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APPLICATIONS OF QUANTUM ENTROPY TO STATISTICS
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Abstract

This paper develops two generalizations of the
mazimum entropy (ME) principle. First, Shan-
non classical entropy is replaced by von Neumann
quantum entropy to yteld a broader class of infor-
mation divergences (or penalty functions) for statis-
tics applications. Negative relative quantum eniropy
enforces convezily, positivity, non-local eztensivity
and prior correlations such as smoothness. This
enables the eztension of ME methods from their
traditional domain of ill-posed inverse problems to
new applications such as non-parametric density es-
timation. Second, given a choice of information di-
vergence, a combination of ME and Bayes rule is
used to assign both prior and posterior probabilities.
Hyperparameters are interr-sted as Lagrange mul-
tipliers enforcing constraints. Conservation prin-
ciples are proposed to set statistical regularization
and other hyperparameters, such as conservation of
information and smoothness. ME provides an al-
ternative to heirarchical Bayes methods.

1 Introduction

Entropy originated in statistical physics, where
Boltzmann/Gibbs entropy is a fundamental mea-
sure of uncertainty and disorder in physical sys-
tems. Later entropy was adapted to information
theory, where Shannon entropy is the fundamen-
tal measure of the efficiency of encoding a com-
munication channel. The role of entropy in statis-
tics has been comparatively limited. Cross entropy
(Kullback-Liebler) is a measure of the information
divergence between two positive extensive distribu-
tions. Mazimize entropy (ME) is a principle for as-
signing probabilities when the information available
is incomplete. Entropy is an important regulariza-
tion functional for solving ill-posed linear inverse
problems, and it is the foundation of an widely

used Bayesian image reconstruction method. ME
data analysis methods have been especially popular
among physical scientists, who recognize a mathe-
matical analogy to statistical physics.

ME is usually applied to the generic data analy-
sis problem of inferring a positive distribution f(z)
defined over a compact continuous domain z € X
on the basis of some data D and our prior knowl-
edge. ME assumes that each comparable element of
a positive distribution should be regarded a priori
as independent and equally likely, and only those
correlations required to satisfy the constraints of
data should be imposed. However, suppose we have
prior knowledge about the local smoothness of f,
i.e. f has continuous derivatives with respect to
z of some order. Common examples include den-
sity estimation, image reconstruction and interpo-
lation. Continuous derivatives require prior correla-
tions among neighboring elements of f, rather than
independence. This violates the conditions for ap-
plying classical ME. A proposed modification to ME
to incorporate smoothness is to equate f to the con-
volution of a smoothing kernel with the distribution
of a ‘latent’ (or ‘hidden’) variable [Skilling, 1989)].
However, such approaches abandon use of informa-
tion divergences (also termed a penalty or regular-
ization functionals) such as entropy defined on the
f manifold.

In view of the many successes of ME for prac-
tical statistics applications and the significance of
entropy in both physics and information theory,
statisticians should consider generalizations of en-
tropy which can incorporate prior correlations such
as smoothness. Fortunately, the required mathe-
matics has already been developed in quantum sta-
tistical physics. The generalization was invented by
J. von Neumann in 1927 to be applied to the newly
emerging quantum mechanics. It is known as quan-
tum entropy. Although quantum entropy has been
used so far only in quantum physics, it is a con-
cave functional which can be defined on any Hilbert
space. Therefore, it can be adapted to statistical in-
ference. We term the applications of quantum en-
tropy to statistics as quantum statistical inference
(QSI) methods [Silver, 1993]. As information di-



vergences, both negative classical relative entropy
(or cross entropy) and negative relative quantum
entropy enforce desirable properties such as global
smoothing toward a default model, positivity, nor-
malization, extensivity, and convex optimization.
But, in addition, quantum entropy enforces correla-
tions, such as local smoothing, by constraining the
expected values of operators. The maximum local
smoothing limit of QSI is traditional penalized like-
lihood {Good and Gaskins, 1980] which does not
enforce extensivity. The zero local smoothing limit
of QSI is classical ME.

This paper also suggests a ME approach to in-
corporating such information divergences into sta-
tistical inference. Set prior probabilities by maxi-
mizing their entropy subject to constraints on their
expected information. The statistical regularization
hyperparameter is then equivalent to a Lagrange
multiplier to enforce this contraint. Set posterior
probabilities using Bayes rule and the likelihood
principle. Set hyperparameters by demanding the
conservation of information under Bayes rule. The
resulting criteria for hyperparameters are similar to
maximum marginal likelihood (ML-II) in empirical
Bayes, but the derivation is not an approximation
to an heirarchical Bayes procedure.

