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Abstract
Neutron diffraction is an essential tool in the study of internal stresses in composite
materials. In most work only the peak shifts caused by the related elastic strains are
considered, but other valuable information exists in the form of peak shape changes. The
conditions under which the pure diffraction profile of the composite (i.e. the profile when
all sources of broadening not caused by the residual stresses are removed) represents the
probability distribution of the peak shifts corresponding to the strains are examined. It is
shown that in these conditions, the pure diffraction profile has no attributes of particle
size broadening (and vice versa), thereby providing a test for the validity of results
interpreted in this way. The experimental derivation of measured strain distributions in
ALO5/SiC, composites using neutron diffraction is described. No apparent particle size
broadening was detected, demonstrating the validity of the rasults, which also satisfied

other tests for consistency.



1. Introduction

Much effort has been expended on the search for improved structural materials, and one
of the most successful approaches has been the development of composite materials,
which consist of a mixture of two phases, often with contrasting physical properties.
There are many factors which determine the mechanical behaviour of composite
materials, but one of the most important is the existence of internal stresses partitioned
between the constituent components. These can arise from the thermal expansion
mismatch between the components during cooling from processing temperatures, or from
their differing mechanical response when the material is stressed. The magnitude of the
internal stresses can be very large (several times the macroscopic strength of the
composite), and can have either a detrimental or a beneficial effect on the mechanical
properties of the material. Either way it is important to measure these stresses, so that the

composite can be understood, improved, and used to its maximum potential.

Neutron diffraction is one of the most valuable tools in studying internal stresses in
crystalline materials. It can distinguish between the constituent phases of the composite,
and in contrast to X-rays and electrons is sufficiently penetrating to see into the bulk of
the material, well away from the complicating influence of free surfaces. Its main
disadvantage is that its low spatial resolution only allows volumes which are much largeé
than the distance over which the internal stresses vary to be sampled. In addition, only the
average strains, calculated from the shift of the centroids of diffracted peaks, are normally
used for subsequent comparison with models for the internal stresses. These are a

relatively poor test of models, particularly when it is considered that these frequently



contain at least one unknown, such as the amount of relaxation taking place during

cooling from processing temperatures [1].

More information is available, however, in the form of broadening of the diffracted peaks
(fig. 1), and a number of methods of making use of this has been published. The most
rigorous is by Warren and Averbach [2], but the main result to come out of their analysis
is the distance over which the internal strains fluctuate. Although this was useful for the
problem to which the analysis was applied, namely the nature cold work in metals, it is
not very helpful in the study of composite materials, in which it is obvious that the strains
fluctuate over a distance corresponding to the spacing between the different
microstructural elements. A more useful function to extract weuld be the measured strain
probability distribution function (MSD). Although Warren and Averbach give a rigorous
method of extracting the MSD from broadened peaks in principle, it is not practicable,
since it requires several orders of the same peak to be fully resolved, and would have a

high degree of uncertainty even if this were possible.

It is tempting simply to regard the strain broadened peak as the convolution of the
corresponding peak of a suitable strain-free reference specimen with the probability
distribution function of the peak shifts corresponding to the measured strains. After all,
this would be true if each individual diffracting domain (i. e. grain in the composite) had a
uniform strain. Indeed, Warren and Averbach [2] showed that each column of atoms
normal to the diffracting planes can be considered to contribute separately to the
intensity, so this proposition (for brevity called the “probability distribution assumption”
below) would also be true if each column had a uniform strain. In addition, Stokes and

Wilson [3] have shown that the probability distribution assumption is approximately valid



if the strain varies so rapidly that unit cells lose any positional relationship over a distance
which is small compared to the size of the diffracting domain. None of these requirements
for the probability distribution assumption to hold is generally true for composites,
despite which it has sometimes been used in simple, approximate methods which also

assume that the form of the MSD is Gaussian [4,5].

