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Abstract

Neutron diffraction is an essential tool in the study of internal stresses in composite

materials. In most work only the peak shifts caused by the related elastic strains are

considered, but other valuable information exists in the form of peak shape changes. The

conditions under which the pure diffraction profile of the composite (i.e. the profile when

all sources of broadening not caused by the residual stresses are removed) represents the

probability distribution of the peak shifts corresponding to the strains are examined. It is

shown that in these conditions, the pure diffraction profile has no attributes of particle

size broadening (and vice versa), thereby providing a test for the validity of results

interpreted in this way. The experimental derivation of measured strain distributions in

A1203/SiCp composites using neutron diffraction is described. No apparent particle size

broadening was detected, demonstrating the validity of the results, which also satisfied

other tests for consistency.



1. Introduction

Much effort has been expended on the search for improved structural materials, and one

of the most successful approaches has been the development of composite materials,

which consist of a mixture of two phases, often with contrasting physical properties.

There are many factors which determine the mechanical behaviour of composite

materials, but one of the most important is the existence of internal stresses partitioned

between the constituent components. These can arise from the thermal expansion

mismatch between the components during cooling from processing temperatures, or from

their differing mechanical response when the material is stressed. The magnitude of the

internal stresses can be very large (several times the macroscopic strength of the

composite), and can have either a detrimental or a beneficial effect on the mechanical

properties of the material. Either way it is important to measure these stresses, so that the

composite can be understood, improved, and used to its maximum potential.

Neutron diffraction is one of the most valuable tools in studying internal stresses in

crystalline materials. It can distinguish between the constituent phases of the composite,

and in contrast to X-rays and electrons is sufficiently penetrating to see into the bulk of

the material, well away from the complicating influence of flee surfaces. Its main

disadvantage is that its low spatial resolution only allows volumes which are much larger

than the distance over which the internal stresses vary to be sampled. In addition, only the

average strains, calculated from the slfifl of the centroids of diffracted peaks, are normally

used for subsequent comparison with models for the internal stresses. These are a

relatively poor test of models, particularly when it is considered that these frequently
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• contain at least one unknown, such as the amount of relaxation taking place during

cooling from processing temperatures [1].

More information is available, however, in the form of broadening of the diffracted peaks

(fig. 1), and a number of methods of making use of this has been published. The most

rigorous is by Warren and Averbach [2], but the main result to come out of their analysis

is the distance over which the internal strains fluctuate. Although this was useful for the

problem to which the analysis was applied, namely the nature cold work in metals, it is

not very helpful in the study of composite materials, in which it is obvious that the strains

fluctuate over a distance corresponding to the spacing between the different

microstructural elements. A more useful function to extract would be the measured strain

probability distribution function (MSD). Although Warren and Averbach give a rigorous

method of extracting the MSD from broadened peaks in principle, it is not practicable,

since it requires several orders of the same peak to be fully resolved, and would have a

high degree of uncertainty even if this were possible.

It is tempting simply to regard the strain broadened peak as the convolution of the

corresponding peak of a suitable strain-free reference specimen with the probability

distribution function of the peak shifts corresponding to the measured strains. After all,

this would be true if each individual diffracting domain (i. e. grain in the composite) had a

uniform strain. Indeed, Warren and Averbach [2] showed that each column of atoms

normal to the diffracting planes can be considered to contribute separately to the

intensity, so this proposition (for brevity called the "probability distribution assumption"

below) would also be true if each column had a uniform strain. In addition, Stokes and

Wilson [3] have shown that the probability distribution assumption is approximately valid

3
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if the strain varies so rapidly that unit cells lose any positional relationship over a distance

which is small compared to the size of the diffracting domain. None of these requirements

for the probability distribution assumption to hold is generally true tbr composites,

despite which it has sometimes been used in simple, approximate methods which also

assume that the form of the MSD is Gaussian [4,5].

This paper describes a practicable but reliable method of extracting the MSD from peak

broadening results using the probability distribution assumption. It makes no assumption

about the form of the MSD, and incorporates a check on the validity of the probability

distribution assumption. The method is illustrated with neutron diffraction results

obtained from AI203/SiCp composites, which contain large thermal residual stresses

owing to the large relaxation-free temperature drop after processing (-1100°C [1]) and

the large thermal expansion mismatch (Aa'=-3.5 106/°C) between the matrix and its

reinforcement.

