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APPLICATIONS OF QUANTUM ENTROPY TO STATISTICS

R. N. Silver, H. F. Martz, Los Alamos National Laboratory

R. N. Silver, MS B262, LANL, Los Alamos, NM 87545

KEY WORDS: maximum entropy, quantum an- used Bayesian image reconstruction method. ME
tropy,penalizedlikelihood,statisticalregulariza- dataanalysismethods havebeen especiallypopular

tion,Bayesianstatistics,inverseproblems,density among physicalscientists,who recognizea mathe-
estimation,image reconstruction, maticalanalogytostatisticalphysics.

ME isusuallyappliedtothegenericdataanaly-

Abstract sisproblemofinferringa positivedistributionf(z)
definedovera compact continuousdomain z E X

This paper developstwo generalizationsof the
on the basisofsome data D and our priorknowl-

maximum entropy (ME) principle. First, Shan-
non classicalentropyisreplacedby yon Neumann edge.ME assumesthateachcomparableelementof

a positivedistributionshouldbe regardeda priori
quantum entropy to yield a broader class of infor.

as independentand equallylikely,and onlythosemarion divergences (or penalty fimctions) for statis-
tics applications.Negativerelativequantum entropy correlationsrequiredto satisfythe constraintsof

enforcesconvezity,positivity,non-localeztensivity datashouldbe imposed.However,supposewe have

and priorco,elationssuch as smoothness. This priorknowledgeabout the localsmoothnessof f,
i.e.f has continuousderivativeswith respecttoenables the eztension of ME methods from their
z ofsome order.Common examplesincludeden-

traditional domain of ill-posed inverse problenu to
sityestimation,image reconstructionand interpo-new applications suchasnon.parametric density es-
lation. Continuous derivatives require prior correla-timation. Second, given a choice of information di-
tions among neighboring elements of f, rather thanvergence, a combination of ME and B=yes rifle U

used to assign both prior and posterior probabilities, independence. This violates the conditions for ap-
Hyperparametersareinter_-eted_ Lagrangemul- plyingclassicalME. A proposedmodificationtoME

tipliersenforcingconstraints.Conse_'vationprin- toincorporatesmoothnessistoequatef tothecon-

ciplesare proposedto setstatisticalregularization volutionofa smoothingkernelwiththedistribution
ofa 'latent'(or'hidden')variable[Skilling,1989].and other hyperparameters, such =a conseT'vation of

information and smoothness. ME provides an al- However, such approaches abandon use of informa-
ternative to heirarchical Bayes metho&, tion divergences (also termed a penalty or regular.

iz=tion functionals) such as entropy defined on the
f manifold.

1 Introduction In view of the many successes of ME for prac-
tical statistics applications and the significance of

Entropy originated in statistical physics, where entropy in both physics and information theory,
Boltzmann/Gibbs entropy is a fundamental mea-, statisticians should consider generalizations of en-
sure of uncertainty and disorder in physical sys- tropy which can incorporate prior correlations such
terns. Later entropy was adapted to information as smoothness. Fortunately, the required mathe-
theory, where Shannon entropy is the fundamen- matics has already been developed in quantum sta-

tal measure of the efficiency of encoding a corn- tistical physics. The generalization was invented by
munication channel. The role of entropy in statia- J. yon Neumann in 1927 to be applied to the newly
tics has been comparatively limited. Cross entropy emerging quantum mechanics. It is known as quan-
(Kullback-Liebler) is a measure of the information t=m entropy. Although quantum entropy has been
divergence between two positive extensive distribu- used so far only in quantum physics, it is a con-
tions. Mazimize entropy (ME) is a principle for as- cave functional which can be defined on any Hilbert
signing probabilities when the information available space. Therefore, it can be adapted to statistical in-
is incomplete. Entropy is an important regulariza- ference. We term the applications of quantum en-

tion functional for solving ill-posed linear inverse tropy to statistics as quantum statistical inference
problems, and it is the foundation of an widely (QSI) methods [Silver, 1993]. As information di-
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vergences, both negative classical relative entropy 2 Quantum Entropy
(or cross entropy) and negative relative quantum
entropy enforce desirable properties such as global Maximum classical entropy is commonly used
smoothing toward a default model, positivity, nor- to infer a density function f(z) defined in a con-
realization, extensivity, and convex optimization, tinuous compact domain z E X based on linear