This paper describes a practicable but reliable method of extracting the MSD from peak
broadening results using the probability distribution assumption. It makes no assumption
about the form of the MSD, and incorporates a check on the validity of the probability
distribution assumption. The method is illustrated with neutron diffraction results
obtained from AL, O3/SiC, composites, which contain large thermal residual stresses
owing to the large relaxation-free temperature drop after processing (~1100°C [1]) and
the large thermal expansion mismatch (Aa=3.5 10/°C) between the matrix and its

reinforcement.

2. Theory

Because each column of atoms normal to the diffracting planes can be considered to
make an independent contribution to the total diffracted intensity, only one dimensional
crystals need be considered when examining the validity of the probability distribution
assumption. Take two co-linear sections of crystal, a extending from x, to x, with atoms
at nd(1+¢), and b from x3 to x4 with atoms at nd, where n is an integer, d is the unstrainea
lattice parameter, and crystal a has an elastic strain ¢ relative to the unstrained crystal 5.
The diffracted intensity distribution in reciprocal space (which becomes the diffraction

pattern when sampled by the Ewald sphere) is,
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where « is the reciprocal coordinate with origin at the centre of the /th order diffraction
peak, and Au=lgd is the size of the peak shift caused by a strain £ The first two terms
correspond to the contributions from the two crystals acting independently. The third
term is proportional to the product of the square roots of the first two terms, modulated
by a cosine function with period inversely proportional to the distance between the

centres of the two crystals. The total intensity in the peak and its centroid are given by:
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These are the same answers as would have been obtained if the crystals acted

independently, there being no contribution from the cross term in eq. [.

These results can be applied in modelling a 1-D crystal with a slowly varying strain
distribution as a string of uniformly strained sections, a, b, ¢ etc. In this case the
diffracted intensity is,
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Because the cross terms do not contril;ute to the total intensity and centroid, thesg
quantities are the same as would be found if all the strained sections diffracted
independently of one another. They are also the same as the total intensity and centroid
predicted by the probability distribution assumption. Thus, although inspection of eqs. 1
and 4 demonstrates that the probability distribution assumption is not generally valid for a
single column of atoms, if the discrepancy it entails is small compared to the range of
differing diffracted peaks scattered from the enormous number of columns present in the
gauge volume it can become negligible, as the diffracted energy density in reciprocal
space will always be approximately correct. Nevertheless, for practical use, a check on
whether or not this “washing out” of the discrepancies has occurred is required, and a
simple method of doing so is suggested by the form of eqs. 1 and 4. It can be seen from
these equations that one of the main differences between the correct intensity distribution
and the prediction of the probability distribution assumption is that the terms representing
the individual contributions from the uniformly strained sections of crystal show apparent
particle size broadening relative to the width of the peak diffracted from the whole
unstrained crystal, i. e. the width implied by the probability distribution assumption. The
other major difference arises from the cross terms, and since in general their range is
related to the range of the individual contributions from the two sections of crystal from
which they originate, they too have some attributes resembling particle size effects. Since
particle size broadening is invariant with the order of reflection, /, but the effect of strain
is proportional to / a simple experimental test of validity is to compare MSDs calculated
using two different orders of the same reflection (or for isotropic cases, two sets of
planes with different d spacings). If the same MSD is obtained for both, the result is
reliable. If not, the MSD contains a contribution with aspects of particle size broadening,

and cannot be used.



3. Summary of Experimental Methods

Composites consisting of Al,O; matrices containing uniform dispersions of SiC particles
were prepared by hot pressing mixed powders as has been described previously [1]. SiC
powders with average particle sizes of 3um (microcomposite) and 200nm
(nanocomposite) were used, and specimens containing various volume fractions of
reinforcement were prepared. Pure Al,O- reference specimens with the same grain size as
the composites were also fabricated. The use of solid Al,O; as a reference allows the
relatively small intrinsic residual stresses present in this material as a result of its
anisotropic thermal expansion to be discounted, and enables the same Al;O; grain size to
be used for both the composite and the reference. SiC powders contained in vanadium

canisters were used as the corresponding references for the reinforcements.

Neutron diffraction patterns were collected on the HRPD at ISIS and the NPD at
LANSCE. Care was taken tn make the gauge volumes as similar as possible in size and
shape for the references and the composites. For this preliminary work the gauge
volumes used were as large as possible and no added collimation was used so that
counting statistics were as good as possible. All the results presented are from the

backscattered detectors, for maximum resolution.

