window glass
-- 13 containers
-- O tableware
-- 29 headlamps

tribute Information:
1. Id number: 1 to 214
2. RI: refractive index
3. Na: Sodium (unit measurement: weight percent in corresponding oxide, as
are atlributes 4-10)
1 Mg: Magnesium
» Al Aluminum
» Si: Silicon
". K: Potassium
3. Ca: Calcium
* Ba: Barium
1 Fe: lron
i Type of glass: (class attribute)
- -- 1 building_windows_float_processed
& -- 2 building_windows_non_float_processed
-- 3 vehicle_windows_float_processed
-- 4 vehicle_windows_non_float_processed (none in this database)
-- 5 containers
-- 6 tableware
— 7 seadlamps *
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63 1.52172 13.51 3.86 0.88 71.79 0.23 9.54 0.00 0.11 1
64 1.52227 14.17 3.81 0.78 71.35 0.00 8.69 0.00 0.00 1
65 1.52172 13.48 3.74 0.90 72.01 0.18 9.61 0.00 0.07 1
66 1.52099 13.69 3.59 1.12 71.96 0.09 8.40 0.00 0.00 1
67 1.52152 13.05 3.65 0.87 72.22 0.19 9.85 0.00 0.17 1
68 1.52152 13.05 3.65 0.87 72.32 0.19 9.85 0.00 0.17 1
69 1.52152 13.12 3.58 0.90 72.20 0.23 9.82 0.00 0.16 1
70 1.52300 13.31 3.58 0.82 71.99 0.12 10.17 0.00 0.03 1
71 1.51574 14.86 3.67 1.74 71.87 0.16 7.36 0.00 0.12 2
72 1.51848 13.64 3.87 1.27 71.96 0.54 8.32 0.000.32 2
73 1.51593 13.09 3.59 1,52 73.10 0.67 7.83 0.00 0.00 2
74 1.51631 13,34 3,57 1.57 72.87 0.61 7.83 0.00 0.00 2
75 1.51596 13.02 3.56 1.54 73.11 0.72 7.2 0.000.00 2
76 1.51590 13.02 3.58 1.51 73.12 0.69 7.56 0.00 0.00 2
77 151645 13.44 3.61 1.54 72.39 0.66 8.03 0.00 0.00 2
78 1.51627 13.00 3.58 1.54 72.83 0.61 8.04 0.00 0.00 2
791.51613 13.92 3.52 1.2572.88 0.37 7.94 0.00 0.14 2
80 1.51590 12.82 3.52 1.90 72.86 0.69 7.97 0.00 0.00 2
81 1.51592 12.86 3.52 2.12 72,66 0.69 7.97 0.00 0.00 2
82 1.51593 13.25 3.45 1.43 73.17 0.61 7.6 0.000.00 2

Propagator: Network Summary

Date: Wed Jan 19 13:34:01 1394

Problem File Name: Untitled
Problem File Name: Untitled
Current Cycle: 33650

Current Training Zrror: 0.0507306
Current Validaticn Exror: 0.195894

Best Error Cycle: 33216

Best Training Erzor: 0.0523038
Best Validation Error: 0.194968

Network Architecture

Number of Layexrs: 4
Nodes per Layer: §
Transfer Functicns
Connectivity: Full
Connection File: N/A

-o21
: Linear

sigmoid

13

0.3704 0.3714 0.7416 0.3084 0,454 0.0965 0.2448 0.0CC0 0.2157
0.9000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
0.2652 0.3308 0.7884 0.4143 0.5625 0.1031 0.2416 0.0000 0.4118
0.1000 0.9000 0.1000 0.1000 0.1000 0.1000 0.1000
0.2360 0.3143 0.7840 0.5016 0.5446 0.1111 0.2361 0.0000 0.0000
0.1000 0.90C0 0.1000 0.1000 0.1000 0.1000 0.1000
0.3316 0.3774 0.8686 0.3489 0.4500 0.0886 0.2677 0.0000 0.1961
0.1000 0.9000 0.1000 0.1000 0.1000 0.1000 0.1000
0.3104 0.4211 0.7595 0.3832 0.3982 0.0934 0.3123 0.0000 0.C000
0.1000 0.10C0Q 0.9000 0.1000 0.1000 0.1000 0.1000
0.2920 0.2436 0.6058 0.4174 0.5464 0.1127 0.3532 0.0000 0.0000
0.1000 0.9600 0.1000 0.1000 0.1000 0.1000 0.1000
0.3012 0.2767 0.7728 0.1396 0.6393 0.0966 0.2900 C.0000 0.1176
0.6000 0.1000 0.1000 0. 1000 0.1000 0.1000 0.1000
0.3876 0.2872 0.0000 0.4237 0.7036 0.0612 0.5669 0.0000 0.00C0
0.1000 0.1000 0.1000 0.1000 0.8000 0.1000 0.1000
0.3408 0.5053 0.4878 0.4268 0.5107 0.0000 0.3615 0.0000 0.0000
0.1000 0.1009 0.1000 0.1000 0.1300 0.9000 0.1000
0.2844 0.5253 0.0000 0.5576 0.6339 0.0000 0.2865 0.5302 0.0030
0.1000 0.1000 0.1000 0.1000 0.1C00 0.1000 0.8000
0.2696 0.3098 0.7840 0.3894 0.6339 0.1063 0.2296 0.0000 0.0000
0.1000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000

15 7

Sigmoid Sigmoid

Initial Weights: -0.50000000 to 0.50000000
Learning Rule: Cumulative Delta

Random Seed: 756523880

Training Parametars

Learning Rate: C.C0100000

Momentum Factor: 2.91000000
Total Traning Cvcles: 40000
Minimum Tzaning I
Update Interval: :

zor: 0.00000000

Training Patterns Oxder: Random

Input Noise: No Input Noise

Training File: <:'\.ann\gatordem\glass\gd.trn 2§
validation File: c:\ann\gatordem\glass\gd.wal

Testing Parameters

Input Noise: Mo Input Noise

5
25

Testing File: c:\ann\gatordem\glass\gd.val 25



Propagator: Error vs. Cycle Graph
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CONFUSION MATRIX
(Percent corract)
Neural Network Classification
Class1 Class2 Class3 Class4 Class5 Class6 Class?
Class1 875 125 0.0 00 00 00 0.0
Class2 100 80.86 00. 00 00 10.0 0.0
Class3 33.3 333 333 00 00 00 0.0
Class4 0.0 0.0 00 60 00 0.0 0.0
Class5 0.0 0.0 00 0.0 100.0 0.0 0.0
Class6 00 0.0 0.0 00 00 100.0 0.0
Class7 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Chance =100/7 = 14.3%

Current Cycle

33690
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Developments in Neural Network Chips
Dr. Ronald Benson, President

NeuroDynamX, Inc.
P.O. Box 323, Boulder, CO 80306
phone: (303) 442-3539  fax: (303) 442-2854 internet: ron@ndx.com

Hardware implementations of artificial neural networks can yield substantial
performance gains over software simulations developed and deployed on conventional
von Neumann computers. This is due to the inherently parallel processing architectures
of artificial neural networks. Dr. Benson will survey recent developments in VLSI
integrated circuits that exploit both this parallelism and the low power requirements of
sub-threshold CMOS. Applications include motion-sensitive artificial retinas and
artificial cochleas for auditory signal processing. Dr. Benson will also discuss neural
implementations for data fusion and signal blending.

Developments in
Neural Network =~

Overview

Chips

» Introduction to NeuroDynamX
Dr. Ronald Benson » General Purpose Neural Chips
President « Special Pﬁrpose Neural Chips
+ Neural Chip for Source Separation

NeuroDynamX, Inc. » Conclusion

Boulder, Colorado

. NEURODYNAMX

N .E'.U."R ODYNAMX
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Chips
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- NDX Hardware

Concept

« Sensory Processing

» Computationally Efficient
« Input Fusion

- Robust

Ge,heral P‘ur.po-ée .

- Neural Chips -

« Connections Per Second

- Connection Updates Per Second
» Number of Connections

- Architecture: Fully Connected

« Power Hungry

« ETANN, CNAPS, Neural Accelerators
Pineda Chip, Ni11000
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ETANN Intel

NeuroDynamX

« Two Billion CPS

- Slow Weight Updatcs

+ 10,000 Weights

« 64 Neurons, 128 Inputs

Solutlons
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Clock Frequency

N ilOOO: Intel,
Nestor,

- NeuroDynamX

Performance

DCu
FPU
uC

Array Access BW
Prototype Vector Size
Number of Prototypes

20GOPS

160MFbps

20MiPS

10Gwords/sec (Sbit word)
256 Dim x 5bit

1024 (256 Dim) - 8192 (32 Dir

33MHz, 25MHz

Neural Accelel ators:
NeuroDﬁlamX

« 1860 Accelerator
« 45 Million CPS

- 15 Million CUPS
» Network Size Limited Only by
Memory
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- Special Purposc | - Low Power -

Neural Chips ~ Subthreshold CMOS

« Biologically Inspired

« Low Power - Subthreshold CMOS
« Silicon Retinas ~ ~ "":‘ _{ . { )
« Silicon Cochleas

Va

Vs

&

‘Neural Chip fo.rA

~Source Separation

= Herault-Jutten Algorithm

E(t) = AX(1)
= Sty = E(t)-Cs{t)y =1 +C]'ax ()
dej;lt
250 = es(sieolsi)
where E(t) is the measured signal
A is the mixing matrix
X (1) is the actual signal
= and S(t) is the separated signal.

|

Round Wisdow
Figure 3.3 The led cochlea, simplified to emphasize the beny shelf
basiiar membrane. Adapled frem Cole and Chadwick

and widening of the
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Genetic Algorithms and
Non Linear Biased Regression

Barry M. Wise

Battelle Pacific Northwest Laboratories
Molecular Science Research Center

Neural Network Workshop
for the Hanford Community
January 26, 1994

Facific Northwest Loboratory, ;. §

te'riiatives toN eura Networks:

“Pacific Norilicest Laboratory '

Overview

Modelling techniques
- DLF Artificial Neural Networks
- Genetic Algorithm
- Partial Least Squares
linear
polynomial inner relation
spline inner relation
- Locally Weighted Regression

Test system
Model forms
Results
Conclusions

Neural Networks

MILF Network

DLF Network

DLF-ANN Training Algorithm

 Use Sequential Quadratic Programming
- faster
- handles multiple functionality well
- possible to incorporate constraints

+ Large netsuse Conjugate Gradient methods
 Global minimization procedures?
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Genetic Algorithm

» Basic genctic algorithm for optimization:
- encode potential solutions as binary “genes”
- initialize with random population
: - test population against “fitness” criteria
- let fit solutions live and breed, let unfit die
- stop when population or solutions converge

 In our example
- use to determine non-linear model structure
- many possible model forms

- fitness criteria is predictive ability of model,
not fit to data

‘Pacific Northwest Laboratory ', §

“Breeding” Models

+ Randomly select pairs of “fittest” models

» Randomly select “crossover point” and twist
11]01001 --> 1101011
01{01011 -->0101001

« New population consists of fittest models and
their offspring

+ Check for convergence of population

» Allow for random “mutation” of genes

GA for Model Structure Selection

« Example: suppose z = F(x,y)

« List all possible model terms
-xyx"2 yr2x73yA3 xy

 Produce random initial population of models, 1
indicates term is used, 0 if term not used:

-1101001
-0101011
-1111100etc.

« Fit models to part of data set by least squares
« Test models’ ability to predict remaining data

« Calculate prediction error, rank models

‘Pacific Northwest Laboratory -8

Partial Least Squares (PLS)

PLS regression decomposes the matrix of
independent variables (U) into linear combinations of
variables with greatest covariance with the dependent
variables

PLS algorithm captures the most remaining
covariance between U-block scores and y at each step

PLS factors or Latent Variables are calculated step
by step

Cross-validation is used to determine optimum
number of L'Vs to retain for best prediction

Aunwiwo) projusH ey 10} doysyIopM IOMEN [eineN ‘

ie




The PLS Inner-Relation

« PLS usually linear--a single coefficient relates
“scores” from independent and dependent block

 Inner-relation can be made non-linear, such as a
polynomial used here -- Polyl’LS

X- vs. Y-Block Scores for First Lawent Variable

15

- v v v . Y
+ } 3 ool "’:: ':"
13 . O+ e + -
340 4
: 0.5} + "4’ : 1
x 34
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2 . 1
P
B -O.SL -
[
§ -1
e
& -15¢ — ——— Polynomial Fit 1
2t
2.5
-4 -3 -2 -1 0 1 2 3 4 5

Score on First X-Block LV

Locally Weighted Regression (LWR)

LWR finds training samples “closest’ to new samples
in dependent variable space and forms local model

Points further from new sample weighted less

LWR routine used here:

- decomposes independent varibles with Principal
Components (similar to SVD)

- forms linear local model
- Mahalanobis based distance measure
(Euclidean based on adjusted PC scores)
- Weighting function (1 - d3)* d furthest local point

Models cross-validated over:
- number of local points
- number of PCs retained

11

S pline-Partial Least Squares (SPL_PLS)

(‘}i’ Pacific Northwest Laboratory = i

Inner-relation can also be spline of abritrary degrec
and number of knots

SPL_PLS algorithm used here iterates to obtain
maximum covariance with transformed scores

Spline fit using 1 knots and polynomials of degree 2

1
—
~ Circles show knot location * +
2 05p * 5/0 —/4
g w“ ¥ 1»0;&{’4‘:
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Score on X-block latent variable 2

Identification Test System

flow in

System mput (u) / \\

Voltage to variable
sreed pump

level
Voltage from /

level indicator

'

System output (y)

flow out —*

10

12

Apunwiwon piojurH ey} 10§ doysyIoM SIOMEN [eineN




Dynamic Model Forms
» Both Finite Impulse Response (FIR) and
Auto-Recursive eXtensive variable (ARX) forms used

* FIR models use last six inputs:
y(k) = F [u(k-1), u(k-2), ... , u(k-6)]

» ARX models use last 5 inputs and last output:
y(k) = F [u(k-1), u(k-2), ... , u(k-5), y(k-1)]

* In non-linear systems, final stcady-state may depend
on initial condition -> ARX form required

« If system has no hysteresis, FIR form better for
forecasting several points ahead

13

Identification Tests Performed

« A series of six identification tests performed
« Models identified then tested on entirely new data set

15 Training Set 15 Test Set
Interpolation 1o} o of - e
testdata | s {WM AWL% |
0 2 e 0 )
0 500 1000 1500 0 500
15 Training Set 15 Test Sex
Extrapolation 1o} R S
RO g T Al oo R e
test data sberessvmad | Mﬂmh | | u“ L-%j s MWMW! |
EHREE (1
oo 500 1000 % , 500