But, in addition, quantum entropy enforces correla- data constraints of the form fzex U(z)f(z)dz. In
tions, such as local smoothing, by constraining the this paper, we restrict discussion to normalized
expected values of operators. The maximum local f required for density estimation characterized by

smoothing limit of QSI is traditional penalized like- f, ex f(z)dz, although the generalization to non-
lihood [Good and Gaskins, 1980] which does not normalized / required for image reconstruction is
enforce extensivity. The zero local smoothing limit straightforward. Then, classical relative entropy (or
of QSI is classical ME. negative cross entropy) is

corporatingsuch informationdivergencesintosta- _x m---_J dz , (1)

tisticalinference.Set priorprobabilitiesby maxi- where re(z)isa defaultmodel. Ic = -So isthe

mizingtheirentropysubjecttoconstraintson their informationdivergenceformaximum classicalen-

expectedinformation.The statisticalregularization tropymethods.The maximum is
hyperparameteristhen equivalentto a Lagrange

-tr(,) f_multiplierto enforcethiscontraint.Set posterior fc(z)= re(z)e Zc exprobabilitiesusing Bayes ruleand the likelihood Zc = m(z)e-Cr(*)dz

principle.Set hyperparametersby demanding the (2)
conservationofinformationunder Bayes rule.The However,maximum classicalentropyisnot easily

resultingcriteriaforhyperparametersaresimilarto extendedto incorporatesmoothnessconstraints.

maximum marginallikelihood(ML-II)inempirical To generalizethemaximum entropyprinciple,we
Bayes,but the derivationisnot an approximation introduceaconceptthatisnew tostatistics,but not

to an heirarchicalBayes procedure, tophysics,theder_itymatriz,p(z,z_).Itisdefined
to be a realsymmetric,positivesemidefiniteand

Many statisticiansmay preferto substitutethe oo x oo matrix._odensityfunctionisdefinedtobe

languageof ezpor_er_tialfamiliesfor ME. Indeed, thediagonalelementsofa densitymatrix
many physicistswould do thesame,usingtheequiv-

alent terminology of csr, or, icsl em_embles. The f(z) = p(z,z) . (3)

quantum information divergences, prior probabili- The density matrix will be determined uniquely by
ties and posterior probabilities we propose are all constraints on the density function and a maximum
members of exponential families. Many remarkable q=ar, t=m entropy principle.

properties of such families are already well estab- By definition, the density matrix can be diago-
lished in statistics. As far as we know, ME, expo- nalized by an orthogonal transformation,
nentialfamilyand canonicalensembledescriptions oo

are equivalentforpracticalapplications,although p(z,z')= E ¢,_(z)w,_¢,_(z') (4)there are differences in philosophy. That said, we
will continue with ME. ,_=0

where 5,_x ¢,_(z)¢m(z)dz = 6,_,n. The ¢,_ are
SectionIIintroducesquantum entropytostatis- completeforminga Hilbertspace.Po3itivesemide/-

ticians.SectionIll discussesthe max..imumen- mitemeans thatthe weightJ,w,_,arenot negative.
tropyformulationoftheinferenceprocess.Sec.IV Therefore,

presentstheexample ofnon-parametricdensityes- OO OO

timation.Sec.V brieflydiscussesalgorithms,focus- /(z)= _"_tu,_¢_(z)> 0 _-"_w,_= i (5)
ingon how to make QSI calculation_efficient.And r_--0 rt=0

Sec VI concludes. This paper summarizes the pri-
mary QSI results critical to statistics applications, Linear constraints on a density function may be
with details and proofs to be published elsewhere, rewritten in terms of traces of matrix operators,
The mathematicallevel will be heuristic rather than Tr{M} = f_ex M(z, z)dz, times the density ms-

rigorous, as is typical of the physics literature which trix. For example, data constraints are

provided the inspiration for much of this approach. [
U(z)f(z)dz Tr{Up} (6)

But no knowledge of physics is assumed or required. J_ex



where (U)t,_, = U(z)5(z - z'). For linear Normalization may maintained by choosing
inverse problems the data consist of a set of / c,n \

fzEXO_(z)f(_)dz; then U(z)- _'_,A_O_(z)for m__ _ln {'_="e-_.,_ (14
Lagrange multipliers k_. The normalization con- \_"' ]rt'-O

straint is Tr{p} = 1.
The new constraint we introduce to enforce local For example, for K2 (12) reads

smoothing is defined in terms of an Hermitian dif- _a_¢,_(z)
ferential operator, K. In this paper, we specifically -/3 _zzi + U(z)¢,_(_:) = e,,¢,,(z) (15)
consider quadratic, K2 = -02/8z 2, and quartic,
K4 -_ a4/az 4, forms. A constraint on Such eigenvalue equations may alternatively be de-