Many statisticians may prefer to substitute the
language of ezponential families for ME. Indeed,
many physicists would do the same, using the equiv-
alent terminology of canonical ensembles. The
quantum information divergences, prior probabili-
ties and posterior probabilities we propose are all
members of exponential families. Many remarkable
properties of such families are already well estab-
lished in statistics. As far as we know, ME, expo-
nential family and canonical ensemble descriptions
are equivalent for practical applications, although
there are differences in philosophy. That said, we
will continue with ME.

Section II introduces quantum entropy to statis-
ticians. Section III discusses the maximum en-
tropy formulation of the inference process. Sec. IV
presents the example of non-parametric density es-
timation. Sec. V briefly discusses algorithmas, focus-
ing on how to make QSI calculations efficient. And
Sec VI concludes. This paper summarizes the pri-
mary QSI results critical to statistics applications,
with details and proofs to be published elsewhere.
The mathematical level will be heuristic rather than
rigorous, as is typical of the physics literature which
provided the inspiration for much of this approach.
But no knowledge of physics is assumed or required.

2 Quantum Entropy

Maximum classical entropy is commonly used
to infer a density function f(z) defined in a con-
tinuous compact domain ¢ € X based on linear
data constraints of the form fex U(z)f(z)dz. In
this paper, we restrict discussion to normalized
f required for density estimation characterized by
f:ex f(z)dz, although the generalization to non-
normalized f required for image reconstruction is
straightforward. Then, classical relative entropy (or
negative cross entropy) is

o[ fon(E)]e 0

where m(z) is a default model. I, = -5, is the
information divergence for maximum classical en-
tropy methods. The maximum is

-U(z)
fo(z) = m(z)< ;( Z.= / m(z)e Y (*)dz
¢ €EX

(2)
However, maximum classical entropy is not easily
extended to incorporate smoothness constraints.
To generalize the maximum entropy principle, we
introduce a concept that is new to statistics, but not
to physics, the density matriz, p(z, z'). It is defined
to be a real symmetric, positive semidefinite and
00 x oo matrix. A density function is defined to be
the diagonal elements of a density matrix

f(z) = p(z,z) . (3)

The density matrix will be determined uniquely by
constraints on the density function and a maximum
quantum entropy principle.

By definition, the density matrix can be diago-
nalized by an orthogonal transformation,

z z)-zfﬁn wnwn ) ) (4)

where [ . Yn(2)¥m(z)dz = 6nm. The v, are
complete% orming a Hllbert space. Positive semidef-
inite means that the weights, w,, are not negative.
Therefore,

= wa¥d(2) 20 Y u.=1 . (5)

n=0 n=0

Linear constraints on a density function may be
rewritten in terms of traces of matrix operators,
Tr{M} = f:ex M(z, z)dz, times the density ma-
trix. For example, data constraints are

| v@fedz=TrUs} . (6)
zeX



where (U)z . = U(z)é(z — z'). For linear
inverse problems the data consist of a set of
fzeka(::)f(z)d:c; then U(z) = 3, AeOk(z) for
Lagrange multipliers A;. The normalization con-
straint is Tr{p} = L.

The new constraint we introduce to enforce local
smoothing is defined in terms of an Hermitian dif-
ferential operator, K. In this paper, we specifically
consider quadratic, K; = —8%/8z%, and quartic,
K4 = 0*/8z%, forms. A constraint on

Tr{Kp} = Z Wn -/;GX ¥n(z)Kdn(z)dz . (7)

is an implicit local smoothing constraint on the den-
sity function, to be discussed below.

Such constraints are still not sufficient to
uniquely specify the density matrix, so now we in-
voke a maximum guantum entropy,

Sq = ~Tr{pln(p)} = = 3 [waln(wa)] , (8)
n=0

principle. This is invariant to orthonormal trans-
formations of the Hilbert space, and it is a concave
function of p [Wehrl, 1978]. Using the method of
Lagrange multipliers, maximize

Q1 = Sq — BTr{Kp} — Tr{Up} + (u+ 1)Tr{p} .

(9)
The local smocthing constraint has Lagrange multi-
plier 8, the data constraint has Lagrange multiplier
U, and the normalization constraint has Lagrange
mulitiplier 4 + 1. The result is

p=exp(-H+ul) , (10)

where
H=pK+U . (11)

This constitutes an exponential family of density
matrices parameterized by Lagrange multipliers.
Within this family, the concavity guarantees a one-
to-one correspondence between a choice of den-
sity function and a corresponding density matrix.
Therefore, we may write p; as the unique density
matrix corresponding to a density function f. Eq.
(10) is the quantum generalization of the classical
result, (2), to local smoothing constraints.