15

- Takes linear, squares, cubes and cross terms of ARX

GA Model Form

inputs. Selects from the following terms:

y(k) = C [u(k-1) uk-2) u(k-3) u(k-4) u(k-5) y(k-1)

u(k-1)22 u(k-2)"2 u(k-3)"2 u(k-4)A2 u(k-5)*2
y(k-1)*2 u(k-1)*3 u(k-2)"3 u(k-3)*3 u(k-4)*3
u(k-5)A3 y(k-1)A3 u(k-1)*u(k-2) u(k-1)*u(k-3)
u(k-1)*u(k-4) u(k-1)*u(k-5) u(k-1)*y(k-1)
u(k-2)*u(k-3) u(k-2)*u(k-4) u(k-2)*u(k-5)
u(k-2)*y(k-1) u(k-3)*u(k-4) u(k-3)*u(k-5)
u(k-3)*y(k-1) u(k-4)*u(k-5) u(k-4)*y(k-1)

u(k-5)*y(k-1)]

« Over 8 billion possible model structures, hundreds of

x " Pacific Nortiniest Laboratory :

possible cross-validation sets

10} ‘

Noise Robustness Tests

» Progressively more noise added to output of
identification data set

Models identified then tested on “noise free” data

Training Set 2 Output - Low Noise
—

Training Set 1 Output - No Noise

e
500 10

0

00

Training Set 3 QOutput - Med. Noise

0 500

1000

10

s

i

0

Trainin
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500 1000

r Set 4 Quiput - High Noise

500 1000
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Results for Interpolation
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Note: shows best of Model Form and Identification Method

GA and ANN results

DLF-ANN ARX

Input and Actual and Predicted Output
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L

[J\ I/ ﬂ\\l'—\ I
HA

80 100 120

140 160

Ayunwiwon piojuet ey joj doyssIop SUOMBN [BINeN

17 18
(;x{; Pacific Nortlvest Laboralory
Results from Noise Tests
0.7 l I
% 06 : I No Noise
a 05 Low Noise
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Model Form and Idcntification Method o °
Note: shows best of -
GA and ANN results 20.
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Variability in GA Solution
Close Up
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025 B GASumA
0.18 —
2] GASunB
9016 il N
&j 014 B GAsunC
n_‘o"z: E GAMZICA L
T 01 B GAMacB |
'—-30.08; B GAMacC [—
E 0.064 DLF-ANN
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Note: shows best
of ANN results

Low Noisc  Medium Noisc  High Noise
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Variability in GA Solutions

ANN ~5

3: T

25: B GASunA
a- j GA SunB
g 2 B cASunC
§ 153 B GAMacA
5 ] B GAMacB

4

E 7 B GAMacC
o ] -
Z. 051 & I DLF-ANN

03..':".“—. = mm

Interpolation Extrapolation No Noise  Low Noise Medium Noise High Noise
Identification Test

Note: shows best
of ANN results
;xg Pacific Nortinyest Laborntory -
~;J r s n repurs r

Final GA Model Forms

« Terms used in “low noise’ solution highlighted
y(k) = C [u(k-1) u(k-2) u(k-3) u(k-4) u(k-5) y(k-1)
u(k-1)22 u(k-2)*2 u(k-3)*2 u(k-4)*2 u(k-5)42
y(k-1)*2 u(k-1)*3 u(k-2)*3 u(k-3)*3 u(k-4)13
u(k-5)"3 y(k-1)*3 u(k-D*u(k-2) u(k-1)*u(k-3)
u(k-1)*u(k-4) u(k-1)*u(k-5) u(k-1)*y(k-1)
u(k-2)*u(k-3) u(k-2)*u(k-4) u(k-2)*u(k-5)
u(k-2)*y(k-1) u(k-3)*uk-4) u(k-3)*u(k-5)
u(k-3)*y(k-1) u(k-4)*u(k-5) u(k-4)*y(k-1)
u(k-5)*y(k-1)]

« 20 out of 33 terms used
« Solution quite consistent from run to run

« Selected terms not what I would have guessed!!

22
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Results Conclusions
+ ARX models more effective at one-step ahead L
predictions, as expected + Model structure is critical
- DLF-ANN model structurc appropriate for this type * If you’ve got the time and computer power,
of prgblem, most consistently good results DLF-ANNSs good choice for this problem
» GA works very well when test and training sets * Good promise in genetic algorithm, some very good
similar, but results can be highly variable when they results and computationally efficient
are not : .

Use Poly-PLS for very fast, generally acceptable
 Note: GA selects model structure ' results .

 Poly-PLS generally “acceptable,” very fast
* Poly-PLS models better than SPL_PLS in all cases
« LWR quite affected by noise, result of subset

Ayunwiwos piojueH oy 1o} doys3IOM 3IOMBN [BinaN

selection?
25 26
LN cc ootk | o
Concerning Neural Networks Common “Deficiencies”
Marvin Minsky Warns:
« Lack of an appropriate “benchmark” from other
“Th . . accepted approach
‘ . 6}'7 Wl”l.f € ’Cl paper say lng ’ « Showing the best of many solutions
Look it did this,” and they don’t say, Confusing i o
¢ . , , » Confusing fit and prediction
Look, it can’ t do that. e e B o
. . » Little discussion of effect of “meta-parameters
Most of them are not doing good science, L :
) . g .. . » No account of similar approaches that failed
because they’re hiding the deficiencies.
Scientific American, November 1993
3

27 *28
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Combining Neural Networks
Sherif Hashem

Pacific Northwest Laboratory, Molecular Science Research Center,
Computing and Information Science
K1-87, P.O. Box 999, Richland, WA 99352
- phone: (509) 375-6995  fax: (509) 375-6631 internet: s_hashem@pnl.gov

Neural network based modeling often involves trying multiple networks with different
architectures and/or training parameters in order to achieve acceptable model accuracy.
Typically one of the trained networks is chosen as best while the rest are discarded. In
this talk, we discuss the use of the optimal linear combinations of a number of trained
networks instead of only using the best network. Optimal linear combinations can also
be applied to combined neural network and non-neural network models.

OUTLINE ‘ . MODEL CONSTRUCTION

o Model Construction. ¢ Modeling problem: Given a (process) data set, construct a

model that “closely” approximates the underlying process.
o Combining Models.

e Modeling involves:
¢ Optimal Linear Combinations of Neural Networks.

) — Searching for the “true” model.
— Definition.
— Computing (estimating) the model parameters.
— Combination weights.

¢ As a result, a number of estimated models are often constructed.

¢ Benefits of Combining;
& Typically, one model is chosen as best, while the rest are discarded.

— For well-trained networks.

— For poorly trained networks.
o [ll Effects of Collinearity.

e Concluding Remarks.
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MODEL CONSTRUCTION

Neural Network Model

Y = f NN (X' )
Modeling involves selecting:

¢ A network topology.

¢ A learning technique.

COMBINING MODELS

¢ Simple (unweighted) averaging: Laplace 1818.

Given Yi,...,Y,, use Y = 2’5 Yi/p.
i=1

o Weighted averaging: Bates and Granger 1969, and Ried 1969.

. : — P
Given Y1,...,Y, use Y =3 oY, where Yq; =1.
i=1 ‘

1

e Optimal linear combinations: Granger and Ramanathan 1984.

Given Y),...,Y,, use Y=g+ 3 oY,

™

=1

28

OPTIMAL LINEAR COMBINATIONS OF
NEURAL NETWORKS

OLC of Neural Networks

- P o
Y=YV, =aY.
i=1

¢ Current approach: Train many NNs, then pick the “best.”

e New approach: Optimal Linear Combinations (OLC) of NNs.

COMBINATION-WEIGHTS
Optimality Criterion:
Minimize the Mean Squared Error (MSE' over observed data.
MSE = E4(r(X) - V)

The MSE-optimal weights:

a@'=a7'6,

where
= [p;) = [Ewi( X) yj(X))lpxp and 8 = [6:] = [E(r(X) %:(X))]px1-

In practice: Given a data set D, estimate &* using
. 17| o
¢ = I (ulz) i) /I[Pl Vg

i) .
¥ (r(zi) vilze)), DI Vi

0;
k=1
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OTHER FORMS OF MSE-OLC

A. Unconstrained MSE-OLC with a constant term.

-
It
—
-
il
—

BENEFITS OF COMBINING

FOR WELL-TRAINED NETWORKS

EXAMPLE 1 (Cont.)

= 1 T T 4

csr'.gl‘} 2.

verage ---

1.5 | MSE-OLC — -

29

BENEFITS OF COMBINING

FOR WELL-TRAINED NETWORKS

EXAMPLE 1

¢ Problem: Consider approximating
r(X) =sinf27 (1 - X)*], whereX € [0, 1.

¢ NN model:

~ Topology: Two 1-3-1, two 1-2-2-1, & two 1-4-1 NNs.
= Training algorithm: Using Error Backprop for 5000 iterations.
— Training data: 10 uniformly distributed data points.
~ MSE-OLC fitting data: same 10 points.
¢ Resultant true MSE:
- Best NN (NN6): 0.044.
~ Simple averaging: 0.072.

- MSE-QLC: 0.00020;
99+ % less than NN6 or simple averaging.

BENEFITS OF COMBINING

FOR POORLY TRAINED NETWORKS

EXAMPLE 2

* Problem: Consider approximating
r(X) =sin[27 (1 - X)}], whereX € [0, 1).

¢ NN model:

— Topology: Two 1-3-1, two 1-2-2-1, & two 1-4~1 NNs.
— Training algorithm: Using Error Backprop for 2000 iterations.
— Training data: 10 uniformly distributed data points.

- MSE-OLC fitting data: same 10 points.

¢ Resultant true MSE:

- Best NN (NN6): 0.219.
- Simple averaging: 0.241.
- MSE-OLC: 0.000050;
994 % less than NNG or simple n\-'er.'\’p;ing.‘
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ILL EFFECTS OF COLLINEARITY

MSE-OLCs:
BENEFITS OF COMBINING

V|

il

)
<
o
7
=t

FOR POORLY TRAINED NETWORKS i=1

EXAMPLE 2 (Cont.)

& =976,
2 T . T T
X) ©
%ea{%l‘} where
verage ----
15 MSE-OLC —

= ;] = [E(wi(X)y; (X))]pxp and 6 = [6)) = [E(r(X)i(X))psr.

Constrained MSE-OLC Weights:

-

&=017/@at ),

where Q = [w;j] = [E (5;()-(') 6;()?))] isa p x p matrix, and 1is a

p x 1 vector with all components equal to one.

Computational Ill Effects:

sk 4 Near singular matrices (inversion, sensitivity, round-off errors).

9 1 : 1 L ‘ Statistical Ill Effects:
To 0.2 04 0.6 0.8 1
Collinearity can undermine the robustness (generalization ability)

of the MSE-OLC.
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Parallel and Distributed Gradient Decent Learning
I. Mehr, Z. Obradovi¢, R. Venkateswaran

Washington State University, School of Electrical Engineering and Computer Science
Pullman, WA 99164-2752
phone: (509) 335-6601  fax: (509) 335-3818 internet: zoran @eecs.wsu.edu

First part of the talk describes a distributed learning algorithm which uses cooperative
efforts of several identical neural networks for more efficient gradient descent learning
(join work with R. Venkateswaran). In contrast to the sequential gradient descent, in
this algorithm it is easy to select leaming rates such that the number of epochs for
convergence is minimized. It has been implemented on a network of heterogeneous
workstations using p4. Results are presented where few learners cooperate and learn
much faster than if they leam individually.

Second part of the talk describes a highly parallel learning approach based on repetitive
bounded depth trajectory branching (joint work with 1. Mehr). This algorithm has
objectives of improving generalization and speeding up convergence by exploring a
number of alternative trajectories in parallel in order to find one that avoids local minima.
The experimental results show an improved generalization compared to the standard
back-propagation learning algorithm.
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Contents Cooperation

for

o Distributed Learning
Venkateswaran, R. and Obradovié¢, Z. (un-
der review) "Efficient Learning through
Cooperation.” 1994 World Congress on
Neural Networks, San Diego, CA.

Distributed Learning

Venkateswaran, R. and Obradovié, Z. (under
review) "Efficient Learning through Cooper-
« Highly Parallel Learning ation." 1994 World Congress on Neural Net-
Mehr, 1., and Obradovi¢, Z., (1994) “Par- works, San Diego, CA.
allel Neural Network Learning Through Repet-
itive Bounded Depth Trajectory Branch-
ing,” Proc. IEEE 8th Int. Parallel Pro-
cessing Symposium, Cancun, Mexico.

. Cooperative Learning:
Drawbacks of Back-Propagation:

e Several slave processes run the standard
back-propagation algorithm concurrently
controlled by the master process.

e Slow L.earning

e Local Minima Probiem

¢ All slave processes work on neural net-

° Learning Rate Determination works of identical tOpO!Ogy, each USing a
’ local copy of the training set.

System Topology

' MASTER
1 Objective: To speed-up learning and im-
f prove generalization through cooperative ef- /\
§ forts of several identical neural networks. C
o 00
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The Algorithm:
1. Master initializes weights.
2. Master broadcasts weights to slave-.

3. Slaves adjust the weights using BP.
Each slave uses its own learning rate
(different from others).

4, Periodically, slaves cooperate.
e The communication graph is simple.
e The number of communications is small.

¢ Suitable for a distributed implementation.

Pattern Classification Results

Problem: To classify 'A’, ‘'I' and 'O,
Dimension: 2 Classes: 3
Architecture : 2-9-3 Examples: 16
Learned : 100% Era(epochs): 50
QOne Node . —_ ' _
©0.01 ! 6.05, C.i ,0.125, G.15 | 0.i75
3708 | 1819 | 1295 | 1179 | 1419 | >10000
Two Nodes Cooperation
0.05, 0.15[0.1, 0.15|0.01, 0.15] 0.05, 0.175
1099 1040 1374 985
Three Nodes Cooperation
0.05, 0.10, 0.15( 0.01, 0.1, 0.2
1149 1148

Four Nodes Cooperation
0.05, 0.1, 0.15, 0.2
946

33

Cooperation Models

e Epoch-based Cooperation
Slaves cooperate after a specified number
of epochs (one era). The master forms a
new hypothesis after each era by averag-
ing these weights.

¢ Time-based Cooperation
The era is specified as a duration of time.
If all slaves run for the same duration, no
machine will be idle.

¢ Dynamic Rates Cooperation
Initial learning rates spread uniformly in
(0,1) range. After few eras, the learn-
ing rates range is reduced around the cur-
rently best rate. ‘

Two-Spirals Epoch-based Results

Problem : Two-Spirals Problem.
Dimension : 2 Classes: 2
Architecture-:  2-5-1 Examples: 40
Learned : 100% Era(epochs): 100
One Node

aaaaa

S30000 | 8799

Two Nodes Cooperation

0.05, 0.35]0.15, 0.350.25, 0.35 | 0.05, 0.5

2691 2122 1777

Three Nodes Cooperation
0.1, 0.3, 0.5 0.15, 0.25, 0.35
1775 2103

Four Nodes Cooperation
0.1, 0.2, 0.3, 0.4
2498
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Homogeneous vs Heterogeneous

Problem : Two-Spirals Problem.
Dimension 2 Classes : 2
Architecture :  2-5-1 Examples: 40
Learned : 100% Era(msec): 400

(DEC5000, DEC5000) System

0.05, 0.35|0.15, 0.35| 0.25, 0.35

0.05, 0.5

40 34 28 27

(DEC5000, HP9000/735) System

0.05, 0.35 0.15, 0.35| 0.25, 0.35

0.05, 0.5

6 6 6 5

(HP9000/735, DEC5000) System

0.05, 0.35]0.15, 0.35} 0.25, 0.35 | 0.05, 0.5
22 6 7 21
Branching
for

Highly Parallel Learning

Mehr, 1., and Obradovi¢, Z., (1994) "Parallel
Neural Network Learning Through Repetitive
Bounded Depth Trajectory Branching,” Proc.
IEEE 8th Int. Parallel Processing Symposium,
Cancun, Mexico.

wo

Analysis of Experimental Results

e Cooperative approach is better.

e Select n1 and 7o such that
71 < Mmin < 72

e For a heterogeneous system time based
cooperation is better.

e Larger rate should be assigned to faster
machine.