rived from variational principles, along with bound-

oo / ary conditions, as developed in the St_irm-Liouville
Tr{Kp} = _ w,_ J_ ¢_,(z)g¢,_(z)dz (7) theory of differential equations. The mathematicaln=O EX

properties of such differential equations are well es-
is an implicit local smoothing constraint on the den- tablished. The lowest e,_ corresponds to a nodeless

sity function, to be discussed below. ¢,_(z), and the number of nodes in ¢,_(z) increase
Such constraints are still not sufficient to monotonically with e,_. In the limit of U(z) = O,

uniquely specify the density matrix, so now we in- the ¢,_ are simply sines and cosines. The weights
yoke a maximum quantum entropy, w,_ filter the contributi.ons of ¢,_ with large numbers

of nodes to (5), resulting in limited spatial structureoo

SQ =-Tr{pln(p)}--_[w,,ln(w.)] , (g) in/.
,_=o The information divergence (penalty or statisti-

cal regularization functional) for QSI may now beprinciple. This is invariant to orthonormal trans-
identified as negative relative quantum entropy,formations of the Hilbert space, and it is a concave

function of p [Wehrl, 1978]. Using the method of IQ(f; m, _) = Tr{Pl ln(p!) - p/In(pro)} (16)
Lagrange multipliers, maximize

This is the quantum generalization of the classical

Q1 _ SQ - _/'r{Kp]. - Tr{Up} + (g + 1)Tr{p} . expression, (1). It can be used as a penalty function
(9) (or regularization functional) in penalized likelihood

The local smo,:thing constraint has Lagrange multi- methods. An ] is sought which maximizes
plier fl, the data constraint has Lagrange multiplier

U, and the normalization constraint has aagrange Q2 : L(f[D)- aIQ(f; re, Z) (17)
multiplier _ + 1. The result is

Here, L(f[D) is the log-Likelihood, D is data, and
p-" exp(-H + _1) , (10) ct is a statistical regularization parameter. In a

Bayesian interpretation, maximizing (17) gives the
where mode of a posterior probability.

H =-BK + U (11) To study the properties of Iq, it is also conve-
This constitutes an exponential family of density nient _o define its Legendre transform
matrices parameterized by Lagrange multipliers.
Within this family, the concavity guarantees a one- ZQ(U; Urn,/3) -- IQ(f; re, t3)

to-one correspondence between a choice of den- + [ U_(z))dz (is)]sity function and a corresponding density matrix.

Therefore, we may write p/ as the unique density Here, Um corresponds to the default model m. Note

matrix corresponding to a density function f. Eq. that IQ(m; re, B) = Zq(Um; Urn,13) = O, and that
(10) is the quantum generalization of the classical

result, (2), to local smoothing constraints. : _- I-I_

Thi_ development may be related to an eigen- ZQ = -In ! Tr.e-_._:._ ) (19)value problem, \ Tr{e- H''} '

First order infinitesimal variations of IQ and ZQ areH¢,($)-"e,_¢,_(_) , (12)

by diagonalizing the density matrix, (4), provided 5ZQ = [ f(_)6U(z)dr.
weights are J

w. --exPC-e,_+.) (13) 61Q =/[-VCz)+UmCz)]SfCz)dz (20)



The concavity property of SQ means that G defined ..........................................................
-- Quan_c(k,)

by _0 .... Oua0ral_ (L.)

62SQ = -21 G(z,z')6f(_)6f(z')dzdz' (21) ,-. 08- ,,,,,,,,
0 6 .... ,

is also positive semidefinite. Second order [nfinites- '-_'-'_04 ' '

imal variationsares,IQ= _1j: G(z,z')6 f(z)S f(z')dzdz' , _9 o2 _'__'_O0

e2z ' (221 02 ..__J

•30 .2o .Io oo 1.o 2o 3o
(x-x')/p'_

IQ is a convex function of .f, and Zq is a concave
function of U. Notice the duality between f and

U in these relations, which is analogous to the du- Figure 1: Linear Response Functions - G_"1
ality between observables and Lagrange multipliers for local smoothing constraints of the form Klv =
in traditional ME methods, aA'/Oz Jr, no data constraints, and a flat default

The concavity property ensures a dual (one-to- model, i.e. U = 0. /_ is the Lagrange multiplier
one) relation between variables, f and U, for the local smoothing constraint on the density

matrix. Results are shown for quadratic (dashed)

6f(z) = - / G-l(z,z')6U(z')dz ' . (23) and quartic (solid) local smoothing.

