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ABSTRACT

The scattering of synchrotron radiation by nuclei is extensively explored in this thesis.
From the multipole electric field expansion resulting from time-dependent nonrelativistic
perturbation theory, a dynamical scattering theory is constructed. This theory is shown,
in the many particle limit, to be equivalent to the semi-classical approach where a
quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave
equation. The Mossbauer specimen whose low-lying energy levels were probed is a
ferromagnetic lattice of 7Fe embedded in a yttrium iron garnet (YIG) crystal matrix.
The hyperfine fields in YIG thin films were studied at low and room temperature using
time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats
were measured using a fast plastic scintillator coincidence photodetector and associated

electronics having a time resolution of 2.5 nsec. The variation of the quantum beat
patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Mdossbauer factor of

8.2%0.4 . Exploring characteristic dynamical features in the higher order YIG [0 0 10]
reflection revealed that one of the YIG crystals had bifurcated into two different layers.
The dynamics of nuclear superradiance was explored. This phenomenon includes the
radiative speedup exhibited by a collective state of particles, and, in striking concurrence,
resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat
frequency shift of 13 natural resonance linewidths were observed. Nuclear resonance
scattering was also found to be a useful way of performing angular interferometry
experiments, and it was used to observe the phase shift of a rotated quantum state. On the
whole, nuclear dynamical diffraction theory has superbly explained many of the
fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.
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NUCLEAR DYNAMICAL DIFFRACTION USING
SYNCHROTRON RADIATION



1. INTRODUCTION

The field of nuclear resonance fluorescence has developed considerably since Kuhn
initiated the first search for this phenomena in 1929.! In the late 1950's, a variety of
techniques were developed to probe the low-lying energy levels of nuclei. One method
used Coulomb-excitation reactions where nuclei were excited by the electromagnetic fields
of bombarding particles2- (this later developed into the field of perturbed angular
correlations?). Another method used nuclear reactions as a gamma ray source for exciting
nuclei.>® However, it was Mdssbauer's discovery in 1958 of the recoil free resonance
absorption of nuclei excited by radioactive cources that enabled the field of nuclear
resonance fluorescence to blossom and to become useful in a wide variety of disciplines,
ranging from biology to chemistry and physics.’

The construction of man-made x-ray sources provided a new way to excite nuclear
transitions. Use of betatron bremsstrahlung radiation as an x-ray source was first proposed
in 19458 but it was not until 1962 that nuclear fluorescence radiation was observed using a
conventional x-ray tubes as a source.® The problem of detecting the nuclear signal resulted
mainly from the huge photoelectric background that occurred when x-rays were
simultaneously scattered from the electrons. For this reason, pulsed x-ray sources and
time-gated detectors were proposed.? Because electrons scatter x-rays promptly compared
to nuclear lifetimes, properly gating out the effects due to electronically scattered x-rays
leaves the nuclear signal with almost no background. The pulsed nature of synchrotron
storage rings made them highly desirable candidates as x-ray sources for exciting nuclei.
The first proposal for using synchrotron x-rays was made in 1974,10 and the first
observation of nuclear fluorescence radiation using synchrotron x-rays was made in
1978.11

In this first experiment, an iron foil was used in reflection geometry as a target, and
the foil was enriched with *’ Fe to enhance the nuclear resonance signal. The experiment
was performed on a bending magnet beamline which produced, when using a silicon
monochromator having a 2 eV wide bandpass, roughly 10° electronically scattered photons
for each nuclear scattered photon. Since the gating method was not completely effective,
background problems produced serious difficulties limiting the usefulness of this
technique. Crystals were introduced to further suppress the electronic background. For
certain crystals, the *’ Fe ferromagnetic or antiferromagnetic lattice is distinct from the
electronic lattice. This allows, for certain crystal orientations, the electronic reflection to be



2 Introduction Chapt. 1

forbidden while the nuclear reflection is still allowed. The first observations of nuclear
scattered radiation from perfect crystals using synchrotron x-rays were made in the early
and mid 1980's.12:13 Since then, many nuclear resonance fluorescence experiments have
followed at synchrotron radiation facilities to explore the dynamics of nuclear diffraction
from crystals.14-19

The question usually arises as to why should one use multi-million dollar
synchrotron storage rings to do Mdssbauer experiments when much cheaper radioactive
sources costing a few hundred dollars can be used. For instance, Bragg diffraction off
polycrystalline materials using radioactive sources was observed more than two decades
earlier in 1960 and off perfect crystals in 1969.20.21  As described earlier, what makes
synchrotron storage rings useful is the pulsed nature of the photons. This allows one to
use gated photodetectors and electronics to reduce the electronic background. Also, unlike
a radioactive source, the energy bandwidth of the synchrotron radiation is much larger than
the nuclear energy bandwidth. This allows all resonant nuclear hyperfine lines to be
excited, and results in nuclear hyperfine quantum beats that reveal information about the
internal hyperfine fields and the collective nature of the excitation. And, unlike synchrotron
sources, time-resolved resonance fluorescence experiments using radioactive sources
require deconvoluting out the time response of the source which can significantly alter the
resonance signal from the target. Also, synchrotron radiation can provide radiation over a
broad range of energies which, with present day undulators and wigglers, can be up to
50 keV. The design of longer, high powered, undulators and wigglers can extend this
energy range up to 250 keV,22 thus making it feasible to perform experiments with most
types of Mossbauer samples. Also, synchrotron rings provide linearly polarized beams of
x-rays that can be used for doing polarization sensitive experiments.

However, a radioactive source can produce many more resonant photons than
present day synchrotrons. For instance, a readily obtainable *’ Co source having a strength
of 250 mCi produces about 10" resonant photons/sec. However, these photons radiate
into 47 steradians, so a better measure of photon production is spectral brilliance--the
number of photons per second per square millimeter of source size per square milliradian of
photon beam size per (.1% frequency bandwidth. A 250 mCi source having an emission
area of Imm? produces about 250 photons/sec-mm? - mrad®. For an energy bandwidth of

AEJE=4.67x10°eV/14413eV = 3x 1073,
the spectral brilliance is about 10'* photons/sec-mm® - mrad?(0.1% bandwidth).

Examining Fig. 1-1, the brilliance of radioactive sources is better than x-ray tubes, but is
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only comparable with synchrotron beamlines having bending magnet sources. However,
when wigglers and undulators are used, dramatic increases in the brilliance many orders of
magnitude greater than radioactive sources can be achieved, thus making synchrotron
sources much more desirable than radioactive sources.

In this thesis, synchrotrons having wiggler and undulator devices were used for the
first time to do nuclear diffraction experiments. For bending magnet beamlines, the nuclear
counting rate is no more than a few counts/sec. On wiggler and undulator beamlines, the
counting rate increased by a factor of 100 (for the 10-2 wiggler at the 3 GeV SPEAR
storage ring, counting rates of 80 counts/sec were observed, and for the PBF1 undulator at
the 15 GeV PEP storage ring, counting rates as high as 800 counts/sec were obtained, but
these rates are highly dependent upon the quality of the monochromator (heating problems
occur at high x-ray intensities), the x-ray beam optics, the detector efficiency, and the
electron beam current and optics). As seen in Figs. 1-2 and 1-3, the SPEAR 54 pole
wiggler has a spectral brilliance of about 10" photons/sec- mm?.mrad*(0.1% bandwidth)
at 14.4 keV, while the brilliance of the 2 meter PEP undulator is a factor of 10 greater when
run in parasitic, or colliding beam, mode (When run in a dedicated, or nonparasitic, low
emittance optics mode, the brilliance of the PEP undulator is expected to be 10,000 times
greater than the SPEAR wiggler. Unfortunately, before PEP could be run at 14 GeV in
this low emittance optics mode, PEP was decommissioned by the Stanford Linear
Accelerator Center (SLAC) for fiscal reasons).24-26

The Jdevelopment of high energy storage rings specifically dedicated for
synchrotron experiments is expected to push counting rates even higher. Already, the
6.5 GeV Accumulator Ring at the KEK high energy facility in Japan that has recently been
outfitted with a 3.6 meter undulator, and there are reports of nuclear signal rates as high as
10,000 counts/sec.2”.28¢ The 7 GeV APS ring under construction at Argonne, the 6 GeV
ESREF ring under construction in France, and thc 8 GeV Spring-8 ring under construction
in Japan will have beamlines equipped with 4 to 5 meter long undulators that are expected
to be 1000 times more brilliant (see Fig. 1-4) than the PEP undulator (when, that is, PEP is
operated in colliding beam mode--the brilliance would be comparable to PEP were it to be
operated in a very low emittance optics mode). A feasibility study under way at KEK is
looking into the possibility of converting the electron-positron Tristan Collider Main Ring
into a dedicated, exceptionally intense, synchrotron light source called the TSLF (Tristan
Super Light Facility).?9 The TSLF, with a 6 meter undulator operating at 10 GeV, is
expected to provide an extremely brilliant source of x-rays that is 3 orders of magnitude
greater than the third generation synchrotron sources under construction described above
and 6 orders of magnitude greater than PEP (The design of TSLF envisages using damping
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wigglers to reduce the electron beam emittance. If PEP were outfitted with damping
wigglers, its brilliance would be comparable to TSLF--see Figs. 1-2 and 1-4). Also in the
conceptual design stage is an effort to insert a 50-60 meter FEL undulator into the SLAC
linac.25 If the technical difficulties of operating FELs near 1 A are overcome (such as
modulating the electron bunch structure toa 1 A periodicity), the SLAC FEL is expected to
have an extraordinary brilliance of 10 photons/sec- mm?*.mrad®(0.1% bandwidth)--this is
15 orders of magnitude brighter than PEP and makes the nuclear photon flux alone (from
nuclear resonance scattering experiments) greater than the photon flux generated by present
day synchrotron light sources! The prospects of doing useful physics across many scierce
disciplines using the highly monochromatic (micro eV energy width), very collimated
(20 prad or 4 arcsec angular spread), extremely coherent (30 m coherence length)
fluorescence radiation from nuclear systems looks very encouraging.
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Fig. 1-4.  Spectral brilliance curves for various synchrotron storage rings. MR-short
and MR-long correspond to a 6 m short undulator and a 70 m long undulator on the TSLF
ring. The APS and ESRF calculations were done for a 4.5 m undulator, a 5 m undulator
was used for the Spring-8 calculations, and all calculations used an electron beam current
of 100 mA. (Reprinted with permission from T. Ishikawa)29



8 Introduction Chapt. 1

This thesis is organized in the following manner. In Chapters 1-4, elementary
scattering theory is reviewed, culminating in the construction of the spherical multipole
electric fields scattered by resonant particles. In Chapter 5, I have constructed the complete
form of the multipole polarization tensor for magnetic dipole scattering in a linear
polarization basis. Nuclear level mixing is reviewed, and 1 give several interesting
examples of magnetic dipole scattering. In Chapter 6, I have worked out a novel
formulation of dynamical scattering from resonant systems using the principles of linearity
and time invariance present in system theory. This theory is used to examine the interaction
between two resonant particles, and it reveals that superradiance is due to very elementary
multiple scattering effects. I also show that the dynamical scattering equations, in the many
particle limit, give the same results as the Maxwell equations for a medium, thus connecting
quantum mechanics with classical electrodynamics. Chapter 7 reviews nuclear dynamical
diffraction theory, with an emphasize on the superradiant eftects of radiative speedup and
resonance frequency shifts. Chapter 8 describes the EWALD computer code I wrote to
perform the numerically intensive nuclear dynamical diffraction theory calculations. The
program is written generally enough to handle any crystal type, to handle reflections from
multiple crystals, and can be used for systems containing nuclei other than > Fe. Chapter 9
describes the general experimental setup along with details about the detector and fast
timing electronics,

Chapters 10 and 11 summarize my analysis of the results of the experiments carried
out by the Stanford nuclear resonance scattering group composed of myself along with
Dr. G. S. Brown (my thesis advisor), Dr. S. Ruby, Dr. J. Arthur, and A. Q. R. Baron.
The experiments done on the SPEAR and PEP rings were done in collaboration with Dr. E.
Alp and Dr. G. K. Shenoy of Argonne National Labs, and S. Sastri from the Cornell High
Energy Synchrotron Source (CHESS) collaborated in experiments done on the CESR ring,

In the Appendices, a copy of a Physical Review Letter article titled "Phase Shift of a
Rotated Quantum State Observed in an X-Ray Scattering Experiment" is given. Also given
are two time domain calculations using the dynamical scattering equations I formulated.
These calculations illustrate that the dynamical scattering equations can be used to examine
and understand the physics behind multiple scattering in a way that is not possible using the
conventional, index of refraction, approach where the Maxwell equations for a medium are
solved in the frequency domain and Fourier transformed into the time domain.
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2. TIME DEPENDENT NONRELATIVISTIC
PERTURBATION THEORY

2.1 Perturbation Theory

The essential problem in nuclear dynamical diffraction is to adequately describe the
interaction of a charged particle with an electromagnetic field. This chapter will develop the
fundamentals of a time dependent perturbation theory that will be used to explore this
interaction process.!"® The following approach leads to a direct form of a scattering
amplitude in terms of a series expansion. Once the scattering amplitude is formulated,
many types of scattering processes can be examined.

In determining the quantum mechanical behavior of a charged particle in the
presence of a time-varying interaction potential, V(X,), the time independent part, H,(x),
is separated from the total Hamiltonian,

H(x,t)= H,(x)+ V(X,1). (2-1.1)

If the solution of the time independent Schrédinger equation can be found, then the
time dependent solution can be written in terms of a perturbative expansion of the known
solution. The time independent Schridinger equation obeys the relation

H,(x)¢,(x)= E_(x), (2-1.2)
where ¢, are the stationary eigenstates of the unperturbed Hamiltonian and satisfies the
orthonormal relation

[ om0, (0)dx = 8, (2-13)

The solutions of the time dependent Schrodinger equation,

12 (x,0) = [Hy 0+ V(R w(x,), 2-1.4)
expressed in terms of an expansion of the stationary states are

w(x,0) =Y a, (1), (x)e™ " (2-1.5)

To determine the coefficients, a,(t), this solution is inserted back into the Schrodinger
equation. The result of this operation is

iy, a,()¢,(X)e " =v(x.0)Y a,),(x)e ",

Multiplying both sides of the equation above by d)}(x) and integrating over all space gives

11
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a,(1) = —;‘;—zua,(t)v,n(t)eiw"', (2-1.6)
where Valt)= [, 67 )V(X,0)9, () d’x 2-1.7)
and 0, =(E -E,)/n. (2-1.8)

So far, this formalism is exact, and solving the coupled differential equations,
Eq. 2-1-6, is equivalent to solving the Schrodinger equation. However, in general, an
analytical solution to a,(t) cannot be found, and thus a,(¢) must be expressed in terms of a
series expansion. The convergence of this series will be determined by whether the
perturbation V(X,¢) is small enough. The series expansion of a,(t) will be defined as

a,(t)= a(1)+ a(”(t) +aP (e +al" (1), (2-1.9)
Using the information that the system is definitely in a stationary eigenstate, ¢,(X),

at time t = —eo, the zeroth order term in the expansion can be found. At time ¢ = —co, the
solution to Eq. 2-1.5,

W ==e)= 4,07 =3 a,(09,00e™"|__,

{=~o00

is a,(—e°)=6,. The zeroth order term in the expansion is the solution to the Schrodinger
equation when the perturbation is absent:

a(1)=0 (2-1.10)

a’(1)=6 (2-1.11)
The next order term in the expansion is obtamcd by substituting the zeroth order

term into the relation for a,(t), Eq. 2-1.6:

aV(t) = (~ifh)V,(1)e (2-1.12)

(1) = (=ifm)[_V(r)e™ ar'. (2-1.13)

This substitution process can be done recursively to obtain all the other higher orders. The
second order terms are:

d (1) = (~ifR) YV, (0™ [ V(') ar (2.1-14)

n#i

a(fz)(t) = (—l‘/h)22£“, dnV,,(n e " J‘_‘l,., de,V,q(r;)e ™" . (2.1-15)

nei

The constraint on the sum, n # i, forces any intermediate state, |n), to be different from the
initial state (there is also the constraint that n # f). Thus the intermediate state transitions
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do not conserve energy: @, #0 and w,, # 0. The self energy terms, V;;, will be partially
ignored. They are described by single particle scattering loops in Feynman scattering
diagrams, and, when they are more carefully evaluated in a covariant perturbation theory,
they will only contribute energy shifts to the scattering amplitude. No attempt will be made
to calculate such energy shifts--they will simply be lumped with the experimentally
measured isomer shifts and appropriately inserted into the scattering amplitude.

The third order amplitude is listed below:

a? (1) = (~i/n)' Y. Y V(1) ‘“"*j AV, (6)e=" [ bV, (r,)e™ (2-1.16)

m#inegm

a (1) = (~ifh) sz dnV,(1)e “‘”""_[ di,V,,.(1,)e™™ "j dV,.(6)e" . (2-1.17)

meingm

2.2 The Scattering S and T Matrices

After the interaction: perturbation ceases, the system resides in a definite stationary
state, @,(X,?). Then the transition amplitude for a transition from an initial state to a final
state can be defined in terms of the elements of a scattering operator S,

Sp=(0,1518.)= (o, 00|y (x.0)) = 3 a, ()" [ 9;(x)0, (x)e""
=a,(1) @2-2.1)

The S-operator is then a unitary operator that describes the evolution of an initial state,
|#.(x,1)), to a final state, |y/(x,)), during the action of the perturbation:

S|¢:(x.0)) = w(x,0)). (2-2.2)
The unitarity of S can be seen by noting that
(wlw)=1=(g,|s"s|¢,). (2-2.3)

This is true only if S'S=1. Summing over all the possible final states gives a total
probability for a scattering event to occur of unity,

2,[58] =3 (vl Xo,|w)=(wlw)=1. (2-2.4)

The matrix elements of the scattering operator can be found by evaluating the
perturbative expansion terms of a,(t), Eqs. 2-1.10 to 2-1.17. The transition probability is
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|S ﬂlz, and the transition probability per unit time, or transition rate, is the time rate of
change of the transition probability,
re
ot
The other interesiing quantity desired is the 7 -matrix element, T;, which should be
differentated from the transition probability in that it describes the amplitude of a scattered
wave rather than the probability for a transition from an initial state to a final state. The
structure of the T -matrix cin be seen by evaluating the transition rate for the simple case of
a constant interaction perturbation,

S +87S,. (2-2.5)

. 0 [ — —oo
Vx,1)= {V(x) . (2-2.6)

Tue zeroth and first order terms of the S-matrix elements can be found using the
perturbative expansions ot Egs. 2-1.10to 2-1.13:

Sﬁ =6, +(-ifR)| Ve ar (2-2.7)
= (=i/R)V,e"". (2-2.8)
The transition rate is then

T, = (i/h)V; -'wﬁ[ ﬁ+(—i/h)j_'~vﬁe"’"ﬁ"d:’]

+(—f/h)vﬁe"‘"ﬂ'[5ﬁ +(i/%) j Vie dt’].
The §-functon terms yield

(i) Vs =V.i=(@/m)(e:v'|e:) - (o V]e.) =

since the interaction perturbation Hamiltonian, V(X,t), is Hermetian: v'=V. Then,

= (/R U 4 gy +I el "dt]

Making the change of variables u =" —1 for the first integral and u =1 -’ for the second
integral results in

O = (URWY|[er du= (e du|= (V[ [ du
- Zﬁlvﬁr(;(gl -E), (2-2.9)

where the following relations were used:



(2.2) The Scattering S and T Matrices 15

[~ e dx=2n5(k) (2-2.10)

8(ax) = |l5(x) (2-2.11)

Equation 2-2.9 is the Fermi Golden Rule to first order. Also the &-function
preserves the conservation of energy condition--this is usually termed in the scattering
language as the on-energy-shell condition.