Objective:

Explore a number of learning trajectories in
parallel in order to find one that avoids local
minima.

E ,[\ ' branching angle ot}

branching angle o 4

E3 ....._.._,5,_.‘.5.. A A A better trajectory
E, :
——— Standard trajectory
E gt foveefonnnnn )
X1 Xy Ny X4 X
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The General Branching Algorithm

(1) Initially follow a single learning trajectory
corresponding to the standard algorithm.

(2) Generate new branching points after a spec-
ifled number of !learning steps.

(3) At each new branching point start explor-
ing new learning trajectories in addition to
the existing ones,

(4) Continue with step 2 until B trajectories
are generated.

Short Term Branching Algorithm
The idea: Generate new branching points af-
ter presentation of each training pattern.

Weights initialization
Trajectories = 1

b

[ Update using one pnmmJ

1

Ny TrajrctoriseeMANIMUNM - yey
Split each trajectory in two
Trajectories = 2 * Trajectories

Select M trajectories
Trajectories a M
1
Yes End of the epoch No

-

[ Compute error functions ]

Error<Tolerance

or
Epochs = Max. epochs No

Select the best trajectory
End of training

35

(5) Using a cross-validation test on all exisfing
trajectories select M of those and aban-
don the remainder.

(6) Starting from M selected trajectories of
step 5 continue constructing and exploring
new trajectories on new branching points
until B trajectories are constructed.

(7) Continue with step 5 until the training er-
ror is within a prespecified tolerance or for
a prespecified number of steps.

Long Term Branching Algorithm
The idea: Generate a new trajectory at the
end of each epoch.

Weigits initialication

Trajectories = }

[ Update using all patterns )

No /rajec(orksdmxl,\m Yes

Select M trajectories Split each of M selected trujectories in two
Trajectories = M Trajectories = Trajectories + M

L

[ Compute error functions ]

Error<Tolerance

or
Epochs = Max. epochs No

Yes
Sclect the Lest trujectory
Ead of truining




Neural Network Workshop for the Hanford Community

Short Term Branching
Parallelization

e Branching by copying the modified net-
work parameters to a new processor,

e The process repeats for K steps, when 2K
processors contain 2K different networks.

e Processors performs in parallel a cross-
validation evaluating their focal networks.

e After selection of M of those networks,
the algorithm continues.

Short Term Algoritnm Analysis

A sequential implementation is very expensive

: Tss 1 [ B th+ tC
| ALY (B+2 4. 43)y4 B
n Tt (03 :

iA parallel algorithm is more suitable for a
Whighly parallel system rather that distributed
Psystem implementation since

Tp, t tett
P9 zl—}--al—}-——ci—%—
T P eptooas]

Here:

P - the number of available processors;

kcp - the net update time by standard alg;

t, - a network parameters transfer time;

t, - a single C-V test time;

. - branches selection time after a C-V step.

Initial phase

Further phases

36
Branching
’ -\
Processing | | Processing Procmi:;f(
Unit K,1 Unit K2 joTTTTTTTTTTmnn e Unit g,
H T v

...................................................................

I I |

Pr ing Processing Pr ing
Unit 3,1 Unit 32 Unit 33
. \ ‘ . . \

l. '\
Processing | | Processing
Unit 1,1 Unit 12

Long Term Algorithm Analysis

A sequential is still very expensive

TS,I ~ B + 3 + 3?;» 3tc
T, 2 ce ' Bee

+

Parallel implementation is time efficient since

3 (tc + ty)

T

Pl tt
BLLAPVN il
T + e + Boo

l
Here:

ce - the computing between two updates by
the standard algorithm.
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Trajectory Construction Methods

A new trajectory

W4+ AW* = [wy +b1,..‘.,wp+ bp)

is constructed using one of following methods:

j and b; = a; oth-
erwise, where j is given by a; = min{a;}

and {a;} are the standard BP updates.

. Compute b; = 0 if 1 = j and b; = a; other-
wise, where j is given by a; = maz{a;}.

. [bl)"' )bP] = [O’ )O»ak—l-l:' "’G'P] where
k is the largest integer such that the angie
between AW and AW™ is less than 45°,

Standard Back-Propagation

' Data [ Spirals | Breast Cancer |
Configuration 2-6-1 10-10-1
Learning rate 0.05 0.05
Number of patterns | 100 250
Training error 21% 4%

-~ Generalization 73% 76%

"Ecochs '50000 | 25000
Run time | 45 min. | 65 min.

Short Term Branching Algorithm

Data Spirals [ Breast Cancer |
Configuration 2-6-1 10-10-1

" _earning rate 0.1 0.4
Jumber of patterns| 100 250
Training error 18% 3.5%

" Generalization 7% 78%

i Epochs 7000 5000
Sequentiat run time | 14 hours | 24 hours
Parallel run time 47 min. 63 min.

‘'raining crror

4,

80 |-

60

<0

. Compute b; = —n e

37

[bl)"')bp] - [0'11'"1a‘j—-1r20'j)aj+1a'")ap]n
where j is given by a; = maz{a;}.

85 ' px % n, where 7

and n* are the learningl rates for the stan-
dard back-propagation trajectory and for
the new trajectory.

Methods Comparison

| Algorithm [ Run time | Error |
Back-propagation | 45 min. 10%
Method 1 45 min. 46%
Method 2 45 min. 40%
Method 3 45 min. 44%
Method 4 45 min. 40%
Method 5 45 min. | 45%

Training Epochs Comparison

N~

10000 20000 30000

epochs

40000 50000

Standard backpropagation

Branching algorithin (sequential or parallel)



Training error

80

60

40

20
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Computing Time Comparison

time (hours)
—_— Standard backpropagation
----- . Branching algorithm (sequential implementation)

------------ Branching algorithm (parallel implementation)

Conclusions

Both approaches (distributed and highly par-
allel) show:

e improved efficiency

e improved generalization.

38

Analysis of Experimental Results

e Branching improves the back-propagation
generalization.

e Parallelization improves the branching al-
gorithm efficiency.

e The branching idea is applicable to other
learning algorithms.

e
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Neural Network Algorithms for VLS! Design and Test Automation

Dr. Jack Meador \
Washington State University, School of Electrical Engineering and Computer Science
Pullman, WA 99164-2752
phone: (509) 335-5363  fax: (509) 335-3818 internet: meador @eecs.wsu.edu

The complex nature of VLSI design has for some time demanded the use of computational
tools which can assist with important tasks such as cell placement and wire routing. The
development of testing algorithms for manufactured ICs is also typically too complex for an
unassisted designer to tackle. This presentation addresses the experimental application of
existing and new neural network algorithms to basic problems in VLSI design and
automation. Although VLSI applications are the prime focus here, the extension of the
basic concepts to other application domains will also become evident.

In the most general sense, IC test involves the determination of circuit functionality based
upon an observed response to a stimulus. The value of IC test has been established for
many years in the digital circuit domain. Digital IC test design focuses primarily upon the
determination of a stimulus set which adequately exercises all internal portions of a circuit.
Any deviation whatsoever from a corresponding set of output responses signifies a
malfunction. The design of an adequate stimulus can be cast as a discrete optimization
problem which has been approached in a variety of ways including the use of Hopfield
neural networks. '

Once a stimulus is determined for a digital system, testing can proceed relatively indepen-
dent of parametric variation in the device fabrication process since digital circuit function is
inherently immune to such variation. Analog and mixed-signal IC test does not enjoy a
similar luxury. The fundamental nature of analog circuitry and its sensitivity to random pro-
cess variation makes the test problem somewhat more complex. It becomes necessary to
cast analog and mixed-signal IC test as a statistical pattern recognition problem. One
approach to solving this problem is to use a trainable pattern classifier which minimizes
mean square error for a given training set. Feedforward neural network classifiers naturally
fit this kind of problem. One difficulty associated with feedforward network training for this
task involves the need to execute a large number of accurate circuit simulations. This first
part of the presentation will briefly introduce a technique for reducing the number of
simulations needed while accelerating network training and retaining network accuracy.

The design of a digital integrated circuit also typically involves the determination of the
placement and interconnection of a vast number of small components. Although usually
possible. it is typically impractical for designers to determine all aspects of component
placements and interconnections by hand given typical engineering cost constraints.
Because of this, algorithms for automatically determining a large percentage of component
placements and interconnections are used to help offload a substantial portion of the task
onto engineering workstations.

With increased IC size and density comes greater system complexity. Existing placement
and routing algorithms thus become increasingly constrained by their inherent sequential
nature. Neurai network algorithms organized to solve such problems provide one approach
for parallel solutions. The second part of this presentation will provide an introduction to the
application of a new variation of the Kohonen feature map algorithm to the parallel solution
of these and related optimization problems.
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Overview

VLSI Test
problem statement

prior work

simulation sampling for neural
diagnostic training

VLSI Cell Placement and Routing
problem statement
prior work

elastic nets for maze routing
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Digital Test Pattern Synthesis

[Chakradhar 91]
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Digital v.s. Analog Test
| Digital Test
"stuck-at" fault models
test pattern synthesis
high fault covérage

Analog/Mixed-Signal Test

catastrophic and parametric fault
models

classifier synthesis

low classification error
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Analog/Mixed-Signal Test

Fault Classifier Design

Simulation Sample

Trainable Pattern Classifier

Production Test
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Siatistical Pattern Recognition

Hidden Parameter Prediction [Lin 90] [Meador 91]

[Starzyk 90]
M:f(P) e Ny 0 ~'u:.‘.<.!
| s |
] - o . P
| fail pass fail
fail | pass ! fait P FFN approximates a Bayes statistical
decision
FFN computes ah approximation of f -1 Training set derived from Monte Carlo
simulation of fab process statistics

Trainipg §et derived from all FFN consistently performed as well or
combinations qf \{vorst-case acceptable better than traditional classifiers, also
parameter deviations requires much fewer FLOPS to perform

o a classification
Training set does not capture fab Computationally expensive to generate
process statistics training set, also expensive to train FFN

=" Neural Network Algorithms for >’ Neural Network Algorithms for
—7 VLS Design and Test Automation ¢ >” VLSI Design and Test Automation 7
Boundary Samphng : Boundary Sampling with
[Wu 94] Performance Based Faults
M [Wu 94a]
_ _ M
7 fail
— pass i
oo | I .. fail
fail pass fail P
! P

FFN approximates a Bayes statistical
decision

Training set statistics biased toward
important boundaries

More efficient use of simulation time
Faster network training

FFN approximates a Bayes statistical decision

Training set developed using orthogonal arrays
centered on important boundaries

Fault definitions are in measurement space
Important boundaries in parameter space are
determined by low-order response surface
modeling
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Cell Placement and Wire
Routing in VLSI
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Kohonen Feature Map Based

Cell Placement
[Hemani 90][Shen 92]Blight 92]
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Hopfield Network Based Cell

Placement
[Sriram 90]

approximate solutions to min-cut placement
via hierarchical graph quadrisectioning

requires O(n2) connections for n modules
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Hopfield Network

approach to the TSP
[Hopfield 85]

Programming

h

Q O

N? distances between cities

Operation

Systemn
Energy

System State

T
ocal renemasm loul-dp’-«m

Network size grows with N2

=~ Neural Network Algorithms for

"Stochastic Elastic" approach

to the TSP
[Meador 93]

60.0

0.0 20.0 40.0 60.0 80.0

1-D Kohonen feature map -- network size
proportional to number of cities

fixed local interconnections for simplified
VLS| implementation
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"Elastic Net" approach to the

TSP
[Durbin 87]

i
\ Coordinates>\‘

Constrained unsupervised adaptation
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Hopfield Network approach to

Path Planning
[Chan 93]

Network size proportional to grid érea
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Elastic Net approach to Path

Planning
[Meador ?7?]
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200 + (o] O smmeipemeeteees ()
*
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»
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»
0.0 " - A
-10.0 0.0 10.0 20.0 30.0

Network size proportional to number of
"bends" needed

> Neural Natwork Algorithms for
VLS! Design and Test Automation 1g

References

[Blight 92] Blight, D. and McLeod, R., "Self-Organizing Kohonen
Maps for FPGA Placement," in Field Programmable Gate
Arrays: Architectures and Tools for Rapid Prototyping,
Springer-Veriag, 1992, ‘

[Chakradhar 91] Chakradhar, S.T., V.D. Agrawal, and M.L.
Bushnell, Neural Models and Algorithms for Digital Testing,
Kluwer Academic Publishers, 1991.

[Chan 93] Chan, H.T., Tam, K.S., and Leung, N.K., "A Neural
Network Approach for Solving the Path Planning Problem," IEEE
int. Symp. on Circuits and Systems, pp. 2454-2457, 1993.

(Durbin 87] Durbin, R. and D. Willshaw, "An Analogue Approach
to the Travelling Salesman Problem Using an Elastic Net
Method," Nature 326, 689-691, 1987.

{Hemani 90] Hemani, A., and A. Postula, "Cell Placement by
Self-Organization,” Neural Networks, Vol. 3, pp. 377-383, 1990.

[Hopfield 85] Hopfield, J.J., and D.W. Tank, "Neural
Computation of Decisions in Optimization Problems,"
Biological Cybernetics 52, 141-152, 1985.

[Lin 90] Lin, T., H. Tseng, A Wu, N. Dogan and J. Meador,
“Neural Net Diagriostics for VLS| Test," Proc. 2nd NASA
SERC Symp. on VLSI Design, pp. 6.1.1-6.1.11, 1990.

[Meador 91] Meador, J., A. Wu, C.T. Tseng and T.S. Lin,
“Fast Diagnosis of Integrated Circuit Faults Using Feedforward
Neural Networks," IEEE Int. J. Conf. on Neural Networks, pp. |-
269:273, 1991.

= Neural Natwork Algorithms for
VLS! Design and Test Automation 20

Summary

Digital test pattern synthesis using Hopfield
networks

Hidden parameter prediction for analog circuit
test using feedforward networks

Statistical pattern recognition for analog circuit
test using feedforward networks

Hopfield Network Based Cell Placement
Kohonen Feature Map Based Cell Placement

Hopfield Networks and Kohonen Feature Maps
for attacking wire routing problems

7’ Neural Network Algorithms for
VLS! Design and Test Automation 1g

[Meador 93] Meador, J. and |. Pirvulescu, “A Stochastic Elastic
Algorithm for the Traveling Salesmar; Problem," Proc. INNS
World Congress on Neural Networks, pp. 1V-428:431, 1993.
[Shen 92] Shen, T., Gan, J., and Yao, L., "A Generalized
Placement Algorithm Based on Self-Organizaiton Neural
Network," IEEE Int. J. Conf. on Neural Networks, pp. IV-
761:766, 1992.