Because of this relation, G -1 may be termed a
continuous derivatives; for example, C o correspondslit,ear responae_ction_ For typicalchoicesof

smoothing operatorincludingthe quadraticand totheclassofcontinuousfunctions,C Itotheclass

quartic, G -1 peaks at z - z' -- 0 and falls off of functions having continuous first derivatives, etc.
A 6-function corresponds to C -2. Also let D be thefaster than a power law _ lz- z'[ increases, a

property we term locality. The characteristic width dimension of the space, N the degree of the local

of G -1 is termed the correlatior, ler,gth, 7. For smoothing differential operator, and C Mu the dif-
quadratic smoothivg 7 oc (/_)1/2, and for quartic ferentiability class of U. Then one can show that f
7 ¢x (_)t/4. For example, let G_"1 be the lin- belongs to the class C Mu+N-D+I. For example, for
ear response function for no data constraints and one dimensional density estimation U is C -2, ME

a flat default model, i.e. U = U,_ = 0. Figure 1 f is C -2, quadratic smoothed f is C°, and quar-
illustrates the behavior of G_'I for quadratic and tic smoothed f is C 2. For two dimensional density
quartic local smoothing. For quadratic smoothing estimation, higher than quadratic smoothing is re-
G;1(z,z')oc(I- erf([z- z'I/7))/7iscontinuous quiredtoobtaincontinuousQSI densityestimates.

See[Wallstrom,1993]foramore comprehensivedis-and positive.For quarticsmoothingG_"Ihas con-
cussion.

tinuoussecondderivatives,and ithas negativecom-

ponentsat largeIz- z'[.The non-linearityofQSI Readersfamiliarwithdensityestimationmay be

guaranteesthat f _ 0 regardlessofthe choiceof temptedtoidentifyG-I withthekernelina kernel

localsmoothing, densityestimationprocedure.However,QSI kernels

We are now positionedto discussthe smooth- arenot requiredto be positive,and the positivity

hessproper;iesofQSI densityfunctions,which are off isenforcedonlyby the non-linearity.

determinedby thechoiceofB,thedegreeofthedif- Readersfamiliarwith ME may be tempted to
ferentialsmoothingoperatorand thenatureofthe identifyG-l with the correlatio_fur,ctionusedin

data constraintsU. The differentiabilityoff may the[Skillingand Gull,1989]proposaltocorrectME

be related to that of U by the linear response re- for local smoothing using hidden ME images, or the
lation, (23). As discussed earlier, for linear inverse Sibisi and Skilling proposal using Derichlet priors
problems U consists of a sum of Lagrange multi- for 'latent variables.' However, QSI is more prop-

pliers times point spread functions (PSF), and the erly termed a 'dual variable' theory because the
differentiability of U is the same as the PSF's. For relation between U and the observable, f, is one-

density estimation U consists of a sum of Dirac 6- to-one. In 'latent' (or 'hidden') variable theories,
functions. Let a function be of class C M if it has M the relation of latent variables to observables is ill-



posed, i.e. oc-to-one, minimized when the Lagrange multipliers for us-
Classical ME (_3 = O) satisfies local ez_er_8iv_t!t, constrained variables remain at their default model

N_ (_ (_).which means that the information divergence is an values, i.e. U'(z) ._ U - _=1 AtOk ) = U,,_

additive function of the f(z) at each point. QSI re- Maximum entropy methods are equivalent to this
laxes this condition to non.local eztensivity, defined minimum information condition; only measured

as follows. Let 6I_ be a change in Iq corresponding constraints are operative in predicting unmeasured
to a change 6P in f. Let the 6.P have compact and observables.
disjoint supports separated by much more than _,. This idea must be generalized to penalized likeli-

Then non-local extensivity means 6Iq __ _ 6I_ for hood methods. The condition for maximizing (17)
6f = _i 6.P. This may be shown by combining the with respect to f is

locality properties of G-1 with (22). In compari- 6L
son the MPL method of [Good and Gaskins, 1980] -- - = (25)
does not obey any form of extensivity, because it is 6f(z) + a(U(z) U,.(z)) 0

equivalent to an infinite % For typical data analysis problems like image recon-
These co_vezi_y and _o_-local ez_e_si_i_y prop- struction or density estimation, L is a functional of

erties of Iq satisfy important desiderata for inverse a finite number of functions of f, equal to the hum-
problems, image reconstruction and density estima- ber of data, No. For example, for linear inverse
tion. In the latter case non-local extensivity is corn- problems subject to additive Gaussian noise the

f(z)dz, where Oj:(m)promised only by the added constraint on the nor- variables are (_ --- f=Ex _
realization of f. are point spread (or resolution) functions and crt is

The information divergence is a concave function the error. For density estimation, the variables are

of_.. obeying _ = f(z_) where the zh are the i.i.d, samples of
f. More generally, if L is concave, appropriate data