4. Deconvolution of MSDs from Neutron Diffraction Results

In principle, the pure diffraction peak, g(f), where 1 is the neutron time of flight, can be

calculated as,

>

h
g= H (5)



where A(?) is a peak diffracted from the composite and ff) the corresponding peak from
the reference specimen. In practice, however, such direct deconvolution is notoriously
susceptible to signal noise, and its application in this case produced nonsensical results.
The solution used heie was “optimal filtering” [6], the simplest approach to minimizing
the effect of noise. In this technique, a mathematical filter is used to weight each
frequency component of the function in brackets in eq.5 according to its estimated
importance relative to the noise level. The noise level is estimated by inspection of the
shape of the power spectral density in reciprocal space, in the present case being
modelled as a straight line extrapolated back from the high 1/7 tail. A summary of the full
procedure used follows:

1. Fit and subtract linear background from reference and composite peaks. Normalize
results.

2. Create a file containing the optimal filter for the composite peak.

3. Deconvolve to create g(1).

4. Convolve g(¢#) with f{t) to check that the composite peak is accurately recreated.

5. Divide each value of 7 in the file containing g by the centroid ¢ of the reference peak
and renormalize to obtain the MSD.

5. Results and Discussion

5.1 Deconvolution of the MSD. Fig. 2 shows MSDs obtained for the Al;O; matrices of
microcomposites containing 10% and 30% SiC. As is predicted by simple elastic models
[1], both MSDs indicate that both positive and negative normal strains were sampled by
the neutrons, and that the average strain was positive. The MSD for the higher SiC
content is broader and has a higher average strain as expected [1], and the deconvolution
process has produced a smooth result. In contrast, the MSD for 10% SiC shows a certain

amount of “ringing” in its tails, although this is small enough for the underlying shape to




be discermibie. lius ditlerence in quality ol results retlects a general tend winch was
observed: the deconvolution process is more successful the greater the broadening in the
composite peak relative to the reference peak. Thus, not only were better MSDs derived
using specimens with a high second phase content, but also the deconvolution process
was generally more successful using HRPD/ISIS than with NPD/LANSCE owing to the

higher resolution of the former instrument.

In view of this conclusion, two main sources of improvement may be possible for future
experiments. First, the experimental setup should be modified to give maximum
resolution by using the smallest practical gauge volume and by using extra collimation.
This is desirable despite the consequent reduction in count rate, because the noise caused
by poorer cdunting statistics is filtered out to a large extent. In principle higher order
reflections give greater strain broadening, although this effect can be negated by
instrumental factors. Secondly, fig. 2 suggests that a suitable, careful smoothing of the
MSD could remove the ringing without producing misleading results. In any case, it
should be borne in mind that the validity of results produced by smoothing can always be
monitored by reconvolution with the reference peak.

5.2 Instrumental Effects. If the MSD truly represents a property of the materials only,
then the same MSD should be obtained on different instruments. Fig. 3 shows the MSDs
for the matrix of the 30% SiC microcomposite derived using the two different
diffractometers. Although the NPD result exhibits a small amount of ringing, it is clear
that the MSDs are very similar, despite the different gauge volumes used and the different
instrumental parameters.

5.3 Influence of Domain Size/Fluctuation Range Ratio. 1f the probability distribution

assumption is valid, all else being equal, the same MSD should be derived when the
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distance over which the internal stresses fluctuate is much greater than the diffracting
domain size as when a number of fluctuations occurs within a single domain. It is difficult
to prepare truly comparable materials for this purpose, but the matrix MSDs for
microcomposites and nanocomposites provide a good approximation. The former have a
grain size similar to the SiC particle size, each reinforcement particle being separated by
one or two matrix grains, so each diffracting domain contains one or fewer compiete
fluctuations of internal stress. In the nanocomposite, the matrix grain size is again a few
micrometres, but the 200nm SiC particles are separated by considerably smaller distances
than this. Each alumina grain therefore contains a number of SiC particles, and each
diffracting domain a corresponding number of fluctuations of the internal stress. Figure 4
shows the matrix MSDs for the 30% SiC micro- and nano-composites. The results were
obtained on NPD/LANSCE, so ringing is again apparent in the tails of the MSD, but the
agreement between the underlying shapes of the two distributions is close nevertheless,
especially when the unavoidable material differences (different SiC particle morphology,
differing relaxation-free temperature change etc.) are considered.