{Sriram 90] Sriram, M., and S.M. Kang, "A Modified Hopfield
Network for Two-Dimensional Module Placement," IEEE Int.
Symp. on Circuits and Systems, pp. 1664-1667, 1990.

[Wu 92} Wu, A. and J. Meador, "Data Driven Neural-Based
Measurement Discrimination for Parametric Fault Diagnosis,”
10th IEEE VLSI Test Symp., Atlantic City, NJ, April 1992,
[Wu 94] Wu, A., and J. Meador, "Measurement Selection for
Parametric IC Fault Diagnosis," J. Electronic Test Theory
and Applications, Vol 5 No. 1, Kluwer Academic, 1994 (to
appear). .

[Wu 94a] Wu, A. and J. Meador, "Simulation Sampling for
Neural Based IC Parametric Fault Diagnosis," J. Electronic
Test Theory and Applications (in review).

=7 Neural Network Algorithms for
=" VLSI Design and Test Automation 21




Neural Network Workshop for the Hanford Community 45

.

Neural Network for Isotope Identification
Paul E. Keller

Pacific Northwest Laboratory, Molecular Science Research Center, Computing and
Information Science
K1-87, P.O. Box 999, Richland, WA 99352
phone: (509) 375-2254  fax: (509) 375-6631 internet: pe_keller@pnl.gov

An optimal linear associative memory (OLAM) neural network that can be used to
identify radioisotopes from their gamma-ray spectra is presented. The OLAM is useful
in determining the composition of an unknown sample when the spectrum of the
unknown is a linear superposition of known spectra. The neural network approach is
useful in situations that require fast response but where precise quantification is less
important. One feature of this technique is that is uses the whole spectrum in the
identification process instead of individual peaks. For this reason, it is potentially more
useful for processing data from lower resolution spectrometers. This approach has
been tested with data generated by Monte Carlo simulations and with field data from
both sodium iodide and germanium detectors.

Goals :
» Examine the Applicability of Neural Networks in Isotope 1. C'asssifv ang ry Counts and
ldentification (from a gamma spectrometer) cattered Counts
« Test a Neural Network with Simulated Data - Examine a few narrow windows in the spectrum
« Test a Neural Network with Field Data - Uses Feedforward Network Trained by Backpropagation
Unknown Identified
Object Isotopes
' MultiChannel S Neural
Analyzer (MCA) Network |
Detector .
(Nal, Ge)
Primary Count
Scatter Count
Approaches
Researchers Institution Neural Network
Koohi-Fayegh, University of Perceptron with
Green, et. al. Birmingham (UK) | Linear Outputs
Olmos, Diaz, CIEMAT Optimal Linear
Perez, et. al. (Spain) Associative Memory
Ogawa, Hosei University | Backpropagation*
Niskizaki (Japan) pag
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Purpose: Determination of Isotope Composition of a Sample
From its Gamma Ray Spectrum Input Layer Outout Layer
Neural Network: Optimal Linear Associative Memory (t/channel) (ot
Configuration:  Single Layer Feed-Forward Network with Linear Nodes Channel 1
Tralning Set: Gamma-Ray Spectra Channel 2 Isotops 1
Inputs: 1 for Each Channel from Gamma Ray Spectrum Channel 3 isotope 2
Outputs: 1 for Each Stored Isotope Spectra Channel 4
Channel 8 = X ] isotope 3
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| Neural Network Layout
The training set consists of gamma ray spectra
from 8 isotopes. These spectra were collected Input Layer Output Layer
in the fleld with callbration sources placed 1 (1/channel) 1/isot
meter from a Sodium lodide detectlor.’ Each Channel 1 a (1Asotope)
ctrum Is composed of 512 channels of data. 8gan”e= g 4 . Na22
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Channel 507 137
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fk‘,\_\ Channel 512 Th
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- Simple
Training Consists of a Matrix Orthogonalization Process
- Fast
S 4096 channel input with 10 outputs can be down in
100-150 mS on an Intel 486 DX at 33 MHz.
~ Spectrum ANN Qutput - Uses Whole Spectrum
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A Multicomponent Spectrum Decomposition Network
Harry Bell

U.S. Department of Energy, Richland Office
K6-05, P.O. Box 550, Richland, WA 99352
phone: (509) 376-9623

An algorithm and associated perceptron-like network are presented for the spectral
decomposition of a multicomponent spectrum given a series of data vectors.
Incorporated is ai ad hoc algorithm of Edmund Malinowski's for the determination nf the
likely number of underlying additive components in a data matrix. The algorithi.. uses
principal components analysis to determine the eigenvalues and associated
eigenvectors. The Malinowski routine selects the minimal orthogonal basis set to
reconstruct noise-free data vectors. At this point, any linear combination of this
orthogonal basis set that results in "realistic" spectra can be explored. There are
numerous "realistic" constraints that could then be used in further narrowing the
possibilities for an optimal linear combination of the initial basis vectors, among these
are: smoothness, unbiased deviations about a reconstructed data vector (maximizing
the number of deviation sign changes), and positivity of the signal (if negative data is
physically unrealistic). A genetic algorithm is used to fully explore the space of linear
combinations to arrive at a most likely realistic basis set. Although a neural network is
not necessary for a solution to this problem it aids in visualization of the problem and in
suggesting further enhancements to the algorithm.

I. Acknowledgements
o SIGANNA, for invitation. |
° Dr. Suzanne Clarke, discussions on PCA and
analysis of spectra |
° DOE, time to give presentation (not sponsorship
of work)
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Figure 9 - Example of a composite spectrum - a sum
of three gaussian curves

IT.

d Applies to linear chemical spectroscopies (eg.

° Potential applications for mixture analysis

Problem statement

. For each of K composite measured spectra
measured at J energy levels per spectrum, (data
matrix s, for all j =1 toJ and k = 1 to K)
find number of significant components, I, their
concentrations, c; and absorptivities, wy

!
$ -~ 2 C, * ”’I
T = * 7

UV-VIS) alsoc may be applicable to other kinds
of analysis.

with uncalibrated and/or ephemeral solution
species.

—

—_ e
IIT1.

Step 1 - How many real components in the mixture

given by s

decades

cov; =

(measured spectra)?

-~ Muich progress in this area in the last few

Equals the number of significant eigenvalues of
the covariance matrix:

X
Y Si, S,

Effective algorithms are readily available
1. Barry Wise PNL (earlier presentation at
this workshop)

2. Edwin Malinowski, Factor Analysis in
Chemistry, 2nd ed. contains a Matlab

implementation.
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Figure 8 - Basic network structure - a perceptron
without the squashing function with unknown inputs,
C,» (connections are not drawn).

V. Straight perceptron approach

Both individual c, and w,, treated as
independent unknowns

Reduced to a simple, well-defined (but vast)
optimization problem

May need to reduce the search space since too
many unknowns

Solve for both concentrations and
absorptivities using gradient descent methods

VI. Alternative - direct manipulation of eigenvectors

of covariance matrix

°

Principal eigenvectors of the spectra
covariance matrix (COV,) form a basis for the
absorptivities, w.

Need to find a linear combination of these
basis vectors minimizing the following:

1. Resulting absorptivities that are negative
2. Resulting concentrations that are negative

3. Highly correlated absorptivities
Still a high dimensional optimization
(9 dimensions for a 3-component system).

VII.

Iterative procedure - direct eigenvector

manipulation

1. select linear combination of eigenvectors,
candidate absorptivities.

2. -generate concentrations based on these
absorptivities using linear regression

3. determine various metrics on the
absorptivities and concentrations such as:
a. extent of correlation between the

candidate absorptivities

b. positivity of absorptivities
c. positivity of concentrations

4. evaluate an objective function using above
performance metrics

5. repeat starting at step 1 if objective
function is unsatisfactory.

—
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Neural Network Based Chemical Sensor Systems
Paul E. Keller

Pacific Northwest Laboratory, Molecular Science Research Center,
Computing and Information Science
K1-87, P.O. Box 999, Richland, WA 99352
phone: (509) 375-2254  fax: (509) 375-6631 internet: pe_keller@pnl.gov

- Compact, portable, and inexpensive systems capable of quickly identifying
contaminants in the field are of great importance when monitoring the environment.
One approach is to combine a sensor array with a neural network. One advantage of
this approach is that most of the intense computation takes place during the training
process. Once the neural network is trained for a particular task, operation consists of
propagating the data through the neural network. In this presentation, two prototype
chemical-sensing systems are discussed. These prototypes are currently being used in
an evaluation of the application of neural networks to chemical sensor analysis.

One prototype consists of an array of tin-oxide gas sensors and can be used to identify
chemical vapors. Although each sensor is tuned to a specific chemical vapor, each
responds to a wide variety of chemicals. Collectively, these sensors respond with
unique signatures (patterns) to chemical vapors. During the training process, known
mixtures of various chemical vapors are presented to the system. The responses of all
the sensors provide a set of training patterns for the neural network. During operation,
the system can rapidly identify the composition of a vapor provided that the vapor is
composed of chemicals used during the training process.

The cther prototype consists of an array of optlcal sensors that can be used to identify
liquids by their absorption spectra. Light is passed through the liquid and into the
sensor array. By examining the absorption at different wavelengths, the neural network
is able to identify the chemicals in the liquid. Each optical sensor is composed of a
silicon detector covered by a narrow bandpass (10 nm) interference filter and is
sensitive to a specific wavelength of light.

feature values labeled patterns
(measurements: electrical (e.g., chemical composition,
response, wavelength, etc.)  isotope identification, etc.)

Sensing System

Neural |
* %—» - Network |
== =
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Neural Network Based Artificial Noses

Application Sensor Array Neural Network Institution
Identification of Whiskey | 8 Quartz Resonators ¢ Fuzzy LVQ Tokyo institute of
by Odor LVQ Technology, Japan

* Backpropagation

Gas ldentification
(NHg3, Acetone, Hexane)

3 Tin Oxide Sensors

* Backpropagation

Tokyo Institute of

.| Technology, Japan

Identification of lons in
Blood (Na*, K*, etc.)

PVC Membrane
Sensors

* Backpropagation

Dublin City University,
Ireland

Identification of lons
(Nat, K+, Cat, Mgt)

7 lon Selective
Electrodes (ISE)

* Counterpropagation
* Backpropagation

* OLAM & Backprop.*

Food and Beverage
Odor, Perfume, and -
Alcohol Identification

12 Tin Oxide Sensors

» Backpropagation

University of Warwick,
England

Gas l|dentification (H»,

6 Metal Oxide Field

* Backpropagation

Linképing Institute of

NHg, Ethanol, Ethylene) | Effect Transistors Technology, Sweden
(MOSFET)
Analysis of Motor and 10 Tin Oxide Sensors * Hopfield, Oak Ridge National Lab,
Turbine Fuels * Hamming USA
» Boltzmann

LVQ = Learning Vector Quantization
*Orthogonalized input equivalent to the Optimal Linear Associative Memory (OLAM)

Optical Sensor Array

a

Detector Head

7 Signals to Data

Light Source
(Halogen)

1. Unfiltered

2. 415 nm (10 nm bandpass)
3. 500 nm (10 nm bandpass)
4, 610 nm (10 nm bandpass)
5. 665 nm (10 nm bandpass)
6. 842 nm (10 nm bandpass)
7. 940 nm (10 nm bandpass)

Sampling Response

Cuvette Holder

Acquisition System

ClO
0l0
®®@

Sensor Layout

OLAM = Optimal Linear Associative Memory

Determine Concentration of Different Dyes

- Measure Absorption at 6 Wavelengths

- Feed Response Values at These 6 Wavelengths

into Neural Network

Wide Ban
415 nm
500 nm
610 nm
665 nm i

842 nm
840 nm

(Values Range From 0 to 5 Volts)

| | -
T

Sensor Physics Group, Automation and
Measurement Sciences Department
APC, PNL

Tom Sloane
Jerry Bemdt
Kurt Stahi

T
400 nm

900 nm

A

Concentration of A

Concentration of B

§ Concentration of C

Concentration of D
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. ical

13 Sensors
1. TGS 109

0000 |
3. TGS 813

4. TGS 821

O 5. TGS 822
6. TGS 822

7. TGS 824
8. TGS 825

13. Thermistor

nsor Ar

9. TGS 842

10. TGS 880

11. NH-2 Humdity Sensor
12. Thermistor

-—
Computer &
_ Data Acquisition -
13 Sengor Outputs
B , Artificial Nose: Untitled ~[2

File Edit Configure Mode Window Help

O Collect

O Tran O Test O Operate |

[PNL: Model 01 O Standby ® Probe
002 Temporal Besponse of Select Sensors
75%

50%

@

185

Sensor Layout

0@
e
®

®
©

®

Probe M ark

Sensor Status

Current Sensor Response

813 821

824

825

842 | 880 | NH-2

SKD

SXD

196 | 0.29

0.86

1.55

136 | 108 { 5.65

6.31
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T 09 | 550 [ ezz | ez
READY 2 oo [ 176 0.93

%] Sensor ID/Analyte

Time: 18:16;21 8
Temperature: 8
Humidity: <28 4
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System
Chemical Chemical Identified
Vapor Sensor Array Chemical
N ©@0e® Neural | .
' ® @ 3 D O —= Nowork |~
L O®D —
Neural Network Layout
Sensor Inputs | f—Hone
3S 109 . 4 . Acetone

Q D g3
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= NS S . W77
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\e
3 Vinegar
Training Parameters
Type: Backpropagation in Batch Mode
Architecutre: 12-6-9
Activation: Logistic
Learning Rate:  0.01
Momentum: 0.9

No. of Epochs: 15000

Results

Sensor Values

Acetone

Glass Cleaner

=

Rubber Cem

=

Vinegar

3
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Real-Time Data Anal via Artificial Neural Networ

* Fast Classification: Most time is spent training the neural network

e Operation:
Processing Small Medium Large

Rate System System System
Software Implementations: (16-16-16)  (256-256-256) (4096-4096-4096)
Intel 80386/16MHz : 4.4+104 CPS 15 mS 3.0S 13 min*
Intel 80486/33MHz 1.1¢105 CPS 6 mS 128 5.1 min *
VAX 8600 2.00105 CPS 7mS 68.0mS  2.8min*
Sun SPARCstation 10 1.3¢106 CPS 440 S 100mS 26 S *(69)
DECstation 5000 1.3¢106 CPS 570 S 100mS 26 S *(45)

Electronic Hardware Implementations:

ExploreNet 3000 w/SNAP-64  1.0¢109 CPS ~ 130 uS ~35mS

Adaptive Solutions CNAPS  <5.0¢10° - ~26 uS <7 mS
| CPS |

Intel 80187 | <1.601010 - ~8 uS <2mS
" CPS

Optical Hardware Implementations:

Planar Holograms & Light 2.2¢1011 - . 200 uS
Modulators CPS

Planar Holograms & Laser 4501013 - - 1uS
Diodes CPS

CPS: Connections per Second
* Projected processing time assuming more than 128 MBytes of free memory. Actual
processing times, where available, are noted in parenthessis.