To obtain the Fermi Golden Rule to second order, the S-matrix elements must be
evaluated to second order:

Sp= 8+ ()| _Vie '+ (<ip) Y [y, e [ dpvietn. 2212

Inserting a small positive imaginary quantity, ie where € > 0, into the exponent of the last
integral allows one to perform the integral to get a meaningful result. After integration,
taking the limit as € — O gives the final result. This procedure, though seemingly ad hoc,
1s very important in ensuring that the S-matrix obeys the accepted rules of causality for
incoming and outgoing particles. The last integral in the third teim above then integrates to

| . ‘ ei(E.—E,-)llln
[l anv,e =tim[" diy, & B _ iy £ T
—~o0 £—40d-eco Ei —_ E"
Then,
Sp= ( ilh [V +E = }J._we‘“’"" dr’ (2-2.13)
and Sy =(~i/h) [v +Z = J wr, (2-2.14)

S, and S 5 have the same form as their first order expressions for the substitution

V., -V +2E/"VZ

Then employing the same techniques as before gives

2
2

V.V
V. + fow
fi ZE E

[ =—
g h nei &y T Ly

This gives the on-energy-shell T-matrix elements to second order,

8(E, - E). (2-2.15)
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T, =V +2 f” = (2-2.16)

nei ‘

The Fermi Golden rule to all orders can now be written in a compact form:
27 2
=—h-|Tﬁ| 8(E, - E), (2-2.17)

anvmvnu
4ol (2-2.18)

where Awi i muwi mnm (E; Em)

2.3 The Scattering Amplitude

In dealing with scattering problems, knowledge of the total cross section of a
scattering event is very useful. The total cross section can be evaluated from the transition
rate using the following definition:

allscattemdphotons/sec 2, fi
flux of incident photons - nv,/V,’

(2-3.1)

tot

where n, and v, are the number and velocity of the incident particles, and V, is the volume
of space enclosing the interaction region. Summing over all the possible final states gives
the total cross section. Using the Fermi Golden rule, the total cross section can be
expressed in the form

o, = _%_”/1"_Zl|rﬁ|2 5(E, - E,). (2-3.2)

nv; Vs
Notice that T; in the expression above is in units of energy. The expression for a
scattering amplitude in units of length can be obtained by showing that g, satisfies the
optical theorem. To do so, first note that the S-matrix elements, for t — e , follows the
relation
S;=8,-2mT,8(E, —E,). (2-3.3)

Using the unitarity properties of the S-matrix yields

(5'5),=8,= 3,535

=Y 16,8, +2ni8,T,8(E, - E,) - 2mi8 T,8(E, - E))
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+(21)'T,T,8(E, - E,)8(E, - E})|.
Then,
|(; -7,) -2}, T,T.8(E, - E)|8(E, - £) =0,
where the identity 8(E, - E,)8(E, ~ E,)= 8(E, — E,)5(E, - E,) has been used. The
above expression is true on the energy shell if
(17 -T,)-2my, T,T,8(E,-E)=0. (2-3.4)

This is simply an equivalent expression of the unitary condition expressed in terms of the
scattering amplitude. The diagonal elements yield the meaningful result

T,—-T; =2ilm{T,}=-2m Y, |T, [6(E,—E). (2-3.5)

The total cross section is then

o =-

tot

o] 2-3.6
Fmv m{} (2-3.6)

This is the optical theorem, and it relates the total cross section to the imaginary part of the
scattering amplitude. The photons have been elastically scattered since the final state of the
system is identical to the initial state.

A normalized scattering amplitude in units of length can then be defined as

Fi(k, k) ==A,T;, (2-3.7)
Vok,

where ] (2-3.8)
,( 27rhv

The factor 1/,/n;, normalizes the square modulus of the scattering amplitude to the number
of incoming particles, and k; and k, are the incoming and outgoing photon wavectors
respectiv=ly. Then, for one incoming particle undergoing elastic scattering

0 = Eim{F, (K, k,)}. (2-3.9)

ky

This is the familiar form of the optical theorem seen in classical electrodynamics.
However, when many scatterers are present, the total cross section is proportional to the
forward scattering amplitude, F(k, = k‘.). This multiparticle scattering behavior will
explored later.
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Basic assumptions about certain symmetry laws in physics have been made in the

construction of ©,,. For instance, a generalized scattering cross section can be constructed
from Eq. 2-3.4

_2m
k,
This expression can be put in a form similar to Eq. 2-3.9 by applying the law of reciprocity
for systems possessing space-inversion symmetry.? The law of reciprocity states that a
scattering event in which an incoming particle scatters from k; to k, is identical to a

scattering event in which the particle scatters in the reverse direction from -k, to -k;.
Then

gen _
Glal -

[k, k)= Fy (k)] (2-3.10)

Fi(k,.k,)=F,(-k,,k,) (2-3.11)
satisfies the principle of reciprocity (see Fig 2-3.1). As long as one remains on the energy
shell, reciprocity is simply another way of stating that time reversal invariance holds.!0

B 0 n

Fﬁ(k/’ki) = E/(—kn"k/)

Fig. 2-3.1. Illustration of reciprocity where the scattering amplitudes for a scattering
process and its time reversed process are equivalent,

/ Fy(k, k)

| | 1)
3 n - >

E] (_kt’_kj)
K, K

Fig. 2-3.2. Illustration of space inversion symmetry. Photons traveling in the X
direction sees the same interaction as those traveling in the —X directon.

t
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If the scattering system possesses space inversion symmetry (that is, the interaction
perturbation satisfies V(x) = V(—x) ) then, from Fig 2-3.2, the scattering amplitude obeys
the relation

\_
Fy(-k.—k,}=F,(k.k,). (2-3.12)
This makes the scattering amplitude (and the scattering T -matrix) symmetric
T,=T, or Fy(k.k,)=F(k k) (2-3.13)

Under such conditions, the generalized cross section reduces to

4n
gen . % _
oL == im{F,(k,.k)}. (2-3.14)
!
The generalized cross section reduces to the elastic cross section, Eq. 2-3.9, when the
initial and final states are identical. This also shows that the elastic cross section is valid

only when the scattering system possesses space-inversion symmetry and time reversal
invariance holds.
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3. SCATTERING THEORY

3.1 Semiclassical Wave Theory

So far, a quantum mechanical, microscopic description of the scattering amplitude
has been derived for a single incoming particle interacting with a scatterer. The goal is to
derive a macroscopic description of the scattering amplitude for one or more incoming
particles interacting with many scatterers. And, if the scatterers are densely distributed in
space such that their interparticle separation is on the order of or less than the wavelength of
the incoming particle, multiple scattering events must be taken in to account. Purely
quantum mechanical calculations become quite difficult to compute when dealing with the
interaction of more than two particles, and are, in many cases, impossible to compute when
the number of particles exceeds several hundred. A small solid target with interatomic
distances on the order of 1 A and that is 10 pum thick with a surface area of 1 mm will have
on the order of 10" scatterers. Clearly, a purely quantum mechanical approach toward
solving the scattering problem is not possible.

One must therefore rely upon some other approach, such as a semiclassical theory,
to obtain a macroscopic scattering amplitude. Fortunately, the inhomogeneous classical
wave equation inherently describes multiple scattering--it describes the propagation of a
wave (a packet of many incoming particles) in a many particle medium. Its superb success
in describing wave phenomena in classical physics is why the semiclassical framework is
commonly used to make the bridge between classical and quantum physics.

From here on, the emphasis will mainly be on scattering processes in which
photons are the incoming particles (with the knowledge that inhomogeneous wave
equations can be constructed for other particles, such as electrons). In the classical picture,
their interaction with matter is adequately described by the Maxwell equations. Jackson!
shows how to go from the microscopic Maxwell equations,

V.b=0 Vxe+i g
c ot

V.-e=4nmm be—lég:igi, (3-1.1)
codt ¢

where @ and b are the microscopic electric and magnetic fields and 7 and j are the

microscopic charge and current densities, to the macroscopic Maxwell equations,

20
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V.B=0 vxE+12B
c ot

V-D=4np VxH—lQP—:i‘—”—J, (3-1.2)
¢ ot c

where p and J are the macroscopic free charge and current densities. The transition from
the classical microscopic equations to a semiclassical macroscopic description is done by
taking the expectation values and spatially averaging over all microscopic quantities.
Spatially averaging over the microscopic fluctuations due to thermal motion, zero point
fluctuations, and orbital motion, gives the smooth, slowly varying macroscopic quantities
present in the Maxwell equations for a medium. The macroscopic picture is taken to be on
the order of Avagadro's number of atoms per cubic centimeter, 10* atoms/cm?, where the
length scale, 100 A, is taken as an absolute lower limit to the macroscopic domain. The
macroscopic electric displacement, D, and magnetic field, H, come from the spatial
average over the microscopic charge and current densities

20!
D,=E,+4n{P, - "”+---} (3-1.3)
{ P oxg
Hy,=B,-4n{M,+ -} (3-1.4)

where P(x,r), Q’(X,t), and M(x,r) are the macroscopic electric polarization, quadrupole
density, and magnetization. For a substance that has a linear response (that is, any induced
electric or magnetic polarization is proportional to the magnitude of the applied field),
D=¢E (3-1.5)
H=p'B (3-1.6)
where € and p are the dielectric and magnetic permeability tensors. Note that the dielectric
and permeability tensors are proportional to the electric and magnetic multipole moments.
As a simple example, let both tensors be diagonal, with all diagonal elements equal,
as for an isotropic medium. Then
D,=¢E, , H,=u;B, (3-1.7)
and thus

a

P, 1 « 905,
e =14amfa_ 1 A 3-1.8
’ E EUEI3 ox, } G®
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M
ot b 3-1.9
B } ( )

a

and iy =1~47r{

For multipole moments small in comparison to the electric and magnetic fields that generate
them, the quantity € 4,, which is the square of the index of refraction, is then

P M 1 .
2=gp, =14 dn{ e —a Y 9
n 0"‘0 {E Bu EQZﬁ axﬁ

a

+(47r)2 x Multipole Mixtures. (3-1.10)
This shows that the index of refraction of a medium is proportional to the electric and
magnetic multipole moments generated by that medium, and it also has terms proportional
to mixtures, or products, of electric and magnetic multipoles. The quantum mechanical
expectation value of this quantity will be taken to produce a semiclassical theory for the
scattering amplitude.

3.2 inhomogeneous Wave Equation

The inhomogeneous wave equation can be constructed from the Maxwell
macroscopic equations. However, one must note that the relationship between B and E
can be nonlocal. In other words, D at time ¢ and position X can depend upon E at times
and positions other than ¢ and X. The relationship between the sources, €(X,t), and the
fields they generate, D(X,), must be causal to ensure that the fields do not instantaneously
propagate from one point in space to another. For the electric displacement!

D, (x,t)= Zpjd’x’]dz’eaﬁ(x’,r')Eﬂ(x -x,1-1). (3-2.1)

In frequency space,

Du(K, @)=Y, €,(K,0)E, (K, ) (3-2.2)

and similarly

Hy(k )= py(k 0)B,(k ) (3-2.3)

where the Fourier transform is defined as

fk )= [dx[dif(x,e)e™* . (3-2.4)
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The inhomogeneous wave equation in frequency space can now be constructed.
The Fourier transform of the E and B fields in the second relation of Eq. 3-1.2 gives

V xE(x,0)-i 2 B(x,0)=0. (3-2.5)
.

Doing the same for the fourth relation of Eq. 3-1.2, for no free current, gives

Ida)e"“" jd“x"e‘“"'{v x[n (%', 0)B(x - x’,0)] + iZe(x, w)E(x - x',w)} =0,
C

The dielectric and permeability tensors depend upon the observation point X since they may
have an overall spatial distribution throughout the interaction volume. If the spatial
frequencies of the inverse magnetic permeability are far smaller than those of the magnetic
field, spatial derivatives of the inverse permeability tensor can be neglected. If the sources
that generate the multipole fields have dimensions that are small compared to the spatial
variation of the E and B fields in the medium, then they can be considered to be sharply
localized around the points X” with negligible effects outside a small volume around Xx’.
Then, for particles such as electrons and nuclei that have diameters much smaller than the

spatial variation of light down to X-ray wavelengths, the tensor quantities can be
approximated as

3.2.6
W () = 8(x - X (x, ) (5:2.0)

e(x’,w)=6(x - x")e(x,w). (3-2.7)
Then the expression above reduces to

V x B(X, ) +i 2 p(x, 0)e(x, 0)E(x, ) = 0. (3-2.8)
C

Taking the curl of Eq.3-2.5 and substituting the results into Eq.3-2.8 give the
Maxwell wave equation for a medium:

VE(X,w)+ (w/c)zu(x,a))e(x,a))E(x,w) =0 (3-2.9)
where the observation point has been placed far from the scatterer to make the longitudinal
components of the E field negligible so that V-E = 0.

A quantity 2€, will be defined where
n® =14+2€,(X,0) = p(X,w)e(X,0). (3-2.10)
The quantity 2g, carries all the information about the electric and magnetic ;11u1tip()les.

This leads to an expression of the inhomogeneous wave equation for transverse electric
fields within a medium

(V2 + k2, + k2 [2€, (%, )] JE(X, @) = 0> (3-2.11)
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where k,, = w/c (3-2.12)
and V.-E=0. (3-2.13)

3.3 Integral Scattering Equation

There is a scalar wave equation for each component of E. Let ¢ be one of those

components of the E field in a basis that diagonalizes the index of refraction tensor. Also
define

U(x,w) = kJ,[2€, (X, @)]. (3-3.1)
The scalar wave equation is then
(V2 + &3, )o(x,0) = U (%, 0)9(X,w). (3-3.2)

The Green function techniques can be used to solve this inhomogeneous scalar
wave equation. Constructing a Green function that satisfies

(V2 +k;,)G(%,X") = —4x8(x - x’) (3-3.3)
leads to the solution of Eq.3-3.2:

o(x,0) = ¢,(x,0)+ [G(x, X W(X, 0)p(X',0)d’x’, (3-3.4)
where @,(X,w) is the solution to homogeneous wave equation
(V? +kg, )¢ (x,0)=0. (3-3.5)

Thus ¢,(X,t) represents the state of the system, or the wavefield in the medium, before the
perturbation U(X,?) exists -- ¢,(X,¢) is the initial, or incoming, wavefield.

Equation 3-3.4 is commonly referred to as the integral scattering equation or the
Lippmann-Schwinger integral equation.2# The second term describes the scattered part of

the incoming wave. To see this more clearly, note that the Green function for outgoing
spherical waves is
iky, |%-%’|
G(x,x")= ——. (3-3.6)
) 47x - x’|

For observation distances far from the scatterer, |x| >> |x’|, then

X-x
—

X-x|=Vai+x?—2%x-%" ~x—

R E
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4 observation
point

X-x

scatterer
Fig. 3-3.1. Scattering Geometry

Also note that X is approximately the direction of the fields emanating from the scatterer.
Defining a propagation vector

k, =k, (%/x), (3-3.7)
gives

ikO,x
(X, 0) = §,(X,0) + -
4r

fe" " u(x,)p(x",)d’x". (3-3.8)
Letting the final wavefunction, which exists when the perturbation U(X,®) ceases, be a

normalized plane wave state

eﬂ(/ -X
X,0)=—-, (3-3.9)
¢, (X, @) )
and, assuming that ¢(X,®) will also have a normalized plane wave structure, then

ik, x

(%, 0) = ¢,(x,0)+ — f(k, .k, (3-3.10)

where a scattering amplitude, f (k /,ki), has been defined as

flk k) =27 [ ¢, (', 0l (X, 0)p(X, 0)d’x’, (3-3.11)
and the incoming wavector is defined as
k, =k, (x/x). (3-3.12)

So far, only a classical approach towards scattering has been followed. To obtain a
semiclassical formalism that is general enough to deal with many types of incoming
particles and scatterers, the scaitering amplitude is related to the expectation value of a
perturbation operator

f(k, k) =279, |U|v) (3-3.13)
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where |¢,> is the total final quantum state of the system which includes both the incoming
particle and the scatterer, and |y) is the total quantum state of the system during the
perturbation.

The form of the operator U(X, ) can easily be obtained from quantum mechanics.
For instance, nonrelativistic particles with mass obey the Schrédinger equation which can
be put into the form of a scalar inhomogeneous wave equation. In frequency space the
Schrodinger equation can be written in the form

(V2 + &2, ) w(x,0) = (2m/R* )V (X, 0) y(x, 0) (3-3.14)

where K, =2mE[n*. (3-3.15)
The scattering amplitude for particles with mass is then

£k, k) =—(4x*m/n*)(9,|V|v). (3-3.16)

3.4 Scattering Amplitude for Photons

To derive wne scattering amplitude for massless incoming particles, a relativistic
Schrodinger equation must be developed. This can be done by utilizing the Schrodinger
time dependent equation

ih% v(x,t)= Hy(x,t). (3-4.1)

The relativistic energy-momentum equation allows the construction of a Lorentz invariant
Hamiltonian for the photon:

H?=p*c? (3-4.2)
where p = —-ihV and, from the Schroédinger time dependent equation,
H= ihi. (3-4.3)
ot
Then Eq. 3-4.2 reduces to
10 V2 lw(x,1)=0 (3-4.4)
¢? or’ ’ S

when it operates on a wavefunction y(X,t).

Define the space-time 4-momentum operator product as
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PP N NP (3-4.5)
¢t ot
10 10
where d, = (;—é;,V], o' = (z—é—!-——V) (3-4.6)
and p' =id". (3-4.7)
Then, the relativistic operator wave equation for a photon can be written in the form
2", y(x,1)=0. (3-4.8)

The first quantization condition instructs one to perform a gauge transformation on the
4-momentum

p" - p* +(e/c)A* (3-4.9)
where A* is the 4-vector potential, A* = (®,A), and ® and A are the scalar anda vector

potentials of the state consisting of both the photon and the scatterer. The gauge
transformation then results in

Au . e Y. e
p*p, =(i0*)(i9,) - (18" +ZA")(18# +;A,,).
Then
043, w(x,1) = V(x,1)w(x,t) (3-4.10)

where V(x,1)=i(e/c)|9,A" + A*3, | +(e/c)’ A*A,. (3-4.11)
Equation 3-4.10 is the Klein-Gordon wave equation for a massless particle. Written out
explicitly, it has the form of an inhomogeneous wave equation

2
(Vz—c%gt—z+V(x,t))w(x,t)=0. (3-4.12)

This expression can be written in frequency space by using the same methods as in Section
3.2 where, to maintain causality between sources and the fields they emit, the product
V(X,t)y(X,t) is more accurately expressed as the convolution in space and time of the two
quantities. The frequency space representation of the Klein-Gordon wave equation is then

[VZ + ko, + V%, 0)]y(x,0)=0. (3-4.13)

This equation has the same form as the classical wave equation, Eq. 3-2.11. Both
equations must be equivalent in the many particle limit where the quantum and classical
pictures converge. Thus, the index of refraction effect is the physical observable found by

taking the expectation value and spatially averaging over the interaction volume of the
interaction perturbation Hamiltonian
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ks, [2€,(%, )] = const ><<¢IIV|y/). (3-4.14)

The constant can be determined though the optical theorem. From the Maxwell
equations the exponential decay of the intensity of a field traversing a distance d through a
medium is related to a macroscopic »tal cross section

[ =1, (2-4.15)
where n, is the number of scatterers, /, is the incoming field intensity, and the

macroscopic total cross secacn is the spatial average of the microscopic cross section
derived in Section 2.3. But,

i x|? - m{2€,
I=1fe™ | = 1eemie, (3-4.16)
Then, for one scatterer
Im{2e,}= 0. /kV, = Im{F(k, K 3.4.17
m{ Eo}‘“wr//ﬂ‘[[ivo’mi(/' .-)- (3-4.17)

If the imaginary parts of the two quantities are related by the expression above, then by
analyucal continuation both the real and imaginary parts are related by

4 70—\ 4 | —
Zgo(x,w).: WF(k/,k‘)z—_,{;_VO‘%Tﬁ. (3-418)

f’o
This is a form of the Lurentz relation seen in classical electrodynamics.’ The
constant in Eq. 3-4.14 has then been determined along with a direct form of the T -matrix
elements

T, =(¢,|V|v). (3-4.19)
The T-matrix elements on the energy shell are given in Eq. 2-2.18. A more general

expression can now be derived by making use of the series expansion of the perturbed
wavefunction, Eq. 2-1.5

(o, xnVxlyx0) =3, a,@)e " [ 60V (x,0)9,(X)d’x

= ihS,(1). (3-4.20)
Thus, the T-matrix elements are proportional to the time rate of change of the transition
amplitude from the final to the initial state. Also note thai

(o,VIw)=(o,|T|0.) (3-4.21)

which leads 10 Tlg,)=V|y)=VS|e,) (3-4.22)
and thus T=VS. (3-4.23)
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The T-operator is then a scattering operator that describes the combined effect of a
perturbation and an § -scattering operator.

3.5 Coherence Properties of the Scattering Amplitude

An examination of the S-matrix elements for a constant perturbation will yield
useful information about the coherence properties of the scattering amplitude. From
Egs. 2-1.10 to 2-1.17 in the section on perturbation theory, and using the i€ convergence
factor to do the integrals as was done in Section 2.2, gives an expression for 7, up to third
order for the constant perturbation, Eq. 2-2.6:

T, = S,(0) = ] (< W)V, + (=if ) 2V, e [V, e ar

nei

H=i/n) T Ve [ Vo=t [ Ve dry + }

mzinem

vV.V..V.