OI.._._q= Tr{K,ol} - Tr{Ko,_} . (24) space variables may be defined by principle compo-
0;3 nents analysis (or singular value decomposition) of

And lirn_=oo Iq = 0. Although _ has been intro- the curvature of L. The invariant integration mea-
duced here as a Lagrange multiplier to constrain sure may be chosen to be

smoothness ina maximam entropyframework,in 02L
the next section we will interpret it as a hyperpa- dr'/= _d_ J_t _ (26)
rameter in an inference procedure. 0_k a_l'

where J should have at most No nonzero eigenval-
ues. It is most convenient to choose the _k so that

3 Entroplc Inference J isdiagonal.Denote itseigenvaluesby J_. Log-

icalconsistencyrequiresindependentunmeasured

We propose to combine the maximum entropy variables to be irrelevant, as we shall demonstrate

principle and Bayes rule to assign probabilities and below.
to choose optimal hyperpararneters _ and B. The In these data space variables, Iq is a convex func-
development in this section applies to any informs- tion of observables _t, and Zq is a concave function

o tion divergence, and does not require understand- of Lagrange multipliers Ak. These are dual vari-

ing quantum entropy. Our approach differs signifi- ables, i.e.
cantly from heirarchical Bayes; we do not marginal-
ize over hyperparameters, and we do not use the OIq OZq
full oo-dimensional / as the fundamental variable. 0_k 0,_

([Skilling, 1994] shows that heirarchical maximum 02Iq O_
= : gkl . (27)

entropy methods - termed quar,_ified mazimum e_- O_O_z O_z
tropy, which treat f as fundamental lead to non-

sense results.) Convexity means that the No x No matrix g is
We begin with the variables and integration men- positive semidefinite. In such data space variables,

sure. Consider first the case of a finite number ND the optimization condition (25) reads

of exact data; for example, _ _ f,ex O_,(z)f(z)dz. _vo
To each such observable one can associate a corre- OL 6_

spondingLe.grangemultiplierA_,definedby _ _- 0(-"_+ aA_ = 0 U(z) = E_=tAt_ + Urn(z).
-A_. Then, (20,22)imply thatinformationIq is (28)



%

All calculations are performed using data space Next we assign a posterior probability using
variables. A density function is an implicit func- Bayes rule,

tion of the A_. Provided L is a concave function of P[D,¢;a] = P[DI¢] × Pie;a]
the _k, the Hessian matrix will be negative semidefi-

hire; there will be a unique mode (or MAP solution) = exp(L + F(a)- c_IQ) (35)

which may be found by non-linear convex optimiza- The posterior probability of the data is
tion algorithms. Denote the mode by jT, the corre-

/sponding mode information as IQ, etc. The prior P[D;c_]--exp(-F(D;c_)) = P[D,(;a]dn .

mode is, of course, .T= m and TQ= 0. The pos- (a6)
terior mode will satisfy T 7_ m. and I'Q > 0, if the A useful identity is
date disagree with the default model predictions.

Prediction typically involves adding one or F(D;_)=_E(IQtD;o_)-E(LID;a)-5(D;e_ )
two unmeasured observables of the form v = (37)

fzex Ov(z)f(z)dz to the problem statement. The Note that

choiceofOv(z) dependsonthequestionbeingasked OF(D;a) = E(IqlD;a) , (38)
about f, e.g. for a point estimate at zo choose Oa

O_(z) = 6(z- zo). The Or(z) are usually not which is the posterior expected information.

related to principle components of the likelihood, F(D; a) is also concave, and E(IQID; cx) and a are
and so they are irrelevant variables for determining also dual hypervariables.
hyperparameters as we shall show. The equivalence We propose a cor_ervation pr/nciivle for choos-

of the optimization conditions (25) and (28) implies ink hyperparameters: the p_ior and posterior dual
that the mode with respect to v is the same as the hypervariables should be equal. In the case of a, it
mode with respect to the _. requires

A prior probability P[_] can be assigned by max- E(IqlD;_) = E(IQ; _) (39)

imizing its classical entropy In simpler language, iuformagion should be con.

served under Bayes rule. In general E(IQ[D; c_) andS(P[_]) - - P[l_]ln(P[_,])di2 , (29) E(lq;a) are different functions of a, and informa-
tion will be conserved for one or a few _. Using (37)

subject to Lagrange contraints on the expected in- and a similar relation for F(a),
formation,

P[D; a] = exp ($(D;_)- S(_)+ E(L[D;&))/,

E(Iq) -_ / Iq({; m,B)P[{]dl2 (30)
(40)