[T [ ' oo ' H v
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Integrating A Parallel Constructive Neural Network
Algorithm with an Expert System

Justin Fletcher and Zoran Obradovi¢

Washington State University, School of Electrical Engineering and Computer Science
Pullman, WA 99164-2752
phone: (509) 335-2217 or (509)838-0164 fax: (509) 335-3818
internet: jfletche @ eecs.wsu.edu

An improved parallel constructive neural network learning algorithm is presented which
generates a near-minimal architecture. Traditional neural network learning involves
modification of the interconnection weights between neurons on a pre-specified
network. Determining that network architecture is a challenging problem which currently
requires an expensive trial-and-error process. Rather than learning on a pre-specified
network topology, a constructive algorithm also learns the topology in a manner specific
to the problem. Experimental results are presented that indicate that a near-minimal
architecture is created with improved generalization. Secondly, the integration of expert
systems with constructive neural network algorithms is examined. The motivation is to
combine pre-existing knowledge about the problem domain with information derived
from examples. The concepts of knowledge-based systems and machine learning are
combined by integrating an expert system with the constructive neural network learning
algorithm. Two approaches are explored: embedding the expert system directly and
converting the expert system rule base into a neural network. This initial system is then
extended by constructively learning additional hidden units in a problem-specific
manner. Results indicate that combining pre-existing knowledge with knowledge gained
from examples may result in improved prediction quality.

_ References
xgrating Constructive Neural
work Algorithms and Expert
Systems 1. Fletcher, J., Obradovi¢, Z, (1993) “Com-
bining Prior Symbolic Knowledge and Con-
al Network Workshop for the Hanford structive Neural Networks,” Connection Sci-
Community ence Journal, vol. 5, No 3-4, pp. 365-375.

January 26, 1994

2. Fletcher, J., Obradovi¢, Z. (1993) “Par-
allel Constructive Neural Network Learing,”
IEEE 2nd Int. Symp. on High-Performarnce
Distributed Computing, pp. 174-178.

Justin Fletcher
hool of Electrical Engineering and
Computer Science
ington State University, Pullman WA
99164-2752
3. Fletcher, J., Obradovi¢, Z. (under review)
B jfletche@eecs.wsu.edu ~ "Constructively Learning a Near-Minimal Neu-
i ral Network Architecture,” IEEE Int. Conf.
on Neural Networks.
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Introduction to Neural Networks
Contents Neural Network: weighted graph

Feed-forward NN: weighted directed graph
¢ Introduction to Neural Networks

Output
e Introduction to Hybrid Systems
Hidden
e Introduction to Constructive Neural
Network Algorithms Input
i . n e
e Hyperplane Determination from Examples Weighted sum: 3.;—; wizi
Alone ;
Binary neural network
e Integration with Expert Systems Activation function g(z) : R — {0,1},

(@y={ 0 if =<t
RE=V10f o>t

for some t € R.

Relationship between Hyperplanes [ntroduction to Hybrid Systems
and Hidden Units

Rationale

e An expert system contains pre-existing
/ knowledge.

e The knowledge may be incomplete or
Hyperplane contradictory.

e By combining the expert system with a

machine learning approach (a constructive

Hidden Unit neural network algorithm), the overall
performance of the system will be improved.
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Techniques for Integration

Embed a Neural Network into an

¢ Embed a neural network into an expert Expert System
system
Neural network base Nb
11
e Convert the expert system to a neural /
network ol ¢
\ Pdm
. In'tegrate the results of multiple ciassiﬁers N ; /.—;-—- —
ule base Paci base Fo
IP P11 amd Piy) 3 pdit.x
e Integrate the expert system without
conversion
Convert the Expert System to a
ENeural Network
A: B,C /*\ Integrate the Results of Multiple
o notEG 5 c Classifiers
C: 1,
] ’ 1 I Ouléul
Rule Base /! .
F G H ! ] K Combiner
Il\
M MBR NN .
Memory- Two Layer
Statistical Bused Neural
Model Reasoning Network
\
{nput

Neural Network
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Introduction to Constructive Neural
Network Algorithms

Topology Selection Objectives

e Large enough to define separating surface

¢ Small enough to generalize well

Traditional NN Learning

e Pre-specified architecture
e Supervised learning
e Modification of connection weights

e Training and test sets

Constructive NN Learning

e Architecture learned to fit problem

Cascade-Correlation

Key: [ Frosen Connections Oulpuls
X Variable Connections

/5
O 52
laputs O &8
O— €F
Bias (+1) O- £

61

Integrate the Expert

System
Without Conversion |

Integrated System

Constructed

Tiling

Key: ommssmummase Master Unit

Ancillary Units
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Hyperplane Determination from
Examples Alone

Determine separating hyperplanes as close to Steps:
the optimal separating hyperplanes as
possible, 1. Determination of points on separating

hyperplanes

2. Determination of candidate hyperplanes
from separating points

3. Creation of hidden units from selected
hyperplanes

Determination of Points on

Separating Hyperplanes Repeat with the selected example and the

endpoint of the opposite class.
From examples of opposing classes, select the

closest example to the midpoint.
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Continue until no example can bhe fzund. T he
midpoint is 3 point on

the separating
hyperplane. Repeat until:

e A pre-determined number of separating
points have been found or

* A number of data points have been

examined without finding a new separating
point.

Creation of Hidden Units from
Selected Hyperplanes

The first hidden unit is created from the

candidate hyperplane which best classifies the
training data.

Determination of Candidate
Hyperplanes from Separating Points

Select the nearest separating points to each
separating point. Generate the separating
hyperplane from the determined points.

.
.
.

A hidden wunit is constructed from the
separating hyperplane.

Output Unit

Hidden Units
(Constructed From
Separating Hyperplanes)

Input Units
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Remaining nyperpianes are createa Dy
parallel evaluation of each of the candidate
hyperplanes with the existing hidden units.
This process is repeated until no significant
classification improvement on the training data

is obtained. Output Layer Weights

The pocket algorithm is used to determine the
output layer weights,

’
The resultant separating surface is determined MONK's Problems

by final training of the output layer weights.

e Binary classification problem

Six features

Problem 1: DNF

Problem 2: Similar to parity

Problem 3: DNF with 5% noise
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Sequential Results

Percentage accuracy on the MONK's problems

Average # of Average
Accuracy Hidden Units | Train | Test
Problem 1 4.8199.19| 96.66
Problem 2 6.3|73.60|66.73
Problem 3 57(196.14} 94.00

Average # of Best Case
Accuracy Hidden Units | Train | Test
Problem 1 4.81100.00( 100.0
Problem 2 6.3] 78.11| 68.98
Problem 3 57| 98.36|97.22

Average # of | Worst Case
Accuracy Hidden Units | Train | Test
Problem 1 4.8|97.58| 88.43
Problem 2 6.3162.13| 63.89
_Problem 3 5.7193.44| 87.50

Parallel Hidden Unit Creation

e Master reads in data

o Master broadcasts data

e Master selects first hyperplane

Repeat

¢ Master broadcasts hidden unit

s Slaves request candidate hyperplanes to

evaluate

)

¢ Master selects best candiqate hyperpiane
and creates hidden unit

while significant performance improvements

65

Parallel Hidden Layer Construction

Master / Slave Architecture

0 0

- .

g - aster
[sTs]a]a]s]=]n] ununn!: 0000 [=] [s]v]e]e]e] C
m W
amBE SmBE SmBpS : :

1111111111 [aln]w]a]s]n]r] 00000 10 ’]
Implementation

The implementation was developed using p4
in a distributed environment of DECStation
5000s, then ported to the CalTech
Touchstone DELTA.
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Parallel Results

Percentage accuracy on the MONK's
problems
Sequential | Train Test
Problem 1 | 100.00 | 85.42
Problem 2| 81.07|70.37
Problem 3| 94.67 | 72.69
Dist. Parallel | Train Test
Problem 1 100.00 | 84.72
Problem 2 94.67 | 72.69
Problem 3 96.72 | 72.92
Touchstone | Train Test
Problem 1 | 100.00 | 80.79 |
Problem 2 92.31 | 71.30
Problem 3 100.00{ 77.55
Addition of Hidden Units

66

Integration with Expert Systems

Expert System Conversion

Create an initial network from the rule base
similar to Towell et. al.

Convert the rule base

if (savings_adequate and income.adequate)  then  invest.stocks
i dependent_savings.adequate then savings.adequate
if assets_high  then  savings.adequate
if (dependent.income. dequate and ings.steady)  then  income.adequate
if debt.low  then income.adequate
if (savings > dependents X 5000) then  dependent.savings.adequate
if (income 2 25000 + dependents X 4000)  then dependent.income.adequate
if (assets > income X 10)  then  assets_high

il (debt.payments < income X 0.30)  then  debt.low

into an and/or graph.

invest.stocks

savings.adequate income.adequate

dependent.savings.adequate assets_high

dependent.income.adequate carnings.steady debt.low

Transform and/or graph into initial network.

Performance on MONK'’s problems

Integrated System

If the expert system cannot correctly classify a
given data point,

1. Determine a separating hyperplane.

2. Construct a hidden unit
separating hyperplane.

from the

3. Repeat as required.

Problem 1
Train Test
Examples Alone 94.35 | 85.19
CLIPS 100.00 | 86.34
| CLIPS & Examples | 91.13 | 87.04 |
Problem 2
Train Test
Examples Alone 95.27 | 73.61
CLIPS 98.82 | 68.06
CLIPS & Examples{100.00{81.02
Problem 3
Train Test
Examples Alone 91.80 | 75.69
CLIPS 100.00 | 93.98
CLIPS & Examples| 92.62 | 93.98
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Turbine Engine Diagnosis Artificial Neurai Network (TECANN)

Lars J. Kangas!, Frank L. Greitzer2, George M. Alexander2, John A. Sanches?,
Paul E. Keller3:4, David D. Tumer4

1Pacific Northwest Laboratory, Applied Physics Center, Computer Science Department
2Pgacific Northwest Laboratory, Technology Planning and Analysis Center
3Pacific Northwest Laboratory, Molecular Science Research Center
4Northwest Association of Colleges and Universities in Science (NORCUS)
K1-87, P.O. Box 999, Richland, WA 99352
phone: (509) 375-3905  fax: (509) 375-6631 internet: lj_kangas @pnl.gov

The US Army Ordnance Center and School and Pacific Northwest Laboratory are
developing a turbine engine diagnostic system for the M1A1 Abrams tank. This system
employs Artificial Neural Network (ANN) technology to perform diagnosis and prognosis
of the tank’s AGT-1500 gas turbine engine. The initial diagnostic system prototype is
referred to as “TEDANN?" for Turbine Engine Diagnostic Artificial Neural Networks.

Monitored fauits:

1. Bouncing Main Metering Valve
2. Stuck Main Metering Valve
3. Fuel Flow Error (other than type 1 and 2)

Monitored sensor values:

Turbine inlet temperature
Ambient temperature
Compressor Speed
Turbine speed

Fuel flow requested
Actual flow requested
Fuel flow solenoid current

Nooh~wNO~

67




i

Neural Network Workshop for the Hanford Commun,

saadoaaip squawdoaAdp wosLS pre o3 Swrl-[ent UT UOTIBWIOJUT HIOAIDU [uIndn

kq posn A{uo st ferdstp styp - {erdstp BuTurerl jzomiau qeindy vy 3in1g pue Josuas syomid Kupd:p oyy - - Seqdsip drisouletp wIisds {ang g aandiy B

R R R T L LR R ST R AL DAL SRR AR X L AL AL A2

= e S A AT N O s

R R

UIDK 01 wmey r._w A .eq puo . L3 _ VIO 04 winEny =
K suny .

2 s1yblap, bATS; s .‘.

208
I

P S

SLliiigii

o (2 7o) AW RIS _, ‘paddoig ouibn3
B nog EBRG BUEE]

¢ ....,d.__.m:m ms:u_w B

e

IS I

A

0Suos

oy

ek rvet b i ey

s bl lL

48)j0 suloL

iy

sty cswolshs TR Juruimurew pun Sutiojiuow 103 fnpdseg  cz asn8y camoishs pong Hupunueme pue Sutaoituom aoy fepdseq o aanidryg -

e N N A NS = A P . . o e T

TBEE:M.nBEw_ * - sofjsoubaig
e _iiman bt PRI ¥}

e e | S Syt R o SN A

T

A

Ty : suomoRRsUl
Ty el I e 5 ssas0id YIS JOY 20:00 PLHNIIC N0 4
L iéweandas SW3 10 DI BRISUNAEY | : | 17 -10n@13}339% Bulnp 10113 Moy 13N

v NOISSIN:

R
e

BT b e ot WL

e

LT

15K5 A0AIIN, [EInaN
ASOUBRI(] QBT QUGN

] R e Y=




Battelle

Fuel System Replacement (Index)
Tools and Supplies , " ' Electro-Mechanical Fuel System

Removal .
1. Di o connector plug P33 and assemblies

2. Move cable, hose assembly and lubge assembly.
3. Move control assemblies, . L . !

4. Remove and inspecttube assembly
5. Remove hoses, hose divider and tube tee.
b. Disconnect hose assemblies and tube assemp}

2 ':“"'av Ve T

T e T T )

7. Remave fuel system end reconnecttubes.  EESSRE ﬁéfﬁ}gr}{{&j@ﬁé’:‘ﬁﬁﬁi&*f e =
8. Inspect parts far damage. replace as required; s o
Installation '/"'"l""" 1
1. Install Fuel System. 1. Disconnect 7N
: . Connector Plug P33 :
2. Install controls in bracket. (1) and Tube ‘-é :
3. Connect controls to lever. Assemblies (2.3). - 9" X
4. Connecltubes and hose. 1: 3 — I e
5. Install tube. .
6. Install hoses, valve and tee. a. Disconnect conneclor plug P33 (1) from -
7. Install tubes and conneclor plug. connector (4). &
8. Connectthree hoses. \g-— L 8 el
9. Install engine step plate. ) 4 1
10. Install tube assembly and flow valve bracket b, Disconnecttube nut (5} from tube (G). Step 1 (2)
Remove flared conical seal (7).
Disconnect tube nut (8) from tube nipple ==yttt ———

o

(9). Remove flared conical seal (10).

Pacific Northwest Laboratory

Figure 5. Examples of on-line maintenance i)ages.

Apunwiwio) piojueH ey} 10j doysIOpA HIOMION [BineN

69
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Symbolic Reasoning with Neural Networks
Morgan L. Yim

Pacific Northwest Laboratory , Applied Physics Center, Computer Sciences Department
K7-28, P.O. Box 999, Richland, WA 99352 v
phone: (509) 375-2319  internet: ml_yim@pnl.gov

Rule-based expert systems are symbolic reasoning systems. Many use a form of rules
called production rules in an IF-THEN format. These are often based on propositional logic
where the conditional parameters take on true or false values. The action clause sets a
system state with a true or false value. The limitations of this method can be reduced when
confidence factors are utilized within each rule. This addition permits to the rule-based
system to reason symbolically about uncertainty, or about incomplete information.