This development may be related to an eigen-
value problem,

H\bn(x) = ann(z) ) (12)

by diagonalizing the density matrix, (4), provided
weights are

Wy =exp(—€n +4) . (13)

Normalization may maintained by choosing

p=-In (ie”‘") . (14)
n=0

For example, for K3 (12) reads

2
- ;33 g;\z(z) + U (2)¥n(z) = entn(z) . (15)

Such eigenvalue equations may alternatively be de-
rived from variational principles, along with bound-
ary conditions, as developed in the Stlirm-Liouville
theory of differential equations. The mathematical
properties of such differential equations are well es-
tablished. The lowest £, corresponds to a nodeless
¥Yn(z), and the number of nodes in ¥, (z) increase
monotonically with €,. In the limit of U(z) = 0,
the 1, are simply sines and cosines. The weights
wp, filter the contributions of ¥, with large numbers
of nodes to (5), resulting in limited spatial structure
in f.

The information divergence (penalty or statisti-
cal regularization functional) for QSI may now be
identified as negative relative quantum entropy,

Io(fim, B) = Tr{psIn(ps) - ps In(pm)} . (16)

This is the quantum generalization of the classical
expression, (1). It can be used as a penalty function .
(or regularization functional) in penalized likelihood
methods. An f is sought which maximizes

Qa2 = L(f|D) - alp(fim,B) . (17)

Here, L(f|D) is the log-Likelihood, D is data, and
a is a statistical regularization parameter. In a
Bayesian interpretation, maximizing (17) gives the
mode of a posterior probability.

To study the properties of Ig, it is also conve-
nient ¢o define its Legendre transform

2q(U;Um,B) = Ig(f;m, B)
+ / (@)U (2) = Un(2))dz . (18)

Here, U,, corresponds to the default model m. Note
that Ig(m;m,B) = Zg(Um;Um,B) = 0, and that

Tr{e-H}
Zg=-In (7-‘—’{5_—11—“?> . (19)

First order infinitesimal variations of Iq and Zg are
§2¢ = /f(z)cSU(z)dz ,

6l = /[—U(z) + Un(2)] 6 f(z)dz . (20)



The concavity property of Sg means that G defined
by

62Sq = —%/G(m,z')éf(z)éf(m')d:ndz’ (21)

is also positive semidefinite. Second order infinites-
imal variations are

61g = —;—/G(z,z’)éf(z)éf(z')dzdz' ,

622q = —-21-/G‘l(z,m')&U(z)&U(m')dzdz' . (22)

Iq is a convex function of f, and Zg is a concave
function of U. Notice the duality between f and
U in these relations, which is analogous to the du-
ality between observables and Lagrange multipliers
in traditional ME methods.

The concavity property ensures a dual (one-to-
one) relation between variables, f and U,

6f(z) = ——/G‘l(z,z')ﬁU(z’)dz' : (23)

Because of this relation, G~! may be termed a
linear response function. For typical choices of
smoothing operator including the quadratic and
quartic, G™! peaks at z — z' = 0 and falls off
faster than a power law as |z — 2’| increases, a
property we term locality. The characteristic width
of G™! is termed the correlation length, y. For
quadratic smoothing v « (8)!/3, and for quartic
v « (B)%. For example, let G;! be the lin-
ear response function for no data constraints and
a flat default model, i.e. U = U, = 0. Figure 1
illustratee the behavior of G;! for quadratic and
quartic local smoothing. For quadratic smoothing
G;Yz,2') x (1 - erf(|z — 2'|/7))/v is continuous
and positive. For quartic smoothing G;! has con-
tinuous second derivatives, and it has negative com-
ponents at large |z — 2’|. The non-linearity of QSI
guarantees that f > 0 regardless of the choice of
local smoothing.

We are now positioned to discuss the smooth-
ness properies of QSI density functions, which are
determined by the choice of 3, the degree of the dif-
ferential smoothing operator and the nature of the
cata constraints U. The differentiability of f may
be related to that of U by the linear response re-
lation, (23). As discussed earlier, for linear inverse
problems U consists of a sum of Lagrange multi-
pliers times point spread functions (PSF), and the
differentiability of U is the same as the PSF’s. For
density estimation U consists of a sum of Dirac 6-
functions. Let a function be of class C if it has M
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Figure 1: Linear Response Functions - G;!
for local smoothing constraints of the form Ky =
9% /8zV, no data constraints, and a flat default
model, i.e. U = 0. (3 is the Lagrange multiplier
for the local smoothing constraint on the density
matrix. Results are shown for quadratic (dashed)
and quartic (solid) local smoothing.