' This depends only on the likelihood and the en-

and the normalization, E(1). Therefore, maximize tropy difference between prior and posterior prob-
abilities. It can be used to rank hypotheses and

Q3 - S(P[_])- c_E(IQ)- (F- 1)E(1) , (31) models used in the data analysis. If more than
one a can satisfy the conservation principle, solu-

where a and F - 1 are Lagrange multipliers. The tions should be weighted according to their P[D; _].
result is (Note: This offers the intriguing possibility of dis-

P[_;a] = exp(f(a)- alq) continuous changes in inferences.) It is also possi-
ble that no _ satisfies information conservation, in

F(_)=-ln(/exp(-alq)di2) (32) which case the inference procedure is inconsistent.We are now positioned to dl.scuss the require-
Note that ment that independent unmeasured variables be ir-

OF(c_) -_ E(IQ;c¢) . (33) relevant. Two variables _x,_2 are independent (ex-
tra tensive) if I(_x,_) = I(_x) + I(_). A variable is

F(a) is a concave function of a, unmeasured if _ = 0. A variable is irrelevant if
inference does not depend on its value. Suppose (l

O_f -E(I_) + (E(Iq)) _ < 0 , (34) and _ are independent, and only _x is measured.
o_a_ - Then

so the relation between E(I_;a) and a is one-to- fone. They are Legendre transform dual hypervari, e-_'(") = a d_td_e-a_(_"_) =

shies; a choice of one hypervariable corresponds to [ alC_x [ -_I(_ ,_,(,,)-,%C_)
a unique choice for its dual. J e- )d_x j e )d_ = e-



OL ND - N_
Using _ = 0, one can show F(D;a) = FI(D;a) _ E(IqiD;a) ._ "[Q+
F2(a). Hence, F(D;a)- F(_) = fl(D;a)- El(a), 2c_

and _2 is irrelevant. Similarly one can show that E(LtD;a) _ I, Ng (45)
independent unmeasured variables are irrelevant to 2

conservation of information, to the likelihood, to the The conservation principle requires _ to be chosen
entropy difference in (40), etc. Such argumentsjus- to satisfy Ng ._ 2o_Iq, a condition first derived by
tify our initial choice of data space variables, since [Skilling, 1989] using the evidence procedure. This

all other variables are irrelevant in this maximum has a simple interpretation: IQ has increased from
entropy framework for inference, zero by reducing the number of degrees of freedom

A similar conservation principle applies to deter- in the data to ND - Ng.
mining the local smoothing Lagrange multiplier in A Gaussian approximation to the conservation
QSI, principle for smoothing is not as easy to calculate,

but it can be found by maximizing
E(Tr{Kp}ID;_,_) = E(Tr{gp};_,_) (41)

1 ..
That is, smoothness should be conserved under P[D;a,X3]_, exp(Q2) (46)

These conservation principles yields the same hy-
perparameters as the maximum marginal likelihood The relation (_2 _. E(L - aIqlD; a) + E(aIq; a),

(ML-II) (or evidence) procedure used in empirical which follows from (45), has been invoked. The
fraction in (46) is often termed an Occam .factorBayes [Good, 1983; Berger, 1985]. To prove this,

maximise P[D; a, X_](38) with respect to a to yield because it favors the simpler models of large a and
(39), and maximize it with respect to X3using (24) /3, but it may also be viewed as a Gaussian approx-
to yield (41). This equivalence is only valid for imation to exp(S(D;a) - $(a)) where S is entropy
priors and information divergences derived by ME. (29). The exp(Q2) is the usual data .factor which

Or, equivalently, it applies to priors and divergences favors the more complex models of small a and _.
which are members of exponential families in which The balance between these two terms determines
hyperparameters may be viewed as Lagrange multi- the optimal hyperparameters.
pliers. The conservation principle for choosing hy- To make predictions about an unmeasured ob-
perparameters is a postulate; it ;s not derived as an servable, u, the basic assumption is that the joint
approximation to heirarchical Bayes. (In heirarchi- probability is

cal procedures joint probabilities for data, ,f, and " P[_,v,D]o( exp(L- _I(_) (47)
hyperparameters are calculated using Bayes rule,
and then hyperparameters are marginalized using For point estimates the covariance is
hyperpriors. ) N_

(48)
Provideda is sufticiently large, we may use Gaus- CT'(z,z')= &G(z,z')+ _ Jt6.f(z)6,f(z')sianapproximationsto estimatehyperparameters, t=1

Thus, forposteriorexpectationvaluesuse Define

" [ --
Q2 _. Q2 - _(v_'_)tC-l(_v_ ") . (42) F_(z) = 0,f(z)oAh= £ex G-l(z'z')v/_-__ '"

And use Iq _ _ + ½_tg_. The inverse covariance (49)
matrix Then, the covariance Cl(z , z') is

gkt (43) G-l(z'z') rt(z) 1 + _ (50)C_"1 = 1 + aM -1 M_tl = _ _ _ a

The matrix M is ND x ND and positive semidefinite. CI is a positive definite matrix. The variance on

The number o,f good measurement# may be defined point estimates is given by C/(z, z). The second
by term in (50) gives the reduction m variance due to

the data.