Neural networks can be used in a symbolic fashion which exhibit results similar to expert
systems which are constructed by a more complex methodology. Reasoning with
incomplete information is automatic with a neural network. Moreover, this approach can be
more efficient as compared with a rule-based system. This neural network approach
generally evaluated rules in-constant time, independent of the number of rules represented.
Rule-based production systems generally evaluate rules in linear time as a function of the
number of rules in the system.

A high-order reasoning system can be constructed using neural networks by the use of an
interacting hierarchy of neural clusters. Each neural cluster is capable of solving a portion
of a large problem. Each cluster shares its conclusions with other clusters at more abstract
levels until a solution is found to the problem.

We have demonstrated the concept of symbolic reasoning with neural networks by using it
to identify potential problems with a circulation pump/motor subsystem of a central heating
plant. The demonstration of this software will be available in a poster session.

Symbolic Reasoning with Symbolic Reasoning with
Neural Networks : Neural Networks
Morgan L. Yim
Comzutelli ic::cels D;parlmenl + Production rule based expert systems
pplle sics Cente
Battelle Paclfic Norlthest Labol;atorles * Neural network approaCh
Richland, WA 93352 * Circulation pump-motor assessment

I will be talking about the use of neural networks as symbolic
reasoners.

I will review how an expert system can be built using a
production system.

Then | will show how a neural network can be used to do likewise.

Finally, I will'talk about a prototype which uses this method to
perform an assessment of circulation pump/motors.
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Neural network approach

+ Symbolic representation of domain knowledge
+ Reasoning objectives are identified
« Attributes of objectives are identified

» Teach the NN to assoclate atiributes with
objectives

+ One or more objectives can be Identified
+ Precision depends on the availability of attributes

Neural networks can be used to perform symbolic, rule-style
reasoning. .

They exhibit results similar to rule-based systems and can be
constructed more quickly and simply.

The first step is to identify the reasoning objectives. What do we
want the system to conclude?

Next, identify the attributes of the objectives. What does the
system look for to support its conclusions?

Then teach the neural network the relationships between the
objectives and their attributes.

Reasoning with incomplete information is automatic with a neural
network.

With incomplete information, the NN will identify severat related
objectives.

It will arrive at a single conclusion when sufficient information is
present.

Neural network approach

+ Simple cross-correlation learning method
~ Binary representation of input patterns

« Bipolar representation of learned patterns
+ Linear threshold of weighted outputs

Cross-correlation Is used to train the neural network.

Bipolar values, 1 and -1, are used to represent the presence of
absencs of an attribute.

When the neural network is queried, a linear threshold function is
used.

Neural network approach
ﬂger

- has hair

- gives milk

- has pointad testh

~ has claws -

- has forward-set eyes
- has black stripes

- has a tawny color

zebra
~ has hair
- gives milk
- has hools
- has a white color
- has black strlpes

Here we want the system to decide between two reasoning
objectives, a tiger and a zebra.

Next, we collect the attributes of each animal.

Then we will teach the neural network the relationships between
the animals and their corresponding attributes.

While each has attributes which uniquely identifies them, some
attributes are shared between them.

.Neural network approach

tiger
- has hair » has halr
- gives milk » glves milk
- has pointed teeth ~—~—————— has pointed taeth
-~ has claws » has claws
- has forward-set eyes ~————3p= has lorward-set eyes
~ has black stripes ————————— has black stripes
~ has a tawny colof - has a tawny color

zebra
~ has hair
~ glves milk
~ has hoofs - has hoofs
- has a white ¢0lor ————————p has a white color
~ has black stripes

In preparation to train the neural network, all the attributes are
combined into a single list.

All duplicates are removed, so there is a single occurrance for
any attribute.

This defines the input nodes of the neural network.
The number of objectives, the animals, defines the output nodes.

In this case, we have an neural network having 9 input nodes anc
2 outout nodes.
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Production rule based expert
systems

+ Rules have antecedents and consequences
» Antecedents take on boolean values

» Consequences set a boolean state

* Rules can be augmented for uncertainty

Production rule based expert
systems

IF animal is a mammal
animal has pointed teeth
animal has claws
animal has forward-set eyes
THEN it is a carnivore

IF animal Is a carnlvore
animal has black stripes
animal has a tawny color
THEN itis atiger

Rule-based expert systems are symbolic reasoning systems.

Many use a form of rules called production rules in an IF-THEN
format.

These are often based on propositional logic where the
conditional parameters take on true or false values.

The action clause likewise, set a system state with a true or false
value.

The limitations of this method can be reduced when confidence
factors are utilized within each rule.

This addition permits to the rule-based system to reason
symbolically about uncertainty, or about incomplete information.

This is an example what one might see in a expert system.

The conclusion part of the rule is true when all the conditions are
true.

The conclusion is then used in another rule as a precondition for
considering additional information.

Production rule based expert
systems

IF animal is a mammal (.9)
animal has pointed teeth (.1)
animal has claws (.7)
animal has forward-set eyes (.6)
THEN itis a carnivore (.7)

IF animal is a carnivore (.7)
animal has black stripes (.6)
animal has a tawny color (.9)
THEN it is a tiger (.9)

Whan only incomplete information is availablg, the rules of an
expert system can be augmented with numeric values.

Sometimes statistical techniques are used, like Baysian or
Dempster-Shaefter.

Sometimes a confidence factor is used.

in any case, some method for combining the numeric value is
used to determine a total value for the rule.

Then a comparison is made to determine whether the given rule
can fire. :

When fired, the rule not only sets a new system state but also
propagate the conclusion value to subsequent rules.

Production rule based expert
systems

This is an illustration of a rules network.

Here we can ses graphically how confidence factors propagate
from rule to rule to arrive at a conclusion.

The rectangles indicate information coming from outside the
system.

The ovals indicate derived information from rule firings.
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Neural network approach

tiger
-~ has halr 1
- gives milk 1
- has pointed teeth 1
~ has claws 1
- has forward-set eyes 1
~ has black strlpes 1
~ has a lawny color 1
~ has hoots 1
~ nas a white color 1

Neural network approach

zebra

- has halr 1

~ gives milk

~ has polinted teeth -1
- has claws B
~ has forward-set eyes -1
~ has black stripes 1
~ has a tawny color -1
~ has hoofs 1

~ has a white color 1

This is the training pattern for recognizing a tiger.

Given complete set of attributes, the 1s indicate the presence of
tiger attributes.

The -1s indicate the attributes which do not apply 1o the tiger.

This is the training pattern for recognizing a zebra.

Here we notice that the zebra shares some attributes with the
tiger.

Other tiger attributes clearly do not apply to the zebra.

Neural network approach

Tiger

—F Ctr ] EREE

1 1 -1

1 1 4

1 X = oA

3 14

1 1 4

1 1 1
- -1 1
[ I

Neural network approach

Zebra

Ty C+ v ENEN

1 -1 1
-1 : 1 -1

-1 X 1 -1

-1 1 4

1 -1 1

1 1 -1

1 -1 1

1 -1 1
- — S —

A cross correlation is made with the tiger training vector and a
vector representing the two animals.

The tiger position is set to 1 while the zebrais set to -1.

The result is a matrix which represents the correlation of the
tiger's attributes with the tiger.

Similarly, the pattern for the zebra is cross correlated.
This time, the tiger's position is set to -1 and the zebra's to 1.

The result is a matrix which represents the correlation of the
zebra's attributes with the zebra.

[N ' 1 [ 1 "t 0 | ' [ o

I
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Neural network approach Neural network approach
Tiger Zebra Neural Network ' Neural Natwork
1] EREE o o Cr1o00010117] [o o]
1 - -1 1 0 0 ’ 0 0
): = 4 4
1 - 1 1 2 2 f Transiste 2 2 [: :1
1 + 1 1 - 2 -2 2 .2 ;:ln?‘:x:':d
1 -1 1 4 2 -2 has halr 2 -2
L 1 ! °o 0 :':: ;o"l't'i,l':d teeth 0 o Co 17
1 - 1 4 2 -2 has claws 2 -2
1o 4 2 2 e 2
1 1 L‘ 1 -2 has » tawny color -2
L. - — — — hao! L -
::: I?:hl‘\l color Zebra
The two resulting matrices are added together to form the neural Binary values, 0 and 1 are used to represent attribute observations.
network. These observations are represented in a vector and carrefated with
The NN is now ready for use. the NN,

-The result from the NN is a vector representing the strength of
correlation between the observed attributes and the learned
attributes.

By picking the largest value with a threshold function, the NN can
indicate its bast conclusion given the provided information.
Circulation pump-motor
Neural Clusters pump

assessment

XEY =

Pves mis
-

+ Central heating plant circulation pump
« Assessment based on Instrumented data
+ Known trouble signatures stored in the NN
+ Produces report of suspected pfoblem
+ Recommends solutions and list costs
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% canvery
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One such large problem is the diagnosis of a circulation pump/

& The neural network Just described could be thought of as a neural motor subsystem of a central heating plant.

f cluster. . This subsystem is instrumented in such a way that daia for

B A cluster is a neural network capable of solving a subproblem. essential attributes are collected.
A clu’sger can propag'ate its conclusions to other clusters to A neural network is used to monitor for known trouble signatures.
contribute to th? tota solut.ion. When trouble is detected, a report is generated about the

R A neural lattice is a collection of neural clusters arranged in a suspected problems.

caoperative fashion to subdivide and to solve a large problem. The solutions and cost for each are listed for decis‘ion-maklng.
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Circulation pump-motor
assessment

.

Detects problem mechanisms in pumps

« Recognition of problem signatures

+ Symbolic representation of signatures
Numeric data pre-processed Into symbols
+ Prototype demonstration available

By the use of neural network as a symbolic reasoner, we were

able to detect problem mechanisms in circulation pump/motors.

This was accomplished through the recognition of problem
signatures by the neural network.

The signatures were represented symbolically for input into the
neural network.

The slgnatufes relate to the numeric values taken from
measuring instruments attached to the pump/motor.

Finally, we have available the prototype software for the pump/
motor application.

Please contact me for a demonstration.
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Veritication and Valldation of Neura!l Natworks
James S. Dukelow, Jr.

Battelle Pacific Northwest Laboratories, Engineering Technology Center
K8-37, P.O. Box 999, Richland, WA 99352
phone: (509) 372-4072  internet: js_dukelow @pnl.gov

This talk considers the intersection between the software engineering process and the
design, training, and testing of artificial neural networks. This common ground is of
interest because neural networks offer a number of capabilities of interest for nuclear
industry applications, including safety-related applications, but the process of
developi' g and testing a neural network does not appear to fit well into the software
engineering process as implemented in the existing body of software standards.

An artificial neural network consists of a collection of generally identical processing
elements, the artificial neurons, each with input and output lines. For purposes of
specificity, we can consider the_artificial neurons to be arranged in a layered
architecture, with an input layer receiving information from the outside world,
multiplexing it, and passing it on to a "hidden" processing layer, which itself passes
processed data on to an output layer for further processing and output to the outside
world. The layers are generally richly connected (i.e., each neuron in a given layer is
connected to each neuron in the adjacent layers) and the connecting lines have
associated connection "weights", which can be modified during the training or "learning"
process. Under appropriate assumptions, a neural network can be trained to learn the
relationship between a set of input/output pairs (x4, ¥1), (X2, ¥2), ., (Xn, Yn), called the

"training set", where each x; is an element of k-dimensional Euclidean space, Rk: and
each y, is an element of R™. For instance, we could have each y; = f(x;) for some
function f mapping Rk into RM. Detailed, mathematically-oriented descriptions of various
neural network architectures, “learning rules", and applications can be found in Ref. 1.

Neural networks have been developed and used successfully for applications in pattern
recognition, optimization, approximation, adaptive filtering, data fusion, machine vision,
voice recognition, and process control. Recent years have shown increasing interest in
the nuclear industry in potential applications of neural networks to industry needs. An
indication of this interest can be found in the proceedings of the 1992 Workshop on
Neural Network Computing for the Electric Power Industry, cosponsored by the Electric
Power Research Institute and the International Neural Network Society (Ref. 2).
Precisely because of verification and validation concerns in the regulated environment
of the nuclear industry, all of the fielded applications of neural networks to electric utility
industry problems are limited to fossil facilities or to the transmission and distribution
network.

For several reasons, verification and validation of neural networks are seen as possible
impediments to nuclear industry applications, particularly safety-related applications.
For many existing applications, the neural network development has had a distinctly
empirical or experimental flavor; considerable judgment may be required in the choices
of the neural network architecture, the "training data set", the "training test data set", the
"validation data set", and the stopping point for the training effort. The neural network
development process is significantly different from the software development process
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for "normal" procedural software, and is not well-supported by existing software
consensus standards. It is normal for many fielded neural net applications to give the
wrong answer some fraction of the time, a situation violating the spirit, if not the letter of
existing standards. This presentation will attempt to expand on the thoughtful,
qualitative discussion of some of the issues of verification and validation of neural
networks found in Ref. 3.

The behavior of a nedural network architecture is generally determined by the transfer
functions of its neurons (i.e., the mapping of their input into their output), by the learning
rule, and by the architecturs, itself (i.e., by the way in which the neurons are
interconnected). Numerous recent results in the literature have been able to describe
this behavior as a mathematical theorem on the existence and/or construction of an
approximation to a member of some appropriately defined function space, that is, as a
result in approximation or optimization theory. This presentation will discuss some of
these results, including the Kolmogorov Mapping Theorern and various Universal
Approximation Theorems (Refs. 1 and 4).

The bottom line question: Are adequate V&V methods available to justify use of neural
networks in safety-critical applications? It is the author's conviction that a combination
of the methods discussed in the Peterson report (Ref. 3) with the recently-developing
theoretical basis for characterizing neural network behavior form a potential framework
for rigorous justification of safety-related applications of neural networks. In addition, it
will be important that the body of consensus standards not rule out neural networks by
virtue of inflexible application of rules more appropriate to the environment of procedural
software in which the standards were developed.

References
1. Hecht-Nielsen, Robert, Neurocomputing, Addison-Wesley, Reading, Massachusetts,
1990.

2. Sobajic, Dejan J. (Ed.), 1993, Ne W omputing for the Electric r
Industry: Proceeding of the 1992 INNS Summer Workshop, Lawrence Erlbaum
Associates, Hillsdale, New Jersey.

3; Peterson, Gerald, 1992, "A Framework for Neural Network Evaluation”, McDonnel
Douglas Technical Report MDRL TN-92-02, McDonnel Douglas Research Laboratories,
St. Louis, Missouri.