_e“"ﬁ'\iv +z VinVn zz f" m mi j! (3-5.1)

SE-E, S&E-ENE-E)
The variable ¢ in the expressions above is 51mply a parameter that indicates when
the perturbation is turned off. Since the lower limit of the integral in the evaluation of T,
was 1 =—c, an assumption was made that the perturbation was left on for a time long

compared to the period of the oscillator (many oscillations occured during the perturbation)

t>>—L. (3-5.2)
Wy

The coherence properties of T, are now readily evident. On the energy shell, or for
energy conserving transitions where E = E , the overall phase factor disappears and gives,
as expected, the on-energy-shell T-matrix elements expressed in Eq. 2-2.18. Off the
energy shell, or for non-energy conserving transitions where E, # E,, the overall phase
factor remains attached to T,;. At this point one should note that there are no physical

systems that can instantaneously turn off a perturbation--sources have an effective decay
time associated with the lifetime of the atomic systems comprising the sources. There is
then an uncertainty relation associated with when the perturbation is turned off which will
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* V( x)\

T St
I T

—l At |-

Fig. 3-5.1.  Uncertainty, At;, in when constant perturbation ceases.

be called a jitter, Ar;. The jitter should be on the order of the inverse spontaneous
linewidth, or decay rate, of the source

At ~ 1T, (3-5.3)

Typically T is on the order of or greater than 10°/sec (for atomic sources). Photons with

frequencies in the visible to X-ray regime have energies E> 0.1 eV or frequencies

v>10" cycles/sec. Thus, for X-ray photons, the jitter will cover many periods of

oscillation. Since the time parameter, £, is uncertain to within Az, the phase is then
essentially random. If @, # 0, then T,; will exhibit a type of temporal incoherence.

The coherence properties can be observed in the definition of the differential

scattering cross section
29 (k&) = Adr [ (3-5.4)

If there is more than one final and initial state, then the total differential cross section is the
sum over all possible states

40 _ p
dQ

2
ZTﬁ =

fi

(3-5.5)

where B, is some complex scattering factor for the transition from { — f and ¢, = @/t is
a random phase factor. For the example in this section,

VVV

B,=V +z RACE +Zz 4o (3-5.6)

m#t ﬂtﬂl m 1 En)
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Since ¢; is a random phase, all the interference terms average to zero and

5‘_"_=A§

2
- +A2Y|B[ . (3-5.7)

INET]

2B

i f=i

The total differential cross section is composed of two terms. The first term is a
coherent sum of amplitudes that have the same temporal phase factor: ¢, = 0. Since each
amplitude always lies on the energy shell, the scattering is elastic. The second term is an
incoherent sum of amplitudes with nonzero random temporal phase factors. Since each
amplitude always lies off the energy shell, the scattering is inelastic. Imbedded within each
of the terms in Eq. 3-5.7 is a coherent sum over all possible intermediate states as
represented by the expression for B, in Eq. 3-5.6. For this reason, calling the scattering
process represented by each term in Eq. 3-5.7 as either a coherent or an incoherent process
is misleading and ambiguous. For elastic scattering all scattering amplitudes are coherent
with each other, whereas for inelastic scattering the scattering amplitudes may or may not
be coherent with each other. This discussion is summarized below :

Transition I: { — f, Amplitudes T, and T, are incoherent with respect to each other for
Transition 2: i — f, hLh#f,. If fi#f,#i the scattering amplitudes are inelastic
(wﬁ # 0). If w,; = @,; then T} and T, are coherent with respect to

Transition 3 j =k | each other (and inelastic if f, # i and k # /)

Transition I: £ = m = f 1 Amplitudes 7, and T, are coherent with respect to each other,

Transition 2: i — n, — f and if f # i the scattering is inelastic. If w,; = @ then T, is

coherent with respect to both T, and T,.
Transition3: j >k —>m

Transition I: [ = m =i} Amplitudes T, T, , and T, are all coherent with respect to
Transition 2: i — n, — i\ €ach other and the scattering is elastic.

Transition3: j 5k — j

3.6 Harmonic Perturbation

The interaction of a photon with a scatterer is modeled in perturbation theory by
forcing the interaction perturbation to be a harmonic potential. Before second quantizing
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the scattering theory, important information can be extracted by examining the semiclassical
perturbation of a monochromatic harmonic potential

y 0 [ — —oo 16,1
(1) = 2V(x)cos ot ' (3-6.1)

The T -matrix elements, to second order, are then

_ i i(@g+20) iyt i(wg—20)
_ :(mﬁun)l n(wﬁ w]r] ! +e € +e -
T, =V + . (3-6.2
=il 2V [ (£, +ha)  E—(E-na) | O°P

LET]

Examining only the T -matrix elements that lie on the energy shell reveals that there can be
both elastic and inelastic scattering processes (in the constant perturbation case of the last
section only elastic scattering processes existed on the energy shell). These processes are
summarized in the diagrams below.

(1). Single photon absorption (inelastic scattering):

E,
Q,
W;~0=0 Ti=V, NN .
; = = Fig.3-6.1. Single photon absorption.
\Eﬁhw- f,{, Q, =0, ig ingle photon absorption
initial state final state
encrgy energy
(2) Single photon emission (inelastic scattering):
E, Q,
W, + =0 T,=V, l ANNNB
El
E =E. +ho Q. =-0, Fig. 3-6.2. Single photon emission .
o / f /
initial suate final state
energy

energy
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(3) Two photon absorption (inelastic scattering):

w,-20=0 T,= ViV
4 ZE E +hQ,

R#*l i
E+2ho=E, Q. =w,
20 =0, +0o, Q, =y

For monochromatic incoming beam: o, = w;

(4) Two photon emission (inelastic scattering):

W, +20=0 T,= Vil
4 Z:’E, E, +hQ,
E = E, +2ho Q, =-0,
!
2= @y, +w§j Q, —a);/

For monochromatic outgoing beam: @, =0y

(5) Absorption reemission (elastic if @, = @, ):

vfn vni

w.=0 T =y —fn_
A A ;E‘.-E"+h§2m.
E‘.=E, Q. =w,

Harmonic Perturbation 33

E
Q, i

E
Q. |
E

Fig. 3-6.3. Two photon absorption.

Fig. 3—64. Two photon emission.

Fig. 3—-6.5. Absorption reemission.
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(6) Emission reabsorption (elastic if o, =@, ):

w;=0 T, = ViV
: 2 E -E, +hQ,
Fig. 3--6.6. Emission reabsorption.
E‘ = E/ Qnd = '—(l)kl
Q, =o,

Notice that even though the harmonic potential describes a single incoming particle,
some of the processes (and all of the higher order terms) have more than one photon
interacting with the oscillator. Perturbation theory then allows for many photon transitions
to occur. Even though the semiclassical perturbation was not second quantized, it must
consist of many discrete photons in order for the perturbation expansion to make sense.
This is then a reconfirmation of what a classical field is--a distribution of quantum particles.

Note that the emission reabsorption case is simply the time reversed process of the
absorption reemission case. There are also time reversed processes for the two photon
absorption and emission cases that have been omitted. Performing a coherent sum over all
these different processes leads to a total scattering amplitude which is similar to that derived
in the constant perturbation case restricted to the energy shell

v.v.VvV.

Ts= V+Z —m ZZ[F —hQ:TfE,

nej i mrinzm

, 3-6.3
_z«:"—mzm)]+ (5-6-9)

3.7 Resonant Transitions

The expression in Eq. 3-6.3 is valid as long as all possible time ordered events are
included. However, there appears to be a major problem for resonant transitions. For
instance, for resonant two-photon processes, hS2 — E,, thus the second and all
higher order terms in Eq. 3-6.3 go to infinity--the expansion appears to diverge. To keep
the perturbation expansion convergent, a sum over many higher order terms must be
performed. To do this, note that T; can be rewritten in a form similar to the Lippman-
Schwinger equation
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T, =V, + Vilu (3-7.1
§1E E +hQ,

For instance, the third order term can be constructed by inserting the second order term in
for T,. Doing so results in Eq. 3-6.3 when T, is set equal to V_,. This procedure can be
done indefinitely to obtain all the higher order terms.

Another problem that must be properly dealt with is the correct expression for 1/x.
From Dirac one finds that®

/x=P{l/x}-ind(x) (3-7.2)

where P is the principal value and &(x) is a Dirac delta function. This relationship can be
inferred from noting that one would usually expect that

d
—lnx=1/x. (3-7.3
T nx=1/x )

However, upon integrating both sides of the expression near x = () gives

J'H'd(ln x)=In(-1) and Jml/xdx =0,
-n -n

where the second integral is zero because 1/x is a well behaving odd function. The
integration then leads to the contradiction: In(-1) = 0.
Using the relation for the log of a complex number

Inx = In|x|+ iarg(x) (3-7.4)
allows the correction of Eq. 3-7.3 by setting 1/x to its expression in Eq. 3-7.2. This is the
justification for Eq 3-7.2 (Note that arg(—1)=xn. The minus sign was chosen for
Eq. 3-7.2 because 1/x ~1/(E, - E, + hQ,, +i€). The i€ factor discussed in Section 2.2
has been suppressed in all preceding equations for convenience, but when it is considered
in the integration above, one finds the minus sign to be the appropriate sign for Eq. 3-7.2.
The ie factor, as discussed earlier, ensures that causality is obeyed.). For compactness
define, as Heitler does, a { -function:”

C(x)=1/x=P{1/x} - ind(x). (3-7.5)

If only two photon processes are of interest, then the second order term in

Eq. 3-6.3 must be split from all the other terms. This is accomplished by summing up two

photon and all higher two photon scattering processes. Noting that there is no first order
term, V,, for two photon processes gives (converting Eq. 3-7.1 to operatr form)
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T=V T

v ey vty Ly, (3-7.6)
E-H, E-H, E-H, E-H,

where H,|n) = E/|n) = (E, — hQ, )|n) gives the energy of the intermediate state.

;”J
>

L) |F’) IL) |F)
kl
+..
D S IR T

Fig. 3-7.1. Two photon absorption reemission scattering diagrams to all orders. The
sum of all the scattering diagrams gives the total two photon scattering T -matrix elements.

This expansion is equivalent to summing two photon processes to all orders as
shown in Fig.3-7.1 (for absorption reemission). This is a common procedure in quantum
field theory, and there are plenty of tools available for performing the infinite sum
(yielding, unfortunately, the same problems with ultraviolet divergences that must be dealt
properly with renormalization theory). Using the identity®

L1 1, 1t 327
X+Y X X X X X X

gives

T=V ! v (3-7.8)

E-H, +V——V
E

— Iy

or, in matrix element form,

) VIl
e g T
' A n E — E/ + hQ[n

/:n n
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-y A

n#t

(3-7.9)

E,.—En+h§2~—-5@

When adding up all higher order terms (as shown in Fig. 3-7.1), the two photon
T-matrix elements acquires a term, I"A(E,,), in the denominator which prevents it from
diverging on resonance (E; = E, — hQ ). F,‘(E,,,) is the sum of all transitions from some
intermediate state, |n), to all possible final states, | f). It is therefore usually called a
complex spontaneous transition rate. Its real and imaginary parts can be examined in more
detail by using the {-function in Eq. 3-7.5:

! .
r(E,)= Z,EMV"’V’"[P{ ETE s mh}— ind(E, - E, + hQ,,,)}. (3-7.10)

For absorption reemission, the resulting photon, €, is an emitted photon, -, .
!
Then

v,[ - e
r"(E"/)zr"(Ekf)zp{z;En—E;—hwkl }~2ml§ v, 6(E,,—E/——hwk,). (3-7.11)

The real part of I“A(Ek/ ) is a level shift which is due to the self-energy of the scatterer and
has a magnitude on the order of the natural linewidth.> The imaginary part corresponds to
the natural linewidth and is a damping term caused by the effect of the emitted radiation on
the oscillator--the oscillator produces its own damping self-force. This expression can be
rewritten by substituting the non-physical, infinitely sharp §-function by a density of
states.

Let dp(E)dE be the number of states in the interval E to E + dE. The density of
states, dp(E), can be obtained by solving for a particle in a box with sides of length L and

imposing periodic boundary conditions. This gives rise to a discrete set of modes within
“the box:
e * =Mt (3-7.12)
This is satisfied if
k,=(2m/L)N, i=xy,z2 N=0,x1,12,... . (3-7-13)

The number of modes in the interval N +dN , Ny +dNy, and N, +dN, is then

dN = dN,dN,dN, = (L/2x)’ dk,dk,dk, =V, /(27)’ [k*dkdQ (3-7.14)
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where V, is the volume of the box. The number of states in the wavector interval k and
k +dK is then

dp(k)dk = [V, /(27)’ |k’ dkdQ. (3-7.15)
Since dp(E)dE = dp(k)dk , then for E = hck the density of states is

V 2dQ

Notice that dp(E) is defined only within a narrow cone of angles dQ. For a single isolated

oscillator, the emitted photon can travel in any direction, thus the spontaneous transition

probability is obtained by integrating over all the possible final photon states and all
possible final photon directions

dp(E) =

(3-7.16)

bz o]

LY

—Zﬂig.l.dEk/ v 25(En - El . E“/ PP(E"’)

n
=20, (£, )-ir} (£, ) (3-7.17)
where,
v 2
D:(, )=P ZJdEu,dQu, E-E - E —p(&, )} (3-7.18)
ry (& )“;jdﬂ V.l P(Eq) (3-7.19)
and p(E)= 57;%?(5/’1)2- (3-7.20)

The energy level shiftis 2D E, ), I'7E, ) is the natural linewidth, and plE, - E, = E
y o R P\Ex = Ep =Ly

1
is the density of states. Note that Fn’(Ek,) is indepenaent of the outgoing photon energy--

this is because the & -function is infinitely sharp at E,, = E, - E,. Broadening out the delta
function will yield a natural linewidth that slowly varies with the photon energy.
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In the case of emission reabsorption (Fig. 3-6.6), I‘,(Eki) is now a spontaneous
absorption probability

r,(&,)=2D;(E,)-iT; (). (3-7.21)

where

D;(E, )= Y. [dE, dQ ——J—‘-/ﬂl——p(Eki) (3-7.22)

n k‘
poo E,—E, +E,

Val p(E,)- (3-7.23)

r;(E,)=2nY [dQ,
f#n

The first order two photon T -matrix element is the sum of all allowable two photon

processes (absorption reemission, emission reabsorption, two photon absorption, two
~ photon emission)

-3 ViV .\ ViV
" S| E-E +no -D(E,)+iT; 2 E-E -ho, -D(E)+il; /2

ViV VoV
+ + (3-7.24)
E -E, +ho, -D(E)+iT; 2 E,~E,~ho, - D; (&, )+iTy/2
/

#i
When i = f, elastic scattering occurs and the last two terms become zero. When i # f, the
first two terms describe inelastic spin-flip scattering since usually the exiting photon has a
different spin that the incoming photon. However, in such a case, the scatiering process is
off the energy shell, and one would therefore have to multiply the two terms by a random
phase factor as described in Section 3.5. When i # f, the last two terms describe an
inelastic scattering process than can still lie on the energy shell if energy conservation is
satisfied, h(w, + wy)= i(E, — E,) as described in Figs. 3-6.3 and 3-6.4. For instance,
the third term conserves energy as long as the oscillator stays in the excited state for the
duration of one's observation. However, when both of the last two terms are considered
on the energy shell, they describe a scattering process that appears elastic since now two
photons enter and leave the system.

Finally, notice that the natural linewidth, '}, is the sum of all transitions from an
intermediate state to all possible final states. Thus 'Y contains contributions from both
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elastic and inelastic transitions. Then, I"* can be described as the sum of the transitions
rates for all the elastic and inelastic channels

r: = Z,' r:luu‘c + Z" ri:ldamc * (3—725)

The level shift D¥ is discussed in Goldberger and Watson.® It linearly diverges

since the limits of integration in the expression is taken from E, =c — 0. This is an
example of the common problem of ultraviolet divergences found in quantum field theory.
Through renormalization of the scatterer's mass when taking care of the scatterer's self-

energy, the divergence can be eliminated. In doing so one will {ind that the level shift is on
the order of a natural linewidth, T'*,
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4. MULTIPOLE FIELDS

4.1 Interaction Perturbation Hamiltonian

A multipole scattering amplitude can be constructed through evaluating the 7 -matrix
elements described in Section 3.4.!"® In that section the T-matrix elements were shown to
be proportional to the inhomogeneous term in the Klein-Gordon wave equation, or the
interaction perturbation Hamiltonian described by Eq. 3-4.11, which describes the
interaction of the electromagnetic field of a photon with a charged scatterer. Noting that the
total wavefunction includes both the photon and the scatterer's wavefunction, the foliowing
decomposition can be made:

|0)=|¢7:0°) (4-1.1)

where l¢” ) is the photon wavefunction, ) is the scatterer's wavefunction, and |¢) is the

total stationary state wavefunction.

To compute T); the expectation value of the interaction perturbation over the initial
and final stationary states must be evaluated. The contribution from only the scatterer's
part of the total wavefunction is

=] o;ve:d’x. (4-1.2)
Then inserting Eq. 3-4.11 yields
= (ze/c)jvod’x{qp [0.(a07)]+ 0; A“(aﬂ¢f)}+(e/c)2jvod3x OrAAG! . (4-13)

Integrating the first term by parts leads to

J, o7 [0u(a"er)|’x = 0 4% o ] (G '
The surface term goes to zero as the volume expands to infinity since the potential varies as
1/|x|. Then

Vi=- j dx jFA* + e/c‘)zjV°d3x¢}‘A”Aﬂ¢f (4-1.4)

where il =ie[07(0,07) - (2,97 )er] (4-1.5)

and j/f is the electromagnetic current of the charged spinless scatterer.

41
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42 Multipole Fields (4.1)

The Dirac equation can be used to evaluate j f for a charged particle with spin:

(7,p* ~m)y* =0 (4-1.6)
where 7y, is a Dirac y-matrix and m is the mass of "he particle. Applying a gauge
transformation on the 4-momentum, Eq. 3-4.9, leads to the expression

[vup* - m+(efc)y,A* |y =0. @-1.7)
Defining the perturbation as’
YV(x,) = (e/c)y, A" (x,0) (4-1.8)
leads to an interaction perturbation term similar to Eq. 4-1.4:
s 1 Ny
Vi=- J, a'xilat +(elc} [, dxyiara; 4-1.9)
where il =eyy, v (4-1.10)

and the quadratic potential term obtained from the Klein-Gordon equation has been simply
added on (the Dirac equation is simply a :inearized form of the Klein-Gordcn equation and
therefore does not yield this quadratic term). In this formalism, the wavefunction, y*, of a
charged particle is a 4-component spinor where each component satisfies the Klein-Gordon
wave equation. The covariant normalization of fermions is usually defined as

[v'lwdx=2E=~2m (4-1.11)
where, in the nonrelativistic case, £ = m.
When the photon wavefunctions are included, the matrix elements of the interaction
perturbation becomes
1 -fi eZ s s
Ve=(@7 |-, xiiatler)+ s—(or.07]a"a,l0r:07). (4-1.12)
The timelike component of A“, or the scalar electrostatic potental, will be partially
ignored. The scalar electrostatic potential contributes to an energy level shift called the
isomer shift, and its effect will be included in the scattering amplitude where appropriate.
Therefore, when computing the scattering amplitude, the 4-potential will be assumed to be
A* =(0,A) (4-1.13)
where A is the magnetic vector potential.
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4.2 Second Quantization

To conveniently manipulate the photon wavefunctions, the technique of second
quantization will be applied. Here, the fields are quantized in a Hilbert space in which the
basis states are the eigenstates of the number operator

Na = 81304, (4-2.1)
Nl ) = | ) (4-2.2)
)= Ve 1) 2
@ 1 ) = s + 1 +1) (4-24)

n, =0,1,2,....

The operators g, and a;, are the familiar annihilation and creation operators, K is a photon
propagation vector, A is a polarization index, n,, is an occupation number, and €,, is the
polarization of the photon of frequency w, .

In this notation (the notation used in Weissbluth” ), the vector potential is the sum
over all the normal modes and polarizations of the system

27(”16‘—2—~ i(k-x-wgt —i(k-X-@wy
Ax,n)=Y > su[aue (Rx-ant) 4 gf g7 x e )]. (4-2.5)
ki 0"k
The basis states for the system will be written, for the sake of clarity, as
|0.)=|07:07) =11) =|m 13, (4-2.6)
|0,)=|07:6;) =IF)=|m, .:1,). (4-2.7)

The T-matrix elements, Eq. 2-2.18, can now be evaluated with the help of the
scattering diagrams shown in Fig. 4-2.1.

Examining just the quadratic A term in the interaction perturbation, Eq. 4-1.12, the
T -matrix elements, up to first order, are

2

q s .
T. = Lo |A-AT|97 0!
5 (97:0; Fi90)
2
q 2rhc . ~e i(k-x-aw,t) t —i(k-x-w,1)
= £.-E.. I[a e “"+a.e ‘
zchz kzlkq' VO kkl kA k’A < ‘ kA ak).