5.4 Testing for Apparent Particle Size Broadening. The essential check on the validity of
the probability distribution assumption described in section 2 was made by comparing the
matrix MSDs for the 30% SiC microcomposite derived from two different AlLOs
reflections: {113}, @=0.209nm, and {116}, @=0.160nm. Although AlO; is elastically
anisotropic, the anisotropy is small compared to the effects caused by the SiC additions,
particularly for planes such as these which are at not too dissimilar angles to the principai
axes. Different orders of the same reflection which did not overlap with other peaks were
not available. Although the 30% difference in d spacing between the planes is smaller
than would be chosen ideally, the very close agreement between the two MSDs shown in

fig.5 demonstrates that there is negligible apparent particle size broadening, and,



therefore, that the MSD is a valid description of the normal strains sampled by the
neutrons scattered from the gauge volume.

5.5 Implications for Methods of Strain Broadening Analysis Assuming Gaussian MSDs
That there is negligible real or apparent particle size broadening shows that the method of
treating strain broadening described here is suitable for the study of discontinuously
reinforced ceramic matrix composites. Methods in which the MSD is assumed to be
Gaussian, however, frequently produce results which suggest that particle size
broadening is significant. With this in mind, fig. 6 compares the matrix MSD for the 30%
SiC microcomposite with a normalized Gaussian of the same height. The two
distributions are sufficiently similar for estimates of the MSD as the Gaussian component
of the real MSD to be reasonably accurate. The correspondence is by no means perfect,
however. The real MSD is slightly asymmetrical, in the sense predicted by simple elastic
models [1], and the discrepancy between the widths of the measured and assumed peaks
corresponds to 8d/d~4 10, which would give very misleading results if erroneously
interpreted as particle size broadening. In summary, methods involving the assumption of
a Gaussian strain distribution may be suitable for estimating the MSD of materials such as
these, but no physical interpretation should be attached to any apparent particle size

effects observed, as these are likely to be artefacts of the assumption.

6. Conclusions

1. In some circumstances the pure diffraction peak obtained from material containing aﬁ
internal stress distribution can be interpreted directly as the probability distribution
function of peak shifts corresponding to the normal strains sampled by the neutrons
scattered from the gauge volume. This interpretation is valid if and only if experimental

results show negligible apparent particle size broadening.
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2. Measured strain distributions (MSDs) have been deconvolved from neutron diffractio;l
results obtained from Al,0;3/SiC, composites. The results showed negligible apparent
particle size broadening, demonstrating their validity, and similar MSDs were extracted
using different instruments and different domain size to internal stress range ratios.

3. Simple methods of analysing strain broadening in which the MSD is assumed to be
Gaussian provide a good estimate of the actual MSD for materials such as those used

here, but apparent particle size effects have little direct physical meaning.
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Figure captions
Fig. 1. {113} Al,O; diffraction peaks for pure AlO: (solid line) and Al,03/30%SiC

microcomposite showing peak broadening.

Fig. 2. MSDs obtained from 10% (solid line) and 30% SiC microcomposites using {113}

Al O; peaks.

Fig. 3. MSDs for the same 30% SiC microcomposite derived using the {113} Al,O: peak

on HRPD/ISIS (solid line) and NPD/LANSCE.

Fig. 4. MSDs for 30% SiC nanocomposite (solid line) and microcomposite.{113} ALOs

peak.

Fig. 5. MSDs for the 30% SiC microcomposite matrix, derived from the ALO; {113}

peak (solid line) and the AL,O; {116} peak.

Fig. 6. Comparison of the {113} Al,Os MSD for the 30% SiC microcomposite (solid

line) with a normalized Gaussian of the same height.
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