continuous derivatives; for example, C° corresponds
to the class of continuous functions, C! to the class
of functions having continuous first derivatives, etc.
A 6-function corresponds to C~3. Also let D be the
dimension of the space, N the degree of the local
smoothing differential operator, and CMv the dif-
ferentiability class of U. Then one can show that f
belongs to the class CMv+N-D+1 Eor example, for
one dimensional density estimation U is C~?, ME
f is C~%, quadratic smoothed f is C°, and quar-
tic smoothed f is C2. For two dimensional density
estimation, higher than quadratic smoothing is re-
quired to obtain continuous QSI density estimates.
See (Wallstrom, 1993] for a more comprehensive dis-
cussion.

Readers familiar with density estimation may be
tempted to identify G=! with the kernel in a kernel
density estimation procedure. However, QSI kernels
are not required to be positive, and the positivity
of f is enforced only by the non-linearity.

Readers familiar with ME may be tempted to
identify G~! with the correlation function used in
the [Skilling and Gull, 1989] proposal to correct ME
for local smoothing using hidden ME images, or the
Sibisi and Skilling proposal using Derichlet priors
for ‘latent variables.’ However, QSI is more prop-
erly termed a ‘dual variable’ theory because the
relation between U and the observable, f, is one-
to-one. In ‘latent’ (or ‘hidden’) variable theories,
the relation of latent variables to observables is ill-




posed, i.e. co-to-one.

Classical ME (8 = 0) satisfies local eztensiuity,
which means that the information divergence is an
additive function of the f(z) at each point. QSI re-
laxes this condition to non-local eztensivity, defined
as follows. Let 613 be a change in Ig corresponding
to a change §f* in f. Let the 6f* have compact and
disjoint supports separated by much more than v.
Then non-local extensivity means I ~ Y, 1%, for
6f=3,6f. This may be shown by combining the
locality properties of G~! with (22). In compari-
son the MPL method of [Good and Gaskins, 1980]
does not obey any form of extensivity, because it is
equivalent to an infinite «.

These convezity and non-local eztensivily prop-
erties of Ig satisfy important desiderata for inverse
problems, image reconstruction and density estima-
tion. In the latter case non-local extensivity is com-
promised only by the added constraint on the nor-
malization of f.

The information divergence is a concave function
of 3, obeying

ol
9B

And limg=o Iq = 0. Although 8 has been intro-
duced here as a Lagrange multiplier to constrain
smoothness in a maximum entropy framework, in
the next section we will interpret it as a hyperpa-
rameter in an inference procedure.

=Tr{Kp;} - Tr{Kp,} . (24)

3 Entropic Inference

We propose to combine the maximum entropy
principle and Bayes rule to assign probabilities and
to choose optimal hyperparameters & and 5. The
development in this section applies to any informa-
tion divergence, and does not require understand-
ing quantum entropy. Our approach differs signifi-
cantly from heirarchical Bayes; we do not marginal-
ize over hyperparameters, and we do not use the
full co-dimensional f as the fundamental variable.
([Skilling, 1994 shows that heirarchical maximum
entropy methods - termed quantified mazimum en-
tropy - which treat f as fundamental lead to non-
sense results.)

We begin with the variables and integration mea-
sure. Consider first the case of a finite number Np
of exact data; for example, §; = fcex O (z)f(z)dz.
To each such observable one can associate a corre-
sponding Lagrange multiplier Mg, defined by 3?)_ =
—Ar. Then, (20,22) imply that information Ig is

minimized when the Lagrange multipliers for un-
constrained variables remain at their default model
values, i.e. U'(z) = U — SN2 AeOk(z) = Un(z).
Maximum entropy methods are equivalent to this
minimum information condition; only measured
constraints are operative in predicting unmeasured
observables.

This idea must be generalized to penalized likeli-
hood methods. The condition for maximizing (17)
with respect to f is

6L

6—-(;)- +a(U(z) - Un(z)) =0 . (25)
For typical data analysis problems like image recon-
struction or density estimation, L is a functional of
a finite number of functions of f, equal to the num-
ber of data, Np. For example, for linear inverse
problems subject to additive Gaussian noise the
variables are & = [, o 9—:—?-11‘(3):1:, where Oy (z)
are point spread (or resolution) functions and o} is
the error. For density estimation, the variables are
€x = f(za) where the z, are the i.i.d. samples of
f. More generally, if L is concave, appropriate data
space variables may be defined by principle compo-
nents analysis (or singular value decomposition) of
the curvature of L. The invariant integration mea-
sure may be chosen to be

2

dQ = (/det[J]df Ju = --—a--{l-—, (26)

13919

where J should have at most Np nonzero eigenval-
ues. It is most convenient to choose the £ so that
J is diagonal. Denote its eigenvalues by J,. Log-
ical consistency requires independent unmeasured
variables to be irrelevant, as we shall demonstrate
below.