< [ak'l‘e:(k'.x—w..l) +a:'1'e—i(k'.x-mrl)]|F> (4-28)
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Fig. 4-2.1.

Multipole Fields
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(k)
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k’ F2>
k
1)
®)
AlF)
L.)
';f’ﬂm
K 0
K
|E,)
o
L)
1)
W

Scattering diagrams: (a) and (b) single photon absorption and emission, (c)

and (d) prompt two photon scattering [that the diagrams for prompt scattering and its time
reversed process are the same can be seen by shrinking the intermediate state lifetime of
diagrams (g) and (h) to zero], (e) and (f) prompt two photon absorption and emission
[omitted the time reversed process since it corresponds to an equivalent diagram], (g)
absorption reemission, (h) emission reabsorption [the time reversed diagram of (g)], (i) and
(j) two photon absorption and its time reversed diagram, (k) and (1) two photon emission

and its time reversed diagram.
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Let the initial state of the system have occupation numbers n,, and n,,.:

|I>=|"uv"u'z';is)‘ (4-2.9)
For prompt scattering the final state of the system has occupation numbers n,,,. +1 and
n,, —1 where one photon mode has gained a photon (the scattered photon) and another
mode has lost a photon (the incoming photon): ‘
|F)=|ng =L, +1L£). (4-2.10)
The diagrams for this process and its time reversed process are shown in Figs. 4-2.1 (¢)
and (d).

The bilinear combinations of q,, and a,,. and their Hermetian conjugates in
Eq. 4-2.8 gives
<"m =L, + l‘akaak'z'l"u*"ku') =0
(”m ~ L, + 1|“;xa;'a'|"m’"x'z'> =0

<”u =L, + llaklalt’l‘lnkl’nk'l'> =V (e + 1) :

Acknowledging that prompt scattering and its time reversed process are equivalent and
associating k with the incoming photon k;, and k" with the outgoing photon K, leads to
the scattering amplitude

F(K,K,) = =1,k Tl +1(8) - & )£ e ™ ™ )i) @-2.11)
_4 i
where r,= chz (4-2.12)

and ¢ is the charge of the scatterer with mass m,_. For electrons 7, =7, -- the electron
radius. The minus comes from the optical theorem, Eq. 2-3.6, and it is expected since an
oscillator tends to resist driving fields by producing induced fields that partially cancel the
incoming fields--the induced fields are 180° out of phase with the driving fields.

The differential scattering cross section is related to the scattering amplitude by the
relation shown in Eq. 3-5.4. It has a term proportional to the number of scattered photons
n,. This term is the result of stimulated scattering and is only significant at high intensities.
For elastic scattering k; = k; and, in the dipole approximation, the differential scattering
cross section reduces to the familiar Thomson cross section

do as A
—5 =" (& -E)Af (4-2.13)
where fo = (i Je M7 i) (4-2.14)
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and f; is a scattering angle dependent form factor.

There is also a T-matrix element term for prompt two-photon absorption and
emission arising from the bilinear combinations a,,a,.,. and a,a;.,. of the interaction
perturbation [see Figs. 4-2.1 (e) and (f)]. The final state occupation numbers for prompt
two photon absorption are n,, —1 and n,.,. —1, and for prompt two photon emission the
occupation numbers are n,, +1 and n,.,. +1. Each mode k and k’ in the final state have
either simultaneously lost or gaincd a photon. The scattering amplitude is then

F(K,K,) = —rfkifk.A[n] (8] - & )£, ] |i,) (4-2.15)

for prompt two photon absorption, and

P k) = ~rafky Tl (g + 1), +1) (&7 & KA @216
for prompt two photon emission. Since prompt two photon absorption and emission are

inelastic processes, they can be safely ignored when considering only elastic processes.

Second order A? scattering gives rise to scattering of more than two photons and
will therefore not be investigated.

For the current-vector potential coupling term in the interaction perturbation,
Eq. 4-1.12, the T -matrix elements, up to second order, are

= (o231, J,, 4xls-Al973i)

1
¢ f d3x'n a*ta :;na - dngm"A ¢ip;ia
£y ; b E_XE 2 | >. (4-2.17)
N

States with the index o have been added to include quantum processes not described so far
(such as phonon scattering). The scattering diagrams (along with their time reversed
processes) are shown in Figs. 4-2.1 (g) through (1).

For the absorption reemission and its time reversed emission reabsorption process,
the initial, final, and intermediate states shown in Figs. 4-2.1 (g) and (h) are

1) = | 3

L) ={m = Lait)
|Lo) = | e + 1)
IF) = | = L + 1 £,)-
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Since these scattering events have intermediate states, they are properly described only by
the second order T -matrix element term

(FI-, d"xi AILKLI= [, &1, AID

Flk k) =-4Y, EE (4-2.18)
where
A= \2mhc/Vok &,,[ A, + AL ] (4-2.19)
kA
and
Ag = G,€*™, Al =ale™*. (4-2.20)

One must now find those combinations of the matrix elements of A that yield
nonzero values for each scattering process. For the case where IL,) is an intermediate
state, A, must be used to decrease the number of k photons by one in the state |L,), and
A[.,. must be used to increase the number of K’ photons by one in the state |F). Thus, the
only nonzero matrix element combination is

(Pa = L + L £ AL Mg = Lmes i X = Lier oA i g i, )

= (fa le_m"xllla)(llu le‘k“|ia>\/ Pyr ("m' + 1) ‘

The initial and intermediate state energies can be read right off the scattering diagram,
Fig. 4-2.1 (g).

E =E +ho, (4-2.21)
E =E,. (4-2.22)
Then the scattering amplitude is

P, (k) =-mm(f;|l/cjd3xéf- i, € " la)tia] Ve [dxE,- i,“.e""""lia).
E,-(E, - ho,))
(4-2.23)
For the emission reabsorption case, there is a loss of a k photon in the state |F) and
a gain of a k” photon in the state |L2). From the scattering diagram, Fig. 4-2.1 (h), the
initial and intermediate state energies are
E =E +ho, (4-2.24)

EL2 = E,2 +ho,. + ha,. (4-2.25)
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The scattering amplitude for this process is then

(fullVe [@x&;r I, €| oaXtoa |V [ dPx - B €™ i)
b )=~y T L ki

E - (E + ha, ) ‘
(4-2.26)
For the other scattering events in Fig. 4-2.1:
|10)=|"u3"a>
|F0-)=I"ua *l;fa>
Foe) = |Mn- +1: fa)
ILy) =|mg ~Lnils,) s E, =E, +ho. ; E =E +ho, +ho,
L.y =\t ter — Libie) s E., =E, +hw, ; E =E, +ho, +ho,
ILs)=|m + L, itse) s E, =E, +hw, ; E=E,
L) =|msten: + ibe) 3 Ey, =E, +hoy. ; E =E,
|E)=[na — L =1 f,)
|E))=|me + Lo, + 1 £,)
and their scattering amplitudes are found to be
Foo(K;) = —\Vik 2 7he (f, Ve [ d’x - |, €*7i,) (4-2.27)

Fy.(k ,) = —\[Vok 27hc|(n, +1) [, (ful Ve [ dx i, Tpe™ i, (4-2.28)

F, (KiK,) = =Kk n]

(alve[d'xer iy, et toal Ve [ d'xEr Ty e i) (4-2.29)
Ei - (El; - hwki )

kt’k, '\/-IT‘/_

(v J&xt i, Wi Ve | xE] o, i) (4-2.30)
E - (E,‘ - hwki)
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F, (K} k)= “\/7‘_;/7/\/(”/ +1)(n} +1)/n,

X fulVe [ dx&)- by, €™t Wt |Ve [dxE - o 6™ i)

4-2.31)
E - (E,, + hwkl )
Foo (kK7 = =k 7k (1, + 1)y + 1)/ m,
Malve[d'xe- L ™ oaNtsallie [ 58 by ™ i) o

E - (E,o +ha,, )
When considering only elastic scattering, the inelastic scattering amplitudes expressed by
Egs. 4-2.27 to 4.2-32 can be ignored.

For resonant transitions, all of the higher order terms of all the on-energy-shell
scattering amplitudes must be taken into account as was done in Section 3.7. Following
precisely the same procedures used in that section produces a natural linewidth that
prevents the scattering amplitudes from becoming infinite on resonance.

4.3 Multipole Scattering Amplitude

The next step needed to be taken in investigating the scattering amplitude is the
examination of its multipole structure. Following Frauenfelder's approach,? this can be
accomplished by applying a spherical wave expansion on the plane wave

o I
e** =4rY ij,(kr) Y Y (6.0, )Y on(6,. ;) (4-3.1)
¢=0 m=—t
where
Jelkr) = (/2kr)* ., (kr) (4-3.2)

and j,(kr) is a spherical Bessel function, the coordinate (6,9, ) is the direction of the
wavector K, and the coordinate (r,6,,9,) is the location of the observation point in a
coordinate system attached to the scatterer. The sum over £, as will be shown later, gives
the various multipole components of the plane wave (for instance, the dipole field
corresponds to the £ =0, 1, and 2 terms, the quadrupole field corresponds to the £ =1, 2,
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and 3 terms, etc.) A matrix element U, defined as (temporarily dropping the f, and n,
quantum numbers)

=1/c|[d’xi- ), e** (4-3.3)

can then be expressed as

1
b= DL (-1 j 8, (4-3.5)
q=-1
where é, =¥1/V2(e,xi8) (4-3.6)
e, =e, (4-3.7)
(-1)'e_, =¢, (4-3.8)
and g (kr)=ami'j (kr) (4-3.9)

The notation used in this section will closely follow the notation used by Weissbluth and
Edmonds.” 19

Note that the tensor product of two tensor operators of rank / and !/’ can be
expressed as

=Tyt ’] ET“ Ul iql'q|IlK Q). (4-3.10)

The spherical harmonic Y,,,(6,,9,) is a component of an irreducible tensor operator of rank
£. Then, since j,, is a vector and therefore an irreducible tensor operator of rank 1,

[Y("j“’](: =¥ v emig|e1LM) (4-3.11)
mq

where the ni index on j, is momentarily suppressed. Using the orthogonality relation for
Clebsch-Gordan coefficients,

2,—’"(]] ”ll’jz ’néljl jz jm>(.,l "l] j2 m2|.’] j2 jm) = am,‘m, 6m§m1 ’ (4-312)

gives
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Z[Y(')j“)]f:)(lmlquM) =Y YOO (em'1g’|£1LM){Emiq|¢1LM)
M m'q’ M

=YL, (4-3.13)

Using this relation U, becomes

Ve [dr [YO[0] " g, (kr)j.om,)

U, = é-i > ﬁ Y Yo (Q,)€; (Emig|1LM)(j,,m,

(4-3.14)
where the matrix elements of the current are defined in terms of the scatterer's spin and
angular momentum components

b = (80]i107) = (s, il o). (4-3.15)
Note that the tensor product in Eq. 4-3.13 can be written in terms of a dot product

of a vector spherical harmonic with the current. A vector spherical harmonic of rank J
follows the relation

Yon = 2,Y..8,(LmSq|LSIM). (4-3.16)
mq

The vector spherical harmonic is proportional to the amplitude of the incoming particle.
The total angular momentum of the particle is the sum of the orbital and spin angular
momentum

J=L+8S, (4-3.17)
and the vector spherical harmonic is the simultaneous eigenfunction of J?, 7, %, J, L,,
and S,. The numbers M, m, and ¢ are the projection quantum numbers of the total
orbital, orbital, 2nd spin angular momentum vectors respectively. For a photon vector
field, S =1, and the photon vector spherical harmonic, with the S subscript suppressed, is

Y = 2.Y.8,(Lmlg|L1IM). (4-3.18)
mq

The tensor product in Eq. 4-3.14 can be written in the more convenient form of a
dot product between a vector spherical harmonic and the current

You -§= D Yo (tmlg|UILM)Y j &, -6;.. (4-3.19)
mq q

But, unit vectors in the spherical basis follow the orthogenality rule

6,8 =6, (4-3.20)
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SO

Yo )= zytqu(l’"IqlaLM) = [Y(l)l(‘)]:) (4-3.21)
mq

by comparison with Eq. 4-3.11.
Applying the Wigner-Eckart theorem,

(ajmT®)a j'm’)= r.-_zjl,ﬂ(j’m'kqu’k e fT®c ) (4-322)

and using the relation in Eqgs. 4-3.18 and 4-3.21, the matrix elements can be written in
terms of its reduced matrix elements

- A gt im LMI|j Lj
U~=ZZ[8"YW(Qu)]<“"m‘ L) 1 ) (4-3.23)
=0 IM \/2jn+l

(i ve [dr (. 2)- )] :)

and AL (r, Q)= Y0 (RQ )8, (kr). (4-3.25)
The quantity y(L,£) with phase 1(L,#£) is a reduced matrix element that no longer depends
upon m, or m,. Note that the z-axis of the coordinate system in which the angles

(6.6, ) = Q, are measured is now the quantum axis of the scatterer (such as an electron or
nucleon).

where x(L,tl)=

gm0 (4-3.24)

Since

Yo () =Y Y,m€, (Emlg|e1LM), (4-3.26)
mq

the Clebsch-Gordan coefficient gives a constraint on the possible values of £ due to the
selection rules for the coupling of two angular momentum

|€-1<sL<E+1. (4-3.27)
Then, the only possible values of £ for a given L are
' {=L,Lt1 (4-3.28)
The selection rules also constrain the possible values of M
M=m+q. (4-3.29)

The expression for U, in Eq. 4-3.23 contains information about transverse electric
and magnetic and longitudinal multipole fields. To see this, first examine the £=1L
component of Y, ,,,:
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Y= Yiu 8,(L.M-qlq|LILM)
q9

L 1 L . L 1 L .
=(-1)"""M2L + 1{( ))’,.M_,e” +( ]ymeo

M-11 -M M 0 -M
Lo1oL), .
IMe1 o1 —pm)emn®a
(L+MYL-M+1), M .
=\2L+14(-1 Y, @, + Y, @
{( )\j (L+D)QL+12L 7 e+ +nL ™"

Cyaeem) [(L=M)L+M+1) « 4.3 3(
=0 J(L+1)(2L+1)2L Y’-”*’e"} (4-3.30)

where the following identity between the Clebsch-Gordan coefficients and the Wigner 3 - j
symbol was used:

o A —— A |
(jvmy jymy |y Jy jm)=(=1)27" w/2J+1(”; 2 ) (4-3.31)

m, -m

Tables , such as in Weissbluth or Edmonds,” 1% 1! give formulas for special types of 3- j
symbols. The exponent 2(L + M) is an even integer because if L is either integral or half
integral then sois M since M = L,L-1,...,~-L. Utilizing the properties of the lowering
and raising operators of angular momentum

1
LY, =+ﬁﬁ(£+1)—m(mi1) Yy (4-3.32)
L)Y, =mY, (4-3.33)

yields

_=(N2LL+ 1) -M(M 1) A M A

Y, ., = Y, .. + Y, e
UM \/L(L'f'l) LM-1" 4+ L(L+1) M¥0

. (VNZWL(L+1)-M(M +1) -
\/L(L'*']) (M+] 1
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‘L-yt M—lé i+ Lnyméo +L Y, M 16-1 1 A
= et = -1)'Le_ VY,
JL(L+1) JL(L+1)(2'( ’'L ") o
T (4-3.34)
L(L+1)
The angular momentum operator can be written as
L=rxp=-i(rxV) (4-3.35)

where r a radial vector. Then

P Yy = =i/ LIL+D)F-(r x V) = (=i JL{L+ 1)) V- (F xr)

=0. (4-3.36)

Thus, Y, is a transverse vector spherical harmonic, and, since it is related to the angular

n.omentum operator, it is associated with the magnetic multipole electric field. Akhiezer

and Berestetskii® define this field as Y% and Rose® as a magnetic multipole field Y.

Thus, depending upon notation

Yo = YO =y, (4-3.37)

To obtain the electric multipole electric field, the cross product between the
magnetic multipole field and F is taken as defined below

iYE) = x Y, (4-3.38)
Also similarly Y =Fx Y5 (4-3.39)

From Akhiezer and Berestetskii, the electric multipole field is related to the vector spherical

harmonics as follows
0 _ (e)_f j ’j+1
Y/"‘ - ij - 2J+1 Yj.j+l.m + 2} + 1 Yj,j-l.m‘ (4'340)

From the differential properties of the gradient of a scalar® 12

[+ . j
vy = /—’—— Yo +(j+1 ’ Y. . 4-3.41
r m J 2j+1 j.jtlm (j ) 2j+1 Jo-lm ( )

one can see that the electric multipole electric field is related to the linear momentum

operator

Y‘;’:———l’————. Y, (4-3.42)
"G

where p = —ihV.
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The other vector field has only longitudinal components along F:

RNV {() J+
Yo=Y =ty /21+ im = f2,+1 - (4-3.43)

These three vector fields form an orthogonal basis about which any field can be
expanded.

Going back to the expression for U, there is a summation term

L+1

ZY Q )g,(kr) Yim (Qn)Yu.M (Q,)gL(kr)

(=L~

+ YL,L—I.M (Qk )YL,L-I.M (Qr)gL—l(kr) + YL.LH.M(QK)YL.LH.M(Qr)gLH(kr)'

The first term can be expressed in terms of the magnetic multipole field Y&“,). The next two
terms give the electric and longitudinal fields. First note that the vector spherical harmonics
of angular momenta j + 1 can be expressed in terms of the multipole fields

Y, jom =N HT)I Y = +1YD) (4-3.44)
¥, am = (VNZTHI)NTHTYS YD), (4-3.45)

Then
L+1
EYuM(Q Yoo (Q ) (kr) = EY A)(f,Q,) (4-3.46)
{=L-1 =-1
where
AS(rQ,) = Y (2, )g, (kr) (4-3.47)
1
A1 Q) = 57 {[Lia (k) + (L+ g, (k)] YEAR,)

+L(L+1)[g, (kr) = g, (k)] YENQ,). (4-3.48)

The matrix elements, U, can now be expressed as a sum of the transverse and
longitudinal multipole fields

I m LM|j,Lj,m,)
U = ()| e e LTI} 4-3.49

where X(L,l)=an“ l/cjdl’ A(ljbz(err)'i(')llj;>e‘"“‘-“, (4-3.50)
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Another expressicn for the expansion of a vector field plane wave has thus been
derived

. i[ Y(l“ ]Am(r Q )

=Y {[ Y @)]AG (0,) + 6 Y (@ AR, + [ Y (@ )] ().

(4-3.51)
This shows the decomposition of a vector field into its transverse electric and magnetic
(eand m or A =1 and 0) and longitudinal (/ or 2 = ~1) multipole components. This is
basically what Rose has done but in a different manner.> Another expression for the vector
potential is then

= g 2mhc? {2 Lﬁi}(a\a[ékl . Y,;M(Qk)]A (r.Q,)e B

vﬂwk M (=L~

+ B Vi ()AL (.20 )e™ )} (43.52)

2 7hc? {2 Z(au[eu Ve (Q )]A“”(r Q,)e ™

Vow, |,

+ a6 - YR(QJAL () )} (4-3.53)

where the vector spherical harmonics are constructed in the quantum coordinate system of
the scatterer.

The scattering amplitude can now be expressed in terms of multipole fields. For the
case of spontaneous absorption reemission (n ;= O), the scattering amplitude on the energy
shell is

u,U
F(k, k)= fr (4-3.54)
E -E +ho, +il,/2

where

1/cjd3xé}- je

U, =(j;m;f, Jmng) (4-3.55)

U, = (jmin|lc [ d’x&: je**|j,mi,). (4-3.56)
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The polarization of the scattered photon has been complex conjugated to handle complex
polarizations.

The natural linewidth, I',, described in Section 3.7, can be readily evaluated in
terms of the reduced matrix elements x(L,£). In terms of the matrix elements U,

r,=2ry [dQ, lp |U’”

[=#n
where A, is given by Eq. 2-3.8, and the density of states, p(E,, ), is given by Eq. 3-7.25.
v, = U, with the interchange of indices i — f , and U,, is given by Eq. 4-3.23 or 4-3.49.
The sum over all final states is the sum over all final angular momentum, spin, photon
modes, and polarization states: Z Z/, n Zk , - For only one photon mode, k,,
the sum over photon modes can be 1gnored With the help of the orthogonality of spherical

(4-3.57)

harmonics,
[a0y, (@)Y,,.(Q)=8,.8,,. (4-3.58)
the angular integral in I, is then

Zjdnle You(Q )| =34, {Zym tmglt1LM)E, -&

X {z Yo A M 1g'|C1L M')E; - &
m'q’

= Y [d, Yo (@, Vo (@, Jiem Al LMY e m 121011 M)

Amm’

= 6,,,6,_L,6MM,. (4-3.59)
The natural linewidth then reduces to

i1 gom,)

()53, 3, Y i

jym UM UL'M’ (zjn )

X XL, )y (L' £)8,08,,: Oy

-, /M)ZZZO‘ miLMljiLj,mu)(j,m,LMlj,L.z;nu)m Loy

iy &LomM (2.In + 1)
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= (k272 Z(L.2f 2, +1)

=S I(LY) (4-3.60
(74

The multipole linewidth, I'(L,£), is a function of the multipole index L and an index £
which determines whether the process is transverse magnetic, transverse electric, or
longitudinal scattering (see Table 4-3.1). Then, the reduced matrix element expressed in
terms of the multipole linewidth is

>, L.of

For a two level system the sum over j, can be ignored.