4. Ito, Yoshifusa, 1992, "Approximation of Continuous Functions on Rd by Linear
Combinations of Shifted Rotations of a Sigmoid Function With and Without Scaling", in
Neural Networks, Vol. 5, No. 1, pp. 105-115, Pergamon Press, New York.
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CONTEXT FOR THIS TALK

. IEEE 1012 Working Group

. Absolute SQA Requirements
. SQA for “Non-Testable" Software
. Application to V & V of Neural Networks

Context for this talk

Usual Software Quality Assurance Requirements
Usual Neural Network V &V

Peterson's Approach

Stacked Generalizers

Probabilistic Proofs

Mathematical Properties

Conclusions
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Interference and Sequential Training of Connectionist Networks: What can we do?
A. Lynn Franklin

University of Washington, Department of Psychology

; Seattle, WA
phone: (206) 543-6695  internet: alfrank @u.washington.edu
and

Pacific Northwest Laboratory , Technology, Planning, and Analysis Center
K8-17, P.O. Box 999, Richland, WA 99352

Connectionist networks have been successfully used to perform a wide variety of
information processing tasks. While these accomplishments may be impressive, each
has been required to submit to two fundamental constraints. First, the configurations
chosen to implement each network are generally selected through a less than
sophisticated trial and error process. A second, and more important, issue is that each
of these networks must be trained in a repetitive sweep fashion with all known examples
being presented. The introduction of new examples generally requires retraining on all
previously learned examples, along with the new example. Without retraining,
connectionist networks are susceptible to interference (degradation of performance) on
previously learned examples. This dependence on sweep learning, which is not typical
for humans, indicates existing learning algorithms have yet to capture the learning
mechanisms of biological neural networks.

This paper discusses one approach for training connectionist networks, suppressive
specialization, that addresses both of these issues. The basic concept of suppressive
specialization will be presented alcng with several case studies demonstrating the
impact of this approach on interference. In addition, several issues that result from the
ability to use sequential training will be introduced.

Agenda

* objectives, motives, and definitions
* examples of interference

* suppressive specialization

e demo

Objectives

e Interference/Sequential Training
» Selection of Hidden Layer Units

Lo R
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Ratcliff Performance
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Ground Penetrating Radar Target Recognition
Lars J. Kangas, Gerald A. Sandness, Shawn J. Bohn

Pacific Northwest Laboratory, Applied Physics Center, Computer Science Departfnent
S K1-87, P.O. Box 999, Richland, WA 99352
phone: (509) 375-3905  fax: (509) 375-6631 internet: li_kangas@pnl.gov

A feasibility study was performed for Osaka Gas Company, Japan using Artificial Neural
Networks (ANNs). to recognize underground utility pipes from images generated by
ground penetrating radar. - :

Figure 1. Ground penetrating radar image.

An image is achieved by viewing a sequence

of individual radar ping returns side-by- . .
side. The vertical dimension of the image

is depth in the ground (approximately 8

ft), with the surface on the top. The o

horizontal dimension represents the run

along a line on the surface (approximately

30 ft).

Hidden layer

Output layer

I
L

— » Objects
— — —~m NoObjects

Figure 2. Each individual radar ping is analyzed by an ANN for
pipes. The input to the ANN is the peak-to-peak values in the
phase component of a Fourier transformed radar ping. The ANN
output determines whether there is a pipe in the ping.
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Figure 3. Peak-to-peak magnitudes in the phase components of Fourier transformed radar pings. The left

and right graphs are pings without and with pipes, respectively. The ANN uses the differences in these

graphs to determine whether there is a pipe in the ping.
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Figure 4. Radar image showing the pings which were
determined to have signatures of pipes in the ANN
in Figure 2. Only these pings will be further
processed for pipe recognition.

. Output layer
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Figure 5. A radar ping is analyzed in an ANN to determine at which depth
in the ping there is a signature from a pipe. The ping signal is
sampled into 170 coefficients. The ANN output is the recognition of a
pipe signature at every coefficient. This scheme allows multiple pipes
to be recognized in a single ping.
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Figure 6. Image reproduced from the output of the ANN Figure 7. The image in Figure 6 after
in Figure 5. The dark colors represent recognition of synthetic aperture processing.
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Figure 8. The three graphs show the unprocessed
radar ping, the magnitude and phase components of
the Fourier transformed radar ping.
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Neural Network Applications in the Environmental and Molecular Sciences
Laboratory (EMSL)

Paul E. Keller, Richard T. Kouzes, Lars J. Kangas

Pacific Northwest Laboratory, Molecular Science Research Center,
Computing and Information Science
K1-87, P.O. Box 999, Richland, WA 99352
phone: (509) 375-2254  fax: (509) 375-6631 internet: pe_keller@pnl.gov

The construction of the Environmental and Molecular Sciences Laboratory (EMSL) at
the Pacific Northwest Laboratory is about to begin. This facility will assist in the overall
environmental restoration and waste management mission at the Hanford Site by
providing basic and applied research support. This poster identifies several applications
in the Environmental and Molecular Sciences Laboratory where neural network
solutions can potentially be beneficial. These applications include real-time sensor data
acquisition and analysis, spectral analysis, process control, theoretical modeling, and
data compression.

Mission of the EMSI

The Environmental and Moleculaf’Sciences Laboratory (EMSL) will be an essential part of our ability to provide the necessary
technology solutions to achieve environmental restoration objectives, including

* developing new technologies to solve environmental restoration and waste operations problems

*» developing technology to improve environmental restoration and waste management effectiveness, efficiency, and safety by
establishing the scientific basis for contaminant transport in groundwater, surface water, soil, and atmospheric systems

* enhancing educational programs and initiatives by providing the necessury capabilities to support cooperative educational and
training programs with academic institutions and DOE national laboratories

 encouraging collaboration and technology transfer among Federal agencies, State and local governments, industry,
. academia, and the international community by operating as a national DOE user facility open to all scientists.

r r ‘ /A
Simple Model of a Neural Network

v‘ _____

N dendrit

neurons < nonlinear processing elements
synapses < weighted interconnections between neurons
dendrites/axons < communication channels
neural network ¢ system of highly interconnected, nonlinear processors working in unison

dendrites




labeled patterns
(e.g., chemical composition,
isotope identification, etc.)

feature values
(measurements: electrical
response, wavelength, etc.)

Sensing System
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Neural
Network
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Two facilmes have been
proposed for permanently
storing waste from the
Hanford Site. Low level
waste would be mixed with
grout and stored in an
underground vault. High
level waste would be vitrified
and stored in an underground
repository. ANNs could be
used to monitor the condition
of the stored waste.

There are many real-time and remote sensing applications on the Hanford Site
including insitu monitoring of contaminants, and chemical and isotope identification.
Many of these applications require an inexpensive, compact, and automated system
for identifying and monitoring the object of interest (e.g., chemical, isotope). Such a
system could be constructed with a sensor array and an automated pattern
recognition system (such as a neural network). In hazardous environments, these
systems have a distinct advantage over traditional sampling and laboratory analysis
methods since an environment can be monitored without risk to human operato:s.
The complexity of the data collected by large sensor arrays makes analysis with
conventional methods difficult. ANNs, which are relatively easy to train for analyzing

Lcomplex data, are fikely to be a better choice for sensor data analysis.

InSi i Identifi

There are an estimated 1700 waste sites
distributed around the 1400 square
kilometers (560 square miles) of south-
eastern Washington that comprise the
Hanford Site. This waste includes nuclear
waste (e.g., fission products), toxic
chemical waste (e.g., carbon tetrachloride,
ferro-cyanide, nitrates, etc.), and mixed
waste (combined radioactive and chemical
waste). An ANN coupled to a sensor
array (artificial nose) could be used in the
contaminant identification.

%S¢ AA 131Cs ccl,

°°Co‘ 239py

CgH20 NOy~

Fe(CN);™*

Waste Storage Tank Monitoring
High level waste is currently stored in 149
single-shell and 28 double-shell, subsurface
tanks. An ANN could be used to monitor the
conditions of the stored waste and alert
operators of abnormalities.

--__._I:-

Subsurface Waste
Storage Tank

Potential Applications

* Artificial Noses:
Artificial noses (chemical sensor array coupled to an automated chemical

identification system) will be used to examine and identify chemical waste samples |

and contamination on the Hanford Site. Artificial noses that incorporate ANNs have
been used in applications including monitoring food and beverage odors, automated
flavor control, analyzing fuel mixtures, and quantifying individual components.in gas
mixtures.

e Sensor Calibration and Validation:
The development of new sensors requires that a methodology for sensor calibration

and validation be established. ANNs have been used in spectral peak verification
and will be considered for both the calibration and validation of new sensors,
particularly for new complex sensors that may perform better than established
calibration and validation methods.

e Hot-Cell Monitoring:
Another project on the Hanford Site involves the deployment of a multi-instrument

array of fiber optic sensors, radiation sensors, and ultrasonic devices into hot cells.
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Approaches

« Backpropagation, Feed-Forward Networks
» Kohonen’s Self-Crganizing Networks

e Hamming Networks

 Boltzmann Machines

» Hopfield Networks
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Spectral Analysis

Mass Spectrometry Nuclear Magnetic Resonance Spectroscopy

Relative
Iniensity
k-3

“ it
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Mass

Chemical Shift (112}

Process Control

The EMSL will be equipped with advanced mass spectrometers, ion cyclotron
resonance mass spectrometers, and several high-field and ultrahigh-field nuclear
magnetic resonance spectrometers. These instruments will be used in the analysis
of large macromolecules, such as enzymes, to be used in environmental
remediation.

Proposed Waste Grout Treatment Hanford Waste Vitrification Plant W
Pretreatment Facility Facility
—
] |
Neural Network Process Control Loop
il Plant Operating
Treatment Process System
Sensing System >
A
i /
Neural Network _ | Neural Network
Analysis System 1 Decision System

Potential Applications
* Automated Identification of Spectral Data:
The chemical composition of a sample is determined from its ¢ “~ctral signature. ANNs
have been successfully used to classify spectra from various moaalities including infrared
spectroscopy, mass spectrometry, and NMR spectroscopy

s Interpretation of Important Features in Spectral Data:
A specific problem in this area is locating the spectral peaks of the lowest molecular-weight
monoisotope in a mass spectrum of a large organic molecule. Potentially, an ANN could
be trained to look at the distribution around the various peaks in the mass spectrum and
infer the iocation of the lowest molecular-weight monoisotope.

The cleanup of Hanford will require that many controls be maintained over complex

chemical processes. It would be difficult for human operators to closely monitor all
key process parameters for a sophisticated chemical process in real-time. It is more
effective to use automated systems in the process control and use human operators
in a supervisory capacity. .

- Approach

» Backpropagation, Feed-Forward Network:
Often, the backpropagation algorithm is used to train a feed-forward ANN for this
application. A training set of labeled spectra are generated and presented to the training
algorithm, which iteratively fixes the synaptic weights in the ANN.

» Optimal Linear Associative Memory:

~ The optimal linear associative memory has been used to classify components in gamma
ray spectra. The ANN stores pattern data in a more compact form than the database that
results in a more efficient search. Also, when itis implemented in a true parallel distributed
processing system, the inherent paralielism of the ANN provides for a very rapid search.

Potential Applications

« Process Control: .
ANNSs allow continuous, high-level monitoring of all process sensors and can function as

adaptive controllers. In many systems, performance degrades over time due to deterioration
of the system components. To compensate, operational parameters are dynamically
adjusted to optimize system performance. An ANN can be used to monitor the process,
make decisions about system operation, and adjust the appropriate controls to keep the
process operating with optimal efficiency and safety. An advantage ANNs have over more
traditional adaptive controllers is that the ANN can be continuously updated with new
information by using a dynamic leaming approach. :

Approach
¢ Backpropagation, Feed-Forward Network:
The backpropagation algorithm is commonly used to train ANNs in process control with the
training set composed of historical data about the process. ANNs have been used in various
process control applications including process fault diagnosis and temperature.

[ S
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Theoretical Modeling

Data Compression

Molecular Structure Modeling Energy Level Prediction &
Spectrum Prediction
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The amount of data generated in the planned EMSL is likely to be overwhelminy;
therefore, construction of novel systems capable of compressing large quantities of
data is necessary.

Potential Applications ]
e Principal Component Analysis (PCA):
in an analytical system currently in use, photon counting of fluorescent molecules is
performed. This procedure produces a two-dimensional histogram or image of the
fluorescing surface. The size of the generated image is 1024 by 1024 pixels at 16 bits per
pixel, which is equivalent fo 2 million bytes of data. Larger images will be generated by
systems in the EMSL. An examination of the structures in the image shows that only a
small amount of information would be lost if a large amount of data compression was
performed. A recognized approach in data compression of this form is to tile the image info
subimages and then compress each individual subimage by using Principal Component
Analysis.

Approach

» Backpropagation, Feed-Forward Network:
ANNS have been trained with the backpropagation algorithm to perform efficient PCA data

compression in reak-ime.

Potential Applications
« Prediction of Mass Excess in the Nucleus of Isotopes
» Pattern Recognition of Molecular Structures
» Modeling Chemical Systems
» Determination of Protein and Other Molecular Structures -
» Prediction of Speciral Data
« Prediction of Energy Levels

Approaches

» Boltzmann Machines and Hopfield Networks:
Sewveral theoretical models in molecular science involve search and optimization. For

example, molecular structures can be determined by optimizing a set of structural
parameters for a set of physical constraints. While generally producing suboptimal
results, Boltzmann machines and Hopfield Networks have been used to generate
approximate solutions in relatively shoirt computation times when compared with more
rigorous optimization techniques. :
e Backpropagation, Feed-Forward Network:.

Backpropagation trained ANNs have been used to predict the secondary and tertiary
structures of proteins. )

Conclusions

This poster has identified several real-time data processing applications
in the planned EMSL that can potentially benefit from ANNs. These
applications include sensor data acquisition and analysis, spectral analysis,
process control, data compression, and theoretical modeling. _

We are currently working on prototype evaluation to determine if ANNs
are appropriate for the aforementioncd applications. This involves
development of software ANN simulators and exploration of the capabilities
and limitations of ANNs to these applications. If ANN solutions are judged
appropriate after the evaluation, then a dedicated ANN hardware system will
be considered.
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Comparison of Nonrecurrent Associative Memory Models Using Image Data

Paul E. Keller, Mariappan S. Nadar,2 Bobby Hunt,2 Eric VonColin,® Anupam Goyal2

1Pacific Northwest Laboratory, Molecular Science Research Center
K1-87, P.O. Box 999, Richland, WA 99352

phone: (509) 375-2254

fax: (509) 375-6631

“internet: pe_keller@pnl.gov

2University of Arizona, Electrical and Computer Engineering Department,
Neural Analysis and Imaging Lab, Tucson, AZ 87521

phone: (602) 621-6178

internet: nadar@ nail.ece.arizona.edu

3NRaD, Code 7304, San Diego, CA 92152-5000

' Three optimal associative memories are compared by their ability to recall image data. The
first model is the classical optimal linear associative memory. The second model is an
optimal nonlinear associative memory that uses a second order polynomial mapping of the
input data. The third model is composed of a nonlinear transformation in the input pattern's
spectral domain followed by the classical optimal linear associative memory. Computer

simulations with images are used to evaluate the performance of the three models.
g : {ative M Ooti ont Accociative Me )

® Teuvo Kohonen, “Correlation matrix memories,” IEEE Transactions on
Computers, vol. C-21, p. 353, 1972.