In these data space variables, I is a convex func-
tion of observables £, and Zg is a concave function
of Lagrange multipliers A,. These are dual vari-
ables, i.e.

dlq _ 929 ~¢

3. ¢

Pl O

—— O — . 27
5EeoE = ag = @7)

Convexity means that the Np x Np matrix g is
positive semidefinite. In such data space variables,
the optimization condition (25) reads

aL B _R, &
E'FGA',—O U($)=§Ak6f(z)+UM(z) .

(28)



All calculations are performed using data space
variables. A density function is an implicit func-
tion of the A. Provided L is a concave function of
the £i, the Hessian matrix will be negative semidefi-
nite; there will be a unique mode (or MAP solution)
which may be found by non-linear convex optimiza-
tion algorithms. Denote the mode by f, the corre-
sponding mode information as Tq, etc. The prior
mode is, of course, f = m and fq = 0. The pos-
terior mode will satisfy f # m and fq > 0, if the
data disagree with the default model predictions.

Prediction typically involves adding one or
two unmeasured observables of the form v =
Jzex Ov(2)f(z)dz to the problem statement. The
choice of O, (z) depends on the question being asked
about f, e.g. for a point estimate at z, choose
O,(z) = 6(z — z,). The O,(z) are usually not
related to principle components of the likelihood,
and so they are irrelevant variables for determining
hyperparameters as we shall show. The equivalence
of the optimization conditions (25) and (28) implies
that the mode with respect to v is the same as the
mode with respect to the §.

A prior probability P[] can be assigned by max-
imizing its classical entropy

S(P[E]) = ~ / Plelln(PlEdR . (29)

subject to Lagrange contraints on the expected in-
formation,

BQ) = [ lolemAPigan ,  (30)
and the normalization, E(1). Therefore, maximize
Qs = S(P[¢]) - «E(Iq) - (F - 1)E(1) , (31)

where a and F - 1 are Lagrange multipliers. The
result is

PlE; o] = exp(F(a) - alq)
Fla)=-In </ exp(—an)dﬂ> . (32)

Note that

0F(a) _ :
—5? = E(IQ,Q) . (33)
F(a) is a concave function of a,
9*F
Fa7 = ~EUQ) + (E(lg))* <0, (34)

so the relation between E(Ig;a) and « is one-to-
one. They are Legendre transform dual hypervari-
ables; a choice of one hypervariable corresponds to
a unique choice for its dual.

Next we assign a posterior probability using
Bayes rule,

P(D,& ) = P[DI] x P(§;a]
=exp(L + F(a) —alg) . (35)
The posterior probability of the data is

P(D;a] = exp(-F(D;a)) = / P[D & ajdQ .
(36)

A useful identity is
F(D;a) =aE(Ig|D;a) - E(L|D;a) — S(D;a) .
(37)
Note that

OF(D;a

(Dia) _ .
s = E(lg|D;a) (38)

which is the posterior expected information.
F(D;a) is also concave, and E(Ig|D;a) and a are
also dual hypervariables.

We propose a conservation principle for choos-
ing hyperparameters: the prior and posterior dual
hypervariables should be equal. In the case of a, it
requires

E(Iq|D;a) = E(Ig; &) . (39)
In simpler language, information should be con-
served under Bayes rule. In general E(Io|D;a) and
E(Iq;a) are different functions of @, and informa-
tion will be conserved for one or a few &. Using (37)
and a similar relation for F(a),

P(D;a) = exp(S(D;&) - S(&) + E(L|D;a))
(40)
This depends only on the likelihood and the en-
tropy difference between prior and posterior prob-
abilities. It can be used to rank hypotheses and
models used in the data analysis. If more than
one & can satisfy the conservation principle, solu-
tions should be weighted according to their P[D; aj.
(Note: This offers the intriguing possibility of dis-
continuous changes in inferences.) It is also possi-
ble that no & satisfies information conservation, in
which case the inference procedure is inconsistent.
We are now positioned to discuss the require-
ment that independent unmeasured variables be ir-
relevant. Two variables §,, {3 are independent (ex-
tensive) if I(&y,€3) = I(&1) + I(€2). A variable is
unmeasured if %e' = 0. A variable is irrelevant if
inference does not depend on its value. Suppose §;

and £; are independent, and only £, is measured.
Then

e_F(a) e ‘/dfldfze_ar(ehfi) et
/e-af(ex)d&/e—ar(ea)d& = e-Fila)-Fa(a)



Using 5-[4 = 0, one can show F(D;a) =
Fi(a). Hence, F(D;a, - F(a) = F\(D;a) - Fi(a),
and §; is irrelevant. Similarly one can show that
independent unmeasured variables are irrelevant to
conservation of information, to the likelihood, to the
entropy difference in (40), etc. Such arguments jus-
tify our initial choice of data space variables, since
all other variables are irrelevant in this maximum
entropy framework for inference.