2. Theory

Because each column of atoms normal to the diffracting planes can be considered to

make an independent contribution to the total diffracted intensity, only one dimensional

crystals need be considered when examining the validity of the probability distribution

assumption. Take two co-linear sections of crystal, a extending from x_ to x2 with atoms

at rid(1+e), and b from x3 to x4 with atoms at rid, where n is an integer, d is the unstrained

lattice parameter, and c_stal a has an elastic strain e relative to the unstrained crystal b.

The diffracted intensity distribution in reciprocal space (which becomes the diffraction

pattern when sampled by the Ewald sphere) is,
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sin2 zru(x._-x3) sin21r(u+Au)(x,_-x,)" FF,= +
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where u is the reciprocal coordinate with origin at the centre of the lth order diffraction

peak, and Au=ls:ct is the size of the peak shitt caused by a strain _'. The first two terms

correspond to the contributions from the two crystals acting independently. The third

term is proportional to the product of the square roots of the first two terms, modulated

by a cosine function with period inversely proportional to the distance between the

centres of the two crystals. The total intensity in the peak and its centroid are given by:

--OO

and

_.FF'a. -au(.,:.- x,)-oo

= (3)
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These are the same answers as would have been obtained if the crystals acted

independently, there being no contribution from the cross term in eq. 1.

These results can be applied in modelling a 1-D crystal with a slowly varying strain

distribution as a string of uniformly strained sections, a, b, c etc. In this case the ,

diffracted intensity is,

FF" FoF;+_g +:_r:+.......

+_£'+F,,'_ (4)
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Because the cross terms do not contribute to the total mtensLty and centroid, these ip

quantities are the same as would be found if all th,,• strained sections diffracted

independently of one another. They are also the same as the total intensity and centroid

predicted by the probability distribution assumption. Thus, although inspection of eqs. 1

and 4 demonstrates that the probability distribution assumption is not generally valid for a

single column of atoms, if the discrepancy it entails is small compared to the range of

differing diffracted peaks scattered from the enormous number of columns present in the

gauge volume it can become negligible, as the diffracted energy density in reciprocal

space will always be approximately correct. Nevertheless, for practical use, a check on

whether or not this "washing out" of the discrepancies has occurred is required, and a

simple method of doing so is suggested by the form of eqs. 1 and 4. It can be seen from

these equations that one of the main differences between the correct intensity distribution

and the prediction of the probability distribution assumption is that the terms representing

the individual contributions from the uniformly strained sections of crystal show apparent

particle size broadening relative to the width of the peak diffracted from the whole

unstrained crystal, i. e. the width implied by the probability distribution assumption. The

other major difference arises from the cross terms, and since in general their range is

related to the range of the individual contributions from the two sections of crystal from

which they originate, they too have some attributes resembling particle size effects. Since

particle size broadening is invariant with the order of reflection, 1, but the effect of strain

is proportional to l a simple experimental test of validity is to compare MSDs calculated

using two different orders of the same reflection (or for isotropic cases, two sets of

planes with different d spacings). If the same MSD is obtained for both, the result is

reliable. If not, the MSD contains a contribution with aspects of particle size broadening,

and cannot be used.
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3. Summary_of Experimental Methods

Composites consisting of A1203 matrices containing uniform dispersions of SiC particles

were prepared by hot pressing mixed powders as has been described previously [1]. SiC

powders with average particle sizes of 3vtm (microcomposite) and 200nm

(nanocomposite) were used, and specimens containing various volume fractions of

reinforcement were prepared. Pure Al203 reference specimens with the same grain size as

the composites were also fabricated. The use of solid Al203 as a reference allows the

relatively small intrinsic residual stresses present in this material as a result of its

anisotropic thermal expansion to be discounted, and enables the same A1203grain size to

be used for both the composite and the reference. SiC powders contained in vanadium

canisters were used as the corresponding references for the reinforcements.