N_ - Tr{C_} = Tr{M(a + M) -t} . (44) There is a fundamental relation between the lin-

Expectation values in this Gaussian approximation ear response of the mode to perturbations and the
are covariance matrix,

ND = -o [6](z)
J



Here 6U_ is an infinitesimal perturbation in U ...._,:_'=,,_¢ _.,-,_m_',,.r,_¢: .,xil .....
which may be due to changes in the default model, _5 .....................................................
changes in the data, changes in other constraints, _ 3st Esl,m_te

etc. For example, from (23) an infinitesimal change ; .... . °
._.

in the default model would correspond to 6U1,(z ) =
-f Go(z,z')6m(z')dz'. Putting (51)in words, the 10-
covariance matrix describes the sensitivity of the

mode to changes in prior knowledge or data. Large _ _ i
errors correspond to high sensitivity to input infor- c _

L !ii_ _,
iti - _ "mation, and small errors correspond to low sensi- c_ ._, _,'' .. :

!' _ IIf"X _

tivity. 05 _ ,,_, :!,I ,i
We interpret i _¢_, _,_i'_ ' . V,

as the r,umber of degrees of #eedom in ]. One can 0010 20 30 _0 50 s o
prove N/ >_ O. In the absence of data, the prior Duration (minutes)
N f = Tr{G; "l} is proportional to 1/% This pro-
vides a simple interpretation of the local smoothing
hyperpararneter/_, because it determines the corre- Figure 2: Old Faithful Eruptions - 107 measure-

lation length scale G' which is inversely proportional ments of the duration of geyser eruptions are dis-
to N/. Clauical ME (_ = 0) corresponds to an infi- played as a histogram with 100 bins. The solid line
nits NI, which is why ME has infinite error bars on is the optimal QSI estimate obtained with quartic

individual points of the MAP estimate. QSI (_ _: 0) local smoothing, L_. The dashed lines indicate ±
has a finite N/ and finite error bars on individual one standard deviation errors on the QSI point es-
points. The effect of the data is to reduce N#. timate.

4 Application to Density Estimation estimates were also discretized into 100 bins. In
Fig. 2 the solid line is the optimal QSI estimate

Non-parametric density estimation has been obtained for a = 3.02 and _1/_ = 0.09 with quartic
studied extensively by statisticians [Silverman, local smoothing. The dashed curve shows ± one
1986; Izenman, 1991; Scott, 1993]. If a set of ND standard deviation point estimates of errors on the
observations, {zt}, is identically and independently QSI estimate, which are calculated from (50) ac-
drawn from a probability density function f(z), the cording to or(z) = v/CI (z, z). These provide only a
problem is to estimate S when no parametric form partial representation of the full covariance matrix

is known. The log-likelihood function for density for the QSI estimate. The reader can be the judge
estimation is of whether the optimal QSI estimate and errors are

_v_ credible.

L = _ln(/(zl)) . (53) Figure 3 compares the optimal qsI estimate
t:l (dashed) with the optimal ME estimate (solid)

We illustrate the comparative performance of max- which has no local smoothing. The ME estimate

ent and QSI using the textbook example of the erup consists of spikes at the positions of the data, and
tions of the Old Faithful Geyser. it is not credible. The marginal likelihood of the

Figures 2 and 3 show results for the duration of optimal QSI estimate is 110 times larger than the

eruptions of the Old Faithful Geyser. The raw data marginal likelihood of the ME estimate.

from 107 eruptions axe displayed as a histogram us- This observation poses a question: Why does ME
ing 100 bins. Note that this histogram is not an often work extremely well for inverse problems? As
optimal histogram estimate of f, which would use discussed earlier, the smoothness of f is determined
a much smaller number of bins. Rather, this his- by a combination of the smoothness of U and the
togram is simply a convenient way to display the choice of local smoothing differential operator. The
raw data. Our QSI calculations used Newton Raph- U's for inverse problems consist of a sum of La-
son non-linear optimization and Eispack matrix di- grange multipliers multiplying point spread func-
agonalilation to calculate QSI images. The density tions, whereas the U's for density estimation are