A similar conservation principle applies to deter-
mining the local smoothing Lagrange multiplier in

Qsl,
E(Tr{Kp}|D;a,B) = E(Tr{Kp};a,8) . (41)

That is, smoothness should be conserved under
Bayes rule.

These conservation principles yields the same hy-
perparameters as the maximum marginal likelihood
(ML-II) (or evidence) procedure used in empirical
Bayes [Good, 1983; Berger, 1985]. To prove this,
maximize P[{D;a, 3] (36) with respect to a to yield
(39), and maximize it with respect to 8 using (24)
to yield (41). This equivalence is only valid for
priors and information divergences derived by ME.
Or, equivalently, it applies to priors and divergences
which are members of exponential families in which
hyperparameters may be viewed as Lagrange multi-
pliers. The conservation principle for choosing hy-
perparameters is a postulate; it ‘s not derived as an
approximation to heirarchical Bayes. (In heirarchi-
cal procedures joint probabilities for data, f, and
hyperparameters are calculated using Bayes rule,
and then hyperparameters are marginalized using
hyperpriors. )

Provided a is sufficiently large, we may use Gaus-
sian approximations to estimate hyperparameters.
Thus, for posterior expectation values use

F\(D;a)+

Qa~ Q- 5(VIOICTHEVT) . (8

—

And use Ig ~ Ig +
matrix

C{1=1+0M'1

%{ 'gé. The inverse covariance

M-lz__ﬂ”__ . 43
k! m ( )

The matrix M is Np x Np and positive semidefinite.
The number of good measurements may be defined
by

Ny =Tr{C¢} =Tr{M(a+ M)~} .  (44)

Expectation values in this Gaussian approximation
are

Np
E(Iq;a)~ o

. - Np - N
E(IqiD;a) = Ig + DQQ g
-~ N
E(LiD;a)~ L - -—21 (45)

The conservation principle requires @ to be chosen
to satisfy N, = 2afq, a condition first derived by
[Skilling, 1989] using the evidence procedure. This
has a simple interpretation: fQ has increased from
zero by reducing the number of degrees of freedom
in the data to Np —~ N,.

A Gaussian approximation to the conservation
principle for smoothing is not as easy to calculate,
but it can be found by maximizing

1 ~
— === exp(Q2)
\/det[1 + %] :

The relation Q; ~ E(L - alg|D;a) + E(alg;a),
which follows from (45), has been invoked. The
fraction in (46) is often termed an Occam factor
because it favors the simpler models of large o and
B3, but it may also be viewed as a Gaussian approx-
imation to exp(S(D;a) — S(a)) where S is entropy
(28). The exp(Q3) is the usual data factor which
favors the more complex models of small a and 5.
The balance between these two terms determines
the optimal hyperparameters.

To make predictions about an unmeasured ob-
servable, v, the basic assumption is that the joint
probability is

Pl§,v,Dlx exp(L — alg) . (47)

For point estimates the covariance is

PDia,f]~ (46)

1 = 4G(z, 2’ 66 56
C;'(z,2') = &aG( +ZJ 5F(2) 57(@ )(48)

Define

e paned -1 /
ne=-E= [ e

Then, the covariance Cy(z, z') is

G l(z,2) _ I"éz) (1 . _ng)“ I'(z')

a a a

(49)

(50)

C; is a positive definite matrix. The variance on
point estimates is given by Cy(z,z). The second
term in (50) gives the reduction in variance due to
the data.