* The optimal linear associative memory (OLAM) is based on a simple matrix
agsociative memory model. It is an improvement over the original matrix
memory in that it projects an input pattern onto a set of orthogonal vectors
where each orthogonal vector represents a unique pattern (exemplar),
With linear activation functions, the training is a straight forward matrix
orthogonalization process where each pattern from the training set is made
to project onto a separate, unique orthogonal axis in the output space.

1. Form input and target matrices. Arrange input patterns as columns in
an nxp dimensional matrix X and target patterns as columns in an mxp
dimensional matrix T.

2. Generate inverse of the input pattern matrix X. Since X is generally not
a square matrix, a pseudo-inverse technique is used to generate X*.

3. Form synaptic weight matrix.
Woram = TXt  where ! indicates pseudo-inverse

Input Pattern (x)
&) ueped ndinQ

* T. Poggio, “On optimal nonlinear associative recall,” Biological
Cybernetics, vol. 19, pp. 201-209.

® The Optimal Non-Linear Associative Memory is a modification to the
OLAM that uses a polynomial mapping of the input space. The input space
is transformed by:
Z(X) = Py + Py(X) + P,(X X) + P,(X,X.X) + ... + Py(X X,...)

where Pg, Py, Py, ..., P,, are polynomial coefficients. The synaptic weights
are specified in a manner similar to the OLAM.

WSAM = th
In zhis poster, a second order polynomial associative memory (SAM) is
used.

UX) = Po + Pl(x) + Pg(X.x)

3 oclative lvlemo with Non-Li

) »

B, Hunt, M. Nadar, P. Keller, E. VonColln, A. Goyal, “Synthesis of a
Nonrecurrent Associative Memory Model Based on a Nonlinear
Transformation in the Spectral Domain,” IEEL Transactions on Neural
Networks, vol. 4, pp. 873-878, 1993,

This model is composed of a nonlinear transformation in the spectral
domain followed by the standard optimal linear associative memory. In
this poster, the input space is transformed by taking the Fourier transform
of the input and setting its magnitude to unity.
Z= o(X) where ® is phase portion of the Fourier domain

The prime motivation for performing this transformation is the importance
of the phase of the Fourier domain representation of images in the recovery
of images. This Fourier domain phase-only transformation of the input
space combined with the OLAM is denoted as a phase associative memory
(PAM) in this poster.

I

Wpan = YZ! =
3 § 3

—)
g:: * Fourier Transform  —™""_]  Standard Optimal [—» 5
- —8—1 Linear Associative % ]
$——3] ¢ SetMagnitude to 1 |—§&——> Memory (OLAM) —*> Fl
§——-P e g-—b et g
I

(=

Results

Input and Output Signal-To-Noise
Ratios for Distorted Images (in dBs)

Distortion Input  OLAM SAM PAM
1. Flipped Hair Style 4.54 6.89 7.99 15.75
2. Left Half of Face 2.62 4.65 5.33  13.51
3. No Face 6.23 7.66 11.00 15.89
4, Sunglasses 5.18 12,01 1215 12.99

Input and Output Signal-To-Noise
Ratios for Noisy Images (in dBs)

Gaussian Noise Input  OLAM SAM PAM
SNR =20 200 35.65 36.63 22.14
6.SNR =10 100 25.65 26.64 16.59
7.SNR=0 00 - 1565 16.68 12.08
8.SNR =-10 -100 565 698 1.22
9. SNR = 20 -20.0 -4.35 -3.20 —
SNR=-30 -30.0 -14.35 -24.11 -
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Images Recalled From Three Associative Memories

(d) PAM Recalled () Input Image

P : . :
(a) Input Image (b) OLAM Recalled  (c) SAM Recalled  (d) PAM Recalled

3, I}lg E ace

(c) SAM Recalled (d) PAM Recalled

(b) OLAM Recalled

(a) Input Image (b) OLAM Recalled  (c) SAM Recalled  (d) PAM Recalled  (a) Input Image (b) OLAM Recalled  (c) SAM Recalled  (d) PAM Recalled

ded Gaussian Noise (SNR = 0 dB Conclusion

For Distortions of the Images (e.g., partial removal
or modification), the OLAM with spectral domain

® preprocessing (PAM) performed best of the three
techniques tested.

For Noisy Images, the Secofld Order Associative
Memory (SAM) performed best, though only slightly
® better than the standard OLAM.

The spectral domain processing used in the PAM
(phase of the Fourier transform) produces a system
sensitive to high spatial frequencies. These
frequencies contain much of the unique detail of an
image. Large scale modification of the images
(distortions) is a low spatial frequency effect. Adding
noise, affects the high spatial frequencies more than
the low spatial frequencies. This explains the
performance of the PAM.

NEURAL
Aw

I MAGE

AR PR - i : R of ) g
(a) Input Image (b) OLAM Recalled (c) SAM Recalled (d) PAM Recalled
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An Optical Neural Network Implemented with Fixed, Planar Holographic
Interconnects

Paul E. Keller! and Arthur F. Gmitro?2
1Pacific Northwest Laboratory, Molecular Science Research Center, Computing and
Information Science
K1-87, P.O. Box 999, Richland, WA 99352
phone: (509) 375-2254  fax: (509) 373-6631 intemet: pe_keller@pnl.gov
an
2University of Arizona, Optical Sciences Center and Department of Radiology
Tucson, AZ 87521
phone: (602) 626-4720 fax: (602) 694-2521 intermnet: gmitro@zen. radiology arizona.edu

A key element of most neural network systems is the massive number of weighted
interconnections used to tie relatively simple processing elements (neurons) together in
a useful architecture. The inherent parallelism and interconnection capability of optics
make it a likely candidate for the implementation of the neural network interconnection
process. While there are several optical technologies currently under investigation, this
poster presents an optical system that combines fixed planar holographic interconnects
and opto-electronic neurons.

An analysis of this architecture shows a potential interconnection capacity of 45 millicn
synaptic connections for a planar hologram. The dynamic range of each synaptic
connection is about 38:1 (approximate precision of 5 bits). Higher interconnection
densities can be achieved by accepting a lower dynamic range. For opto-electronic
neurons employing laser diodes, processing rates of 45 to 720 trillion connections per
second can potentially be achieved.

An experimental optical system employing binary amplitude holograms is also
presented in this poster. This experimental system encodes a Hopfield auto-associative
memory and demonstrates the ability of this optical architecture to implement the
structure of the neural network.

XT ‘ L I o
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(1) Investigate Feasibility of Constructing an
Optically Implemented Neural Network

that uses Fixed Planar Holographic
Interconnects

(2) Evaluate Planar Holographic
Interconnection Technology

(3) Develop New Computer Generated
Holograms Techniques for the Proposed
System

(4) Evaluate Necessary Opto-Electronic
Components

(5) Demonstrate a Prototype System

(6) Determine Potential Capabilities and
Limitations of This Approach

Feedforward Neural Network  Feedback Neural Network

Neuron Layer
(processing)

Input Layer
(distribution)

Xy Hidden Layers

Qutput Layer
(processing)

Input Signals

Y

—
N
\
sreudig ynding

Input Signals
steudig mding

k= 1
k=0
Optical Implementation
Optical Implementation Fourier _Hologram
Transform Lens Plane
+ +V +V
Input Layer Hidden Layer Output Layer
Input Data 9 +V > +V ? +V
Input Data
Input Neuron

_— Plane — Plane -_—
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Optical Interconnections

= Why use Optical Interconnections?

no interaction between optical beams
traversing the same space

%)

)
NN

Hologram Fourier Detecto
Plane N gram >

Transform Plane

/2

Lens

e Each neuron output has its own hologram

This prototype illustrates how holographic interconnects
can be used to connect one layer of optical sources to
another plane of optical detectors. An individual neuron
emits a beam of light that illuminates a single
subhologram. The Fraunhofer diffraction pattern
produced by the subhologram is composed of a set of
light beams that connect this output signal to each
detector. The intensity of each beam arriving at the
detector plane represents the strength of the synaptiz
connection between two neurons.

i)

* Connection (synaptic) weights are stored in
the diffraction pattern of the hologram

) . diffraction pattern
synaptic weights produced by
for a single neuron subhologram
310512 single subhologram .nl
N
RO N .
encode. diffract
weights in \
RN A
Wik I hkl(x’y)l ’

* Fourier transform holograms map angles

to detector locations
subhologams

Y

neuron I,
output states

»
—)
i 1,
»
»

‘ﬁ'

<_|

input
(detector)

* Superposition of light beams on detector
(inroherent assumption)

Onvnto-Electronic Neurons

= Why use Opto-Electronic Neurons?
nonlinear operations are inefficient in
optical materials

Electronic
Processors

%- |
/~<H4

Collection
Optics

.

NEB. WEA .

L VR A

A WEL

* The synaptic weight of each connection is
represented by the power falling on a
detector cell

This figure illustrates a prototype opto-electronic neuron
plane. Each neuron consists of a pair of input detectors
(which convert optical signals to electronic), a non-
linear electronic amplifier that implements a neuron
activation function, and an output light source or spatial
light modulator. The intensity of the output beam
encodes the state of the neuron.

* Bipolar weights are encoded by spatial
separation of positive weights and negative
weights falling on the detector cell

Detector/Modulator Opto-Electronic Neuron

Photodetectors
(input summing ports)

+V

excitatory signals

(light beams) Modulater Cell

(output port)

Read Beam
inhibitory signals h
(light beams) 2 ——
RY; ' VI Output Light Beam

bias

Detector/Emitter Opto-Electronic Neuron

o vbhl

Photodetectors
(input summing ports)

excitatory signals
(light beams)

Photoemitters
(output port)

=

Nonlinear Difference
Amplifier
(activation function)

Output Light Beams
=)

inhibitory signals
(light beams)
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Operation of the Experimental System

The following sequence of patterns was generated with the optical system
when it was configured as a Hopfield autoassociative memory. The
Hopfield network is a single layer feedback system where the synaptic
weights are specified by using an outer-product rule. This network tries to
associate each pattern presented it with a pattern stored in the network.
This example, illustrates how a corrupted or noisy version of the letter A is
recalled by the network. The letter A is one of the stored patterns.

Initial Network State
* Qutput of the Array of Neurons
* Noisy Version of the Letter 'A’
» View of the Light Source Plane
Light Source Grid Emitted Intensity

e ol el
' ‘\,i
<l
' n'i e

Y B

|Optical Interconnect Process (Diffraction)J

Diffraction Pattern

* Input to Array of Neurons

* View of the Detector Plane

* 8 by 8 Grid of Detector Cells

Detector Grid Detected Intensity

fNeuron Thresholding Process (Electronicj

New Network State

«Output of the Array of Neurons
* Letter 'A' is Almost Recalled
* View of the Light Source Plane

] Neuron Output is 'On' (emitting light)
B Neuron Output is 'Off' (not emitting light)

lOpticaI Interconnect Process (Diftraction)J

e

o€,
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Diffraction Pattern

* Input to Array of Neurons
« View of the Detector Plane
« Each Cell is Composed of 2 Detectors

Detector Cell

sum of positive >
waights

. <— SUm of negative
waights

Il—\lveuron Thresholding Process (Electronic)

New Network State

« Qutput of the Array of Neurons

« Letter ‘A’ is now Perfectly Recalled

« View of the Light Source Plane

« With 10 Pixels Incorrect, the Network
Perfectly Recalled the Stored Pattern
in 2 lterations

[6ptica| Interconnect Process (Diifractionu

Diffraction Pattern

« Input to Array of Neurons
« View of the Detector Plane

Greater Excitation Greater Inhibition

Bl

Weuron Thresholding Process (Electronig)J

Final Network State

«Output of the Array of Neurons

« Stability has now been Reached

« View of the Light Source Plane
Previous State Current State

= =
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Experimental Opto-Electronic
Neural Network

Computer

input to the Layer Output of the Layer

of Neurons ‘of Neurons
h -
-
video signal
H(;:ghesI Lilqgld
Polarizing rystal Light
Ar* Laser Beam Splitter Value
Cube Projection CRT

Hologram
Fourler Plane Plane
Filter

Mirror

Video Camera

This figure illustrates the complete opto-electronid
neural network configured for the feedback architecture.
While this experimental system is not practical for the
implementation of real-world applications, it is useful in
proving the technology and for evaluating the
performance of holographic optical interconnects.

Fourler
Transform
Lens

Relay Lens

Interconnection Holograms

Array of 64 Holograms
Produced with the Error
Diffusion Process

Array of 64 Holograms
Produced with the
Binary Search Process

Kodak 649F

This holographic plate contains the synaptic weights for two complete
Hopfield associative memory neural networks. This plate was is used
in the experimental opto-electronic neural network. There are two
arrays of holograms. One array of 64 holograms for each neural
network. Each hologram is 1 mm square in size and encodes the
weights interconnecting a single neuron to all other neurons in the
network. These holograms are computer generated. The array on the
left was generated by using a random binary search process, and the
array on the right was generated by using the error diffusion process.
This holographic plate was produced during a two step photographic
process. The size of each hologram pixel is 4um by 4um.

Photographs of the

Experimental System

Side view of the experimental opto-electronic neural
network. The high intensity projection CRT and liquid
crystal light valve are pictured on the right. The video
camera is pictured on the left. The argon ion laser is
pictured in the background. ’

Top view of the experimental opto-electronic neural
network. The high intensity projection CRT and liquid
crystal light valve are pictured on the right. The video
camera is pictured on the lower left. The argon ion
laser is pictured on the top.
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Potential Cababilities of

Planar Holographic Optical

Neural Networks
Neurons | Synapses{ Approx. | Coding Processin4 Power
per per Precision| Device Rate per
Layer Layer . (CPS) Neuron
26,912 72x108 | 3.9-42 | VCSEL | 7ox1014 | 180:220
bits uw
SLM | 7.2x101!
13,448 1.8x108 | 4.3-49 | VCSEL | 1gx1014 | 90-110
bits uw
SLM | 1.8x101!
6728 45x107 | 49-52 | VCSEL | g45¢1018 | 57-130
bits Al
SLM | 4.5x1010
CPS = Connections per Second

VCSEL = Vertical Cavity Surface Emitting Laser Diode
* switching rates exceeding 1 MHz

* speed limited by detectivity

¢ power dissipation limitations

SLM = Spatial Light Modulator

* switching rates of 1 - § kHz

Conclusions

Small Scaled (64 neuron) Neural Network was
Implemented and Demonstrated with an Optical System

Performance of Optical System was Similar to Computer
Simulations of the System

Advantages of This Approach:
¢ True Parallel Processing
* Very Fast
- Processing Rates Upto 720 Trillion Connections Per Second
¢ Can Implement Large Systems
- Upper Limit of 6,800-27,000 Neurons Per Layer

Disadvantages of This Approach:
* No On-line Learning
¢ Limited Dynamic Range
- 40:1 (equivalent digital precision of 5.5 bits)
e Immature technology (currently not practical)

Since training must be done off-line and generation of the
interconnection hologram is computationally expensive,
optical neural networks constructed with fixed, planar
holograms are best suited to situations where very high
speed processing is required, the trained system is to be
mass produced, and infrequent or no relearning is
anticipated. .
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