Neutron diffraction patterns were collected on the HRPD at ISIS and the NPD at

LANSCE. Care was taken to make the gauge volumes as similar as possible in size and

shape for the references and the composites. For this preliminary work the gauge

volumes used were as large as possible and no added collimation was used so that

counting statistics were as good as possible. All the results presented are from the

backscattered detectors, for maximum resolution.

4. Deconvolution of MSDs from Neutron Diffraction Results

In principle, the pure diffraction peak, g(t), where t is the neutron time of flight, can be

calculated as,
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where h(t) is a peak diffracted from the composite and fit) the corresponding peak from

the reference specimen. In practice, however, such direct deconvolution is notoriously

susceptible to signal noise, and its application in this case produced nonsensical results.

The solution used he_e was "optimal filtering" [6], the simplest approach to minimizing

the effect of noise. In this technique, a mathematical filter is used to weight each

frequency component of the function in brackets in eq.5 according to its estimated

importance relative to the noise level. The noise level is estimated by inspection of the

shape of the power spectral density in reciprocal space, in the present case being

modelled as a straight line extrapolated back from the high 1/t tail. A summary of the full

procedure used follows:

1. Fit and subtract linear background from reference and composite peaks. Normalize

results.

2. Create a file containing the optimal filter for the composite peak.

3. Deconvolve to create g(t).

4. Convolve g(t) withf(t) to check that the composite peak is accurately recreated.

5. Divide each value of t in the file containing g by the centroid t of the reference peak

and renormalize to obtain the MSD.

5. Results and Discussion

5.1 Deconvohttion of the MSD. Fig. 2 shows MSDs obtained for the A1203matrices of

microcomposites containing 10% and 30% SiC. As is predicted by simple elastic models

[1], both MSDs indicate that both positive and negative normal strains were sampled by

the neutrons, and that the average strain was positive. The MSD for the higher SiC

content is broader and has a higher average strain as expected [1], and the deconvolution

process has produced a smooth result. In contrast, the MSD for 10% SiC shows a certain

amount of "ringing" in its tails, although this is small enough for the underlying shape to

'V



be discernibie, lius d_tterence In quality or results reflects a general trend wluca was

observed: the deconvolution process is more successful the greater the broadening in the

composite peak relative to the reference peak. Thus, not only were better MSDs derived

using specimens with a high second phase content, but also the deconvolution process

was generally more successful using HRPD/ISIS than with NPD/LANSCE owing to the

higher resolution of the former instrument.

In view of this conclusion, two main sources of improvement may be possible for future

experiments. First, the experimental setup should be modified to give maximum

resolution by using the smallest practical gauge volume and by using extra collimation.

This is desirable despite the consequent reduction in count rate, because the noise caused

by poorer counting statistics is filtered out to a large extent. In principle higher order

reflections give greater strain broadening, although this effect can be negated by

instrumental factors. Secondly, fig. 2 suggests that a suitable, careful smoothing of the

MSD could remove the ringing without producing misleading results. In any case, it

should be borne in mind that the vahdity of results produced by smoothing can always be

monitored by reconvolution with the reference peak.

5.2 h)strumental Effects. If the MSD truly represents a property of the materials only,

then the same MSD should be obtained on different instruments. Fig. 3 shows the MSDs

for the matrix of the 30% SiC microcomposite derived using the two different

diffractometers. Although the NPD result exhibits a small amount of ringing, it is clear

that the MSDs are very similar, despite the different gauge volumes used and the different

instrumental parameters.

5.3 b_uence of Domain SizeFluctuation Range Ratio. If the probability distribution

assumption is valid, all else being equal, the same MSD should be derived when the



distance over which the internal stresses fluctuate is much greater than the diffracting

domain size as when a number of fluctuations occurs within a single domain. It is difficult

to prepare truly comparable materials tbr this purpose, but the matrix MSDs for

microcomposites and nanocomposites provide a good approximation. The former have a

grain size similar to the SiC particle size, each reinforcement particle being separated by

one or two matrix grains, so each diffracting domain contains one or fewer complete

fluctuations of internal stress. In the nanocomposite, the matrix grain size is again a few

micrometres, but the 200nm SiC particles are separated by considerably smaller distances

than this. Each alumina grain therefore contains a number of SiC particles, and each

diffracting domain a corresponding number of fluctuations of the internal stress. Figure 4

shows the matrix MSDs for the 30% SiC micro- and nano-composites. The results were

obtained on NPD/LANSCE, so ringing is again apparent in the tails of the MSD, but the

agreement between the underlying shapes of the two distributions is close nevertheless,

especially when the unavoidable material dif_i_rences(different SiC particle morphology,

differing relaxation-free temperature change etc.) are considered.