_0;sam_,es_D, xets Np pixels using finite difference representations of
_5 .............................................................. differential operators. Then, naive calculation of

.... esl c_ar_,c,,.=._o."p"=_,0ln,._o_,=.._5.o QSI images by gispack diagonalization of H (10) re-,OataH_StoQram •

ME o_=2"._1_=).,9In,ML,=-60.3 quires cpu time scaling as O(N 3) and memory scal-
ing as O(N_), which would be prohibitively expen-

t, siva for large Np. Fortunately, quantum physicists
_0 :- • • have developed several more efficient methods for

i the direct calculation of density matrices which do
• * not require matrix diagonalization. One of the most

popular is Feynman path integrals, which requires
• _, -J05_ cpu time scaling and memory scaling as O(N_).

i We have recently developed a polynomial moment
' method which scales linearly in Np [Silver, 1994].

, i Choose a and b in H = aX + b so that all the

I ," ' ' i eigenvalues of the Np x Np matrix X satisfy -1 <s • " i

001° "' 2o 30 40 --50"- so z,_ <_ +1. Then define a new variable 0 by z =
Duration (minutes) cos(O). 'I'o calculate a density matrix such as (10),

use the operator identity

Figure 3: Old Falthful Eruptlons - Comparison [ oo ]
of optimal QSI (dashed) with quartic smoothing p = e-H = e-_ Io(a) + 2 _ (-1)'_I,,_(a)T,,_(X)
and maximum entropy (solid) which has no local ,,_=1
smoothing. Dots are the data histogram. The ratio (54)
of marginal likelihoods (ML) favoring QSI over ME Here, I,,_(a) are modified Bessel functions, and
is110. T,_(z)= cos(m0)arechebyshev polynomials of the

firstkind. Thisisa rapidlyconvergingexpans:on
whichmay be truncatedwithoutsignificanterrorat

sums of&functions.Typicalpointspreadfunctions afinitenumber M oftermsdependingon the value

arealreadylocallysmooth,sothatadditionallocal ofa. CalculationoftheNp xNp matrixTIn(X)uses
smoothingismuch lessimportant.However,QSI thepolynomialrecurrencerelation
would stillbe preferredoverME formost inverse

problems according to the marginal likelihood, and T,n+_(X) = 2XTm(X) - T,,___(X) (55)for the practical reason that it provides point esti-

mates of errors on f. Use of the polynomial recurrence means that only
two previous Tm need be stored. In a finite dif-

5 Algorithms ference approximation to the differential smoothing
operator, X is tridiagonal for quadratic smoothing

The duality relations and optimization condi- and pentadiagonal for quartic smoothing. So the
tions for Lagrange multipliers are identical in QSI cpu time for matrix multiplications indicated in (55)
and ME. Therefore, finding the posterior mode in scale as O(Np x M). Because of the finite correla-
QSI is a non-linear convex optimization problem tion length % the density matrix p is essentially
which may be solved using the same methods which band diagonal with a width proportional to Np x ->,.
have proven successful for classical ME [Skilling, Only band diagonal components of T,n(X) of the
1993]. We find that it is most efficient to work same width need be kept in calculating the recur-
with the dual optimization problem, and to use fence relation (55). The fact that QSI functions are
Newton-Raphson in conjuction with conjugate gra- smoothed over a width 3' means that one can choose
dient inversion of _.he Hessian matrix. Evaluation N_, o¢ 1/% Hence the required width of the band

of marginal likelihoods (36) going beyond Gaussian is independent of 7, and the memory requirements
approximationscan alsousestandardmethods such arealsolinearinNp,

as theGibbs sampler. Thisalgorithmprovidesa controlledprocedure

The onlynew computationalfeatureof QSI is forcalculatingobservablesfrom Lagrangemultipli-

a more complex relationthan in classicalME (2) era.We findthatpracticalQSI calculationstake
between the Lagrange multipliers and the density about a factor of 3 more cpu and memory than corn-
function. Let the QSI equations be discretized into parable ME calculations.



6 Discussion sophical foundations of both statistical inference
and statistical physics, or for the additional cross-

QSI i_ a new statistical method whose applica- fertilization between statistics and physics which

tions may include ill-posed inverse problems, image should ensue.
reconstruction, density estimation, spectrum esti-
mation, density function interpolation, etc. Apart Acknowledgements
from the algorithmic issues discussed ia Sec. V, QSI
is no more difficult to apply than other ME meth- Research supported by the U. S. Dept. of Energy.
ods, and its domain of applicability is far greater.
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