= (27/k, )(2J, + )T(L,2). (4-3.61)

Multipole

Electric: Magnetic:
index 1=1 120
L=1 {l =0,2 dipole
£=1 dipole
L=2 {l =13 | quadrupole
{=2 quadrupole
L=3 {l =2,4 sextupole
£=3 sextupole
Table 4-3.1. Multipole fields designated by multipole index L.

The spontaneous absorption reemission on-energy-shell scattering amplitude can now be
expressed in terms of the multipole spontaneous radiative linewidth!-

Fn(k/aknxo> (2”/1‘ ) ks )loz 2 [M LtM ][Yl'z'w(ﬂk,.)'éi]

uMeL'm

) \/I‘(L,Z)I‘(L’, 7) PLICURLICRY)]
E.-E,+ho, + ir, /2

(jym, LM|j, Lj,m),

j,m,) (4-3.62)

1
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or

Fn(k/’ki’xo) = "(2 ”/k/ )e—i(k’ —II,-)-!,, Z
MM

% (& ila, )[vir () €]

ALM’

SRRt
X ’ ’
E,-E, +hw, +iT,/2

(jym, LM|j, Ljym Y jim L' M|j,L’ j,m,) (4-3.63)

For convenience of notation in later sections, F,(kf,k,.)an(k/,k,,,xo =O). If the
scattering process preserves time reversal invariance, the phase difference,
n(L,A)-n(L’,A"), between two multipoles is zero or #.!3 4 The spatial phase factor,

o, = —(k - k,») - X, , comes from shifting the scatterer from the origin by the displacement
X, as shown in Fig.4-3.1.

Fig. 4-3.1. Incoming transverse plane waves with direction k; scatterers off particle
located at X, to produce outgoing transverse plane waves traveling in direction k /-

In general, the scattering is usually expressed as

Bl = (fo|F i) (4-3.64)
where the matrix elements of F, must be summed over other quantum states not discussed
so far (such as phonon states) to arrive at a final value for the scattering amplitude. For
instance, in phonon scattering,® 6 116 the plane wave can be approximated as having an
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additional oscillatory spatial function, U, that describes displacements about an equilibrium
position X of a scatterer

PLE SN SN (4-3.65)
In such a case, the scattering amplitude changes to
B = EXA™ o)™ ) (366

The vibrational factor usually lead to a diminution in the scattering amplitude, and, for
nuclear scattering, is called a Lamb-Mossbauer factor, or, for electronic scattering, a
Debye-Waller factor. The resonant denominator of F, also changes to include frequency
terms that give rise to frequency sidebands.

4.4 Spherical Multipole Electric Fields

In the computations done so far, the incoming and exiting waves have been
described as plane waves. Such a description is inadequate for a single scatterer since it
usually scatters waves spherically that fall off as 1/R where R is the distance from the
scatterer to an observation point. To include this effect, the incoming and outgoing vector
fields of the photon are described as spherical Green functions

. iklx-x’|
AM(X,X’) =€, Ejﬂ (4-4.1)
. ik|xo+x|
A, (x,,x")= Ao (4-4.2)
0

where the incoming spherical wave originates at point X, in Fig.4-3.1, the scattered

spherical is observed at point X, and X’ are the internal coordinates of the scatterer.

Inserting these vector potentials into the expressions for U, and U, in Egs. 4-3.55 and

4-3.56 will give the spherical multipole electric field amplitudes scattered from a particle.
The spherical wave expansion of the spherical Green function is!’

ik|x-x’l co ¢

== A4mik Y j (kr )0 (k1) Y Yo (B 04 Won (6, 8,) (4-4.3)
|~ x| £=0 m=—t
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where h{")(kr) is a spherical Hankel function

ht(l)(kr) = \/;71[‘]:4,1/2(1) + iNm/z(x)]- (4-4.4)

Inserting the spherical wave expansions into the expressions for U,, and U, and carrying
out computations similar to those performed in Section 4.3 leads to the spherical multipole
electric fields in a form very similar to Eq. 4-3.62

E"(k/’k‘) = éfl:”,(kf’ki) = éfp;(kf’kixvuu(nu)"'zuu(’k ) (4-4.5)
where Fn'(kf,k,.) is similar to Fn(k,,k,.) in Eq. 4-3.62 but with the substitution

Yo () = Z,(n.€,) (the spatial phase is now contained in the spherical Hankel
functions). The spherical Hankel harmonics follow the relation

Z e (1 ) = KF (k)Y o (6. 61 ) (4-4.6)

Folkn ) = i(=0)" hy(kn,) (4-4.7)
R, ==X, for |x—x,|>>[x] (4-4.8)
Ko =P for [xo|>>[x] (4-4.9)

One can also construct magnetic, electric, and longitudinal multipole electric fields
in a manner similar to that in the last section:!?

Z0 =2, =k (kr)Y,, (4-4.10)

¢ i m o) i+ 1 ]
iZ{) = —;V x 28 = i(~i) /{ f_zlfnhj_l(kr)Yj',_l_m - ’E;?hiﬂ(kr)vi.m.m} (4-4.11)
i ol [ T
Z,=-VZ,  =it-i)” { /2j1+ A (KDY \[—;mhjﬂ (kr)Y, ,M} (4-4.12)

The magnetic multipole field is still a transverse field, but, since the electric and
longitudinal multipoles now have spherical Hankel functions multiplying the vector
spherical harmonics, they are no longer purely transverse or longitudinal fields--they both
now have mixtures of transverse and longitudinal field components. The spherical

multipole electric field expressed in terms of these multipoles can still be cast in a form very
similar to that in Eq. 4-3.63

E,(k,.k)=&F/(k, k)=¢&F,(Kk,k) (4-4.13)

V‘[l)(ﬂ-)-'z(:ﬁ(.-ﬂu)'
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Typically the approximation is made that the incoming fields are plane waves and
the scattered fields are spherical waves. Also, if the observation point is far from the
scatterer compared to a wavelength, a far field approximation can be made for the scattered
spherical field. The spherical Hankel functions, to all multipoles, approaches

e
fkr) 22, (4-4.14)
ikr
and zl) - f;——Y}j). (4-4.15)

In the far field limit, the electric and magnetic multipoles now become purely transverse

fields, and the longitudinal multipoles are purely longitudinal fields. The total electric field
at the point X is then

ik,
e

/
E(x)zé‘.EOe‘ki.x +é/EO e‘k,"lop;(k/’k‘_) (4_4_16)

.
ky

where the first term is the incoming plane wave field of amplitude E,, the second term is
the spherically scattered multipole electric field with F, given by Eq. 4-3.62 or 4-3.63, and
%, is given by Eq. 4-4.8. Notice that the expression for each transverse electric field
component is now equivalent to the solution of the integral scattering equation discussed in
Section 3.3 (see Eq. 3-3.10) when [x| >> |x,|. Now that the scattered fields from a single
particle have been found, one can then go on to solve for the net field scattered from several
particles (this is donc in Chapters 6 and 7). When there are many particles and frequent
multiple scatterings, the computations become too time consuming, and one must rely upon
the Maxwell inhomogeneous wave equation for transverse electric fields. Fortunately, a
wide range of problems involving many particle media can be handled well by the Maxwell
inhomogeneous wave equation (as shown in Chapters 6 and 7).
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5. DIPOLE POLARIZATION PROPERTIES AND
STATIC FIELD INTERACTIONS

5.1 Polarization Properties of Electric and Magnetic Dipole
Scattering

For the case of Thomson scattering, the scattering amplitude, Eq. 4-2.11, can be
written in tensor form where a polarization matrix contains all the polarization information
about the scattering process

Fr(k, k)=~ /P (5-1.1)
v e [E-ES ELE

Where PT::G"E[ = ¥ A[‘ A A;o . (5‘1.2)
g & &€&

Since there are two directions corresponding to the incoming and outgoing photons,
there are two separate polarization bases for each direction, and the orientation of each basis
with respect to one another is arbitrary. Usually a convenient orientation is chosen that
diagonalizes the polarization matrix and simplifies calculations. Constraining one
polarization component, say the x-component of both the incoming and outgoing fields, to
be perpendicular to the scattering plane--g€, =6 = sigma polarized--forces the other
component to lic in the scattering plane--€ =& = pi polarized--(see Fig. 5-1.1). Under
such conditions the polarization matrix diagonalizes to

P=l. . . .= ‘ (5-1.3)

n, -0, WX 0 cos26,
where 26, is the scattering angle between k; and k. The polarization matrix reveals that
Thomson radiation has an angular distribution commonly associated with electric dipole
scattering--horizontally polarized fields are reflected by the same amount regardless of

scattering angle while vertically polarized fields suffer a decrease in amplitude proportional

to the cosine of the scattering angle between the incoming and outgoing wave directions.
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Az

Fig. 5-1.1. Scattering geometry for a particle at the prigin. Sigma (pi) polarizations are
perpendicular (parallel) to the yz scattering plane. Q, is the quantization axis direction
with polar and azimuthal angles Q and x. 28, is the scattering angle.

For dipole scattering (and no polarization mixing), the tensor form of the scattering
amplitude is (from Eq. 4-3.63)

i(k, -k, )-%o LA o
F(k/,k‘.,xo) (27t/k) r=ha) AZPWE E+(hw )+‘r/2\j,m,LM|j,Lj,lm,,)2

(5-1.4)

where the polarization matrix is of the form

P =& YLr (0, Y, )&

)‘) o ) (3) L

[ Y Qk ke Q,/) el] | Q, )][vw (@, )-8
1, Af® ~j . ~re | P

[ Q,, ][YI(M) K 'd ] [Ey 2 (Qk,-)][vl(jl)(gk,).eﬁ ]
and A =1=e for electric dipole scattering, A =0 =m for magnetic dipole scattering, and
L=1 for dipole scattering. The vector spherical harmonics for dipole (and also

quadrupole) scattering are given in Table 5-1.1. The scattering geometry presented in
Fig. 5-1.1 will be used to examine the structure of the dipole polarization matrix.

(5-1.5)
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Vi v
J m factor 0 6 0 6
1 1 —§——e" —cos6 —i 1 icos 6
167
’ 3 .
1 0 —sin@ -1 0 0 i
8
3 ) .
1 -1 —e cos @ - 1 —icos@
167
2 2 J—i- sinfe®*® | cos6 i -1 —icos6
16r
2 1 ——S——e" 1-2cos*0| =—icos@ | cos@ i(2 cos’ 6 — 1)
l6m
15 . )
2 0 ——sin@ - cos @ 0 0 icos@
8
2 ~1 —-S-—e“" 2cos’0@—1| —icos@® | cos@ i(l —2cos’ 9)
167
2 -2 1f—é—sin e | cosb —i 1 —icos6
167
Table 5-1.1. Electric and magnetic dipole, j=1, and quadrupole, j=2, vector

spherical harmonics.!

Fig. 5-1.2. Wavector in quantization system defines the spherical coordinates and unit
vectors of a vector spherical harmonic.
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The dipole direction, or quantization axis 6,, points in some arbitrary direction
specified by the polar and azimuthal angles Q2 and x:
Q, = cos ysin QX + sin ¥ sin QY + cos Q2. (5-1.6)
Recall that the spherical coordinate system for the vector spherical harmonics is defined by
the quantum axis of the scatterer. The polar angle, 9(.; 1)+ 18 the angle between the incoming
or outgoing photon and the quantization axis--see Fig. 5-1.2.

cos 9(‘..,) = é, -IA((‘._” = cos 6, sin sinQ Fsin 6, cosQ (5-1.7)

~

where ki, =c0s6,yFsin6,2, (5-1.8)

and the top sign in the + corresponds to k; and the bottom sign corresponds to k. Since

a

the (6,,0 ,) basis can be arbitrarily oriented in a plane perpendicular to the quantization
axis, only the azimuthal phase difference, A¢g = ¢, — ¢,, is meaningful. This phase
difference can be found through the angle addition rule

c0s26, =cos 6, cosf, +sin 6, sin 6, cos(¢/ - ¢i). (5-1.9)

To perform the dot products in the polarization matrix, Eq. 5-1.5, the spherical unit
vectors must be transformed into Cartesian unit vectors. This transformation can be
accomplished by noting that the azimuthal unit vector, 6 is perpendicular to both k and Q,

$=0, xk/|, xK| (5-1.10)
and the polar unit vector, ,is perpendicular to both 6 and k
6=$xf(/|$xf(|. (5-1.11)

After some algebra, the spherical unit vectors can be written down as

. —(cos6, cosQxsin B, sin ysin Q)X +cos ysinQ(cos B, 2+ sin 6, §) (5-1.12)
i)~ o
‘fN(i-/)
- —cosxsinQX —(sin 6, sin ¥sinQ * cos B, cosQ)(sin 6, Y cos 6, 2 + cos B, 2)
N -
VNin
where (5-1.13)

N,.;y = (cos 8, cosQ £5sin B, sin xsin Q)" + (cos xsin Q)’. (5-1.14)
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The polarization vector directions can be read directly from Fig. 5-1.1

AGf) A 3% )
8 =g, =k (5-1.15)
é’;'”E&(‘.|I)=_-tsin0,9+cos@,,i. (5-1.16)

Then, all of the dot products in the dipole polarization matrix can be put in the form (see
Fig. 5-1.3)

~

6(1'/) . .(m = i(‘../) . 0(‘.'[) = cosﬂ(i‘/) = —(cos 0, cosQ *sin @, sin ysin Q)/\/X/—(;; (5-1.17)

8sy0usy = (R i) = sin B,y = —cos xsinQ/ [N . (5-1.18)
IN A
0
B
>
L
k

Fig. 5-1.3. Orientation of polarization vectors with respect to spherical unit vectors
lying in the (6,%) plane and the wavector direction.

There is now enough information to construct the dipole polarization matrix. For
magnetic dipole scattering, the M =0 term is

) _ 3 [ sinB;sinf,cosP;cosf, —sin6;sinb, cosf;sinf,
0w o . . . . . . .
—sin 6;sin 6, sinf,cos B, sin6,sin @, sinf;sinf,

) -1,
P ) (5-1.19)

the M =1 term is

Pl(lm) = _3_ei(./—¢‘)
16n

y ((sinﬁ‘. —icos 6, cosﬂ‘)(sinﬁ/ +icos 6, cosﬂ/) (sinB; —icos, cosﬁi)(cosﬂ/ —icosf, sinﬁ/)]
(cosB, - icos 6;sinB; )(sin B, +icos8, cosp,) (cosﬁ‘.—icos()‘sinﬂi)(cosﬁf+icos()/sin/3f)
(5-1.20)
and the M =—1 term is obtained by taking the complex conjugate of the M =1 term
because a linear polarization basis was chosen

P = (Pl({"))‘- (5-1.21)
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For electric dipole scattering, the polarization matrices are equivalent except for the
substitution 8 — B— /2 since the electric dipole vector fields are orthogonal to the
magnetic dipole vector fields. For simple orientations of the quantization axis with respect
to the photon directions, three examples illustrating the structure of polarization matrices are
given below.
CASE 1: Quantization axis is perpendicular to the scattering plane: 6, = X.
Q=rn/2, x=0, 6,=0,=7n/2, ¢, -9 =264

A

Sin="0un  Tipn=%sp Bup=-7/2
- 3(0°0 w3 e f1 O
Then, P = §E(0 1} R = Ee* 26 (0 0 (5-1.22)
3(1 0 3 ,...(0 O
P(C) - , P(c) = e pti20s 5-1.23
1o 87[(0 0) 762 o1 (>-1.23)
& & 6 i 6 &
M= 1 0 -1 M= ll Ol —ll
G, r, S, r, 6, x,
(a) (b)

Fig. 5-1.4. For a dipole transition M =m, —m,, incoming linearly polarized fields
scatter into outgoing linearly polarized fields: (a) magnetic dipole transitions, (b) electric
dipole transitions.

The polarization matrices show thatthe M =m_—m , transitions emit only linearly
polarized light. For M =0, the scattered magnetic dipole radiation is vertically, or pi,
polarized while for M = 11 the scattered radiation is horizontally, or sigma, polarized. For
scattered electric dipole radiation the situation is opposite to that of magnetic dipole
radiation as shown in Fig, 5-1.4,

CASE 2: Quantization axis is parallel to the scattering plane but vertically

A

oriented: Q, = 2.

Then
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P(m)z_z_(—-cos2 9, 0 ’ pm __ 3 -sin’6, zisin6, (5-1.24)
Y 8rl 0 0 M 16m | isin 8, 1
3(0 0 3 1 Fisin 8,

Pl = 2 i P9 = 5-1.25
0 SN(O -cosze,,) M 16w\ Fisin@, —sin® 6, ( )
CRNE R ) & & &

M= 1 0 -1 M= & Ol —ll
n, o, R, G, T, G,
(a) (b)
e, e
M= 1 -1
e’ e’
()

Fig. 5-1.5. For forward scattering (26, =0) incoming fields scatter into outgoing
linearly polarized fields: (a) magnetic dipole transitions, (b) electric dipoie transitions. For
backscattering (26, = 180°) polarization reversal occurs for circularly polarized fields: (c)
magnetic and electric dipole transitions.

For M =0, the scattered magnetic (electric) dipole radiation is horizontally
(vertically) polarized. For M = =1, the scattered dipole radiation is g:nerally elliptically
polarized--this is an example of polarization mixing where an incoming polarized field can
be scattered into an outgoing field of a different polarization. However, for forward
scattering, (26, :()), the scattered field is linearly polarized (no polarization mixing
occurs), and for backscattering, (26, =180°), the scattered field is circularly polarized.

For backscattering the polarization matrix for both magnetic (upper sign) and
electric (lower sign) dipole radiation is (fcr M =1)
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pome - __3 (F1 ) (5-1.26)
N T T Tem ki 41

If the incoming field is left circularly polarized

(6, +ix,), (5-1.27)

then the scattered field has polarization

~: 3 1 (F1 iyl 3 1 1 3 \.
P . @ = =F =:~(——) !
" ' 167:«/f(ii ilIi] Snﬁ(-i) 8n/) -

This shows that left circularly polarized fields scatter into right circularly polarized fields

for M =1. However, right circularly polarized fields do not scatter since

pne) i 3 1 Tl +iY1 o
n o 1en2\H I A-i)

This is an extreme case of polarization mixing--it corresponds to complete polarization
reversal.

For M =-1, the converse happens--incoming right circularly polarized fields
scatter into left circularly polarized fields whereas incoming left circularly polarized
radiation does not scatter at all. This is all shown schematically in Fig. 5-1.5 (c).

CASE 3: Quantization axis is parallel to the scattering plane but horizontally

~

oriented: Q, =y.

Q=yx=n/2, 0iy=6s @, -0=nm
6@'—'“‘6,, 6,=$,, i‘i="év ifzéf’ Bi=m, ﬁf=0
Then
pm _ 3 —sin®8, 0 | pim __ 3 —cos’ 6, ticos@, (5-1.28)
8zl 0 0 M 167m\ Ficos 6, -1

po=3 (0 0 po =3 L st )
10 0 -sin’6, ) M1 16m\ Ficos8, —cos’ 6,
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A A A

X, g,
1 Ol
K, o,

~

T, o,
l -1

Q>

X
]
G.(______

o,
(a) (b)
e e
M= 1 -1
e’ e’
(c)

Fig. 5-1.6. For backscattering (26, =180°) incoming fields scatter into outgoing
linearly polarized fields: (a) magnetic dipole transitions, (b) electric dipole transitions. For
forward scattering (293 = O) incoming fields scatter into outgoing circularly polarized
fields: (c) magnetic and electric dipole transitions.

For M =0, the scattered magnetic (electric) dipole radiation is horizontally
(vertically) polarized. For M = 1, the scattered dipole radiation is generally elliptically
polarized. However, for forward scattering the scattered field is circularly polarized, and
for backscattering the scattered field is linearly polarized (this the reverse of Case 2).