There is a fundamental relation between the lin-
ear response of the mode to perturbations and the
covariance matrix,

§f(z) = -—a/C;(z,z’)éU,,(:n’)dz' . (51)



Here 6U, is an infinitesimal perturbation in U
which may be due to changes in the default model,
changes in the data, changes in other constraints,
etc. For example, from (23) an infinitesimal change
in the default model would correspond to 6U,(z) =
— [ Go(z,2')ém(z')dz’. Putting (51) in words, the
covariance matrix describes the sensitivity of the
mode to changes in prior knowledge or data. Large
errors correspond to high sensitivity to input infor-
mation, and small errors correspond to low sensi-
tivity.
We interpret

= 6!(2,1:) ;
Nf =Q/———'—f(=) dz (52)

as the number of degrees of freedom in f. One can
prove Ny > 0. In the absence of data, the prior
N{ = Tr{G;!} is proportional to 1/v. This pro-
vides a simple interpretation of the local smoothing
hyperparameter 3, because it determines the corre-
lation length scale ¥ which is inversely proportional
to Ny. Classical ME (8 = 0) corresponds to an infi-
nite Ny, which is why ME has infinite error bars on
individual points of the MAP estimate. QSI (3 # 0)
has a finite Ny and finite error bars on individual
points. The effect of the data is to reduce Ny.

4 Application to Density Estimation

Non-parametric density estimation has been
studied extensively by statisticians [Silverman,
1986; Izenman, 1991; Scott, 1993). If a set of Np
observations, {z,}, is identically and independently
drawn from a probability density function f(z), the
problem is to estimate f when no parametric form
is known. The log-likelihood function for density
estimation is

Np
L=) In(f(za)) . (53)
k=1
We illustrate the comparative performance of max-
ent and QSI using the textbook example of the erup-
tions of the Old Faithful Geyser.

Figures 2 and 3 show results for the duration of
eruptions of the Old Faithful Geyser. The raw data
from 107 eruptions are digplayed as a histogram us-
ing 100 bins. Note that this histogram is not an
optimal histogram estimate of f, which would use
a much smaller number of bins. Rather, this his-
togram is simply a convenient way to display the
raw data. Our QSI calculations used Newton Raph-
son non-linear optimization and Eispack matrix di-
agonalization to calculate QSI images. The density

az=12 =0 Quanic 1™ samples §otopxens oo ML= 38
1 5 — e . _—

—— QS| Estimale

il s |

Density

Figure 2: Old Faithful Eruptions - 107 measure-
ments of the duration of geyser eruptions are dis-
played as a histogram with 100 bins. The solid line
is the optimal QSI estimate obtained with quartic
local smoothing, Ly. The dashed lines indicate +
one standard deviation errors on the QSI point es-
timate.

estimates were also discretized into 100 bins. In -
Fig. 2 the solid line is the optimal QSI estimate
obtained for a = 3.02 and 8'/* = 0.09 with quartic
local smoothing. The dashed curve shows + one
standard deviation point estimates of errors on the
QSI estimate, which are calculated from (50) ac-
cording to o(z) = \/Cy(z, z). These provide only a
partial representation of the full covariance matrix
for the QSI estimate. The reader can be the judge
of whether the optimal QSI estimate and errors are
credible.

Figure 3 compares the optimal QSI estimate
(dashed) with the optimal ME estimate (solid)
which has no local smoothing. The ME estimate
consists of spikes at the positions of the data, and
it is not credible. The marginal likelihood of the
optimal QSI estimate is 110 times larger than the
marginal likelihood of the ME estimate.

This observation poses a question: Why does ME
often work extremely well for inverse problems? As
discussed earlier, the smoothness of f is determined
by a combination of the smoothness of U and the
choice of local smoothing differential operator. The
U's for inverse problems consist of a sum of La-
grange multipliers multiplying point spread func-
tions, whereas the U’s for density estimation are
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Figure 3: Old Faithful Eruptions - Comparison
of optimal QSI (dashed) with quartic smoothing
and maximum entropy (solid) which has no local
smoothing. Dots are the data histogram. The ratio
of marginal likelihoods (ML) favoring QSI over ME
is 110.

sums of §-functions. Typical point spread functions
are already locally smooth, so that additional local
smoothing is much less important. However, QSI
would still be preferred over ME for most inverse
problems according to the marginal likelihood, and
for the practical reason that it provides point esti-
mates of errors on f.

5 Algorithms

The duality relations and optimization condi-
tions for Lagrange multipliers are identical in QSI
and ME. Therefore, finding the posterior mode in
QSI is a non-linear convex optimigation problem
which may be solved using the same methods which
have proven successful for classical ME [Skilling,
1993]. We find that it is most efficient to work
with the dual optimization problem, and to use
Newton-Raphson in conjuction with conjugate gra-
dient inversion of .he Hessian matrix. Evaluation
of marginal likelihoods (36) going beyond Gaussian
approximations can also use standard methods such
as the Gibbs sampler.