5.4 Testing for Apparent Particle Size Broadening. The essential check on the validity of

the probability distribution assumption described in section 2 was made by comparing the

matrix MSDs for the 30% SiC microcomposite derived from two different A1203

reflections: {113 }, d=0.209nm, and {116 }_ d=0.160nm. Although A1203 is elastically

anisotropic, the anisotropy is small compared to the effects caused by the SiC additions,

particularly for planes such as these which are at not too dissimilar angles to the principal

axes. Different orders of the same reflection which did not overlap with other peaks were

not available. Although the 30% difference in d spacing between the planes is smaller

than would be chosen ideally, the very close agreement between the two MSDs shown in

fig.5 demonstrates that there is negligible apparent particle size broadening, and,

10
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therefore, that the MSD is a valid description of the normal strains sampled by the

neutrons scattered from the gauge volume.

5.5 Implications for Methods of Strata Broadenolg Analysis Asswmmg Gaussian MSDs

That there is negligible real or apparent particle size broadening shows that the method of

treating strain broadening described here is suitable for the study of discontinuously

reinforced ceramic matrix composites. Methods in which the MSD is assumed to be

Gaussian, however, frequently produce results which suggest that particle size

broadening is significant. With this in mind, fig. 6 compares the matrix MSD for the 30%

SiC microcomposite with a normalized Gaussian of the same height. The two

distributions are sufficiently similar for estimates of the MSD as the Gaussian component

of the real MSD to be reasonably accurate. The correspondence is by no means perfect,

however. The real MSD is slightly asymmetrical, in the sense predicted by simple elastic

models [1], and the discrepancy between the widths of the measured and assumed peaks

corresponds to 8d/d_4 10 "4, which would give very misleading results if erroneously

interpreted as particle size broadening. In summary, methods involving the assumption of

a Gaussian strain distribution may be suitable for estimating the MSD of materials such as

these, but no physical interpretation should be attached to any apparent particle size

effects observed, as these are likely to be artefacts of the assumption.

6. Conclusions

1. In some circumstances the pure diffraction peak obtained from material containing an

internal stress distribution can be interpreted directly as the probability distribution

function of peak shifts corresponding to the normal strains sampled by the neutrons

scattered from the gauge volume. This interpretation is valid if and only if experimental

results show negligible apparent particle size broadening.
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2. Measured strain distributions (MSDs) have been deconvolved from neutron diffraction

results obtained from A1203/SiCf composites. The results showed negligible apparent

particle size broadening, demonstrating their validity, and similar MSDs were extracted

using different instruments and different domain size to internal stress range ratios.

3. Simple methods of analysing strain broadening in which the MSD is assumed to be

Gaussian provide a good estimate of the actual MSD for materials such as those used

here, but apparent particle size effects have little direct physical meaning.
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F__igurecaptions

Fig. 1. {113} AIzO3 diffraction peaks for pure AlzO3 (solid line) and A1203/30%SIC

rnicrocomposite showing peak broadening,

Fig. 2. MSDs obtained from 10% (solid line) and 30% SiC microcomposites using {113 }

A1203peaks.

Fig. 3. MSDs for the same 30% SiC microcompostte derived using the {113 } AlzO3 peak

on HRPD/ISIS (solid line) and NPD/LANSCE.

Fig. 4. MSDs for 30% SiC nanocomposite (solid line) and microcomposite.{ 113} A1203

peak.

Fig. 5. MSDs for the 30% SiC microcomposite matrix, derived from the A1203 {113 }

peak (solid line) and the A1203 { 116} peak.

Fig. 6. Comparison of the {113} A1203 MSD for the 30% SiC microcomposite (solid

line) with a normalized Gaussian of the same height.
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