For forward scattering the polarization matrix for both magnetic and electric dipole
radiation is the same:

I A
i’,fﬂ)=1’1§3=—ﬁ($i _J, (5-1.30)

and for M =0 the polarization matrices are zero. For M =1, incoming left circularly
polarized fields scatter into outgoing left circularly polarized fields since

pme) g = 3 171 1___3_._1_(1 =(_3_)é/
WS T e N2\ i —1Ni) sm2li) \8x) "

while incoming right circularly polarized fields do not scatter. Similarly, for M = -1, the
converse occurs (see Fig. 5-1.6). No polarization reversal occurs as happened in Case 2.
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There can be no polarization reversal for sigma or pi polarized fields because
scattering can only change the amplitude or phase of the incoming field. There is no way a
phase change can transform a sigma polarized field to a pi polarized field. However, by
introducing an additional quantization axis, and arranging a set of scatterers in a convenient
lattice structure, this limitation can be overcome. This is discussed in Section 5.2 and 5.3.

The scattering amplitude, Eq. 5-1.4, can be greatly simplified for those cases in
which all the angular momentum spin states are degenerate, or when operating far from any
dipole resonance. The scattering amplitude can then be spin averaged by summing over all
intermediate, final, and initial state projection quantum numbers, or spins, m [y My M, and
averaging over all initial state spins

F®(k, k,)= ZF(A)(kI,ki)/(ZjiJrl) (5-1.31)

mym,m,
where 2, +1 is the number of initial state spins, m,.

For elastic scattering j, = j; and m, =m,, and thus the sum over m;, in the triple
sum above can be omitted. Since all of the angular momentum spin states are degenerate,
or nearly degenerate, the energy, E,, of the state with spin m, is the energy of the unsplit
angular momentum state with angular momentum quantum number j,

E ,=E,. (5-1.32)
The resonance denominator of the scattering amplitude is then the same for all spins m, and
can therefore be pulled out of the sum (assuming also that the total decay rates, I",, from
each state with spin m, are all the same). Since the quantization axis is now unimportant--it
can point in an arbitrary direction--let it point in the same direction as in Case 3:

Q,=y. (5-1.33)
Then the polarization matrices of Case 3, Egs. 5-1.28 and 5-1.29, can be used to perform
the spin average.

Concentrating on just magnetic dipole scattering, the main part of the spin average
calculation involves the term

. o 3 (S S
plm) jom AM|j1jm, 2=-—( ), (5-1.34)
m,,zm}M]M < Y I ! ) 167m\s, 5y

where (since m, =m, + M the sum over m, can be suppressed)

5, = 5,05 8, — ¥ 2sin? 8,(J,m, 10| 1 jum, ) (5-1.35)

my
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slz=Ztcose,,((j,,m,,l,—1|j,,1,j,,m,—1)2—<j,,m,,1,1|j,,1,j,,m,+1)2) (5-1.36)
my

Su =Sz (5-1.37)
5, = Z((j,,m,,1,1|j,,1,j,,m, +1Y +(j,umy L1 1 fum, +1)2) (5-1.38)
my

Since, for dipole transitions, j, = j, +1, the Clebsch-Gordan coefficients reduce to
simple relations?

j,—m,+1)(j,+m,+1)
(27, +1)(J, +1)

(o 1007, 1,7, +1m, Y | (5-1.39)

(j,im/+1)(j,im,+2)'

. { 1 : =
<J/’m/’1’i1'1/’1“’f +1.m; i1> - 2(21'/ +1)(jf+l)

(5-1.40)

Then the off-diagonal elements sum to zero since

icos@,(2j, +3) X
$;y = —— o jf ) Y m, =0. (5-1.41)
(21/ + 1)(jf + 1) m ==y

This result already shows that polarization mixing is not possible for the spin averaged
scattering amplitude since the polarization matrix is diagonal.

For the diagonal element s,,:

1 o |
o= | s ) z;m;}
_ I RV | iU, +1)(24, +1)
=302y, )| 2 A ) e
. 2, .
:%(2j/+3)=-§(2jﬂ+1). (5-1.42)

Noting that

. o 2 1 2 , . 3
§<1/’mj'1’0|f/’1’1/ +lm) = 2, + 10, +1) (77 + 24, +1)(24, +1) %mf}
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=3(2],+1) (5-1.43)

gives
2 2 , .2 1 ,
5,, = cos” 8, 5(2/,-&-1) -2sin’ @, -?;(2i,,+1)

= %(2j, +1)cos26, (5-1.44)

The spin average scattering amplitude is then

2j +1
Fa(:)(k/,k‘)z—__l_.g_jl.t_lrﬂpa(z) 1 - (5_145)
4k, (2j;+1) & @,, — @, +iC/2hk
(my _[€0826; 0
where =l 1) (5-1.46)

and I, =T(1,m), and T is the total decay rate from the angular momentum state with
angular momentum number j,. For electric dipole scattering, the average scattering
amplitude is of the same form as Eq. 5-1.45 except that the polarization matrix is now

P(°>=1 0 . (5-1.47)
> \0 cos26,

Note that the polarization matrix for spin averaged electric dipole scattering is
equivalent to that for Thomson scattering--this is one reason why Thomson scattering is
sometimes called electric dipole scattering at high photon energies. The scattering
amplitude for dipole radiation can then be written (in nontensor form) in a manner similar to
that for Thomson radiation

Fo(k k)= —;12—————(2"? 1) Lo 0 -aY) — (5-1.48)
; (2j;+1) & @, — W, +il/2h
where for electric dipole scattering
u =g, (5-1.49)
and for magnetic dipole scattering
0™ =h=kx&. (5-1.50)

If the polarization of an electric field is €, then the polarization of the corresponding
magnetic field is h. Then, the scattering amplitude reveals that magnetic dipole electric
fields have the same polarization characteristics as electric dipole magnetic fields.
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The total cross section for electric or magnetic dipole scattering is, from the optical
theorem,

2
o, = -‘-‘Elm{pm(k ,,k,.)} =0, (L f”) - (5-1.51)
ky (,, - ) +(T/28)
where g, is the total cross section on resonance
2m(2j,+1 (I‘ad) av =
O, = —| —=— | 2= |u,-u,). 5-1.52
0 k}(Zj,A—l) r (0 -a) ( )

This is the familiar form for the spin averaged total cross section for dipole scattering.>
For nuclear scattering, the ratio of the radiative decay rate to the total decay rate is a
measure of how dominant the internal conversion rate is

r, |1

r l+a,

(5-1.53)

where a, is the internal conversion coefficient. In nuclear scattering, since the photon
energy is so high, the probability that the nuclear excited state will emit an electron, rather
than a photon, to decay back to the ground state (that is, will result in internal conversion)
can be quite high. For instance, for *’Fe, a common Méssbauer isotope, o, =8.23,
thereby limiting to 11% the chance that an isolated atom will scatter a photon instead of
emitting an electron.? However, when there is a collection of atoms, this limitation can be
overcome and there can be more than an 11% chance of photon emission through a
collective phased excitation effect. This is discussed in the dynamical scattering theory of
Chapters 6 and 7.

For nuclei having simple two-level systems, the total decay rate and the internal
conversion coefficient can be easily measured, and the total cross section, Eq. 5-1.51, can
be readily computed. However, electronic systems usually have many level systems with
many radiative decay schemes and cascades of Auger emissions from many different
angular momentum states. Performing a spin average over all the possible transitions is a
formidable task for multielectron systems (recall Eq. 5-1.48 was only for a two level
system with initial and intermediate states specified by j, and j ). Therefore, the total cross
section is usually decomposed into a sum of all the possible types of scattering processes,
and the dominant processes are selected

_ las + inelas elas+inelas
Glol — Y photoelectric + G(.‘ompmn + 0Thonuon + O'Pa‘, production +oeee (5-1 54)
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The photoelectric cross section describes a scattering event in which an incoming
photon causes an electron to be ejected into the continuum, and the atom subsequently
decays to a final state through radiative or Auger emissions. If the final state is identical to
the initial state, the scattering is "elastic" even though the incoming and outgoing particles
are different particles--energy conservation still holds. The Compton cross section
describes elastic or inelastic absorption reemission for a multilevel system (these are bound
state transitions)--the elastic, or Rayleigh, part is expressed in Eq. 5-1.51 for a two level
system, Pair production, where an incoming photon scatters into an outgoing photon but
changes the electron into its antiparticle in the process, becomes important at energies
greater than one MeV. In the dipole approximation, the Thomson cross section is zero
since the scattering amplitude is real. Cases for nonzero Thomson cross sections are
discussed later in this chapter.

As will be shown in the next chapter, the elastic cross sections are greatly enhanced
over the inelastic cross sections in scattering channel directions, such as in the forward
direction. When operating far from any bound state resonances, mainly photoelectric
scattering occurs, and Compton scattering can be neglected. Cromer and Liberman have
made self-consistent Hartree Fock calculations of the relativistic photoelectric cross section
of individual atoms for scattering into the forward direction.> The imaginary part of the
scattering amplitude is proportional to the total cross section, and the real part of the
scattering amplitude can be obtained by using the Kramer-Kronig relations (which is
equivalent to performing a Hilbert transform). Cromer and Liberman have made these
calculations along with a computation of the nonrelativistic Thomson scattering amplitude
and tabulated them in the form of parameters f,, f’, and f’’.> Their parameters are related
to the scattering amplitude as follows:

Fr(K K )+ F (K, oK) = =r, (& & ) o+ £/ =i ) (5-1.55)
where ¢** is a Debye Waller factor that takes into account the vibrations of the atoms
about their equilibrium positions. The major contribution to f, comes from Thomson
scattering described by Eq. 5-1.1 with small relativistic ccrrections from the photoelectric

cross section. The Debye Waller factor is essentially the form factor, Eq. 4-2.14, modified
to take into account vibrating scatterers

e =(ile i), (5-1.56)
where U is a displacement vector describing the vibraticns of the atoms about their
equilibrium positions. The factor W turns out to be proportional to the mean square
displacement of the atom from equilibrium in the direction of the momentum transfer

-i(k,-k;)-u
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H=(k, -k,) (5-1.57)

W =87 (u)(sin 6, /A). (5-1.58)
The form factor is essentially the Fourier transform of the charge density

fo(H) = [dxp,(x)e™*, (5-1.59)

where H is given by Eq. 5-1.57, and p,(x) = ¢,(X)¢,(x). Since the charge density is a
real function of the spatial coordinates, the form factor is in general Hermitian

fo(H)= f;(-H). (5-1.60)
If the charge density has space inversion symmetry (the assumed case for all Cromer and
Liberman calculations), the form factor is real and symmetric

p,(X)=p,(-X) = f,(H)= f; (H) = f,(-H). (5-1.61)
However, when atoms are brought together into a solid, the electronic charge distributions
of an atom may be distorted by the eiectronic and magnetic potentials of nearby atoms,
thereby, possibly breaking space inversion symmetry.’

5.2 Hyperfine Interactions for Magnetostatic and
Electrostatic Fields

If the incoming electric field is a small perturbation, too small to significantly shift
energy levels or cause level splitiing of those states that existed before the perturbation, the
eigenenergies during the perturbation can be approximated as being the eigenenergies
before the perturbation. The major effect of the perturbation will then be to cause
transitions between the various energy levels as described by the transition probability, or
S-matrix elements. In this approximation, the resonant frequencies, @, = (E, - E;)/h, in
the multipole scattering amplitude are simply the eigenvalues of the constant perturbation,
H,,in Eq. 2-1.1. For magnetostatic and electrostatic interactions, the constant perturbation
can be written in the form

H,=H;+H, +H, (5-2.1)
where H =p*2m+H,,, (5-2.2)

and H,, includes other possible interactions not discussed so far.
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Under the assumption that a nucleus is a pointlike magnetic dipole, H,,,, can be
constructed by examining how the nuclear dipole interacts with the magnetic dipole field of
the electron

H ,=-H-Bg,~KnB;. (5-2.3)
The first term represents the dipole interaction between an electron's orbital and spin
momentum with the magnetic moment of the nucleus8

B = -2ﬂ[l'r—3$ + 3r(s5'r)] (5-2.4)

r

where L and S are the orbital and spin angular momenta of an electron, and f is the
electron Bohr magneton

B=eh/2mc. (5-2.5)
Only the orbital electrons that do not lie in an s-state, /# 0, contribute to the dipolar
magnetic field.

The second term in Eq. 5-2.3 represents the Fermi contact interaction between an s
orbital electron and the nucleus®

B, = —-l%ﬁa(r)s. (5-2.6)
The computation of the total magnetic field at the nucleus can be quite involved for
multielectron atoms embedded in a medium because one must take into account the
exchange interactions among all the internal electrons and between the internal and external
conduction electrons.” 10 For example, examination of Eq. 5-2.6 will show that the net
Fermi contact field is zero for a filled s shell because the two electrons in that shell have
opposite spin. The exchange interaction between electrons from outer unfilled shells and
the filled s shells polarizes the s shell electrons to produce a nonzero net Fermi contact
field at the nucleus.!® The polarization of s electrons is a small effect, but since the Fermi
contact field for an unpaired 1s electron can be hundreds of megagauss, the polarization
effect can easily produce sizable fields on the order of hundreds of kilogauss. The field
strength of the dipole fields is an order to two orders of magnitude smaller that the net
Fermi contact field, and there is also a contribution from the polarization of the conduction
5 electrons that can also produce Fermi contact fields on the order of a hundred kilogauss.?
For the purpose of constructing the magnetostatic interaction Hamiltonian, the
detailed structure of the dipole and Fermi contact fields will be not be investigated, and the
magnetostatic interaction Hamiltonian will simply be expressed as

Hmag =—u'Bim (5-2.7)
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where B, is the total magnetic field at the nucleus.
The electrostatic interaction Hamiltonian is

2
H,=-% % (5-2.8)

where r, is the position of a proton within the nucleus, and r, is the position of an electron

outside the nucleus (including those from surrounding atoms). Expanding 1/|rp —-r| in
terms of spherical harmonics enables H,, to be rewritten as!l: 12
H,=YTO.vO (5-2.9)
1=0
where T and V™ are nuclear and electronic multipole electrostatic operators
(1) _ 4” 1
Tll - 21+lzerPYf‘l(6P’¢P) (5-210)
P
i < 1
,,U)=“ a’:{ze}ﬁqu(eﬂ‘pc) (5-2.11)

Since the nuclear states have a well defined parity, the odd nuclear multipole
operators (those with odd /) give vanishing matrix elements. The even nuclear operators
yield nonvanishing matrix elements, and the major contribution come from the lowest order
multipoles--the Coulomb and electric quadrupoles (/ =0 and 2).

The Coulomb interaction is

H,,= -Ze,,z% (5-2.12)

where Z is the number of protons within the nucleus. To this a correction term must be
added that is due to the finite size of the nucleus--the isomer shift?

H, = % 7e*Z|p (O (R?) (5-2.13)

where (R?) is the mean square charge radius of the nucleus and e?|¢(0)|" is the electronic
charge density at the nucleus.

The introduction of the electric quadrupole interaction produces additional
complexities. The electric quadrupole Hamiltonian has matrix elements that are
proportional the electric field gradient at the nucleus. However, the electric field gradient
tensor has a principal axis that may not be aligned with the quantum axis of the nucleus.
Then, there are two possible quantum axes. This arrangement gives rise to nuclear level
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mixing (a competition between quantum axes towards defining the state of the system) in
which there no longer exists any well defined, or "good", quantum numbers describing the
nuclear or electronic states. Matthias, Schneider, and Steffen have extensively worked out
this problem.!3

N>
=
—>>
N

>

’
Vi

A

- y
X

Fig. 5-2.1. Orientation of electric field gradient axes (primed system) to the quantization
axes (unprimed system).!3

’

Fig. 5-2.1 shows the orientation of the electric field gradient system, system §’
with principal axes (X’,y’,2’), with respect to the nuclear quantum axis system, system S,
in which the magnetic field direction specifies the quantum Z axis. The Euler angles,
(a,B,7), specify how to rotate system S’ so that it coincides with system S. For an
electric field gradient that has axial symmetry with respect to the 2 axis, the angle o can be
set to zero. For nonaxial symmetry, an asymmetry parameter 17 is introduced

V=V,
n= (5-2.14)
2vl
where vV, = g——gv u,v=1x,y,z. (5-2.15)
u

Using the rotation matrix, D,(,fj,(a,ﬁ, 7), to rotate the electric field gradient principal
axis system upon the quantum axis system gives the matrix elements of the quadrupole
electrostatic Hamiltonian. (The nuclear dipole magnetostatic matrix elements are also
included below. Also, nuclear total angular momentum quantum numbers are
conventionally represented as /.)
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H, =-ho,m+ho, —;-(3cos2 B-1+7sin® Beos2a)3m* — I(I +1)]  (5-2.16)

H, .. =ho, %sin ﬂ{cosﬁ F g[(l + cosmena _ (1 T cosﬁ)e"z"]}

x e*T2mt DI Fm) (I tm+1) (5-2.17)

H,p iz = hOyg %{sinzﬁ + %[(1 + cos ﬁ)zeiz" +(1F Cosﬁ)2 e-iza]}

x e\ J(I £ m+2)I tm+1)(I Fm)(I Fm—1) (5-2.18)

where  hwy = uB,, /I (5-2.19)
__€q0 )

O = G- (5-2.20)

The magnetic moment of the nucleus has been defined as

I 1 1
N=<”’": —‘—'ILU(()])II,m,:I)' ( i O ]j( "u(l)“ > (21+1)(1+1)1 <1uu(l)"l>’

(5-2.21)
the nuclear electric quadrupole moment has been defined as
I 2 1
— — 7@ =7\ = (2)
e0/2 = {1,m, = I[TP|1,m, = 1) = (_l : 1)<1||T ")
1(21-1) ( “ (2)" > (5-2.22)
@I+ D@1+ 02120 -
and the electronic electric quadrupole has been defined as (averaging over space)
eq/2 = (v0'<2)) (5-2.23)
where VP =V 2 (5-2.24)
(2) _ —+— 1 2 ’ s _
v, = +5\/;(%,l, £iV/,)=0 o (5-2.25)
12 1 ]2
”(2) _ ’ ’ V2R T ’
VD = Z\/;— (Viw =V, £2iV),.) = 7 \E nv:., (5-2.26)

and a coordinate system has been chosen so that V. =0 when u #v. The angular factors

come from the rotation relation
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2

Vq(z) - 2":'(2)01(:)(“’[3’ 7). (5-2.27)

=2
When the electric quadrupole interaction is small compared to the magnetic dipole
interaction, a first order approximation can be made by dropping all of the off diagonal
matrix elements of the total Hamiltonian. In such a first order approximation, the
eigenvalues are given by H__, and the eigenfunctions can be written in column form as
67 =(0,0,0,:+,1,--+,0) (5-2.28)
where the unity factor is in the n" place for 1< n<2/+1, and 2/ +1 is the number of
eigenvalues. Each quantum number m is then a "good" quantum number in that they all
define a unique state of the system--the n"" state is specified by only one number: m.

When no approximations are made to the total Hamiltonian, the eigenfunctions
become a linear combination of the first order states of the system

4., = ic.ﬁ}f’ (5-2.29)

el
where ¢, is a complex number and m” ranges from the minimum to the maximum possible
value of m. Each quantum number m is now a "poor" quantum number since they no
longer well define the states of the system--the n™" state is now specified by a sum over all
possible m quantum numbers.

The polarization matrix of Eq. 5-1.5 must now be modified to include these
changes

(P, =[é{‘- ) Y5 (2, )@ .5:”)}{ f}(¢;,-¢§?,’)Y£L’7(Qk,,)-é“,] (5-2.30)

q=-m’ q'=-m
where ¢M-¢,§f)=cq of Eq. 5-2.29, M=q-m,, and M’=q —m, (the scattering
amplitude in Eq. 5-1.4 must now be summed over L and n rather than L and M as

before). Examples of magnetic dipole scattering for *’Fe are given in the following
sections.
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5.3 Linear Polarization Reversal of Fields Scattered from a
Ferromagnetic Lattice

The hyperfine energy level diagram for *’Fe is shown in Fig. 5-3.1 (all energy
shifts are greatly exaggerated). The isomer shifts for the excited and ground states are
designated by AE;, and AE}. The excited and ground state magnetic splittings are

hwj =2u,B,,/3 and hawd = 2u Bin- The ground and excited state quadrupole shifts are
AEf =0 and

AE, =%e2qQ(3—°ﬂ;@—'—l). (5-3.1)

A2 y

e mG = 2

¢ hap AE&* A m,=1/2

; v SR
[ ==
~ A A m,= .‘1/2
o

tT 2 hwp

. YYY, _
AE’A e SULC

8

Fig. 5-3.1. Hyperfine energy levels of *’Fe of d-sites in a YIG crystal. Quadrupole
shift for ground states is zero, and u, <0 and B,, < 0.

where the electric field gradient tensor is assumed to be axially symmetric so that 1 =0.