The only new computational feature of QSI is
a more complex relation than in classical ME (2)
between the Lagrange multipliers and the density
function. Let the QSI equations be discretized into

N, pixels using finite difference representations of
differential operators. Then, naive calculation of
QSI images by Eispack diagonalization of H (10) re-
quires cpu time scaling as O(N,’) and memory scal-
ing as O(N:), which would be prohibitively expen-
sive for large N,. Fortunately, quantum physicists
have developed several more efficient methods for
the direct calculation of density matrices which do
not require matrix diagonalization. One of the most
popular is Feynman path integrals, which requires
cpu time scaling and memory scaling as O(N}?).
We have recently developed a polynomial moment
method which scales linearly in N, [Silver, 1994].

Choose a and b in H = aX + b so that all the
eigenvalues of the N, x N, matrix X satisfy -1 <
2zn < +1. Then define a new variable § by z =
cos(6). To calculate a density matrix such as (10),
use the operator identity

p= e-H — - I,(a) +2 i (—l)mlm(a)Tm(X):\
m=1

(54)
Here, In(a) are modified Bessel functions, and
T (z) = cos(m8) are chebyshev polynomials of the
first kind. This is a rapidly converging expans’on
which may be truncated without significant error at
a finite number M of terms depending on the value
of a. Calculation of the N, x N, matrix Trn (X) uses
the polynomial recurrence relation

Tri1(X) = 2XTn(X) = T (X) . (55)

Use of the polynomial recurrence means that only
two previous T,, need be stored. In a finite dif-
ference approximation to the differential smoothing
operator, X is tridiagonal for quadratic smoothing
and pentadiagonal for quartic smoothing. So the
cpu time for matrix multiplications indicated in (55)
scale as O(Np x M). Because of the finite correla-
tion length v, the density matrix p is essentially
band diagonal with a width proportional to N, x .
Only band diagonal components of T,,(X) of the
same width need be kept in calculating the recur-
rence relation (55). The fact that QSI functions are
smoothed over a width ¥ means that one can choose
N, « 1/v. Hence the required width of the band
is independent of v, and the memory requirements
are also linear in Np,

This algorithm provides a controlled procedure
for calculating observables from Lagrange multipli-
ers,. We find that practical QSI calculations take
about a factor of 3 more cpu and memory than com-
parable ME calculations.



6 Discussion

QSI ie a new statistical method whose applica-
tions may include ill-posed inverse problems, image
reconstruction, density estimation, spectrum esti-
mation, density function interpolation, etc. Apart
from the algorithmic issues discussed in Sec. V, QSI
is no more difficult to apply than other ME meth-
ods, and its domain of applicability is far greater.
Quantum entropy provides a systematic way to
build prior correlations into a manifold of density
functions, and it may be extended to many other
kinds of prior correlations. Entropic inference adds
basic principles to assign prior probabilities and im-
pose conservation in Bayes rule calculations, with
hyperparameters reinterpreted as Lagrange multi-
pliers.

We tried to introduce QSI using only statisti-
cal terms and language. This required hiding the
physics intuitions which, in fact, helped to moti-
vate our approach and provided most of the math-
ematics. Statisticians should be aware that strong
analogies exist between QSI and the physical the-
ory of guantum statistical mechanics. And they
should know that the mathematics used in QSI
has been empirically validated to extraordinary ac-
curacy for numerous diverse physical systems. In
Sec. II, K is analogous to a ‘kinetic energy’ oper-
ator, U to ‘potential energy’, 8 ‘inverse tempera-
ture’, H a ‘Hamiltonian’, exponential families are
‘canonical ensembles’, (15) is the time-independent
Schrodinger equation, etc. In Sec. III, the {x may
be thought of as ‘extensive variables’, \, ‘inten-
sive variables’, F ‘free energies’, ML-II the ‘princi-
ple of minimum free energy’, (51) the ‘Auctuation-
dissipation theorem’, the conservation of informa-
tion is analogous to ‘conservation of energy’, dis-
continuous changes in inference are analogous to
‘phase transitions’, etc. Statisticians should also
be aware that the analogies with physics are incom-
plete. There is no mention of Bayes rule, informa-
tion divergences, covariance, default models, prior
and posterior probabilities, etc. in mainstream sta-
tistical mechanics textbooks. And for all its intu-
itive appeal, the maximum entropy principle has
produced no results in statistical mechanics that
were not previously obtained using other starting
postulates, such as ‘maximize phase space volume’.

Nevertheless, QSI demonstrates how a significant
fraction of the mathematics of statistical physics
may be adapted to statistical inference. Indeed, we
expect QSI will become a practical tool in statis-
tics. However, it is much more difficult to anticipate
the implications of this demonstration for the philo-
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sophical foundations of both statistical inference
and statistical physics, or for the additional cross-
fertilization between statistics and physics which
should ensue.
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