The electric quadrupole shift is small compared to the magnetic dipole shift for
*’Fe, so in most cases first order perturbation theory is adequate. The excited states are
then labeled by good quantum numbers, and the unitary eigenvector matrix (whose
columns are the eigenfunctions) that diagonalizes the Hamiltonian is diagonal
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0

OO - (Q‘éﬁ)’ (?2)4_(?3’&?.4) | ! e (5-3.2)
0",
When the full theory is employed, the unitary eigenvector matrix that diagonalizes the
Hamiltonian is no longer diagonal

“a Q3 Gy Sy
c €y Gy G

®= (’i.x”&.z"q’_}.s"«i‘t) = cll: c:_i (::_1 c:% : (5-3.3)
R O P

Since the ground states have no electric quadrupole interaction, their eigenvector
matrix is always diagonal. The ®-matrix elements for the excited states are found by
diagonalizing the full Hamiltonian matrix to get the eigenvectors. The magnitude of the
diagonal elements are close to unity, and the off diagonal terms are small (magnitudes on
the order of 0.1 or less). The energy level diagram is negligibly changed (the energy levels
change by about 1% of a natural linewidth). The change in the nuclear states, though, is
large enough to produce noticeable effects.

One interesting effect is the case of complete polarization reversal of the linear
polarization basis of an incoming electric field. In Section 5.1, where nuclear level mixing
was neglected, incoming right circularly polarized fields could be scattered into left
circularly polarized fields and visa-versa for a convenient orientation of the quantization
axis. Nuclear level mixing now enables vertically polarized fields to scatter into
horizontally polarized fields and visa-versa.

For example, for the [0 0 2] reflection of a YIG crystal, two *'Fe sublattices within
the unit cell, called d 1 and d 2 sites, contribute to 7 nonzero diffracted beam. The iron in
these sites have identical hyperfine environments except that the electric field gradients
lying in the [0 0 2] plane are oriented 90° with respect to each site. Also, the two
sublattices are situated such that the reflected wave from each site is 180° out of phase.
Each site produces a six line emission pattern which will be labeled (£,,£,,¢5,£,,£5,£,) for
the d 1 sites and (£],€;,£;,£;,£;,£;) for the d2 sites (see Fig. 5-3.1). In first order
perturbation theory, if the internal magnetic field was oriented by an external magnetic field
so that it bisected the angle between the electric field gradients, see Fig. 5-3.2, the
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quadrupole shifts of the iron atoms in the two sites would be identical for each pair of lines
(,€)) since B==%45° and (3cos’8—1)/2=1/4. Then, to first order, no net reflected
intensity is possible because the reflected field amplitudes from each site would cancel as a
result of the 180° phase difference and because each pair of lines lie at the same energy.

N
~ b 4

Fig. 5-3.2. Orientation of YIG electric field gradient directions for d1 and d?2 sites
lying in the xy plane. Internal magnetic field direction bisects angle between them.

However, when nuclear level mixing is accounted for, there is no complete
cancellation. For instance, the polarization matrix of line £, is (using Eq. 5-2.30 for the
case where n =1, keeping only terms that satisfy the dipole selection rules M = 0,1, and
knowing that >'Fe radiates only magnetic dipole fields)

(R, = [é{‘ (¥ 3+ YDe,, + e, _ *)][(vf.;ﬂ‘c;_g FYE, Y ) é;].
(5-3.4)
The scattering geometry is exactly that of Case 1 in Section 5.1. Then, using Egs. 5-1.19
to 5-1.21 and the results of Case 1 gives the polarization matrix elements:

(), = W2 emeiy - e ) 336
(), = gagle e e, Yo
(Pl‘{“))” _ §3; ., : (5-3.8)
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Note that the Euler azimuthal angle for £, is ¥, =—n/2 and for £ is 7y, = n/2.
Applying a unitary transformation upon the Hamiltonian, Egs. 5-2.16 to 5-2.18, gives in

matrix form 12
H(e,B,0)= A(7)H (. B, 7)A™(7) (5-3.9)
where Ay(7)=8,e" (kd=1,1-1,...,~1). (5-3.10)
The eigenvectors can then be written in the form
(e, B,7) = D(e,B,0)A(7). (5-3.11)

Since a=0, ®(x=0,5,0) is a real matrix. So, when y — -7, the eigenvectors
transform into their complex conjugates. Therefore, the eigenfunction associated with £, is
the complex conjugate of the one associated with £;

’ .

Crg = Cpg- (5-3.12)

Attaching a minus sign to the amplitude of line £, to take care of the phase

difference of the reflected fields from each sublattice, and summing the polarization
matrices for lines £, and £; gives

P 4R = 0 ¢ (5-3.13)
11 t| 11 ‘: - C O ~ *

3 i28, . -i26, .
where C=2\/§-1—6;(e 26 Im{cl'%ch%}+e 28 Im{c."%c]‘_%}). (5-3.14)

Because the polarization matrix has only off diagonal matrix elements, complete
linear polarization reversal occurs. For example,

e ool o)lo)-cli)-ex

This shows that incoming horizontally polarized fields scatter into vertically polarized fields
with an amplitude proportional to C. However, since the off diagonal elements of the
eigenvector matrix are small, |C| is small, and thus the scattered intensity is very low. The
nuclear resonance scattering group at Hamburg!4 13 has observed the effect of nonzero

cancellation, but to date no polarization analysis has been done to observe the effect of
polarization reversal.
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5.4 Linear Polarization Reversal of Fields Scattered from
an Antiferromagnetic Lattice

The added complexity of nuclear level mixing is not needed to produce linear
polarization reversal for scattering from an antiferromagnetic lattice. However, similar to
the case for a ferromagnetic lattice, one still relies upon the phase difference between the
reflected fields from different iron sites within the lattice.

For this example, take the case of ’FeBO,. It has a rhombohedral unit cell
structure containing two iron atoms located at two different b-sites. For certain reflections,
such as [n n n] reflections where # is an odd integer, the reflected fields from the two sites
are 180° out of phase. However, because of the antiferromagnetic structure of the crystal
lattice (further explained in Chapter 8), the electric fields scattered from the nuclei do not
cancel out.

Let the internal magnetic field at each nuclei at the two b-sites be parallel to both the
scattering plane and the [n n n] planes (this corresponds to Case 3 in Section 5.1). The
polarization matrices for the iron site in which the internal magnetic field lies in the ¥
direction (see Fig. 5-1.1) is given by Eq. 5-1.28, and the polarization matrices for the other
site in which the internal magnetic field lies in the —y direction is given by the complex
conjugate of Eq. 5-1.28:

pm) = 3 ~sin*6, 0 plm) _ _ 3 (-cos’6, TFicos6,
LN > Lt - .
8n 0 0 167\ ticos 6, -1

For incident horizontally polarized fields, the polarization of lines ¢, for the case
ém =+Yy is:

—sin? oY1 . 1
£, and £ =>—3— sin” 0, =——3—8in‘ 6 |
87 0 ONO 87 0

lland£4=>——3— —<':os20,, +icos@, Y1 _3 ?0s29,,’
167\ —icos 6, -1 0) 16m\icos6,

]. (5-4.1)

29
and £, and 8, =>——| € % |
16w\ —icos6,
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~

The polarization of lines £ for the case B, = -y is the complex conjugate of the
expressions above. Pictorially, the polarizations the lines for the two b-sites are shown in
Fig. 5-4.1 where, for the lines £/, a minus sign was included to take into account that the
fields reflected the iron sites giving rise to these lines are 180° out of phase with those
fields reflected from the other iron sites giving rise to the lines £;.

Since pairs of resonance lines lie at the same energy, the superposition of each pair
of lines £, and £/ gives the net amplitude. As shown in Fig. 5-4.1, the net resultant field is
completely vertically polarized. Incident horizontally polarized fields are scattered into
outgoing vertically polarized fields, and visa-versa. Unlike the case for a ferromagnet,
linear polarization reversal of fields scattered from an antiferromagnet is a strong effect and
has been clearly observed in an experiment using *’Fe,0,.! ¢

¢ ¢ L, L, I3 ¢,
I | | | I I
| | | | | |
I | I I | I
| | i | | |
2 ol -2 ~ 2 ~ 2 -~ 2 ~ 2 ~
cos“ 0,6+ 2sin” 6,0 cos 6,0~ cos 6,6+ 2sin” 6,0 cos 0,0
icosO;m icosG,m icos@,n icos,m
4 li 2 f 3 I; f 5 fé
I
| | | I I |
| | | | | I
I | | i I I
—cos’ 0,6+ —2sin’6,6 —cos’0,0—- -—cos’0,6+ —2sin’6;6 —cos’6,0-
icos6,m icosB,% icos 6,7 icos0,T
| I | | | |
I | | | I |
| | I | | |
I I | | | |
2i{n 0 - n 0 —T}cos 6,
Energy
o

Fig. 5-4.1 Demonstration of linear polarization reversal. An incident & polarized field

is scattered by iron nuclei in an antiferromagnetic lattice. The sum of the scattered fields is
a resultant field that is & polarized.
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5.5 Angular Interferometry

As shown in Section 5.1, the direction of the quantization axis strongly influences
the nature of the scattered fields. Major differences in the spectra of scattered fields can
also be seen when the internal magnetic field is oriented to lie in an antiparallel direction.
This phenomena allows one to do angular interferometry where quantum beat interference
patterns depend not upon the spatial distances photons travel such as in a Michelson-
Morley interferometer, but upon the angles through which photons are rotated. The
example below describes this type of interferometry using the scattering theory developed
in this chapter. An alternate description of this phenomena utilizing the rotational symmetry
properties of free space is given in Appendix A.17

1.0 7
0.8

0.6

0.4

0.2 + M=+1 M=-1

ol L o

wol w03 wM wOG
-0.2 ] I 1 T 1 1

-150 -100 -50 0 50 100 150
Encrgy (in units of linewidths I")

Normalized Intensity
S

Fig. 5-5.1. Four line magnetic dipole energy spectrum when incoming field is
horizontally polarized.

As an example, consider just one site in YIG, such as the d 1-site discussed in the
last section. When the internal magnetic field is oriented perpendicular to the scattering
plane (see Fig. 5-1.1 where B, is now the quantization axis Q, ),

~

B.=X, (5-5.1)
and, for incoming horizontally polarized fields, the intensity of the scattered fields exhibits
the 4-line spectrum shown in Fig. 5-5.1. The orientation corresponds to Case 1 in
Section 5.1, and thus lines £, and £, are forbidden by polarization selection rules.
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In the kinematical limit, the total electric field amplitude scattered from the crystal is
simply the sum of the amplitudes from each particle within the crystal. Since the scattered
field from each particle is proportional to the scattering amplitude, the field amplitude of the
four allowed lines for a single particle are as follows (from Eqgs. 5-1.4, 5-1.22, and
5-1.23):

6(w)=ae™ [(0 - w,, +iT/2h) (5-5.2)
£,(w) = a,¢?® [(0 — @y, +iT/2h) (5-5.3)
£,(0)=ae”*® [(0 - g, +iT/2h) (5-5.4)
£(w)=a,e”® [(0— oy +iT/2h) (5-5.5)

where q, =¢,-1, a;=¢,-1/3, and ¢, is a quantity proportional to the incoming field
amplitude. The factors multiplying ¢, are the squares of the Clebsch-Gordan coefficients
for those lines (see Egs. 5-1.39 and 5-1.40).

When the internal magnetic field is oriented into an antiparallel direction,

A

B, =-X, (5-5.6)
the phase of the amplitudes will change, but their magnitudes stay the same. For such an
orientation, from Fig. 5-5.2, the conditions in Case 1 in Section 5.1 change to

0,=6,=n/2, ¢,—¢,=-26,

-
~ ~

Sin =8  Tun="ip  Bup=m2
Because the azimuthal phase difference is now minus the scattering angle, the polarization
matrices in Eqs. 5-1.22 and 5-1.23 change to their complex conjugates. As a result, the
amplitudes of the lines for this new orientation are

£(0)=ae® /(0 -, +iT/2h) (5-5.7)
£(w) = a,e™® [(© — g, +iT/2h) (5-5.8)
£ (w) = a,e”® [(© - w,, +iT/2h) (5-5.9)
t(w)=ae™® [(0 - wy +iT/2h). (5-5.10)

Far off resonance where @ — w,;, >>I'/2#, the amplitudes for the two inverted
orientations of the internal magnetic field are the phase conjugates of each other: £/ = £;.
This is so because the amplitudes q; are real. This calculation has neglected nuclear level

mixing, however, if it were included the amplitudes would still be the complex conjugates
of each other even though the amplitudes a; are now complex (this is because the Euler y

angle undergoes the transformation ¥ — —¥ upon an inversion of the quantum axis, and
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A 6: = éiul

Fig. 5-5.2. Scattering geometry for inverted quantization axis. Wavectors k; and Kk, lie
inthe Q O -plane.

by Eqgs. 5-3.10 and 5-3.11 the amplitudes a; change to their complex conjugates). Because
of the resonant denominator, resonant systems cannot experience true phase conjugate
scattering.

In frequency space this phase effect is not easily observed for spectra having
resonance lines separated by many natural linewidths--one would have to carefully examine
the interference between widely spaced lines that have little overlap. However, in the time
domain the effect stands out more because the phase of the beat patterns due to the
interference of two oscillators with different frequencies can be more easily measured.

This can be seen by examining the beating between the two dominant resonance
lines ¢, and £,. The Fourier transform of their frequency amplitudes gives the familiar
damped sinusoidal expressions

-1n/2ne—i(wo,:+2e,)

£(t)=—iae (5-5.11)

(5-5.12)

-in/zne—i(wml—ze,)

£,(t)=—iae
For just these two lines, the kinematic intensity from crystal is then proportional to

1(e) ~[£,(0) + £, (][ £,(1) + £5(0)]
= Zalze'l‘t/’l{l + COS[(COO6 — Wy, )t - 4981} . (5-5.13)

When the internal magnetic field is inverted, the phase of the intensity pattern changes sign
so that

Il(t) - 2a12e—rl/" {1 + COS[(w03 = Wy, )t + 405]} . (5'514)
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Thus, adjusting the Bragg angle tunes the phase difference, A = 86;, between the beat
patterns of the two intensity distributions. For Bragg angles near 22.5° this is a very
noticeable effect. For instance, if 26, = 7/4 then the intensity distributions are 180° out of
phase and, therefore, the the peaks of one intensity pattern will lie in the valleys of the
other. This is one of the kinematical effects investigated experimentally in this thesis, and
the results are given in Chapter 10.
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6. DYNAMICAL SCATTERING BY
RESONANT SYSTEMS

6.1 Kinematical Scattering Theory

In kinematical scattering a photon scattered from one particle does not interact with
other particles-multiple scattering is nonexistent. The field amplitude at a point X is then
just the sum of the individually scattered fields emanating from each scatterer within the
medium. From the spherical multipole electric field equation, Eq. 4-4.16, this sum (over
N identical particles) is

2

1) = 1[F(k, k)

N
-i(ky-k;)x,
Z:le

=1,|F(k, .k, )|2(N + iie“"‘"""""""’) B (AB)

A=l m=1

where X is far from any scatterer, /, is a constant proportional to the incoming beam
intensity, and the incoming field term has been excluded so that only the properties of the
scattered fields are examined. The scattering amplitude is given by Eq. 4-3.63 or 4-3.64
with x, =0.

For scattering into the forward direction, k, =k;, all spatial phases,
o, = —(k ;—k .') - X, are zero. This is a scattering channel direction--a scattering direction in
which the scattered fields from all the particles in a medium have the same spatial phase. In
the forward direction, the intensity is proportional to the square of the number of scatterers.
To find the scattered intensity in other directions, the second term in Eq. 6-1.1 must be
evaluated. As N — oo this term, for an isotropic medium, can be approximated as a sum
over a random distribution of spatial phases which averages to zero--in such a case, the
nonforward scattered field intensity is formed from an incoherent sum of the scattered
fields from each scatterer. Then, the nonforward scattered intensity is proportional to the
number of scatterers, and the net intensity for elastic scattering is

1(x) = I,N|F(k, 2k,) +INF(k, =) (6-1.2)

For off-energy-shell inelastic scattering where &, # k;, a random temporal phase,
¢f, must be added to the field as discussed in Section 3.5. Because of this factor,

94
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irrespective of the scattering direction, the scattered intensity is formed from an incoherent
sum over all the scattered fields from each scatterer

2 iei(k!_ki)

n=]

2

1% (%) = I Fr (K ) =INFL (K K)  613)

where Eu,(k K ) is an inelastic scattering amplitude.

For an anisotropic medium, such as a crystal, there can be many scattering channel
directions (such as those resulting from Bragg diffraction in a crystal) in addition to the
forward direction. Normally, a structure factor for a unit cell is constructed to calculate the
total field scattered from a crystal.

The structure factor is the sum of the scattering amplitudes from all of the particles
in the unit cell. For electronic scattering (operating far from any any bound state
resonances or absorption edges) or for nuclear scattering the structure factor of a unit cell
with scatterers of type « located at I, is

E,=-r, (é/ -éi)Z(e”"w" foat fL=if) )e ™" (electronic scattering) (6-1.4)

an,

F, = ZFa(k K )e""""“ (nuclear scattering) ~ (6-1.5)
where  H=k, -k, (6-1.6)

and the scattering amplitudes are given by Eq. 5-1.55 (electronic scattering) and Eqs 4-3.62
or 4-3.63 (nuclear scattering). If the origin is placed at the corner, X, of one of the unit
cells in the crystal, then any other unit cell can be found through an integral number of
lattice displacements

X' =X, +na, +na, +na,. (6-1.7)
After calculating the structure factor for one unit cell, then, for one scattering channel, the
total scattering amplitude from the whole crystal is constructed by summing the scattering
amplitude from each cell multiplied by a phase factor, e ~H{nai) (n =0,12,...,N, -1 and
i=1,2,3), each cell acquires. The resulting scattered intensity is given by': 2

sin’(NH-a,/2)
1(X)=I,|F, (x) = I,|F 6-1.8
(%) = 1|F ()] l,,IH 2Ha2) (6-1.8)
The reflectivity is maximized at the Bragg peaks according to the Laue equation
H-a,=2nH, (6-1.9)

where H, are integers and H is a reciprocal lattice vector
H=hb, + kb, + (b,. (6-1.10)
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Whern the Bragg condition is satisfied, the scattered fields travel mainly in scattering
channel directions, H, and have narrow angular spreads. At the Bragg peaks, the intensity
is again proportional to the square of the number of scatterers

1(x) = I,N|F, [ (6-1.11)
where N = N,N,N, is the total number of unit cells within the crystal. The angular width
of an outgoing beam is inversely proportional to the number of scatters. Since most
materials studied are macroscopic in size (as discussed in Section 3.1)--their dimensions
are much greater than 100 A and N >>10°--the angular widths are essentially delta
functions at the scattering angle 26,. Examination of Eq. 6-1.8 shows that the average
intensity off the Bragg peaks is half the scattered intensity from a single unit cell--this
extremely small factor can be safely ignored.

In the kinematic domain, crystalline and isotropic media give reflectivities
proportional to the square of the number of scatterers when examining fields traveling in
scattering channel directions. However, when examining fields not traveling in scattering
channel directions, isotropic media give intensities proportional to the number of scatterers,
while crystalline material give intensities that are essentially zero. Inelastic scattering in
crystelline media is identical to that in isotropic media because of the effect of the random
temporal phase factors of the scattering amplitude.

6.2 Dynamical Scattering Theory

Dynamical scattering includes the multiple scattering effects that are ignored in
kinematical scattering theory For linear time-invariant causal systems, multiple scattering
can be handled by linear system theory. In such a theory, if the impulse response of a
system is known (that is, the response of a system to a delta function in time), then the
response of the system to any arbitrary analytic function is known (this is proved by
imposing linearity, or using superposition arguments).> The frequency response of a

scatterer to an incoming plane wave is described by the spherical multipole electric field in
Eq. 4-4.16

F(k,.k,) (6-2.1)
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where X, is the position of scatterer of type a, and 7, = Ix - xnnl is the distance from the

scatterer to an observation point.

In muldple scattering, the spherical wave generated by a scatterer can interact with
all other scatterers which in turn produce spherical waves that can interact with the original
scatterer and all other scatterers. This multiple scattering behavior can be investigated by
examining each step in the scattering process. For instance, for an incoming wave (the
zeroth order scattered wave)

a,(0,x)=E,(w,x), (6-2.2)
the response of the system (first order, or single scattering), is

a,(w,x)= i Sjao(w,x,a )H(w.x,_,x) (6-2.3)

a=ln, =1
where N, is the number of scatterers of type a, and N, is the number of different types of
scatterers. Note that Eq. 6-2.3 represents a symmetric state of excited scatterers since
interchanging the indices of identical scatters, X, <> X; , does not change the final sum.

Double scattering (second order scattering) occurs when the single scattered wave interacts
with all the particles

a,(w,x)= i ﬁa‘(w,xna)H(w,x%,x). (6-2.4)

a=1n,=l

By iteration, one can determine the amplitudes for triple and all higher order scattered fields

a,(w,x)= i ﬁa,,_l(w,x,,a )H(w,x,_.x) (m21). (6-2.5)

a=ln, =1
For some problems, working in the time picture rather than in frequency space may be
more convenient or illustrative. In the time picture multiple scattering involves the
convolution of the frequency response with the incoming wave

a,(,x)= i iﬂam_, (¢.x, H(r-r'x, x)dt’ (m21)  (6-2.6)

a=ln,=1

where the limits of the convolution integral were constrained by assuming the functions are
causal:

a,(r,x)=0 for '<0 (6-2.7)

H(t-t'x, ,x)=0 for t-£'<0 or >t (6-2.8)
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Working in the time domain, the multiple scattering formalism can be shown to be
equivalent to a Feynman path integral approach where a sum is made over all the possible
scattering paths of a collection of scatterers.*

The total scattered wavefield emanating from the medium is the sum of all the
multiply scattered fields

E,(0.x)=Ya,(0%). (6-2.9)

m=0

Note that Eq. 6-2.9 is still a quantum mechanical expression (the muiltipole scattering
amplitude was obtained by finding matrix elements of quantum mechanical operators). No
connection with classical electrodynamics has been made yet. The connection comes when
the number of scatterers becomes so large (N >> 10°) that computing Eq. 6-2.9 becomes
too time consuming. In certain cases, however, such as for an isotropic medium, one can
show that summing up an infinite number of scattering diagrams leads to the Maxwell
equations for a medium (this is done in Section 6.5).

6.3 Two Coupled Oscillators

Observation
Point

pcle #2

Fig. 6-3.1. Scattering geometry for two coupled oscillators.

For a simple example of multiple scattering scattering, consider the case of two
identical particles situated a distance r,, = |X, — X,| apart as shown in Fig. 6-3.1. Assume,

for further simplicity, that at some time ¢ =0 both particles are in the excited state and
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decay with a probability amplitude F,(t). This allows the zeroth order scattering term,
a,(1), to be ignored along with all the spatial phase factors associated with it.

Then, for the frequency response given by Eq. 6-2.1, all of the higher order
scattering terms can be computed through the use of the multiple scattering equation,
Eq. 6-2.5. (Below, r,=[r-x,|, r,=|[r-x,|, and the polarization matrix describing
scattering from particie #1 to'r has been assumed to be equal to the polarization matrix

describing scattering from particle #2to r)
e™ ik
a(w,r)= Fb(w)—r'— + FR(w)—

1 n

az(w,n=[a(w)e—i)ﬂ—'ﬁ(k,,k,-){i«;(w)" - )"’r—’F(k,,k..)

12 1 na 2
ikn, N ik ikry
-_-Fo(m)[e——.v(k,,k,.) (5—+-" )
ha N h £
o Tl ot
a,(o,F) = Fo(w)[:—- F(k,.k,) (_— + _—]
P J\uh r
itz Tl it
am(w,r)=Fo(a>)[e F(k,.k;) (f—+i~) (6-3.1)
2 ] h r
The total scattered electric field is then
ikn ik \ = | ot "
E(o,F)= Fo(w)(e +£ )2[8 F(k,,k,.)]
’i r2 m=0 ’i2

—— _ (6-3.2)

e 12
1-= F(k,.k,)

Evaluating this expression for dipole scattering using the spin averaged scattering
amplitude, Eq. 5-1.48, gives interesting results. Eq. 6-3.2 is then valid for sigma
polarized electric dipole fields or pi polarized magnetic dipole fields. Assuming F,(@) has
the same resonance characteristics as the scattering amplitude

Fy(0)=F,/(0 -, +iT/2h), (6-3.3)
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and for r >> x|, |x,| Eq. 6-3.2 reduces to

za(ew/r)e‘*(‘l“z)/z cos[k (%, - xz)/Z] (6-3.4)
w”(wo_ws)+i(r+r’)/2h | -

where K= k(r/r), and , and T, are a coupled oscillator frequency shift and decay rate

E(wr)=

speedup factor

o =l[iﬂ)(£g)°_°§ﬂ‘£z_) (6-3.5)

T2 N ) ke
r=if2at sin(kry) (6-3.6)
21 2j,+1 kr,

This result shows that a pair of coupled oscillators will radiate fields with a natural
frequency and natural linewidth that is different from an isolated oscillator. This is not
surprising since, as shown in Section 3.7, a single oscillator interacting with its own
electromagnetic field results in a frequency shift and a natural linewidth. In this problem
there are two oscillators interacting with the electromagnetic fields generated by both
oscillators.

For two >'Fe nuclei, the coupled frequency shift and speedup rate are
(jn =3/2,j, = 1/2)

, = 1(5—@1) cos(kr) (6-3.7)
2\ h kr,
r = rm,ﬂ"(—k'i). (6-3.8)
kr,

As kr,, — 0, the speedup rate goes to

Ir,-TI,,. (6-3.9)
Since =T, + T, where I'_ is the decay rate due to internal conversion, then, when the
separation between the oscillators is small compared to a wavelength, the radiative decay
rate doubles. This confirms Dicke's supperadiant result that a symmetric state of two
coupled oscillators has a radiative decay rate that is double that of a single oscillator.
However, as kr, — O the frequency shift becomes infinite. This is understandable
because the electric field amplitude varies as 1/kr, . The particles are then bathed in a very
high intensity electric field which will induce extremely large energy level shifts.
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The frequency shift and speedup rate are also affected by the spatial separation of
the particles--by increasing or decreasing the separation produces negative or positive
frequency shifts and results in an increase or decrease of the the natural frequency. There
is also an effect due to the angular momentum states of the particle. For very high angular
momentum states and as kr, — 0, the speedup rate approaches I', — 3T, ,/2.

If the two particles are excited by an plane wave, the problem becomes slightly
more complicated because the spatial phase of the plane wave must be taken into account.
Performing computations similar to before, except now with an incoming plane wave

ao(@.1)= Exch 63,10
yields
; tkr
R s e
X COS[H-X,2/2] R (@) + (@) +cos[(k, +k‘.)- x]2/2] 7 (@) - )

(6-3.11)
where RY(w)= w—(wo —ws)+i(1“+1‘£)/2h (6-3.12)
R (@)= 0-(0,+a,)+i(T-T,)/2h, (6-3.13)

and k, =k(r/r), H=k, -k, X,, =X, —X,, and o, and T,are given by Egs. 6-3.5 and
6-3.6 . For this arrangement there are two normal modes that can exist. There is one mode
in which there are negative frequency shifts and decay rate speedups, and another with just
the reverse--positive frequency shifts and decay rate slowdowns.

6.4 Scattering Channel Fields

Multiple scattering computations can be simplified if scattering is examined only
along the highly directional scattering channels where most of the radiation exits a medium
(such as in the forward or Bragg directions for an isotropic medium or a crystal). For
example, consider the case of a one dimensional line of scatterers, as shown in Fig. 6-4.1,
where there is an incident plane wave traveling parallel to the line of scatters. The forward
direction is a scattering channel direction since the spatial phase of a scattered wave from a
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particle located at z,, ¢, =H-Z_, is always zero. The single scattered field observed at a

distance far from any scatterer, r >> z_, is then

n’
‘lkl -l,,

a(0.)= Z(E)[_“’_ Flk, = k,.)} S e

eib eib
= ;[Eo——r—F(kf =k,.)]=1vn50~r-p(k, =k,) (6-4.1)
where r, =r—z,, and N, is the number of scatterers. All the single scattered fields have
the same overall spatial phase factor, and therefore the net scattered field is a coherent sum

of all of the single scattered fields.

i e e

Fig. 6-4.1. Plane wavc [lield incident upon a line of scatterers of length L.

For the double scattered fields,

b‘m’ ) ikr,
a(o,r)= ZE[L—e"‘"‘"'F(k ;= k‘.)}{f——— Flk, = k,.)} (6-4.2)
r A

nm’ n

where r, ., = !z,, - zn.|. Since double scattering has been constrained to occur only in the
forward direction (backscattering is ignored), z, > z,. and thus r, . =z, —z,,. Then all of

the doubled scattered fields also have the same overall spatial phase factor

w [Pk, =k)]
a,(w,r)= Eoe—z————f——_——i——-. (6-4.3)
rowm In— Iy
By iteration, the total forward scattered electric field at the observation point is
| w Flk, =k,) [F(k, =k,)]
E 3 =E b E 'e—'“F k =k 1 f f e
J(@.r)= e + B, —F(K, )En, +; — +f;—(z,,, Ry P +

(6-4.4)
This infinite series expression is equivalent to the sum of an infinite number of
scattering diagrams where the vector potential of each photon, except the incoming photon,
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is defined as a spherical wave (see Fig. 6-4.2). All photons travel in the same direction,
and each photon can either exit the medium or scatter with a downstream particle. As seen
before for a single particle, the sum over an infinite number of scattering diagrams can lead
to frequency shifts and to changes in the natural radiative decay rate.

z=2 =0 =2z, z=1z, z2=1,

Fig. 6-4.2. Scattering diagram for multiple scattering along a scattering channel
direction. All wavectors have the same magnitude and are in the same direction. The first
four particles are shown with time represented by the vertical axis and intermediate states
by /;. (For convenience, the photon arrival time at each scatterer is not correctly drawn.
Actually, photon K; strikes all scatterers at the same time, photon K, strikes all scatterers
located at z > z, at the same time, etc.)

When there are many scatterers with an interparticle separation comparable to or
less than the wavelength of the inccming field, the discrete line of particles can be

approximated as a continuous linear distribution of particles. Eq. 6-4.4 can then be
rewritten as

ikr

BAwn)= B + B b s ient, [ o A [

(6-4.5)
where s =z/L, s’ =2'[z, s”" =2"[2’, etc., n is the number of particles per unit length, and
F,= F(k, = k‘.). The small parameters in the upper limits, 6 =d/z,6" = d/z’,6” =d/z”,
etc., are included to prevent the integrals from diverging. The quantity d is the average
interparticle separation. The integral series can be evaluated to first order by making the
approximation é = d/L. For such a case
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ikr

E,“—nF(Kk, =k, )L
+—7L .
1+nF(k, =k )Ing

Inserting the dipole scattering amplitude, Eq. 5-1.48, into the expression above gives

ikr :
E (w,r)= Eoe“" -E L_”E(M)(r_m) a)-—( 1 (6-4.7)

E(w,r)= Ee"*

(6-4.6)

“rak \2j;+1 N\ R W, +0,)+il/2h
n (2j,+1 FM)
h 0,=——/|Z"_ | —rd lIn§, 6-4.8
where g 4k,(2j,.+1)( A (6-4.8)

This shows that, for forward scattering from a line of particles, there is no change
in the natural linewidth, but there is a shift from the natural frequency of an isolated
particle. The frequency shift diverges logarithmically with decreasing interparticle
separation rather than linearly as was the case for the two particle system, but the reason for
the divergence is the same--the electric field strength of spherical waves is very intense at
small distances from the scatterer.

So far only scattering purely in the forward direction has been mentioned. Another
way a wave can scatter and end up in the forward direction is to scatter in the backward
direction and then scatter again into the forward direction. In doing so, the scattered wave
can pick up a nonzero phase factor. For instance, for double scattering where the wave
backscatters and then scatters into the forward direction, the field amplitude is that of
Eq. 6-4.3 multiplied by the spatial phase factor: —em("’_""). For n™ order scattering there
are n! —1 ways a field can scatter away and then back into the scattering channel direction--
all of the amplitudes and associated phase factors for each order must then be evaluated.
For an ordered line of scatterers (such as a linear lattice), all types of multiple scattering
must be computed to determine the total scattered field--an extremely tedious task since all
orders of scattering must be computed, and each order has n! terms. However, if the line
of scatterers is randomly ordered (such as an isotropic distribution of a large number of
scatterers), the phase factors of fields scattered back into the scattering channel direction
will be essentially random. In such a situation, these fields can be neglected because their
contribution to the total scattered intensity will be down by a factor of /N compared to the
intensity of the scattering channel fields (fields scattered purely in the scattering channel
direction).

A plane or volume of a large number of ordered scatterers (such as a planar lattice
or a crystal lattice) has more degrees of freedom than a line of scatterers. Because of the
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extra degrees of freedom, the intensity of scattering channel fields is a factor of N times
greater than of multiply scattered fields scattered in directions other that the scattering
channel direction--the nonscattering channel fields fields pick up additional phase factors
that are essentially random for a many particle medium. Therefore, mainly the scattering
channel fields will be investigated, and all other types of scattered fields will be neglected.

6.5 Plane Parallel Slab of Scatterers

Fig. 6-5.1. Plane wave field incident upon a plane parallel slab of thickness L .5

The sum over the infinite number of scattering diagrams in Fig. 6-4.2 should, in the
continuous limit, lead to a description of a scattered electric field that converges to the
expression obtained by solving the Maxwell equations for a medium. This will be shown
to be true for a plane parallel slab where boundary conditions are neglected.

In the continuous limit, the multiple scattering equations, Eq. 6-2.5, can be written
in the form (for identical particles and for scattering channel fields)

a(w,2,2))dz = a,(®,2,2,) H(w, 2,2, ) dz (6-5.1)

a,(,2,2,)dz= [J: dz’a,_ (0,2, z)]H(a), 2,2,)dz (6-5.2)

where z, is the observation point. This gives the m" order field amplitude for a slice
within the slab at position z of thickness dz by summing up all of the lower order field
amplitudes of all preceding slices and multiplying by the frequency response at point z.
The net scattering channel field at the position z in the medium is then
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E, . (0,2,2))= a,(®,2,2,) + i'fo' dz’a (@,2',2,) . (6-5.3)
m=1

For forward scattering within a line of scatterers, the frequency response observed

at point z for a segment of thickness dz’ loca‘ed at point z’ is
H(w,z,2)d2" = F(K, = k,,)(i‘-i—z-,—) (6-5.4)

z—-z
where n, is the number of particles per unit length. The frequency response for a slice of
thickness dz’ within a plane parallel slab is simpler. Consider a slab of thickness L and
infinite in the dimensions transverse to the beam propagation direction as shown in
Fig. 6-5.1. Jackson has shown that the sum of single scattered fields from a slice of
thickness dz within the slab yields a net field with an amplitude that is independent of the

distance from the slice®

dE,, = %@—F(k , =k,)Ege™ (ndz) (6-5.5)
where n is the number of scatterers per unit volume, and the incident field was a plane
wave. The frequency response for a slice is then

H(w,l',Z)dz'=2—k7EnF(k, =k‘.)dz’. (6-5.6)
For forward scattering, the plane wave incident field can be written as

ay(,2,2)) = a)(@,2,) = Ey(w)e™ (6-5.7)
where the amplitude E,(w) is independent of z and z,. The spatial phase factor e is
ignored because, recalling from the previous section, for forward scattering the spatial
phase of a scattered wave is zero. However, an overall phase factor ™ must be attached
to the net scattering channel field to include the phase the field picks up in traveling from
the slab to the observation point z,. For such an incident plane wave field, using the

multiple scattering equations for a medium, Eq. 6-5.2, the scattering channel field within
the medium is

m!

£ (@.22)= ao(w,z){l +lieson]f, 3@l dz}

gy (w)ka

=a,(w,2)e (6-5.8)

where eo(w)=—i—75r-n}“(kf =k‘.). (6-5.9)
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This is precisely the solution to the Maxwell equations when neglecting boundary
conditions (and it also agrees with the semiclassical results of Section 3.4). For instance,
for a plane parallel slab of thickness L, the solution to the inhomogeneous wave equation
for transverse electric fields, Eqs. 3-2.9 and 3-2.10, is
Epe (0, L,2)= Ey(@)e" ™ e** ™) = E_(w,L,2,) (6-5.10)
where the quantity n(w) =1+ £,(®) is the index of refraction of the medium, and the last
phase factor, "™t takes care of propagation through free space to the point z,. Since,
in the many particle limit, the multiple scattering equations for scattering channel fields give
the same answer as the inhomogeneous wave equation, for more complicated problems,
such as including boundary conditions or examining dynamical diffraction in crystals, the
inhomogeneous wave equation will be used for constructing the scattering channel fields.
No attempt will be made to examine the multiple scattered fields not traveling in scattering
channel directions--full dynamical scattering thcory will not be investigated any further than
the discussion in this chapter.
The frequency shifts and speedup rates are no longer clearly observable in
Eq. 6-5.8. In some cases, calculating the scattered fields in the time domain allows these
effects to be seen more clearly. One can then either take the Fourier transform of

Eq. 6-5.8, or, equivalently, express the multiple scattering equations for scattering channel
fields in the time domain

a(t,z,2))dz = J(:ao(t’,z,zo)H(t —t',2,2,)dt’ dz (6-5.11)

a,(t.2,2,)dz= L:U(: dz’a, (1,2, z)] H(t—1'z,2y)dt’ dz (6-5.12)

and E,. (1, 2,25)= ay(t,2,2,) + ijoz dz’a,(1,2,2,) . (6-5.13)
m=l

As an example, multiple scattering of dipole fields will be examined where the
incident plane wave field is a synchrotron pulse

ay(@,2,2))= E €™ orintime,  a,(t,z,2,)= E £ (t) . (6-5.14)

For dipole fields
(WKL = (T, /4h)/(w - @, +iT/2h) (6-5.15)
where T /h=no,(T/h)L, (6-5.16)

L is the thickness of the slab, and g, is the resonant cross section given by Eq. 5-1.52
(with the polarization factor set to unity). Inserting this factor into Eq. 6-5.8 and taking the
Fourier transform will give the scattering channel field in the time domain. A contour
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integral must be performed to complete the Fourier transform, and Lynch, Holland, and
Hamermesh have carefully described how to do this.’

The other approach involves evaluating the time response of the system. Taking the
Fourier transform of the forward scattering amplitude (Eq. 5-1.48 with the polarization

factor set to unity) by performing a simple contour integral where there is only one pole in
the lower half complex z-plane gives

H(1,2’,z) = (T, /4RL)e " T2 6(1) (6-5.17)
h 6(1) = 1 £20 6-5.18)
where )= 0 (<0’ (6-5.

The multiple scattered field amplitudes are then

= w T Tzt 1 (Tz2* 1 (T
e BN R oo
;“m( 2z) == Boe™ anl)” 202 \anL) 317\ anL

= —Eoe™ (T, /anL)e """ 1 (\[T,2t /AL )6(1) (6-5.19)

where the following Bessel function identity was used

2 3
S U AN AT -
Jo(2y)=1-y+ N oo (6-5.20)
Then, using the integral relationship for a Bessel function of order zero
Judo(u)=w, (u) (6-5.21)
yields the scattering channel field
E“f(t,L,ZO) = E e {50) _ e-imo:~r:/2n51; fmwo(u)}e(t)

= E e {5(,)__ e—iwof-n/zu( T )J (T/R)

2n) JTi/h

}O(t). (6-5.22)

This is the same result Lynch, Holland, and Hamermesh would get if they were to
substitute their >’Co source with a broadband frequency source (such as a synchrotron
pulse).”® There happens to be no frequency shifts for forward scattering through a plane
parallel slab, but the natural decay rate is modified by a Bessel function (see Fig. 6-5.2).
As T, - 0 the collection of particles within the slab behave independently instead of
cooperatively, and the collective state decays with the natural lifetime of an isolated particle

(kinematical scattering occurs). As I, increases the lifetime of the collective state
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decreases. Thus, I indicates the extent a system has undergone homogeneous line
broadening. The homogeneous broadened linewidth can be approximated as (after
examining Eq. 6-5.8 more carefully)

I Jfor T, << T

N.=4 1/ . (6-5.23)
T -1—(5)—1 for T.>>T
2\ T

Note that I, in Eq. 6-5.16 depends upon a thickness parameter T = no,L. T must
also be multiplied by an enrichment factor for samples that contain nonresonant particles
and by a Lamb-Mdssbauer factor to take into account vibrating scatterers.” The graphs
below were calculated for a 100% enriched slab of *’Fe nuclei with a Lamb-Mossbauer
factor of unity and for no photoelectric absorption. If the photoelectric frequency response
is constant over the frequency range of the dipole resonance, then Eq. 6-5.22 need only be
multiplied by the factor *(“)/? where 1, (@, ) is the photoelectric absorption coefficient
at the resonant frequency. The time spectra in Fig. 6-5.2 ignores the prompt delta-function
pulse.

Two more examples of multiple scattering worked out in the time domain are given
in Appendix B. In Appendix B.1, Lynch, Holland, and Hamermesh's solution is
rederived for the problem where a *’Co source excites a plane parallel slab of resonant
scatterers. In Appendix B.2, the time domain multiple scattering equations are used for a
case in which they turn out to be more convenient to use than the Fourier transform
method. In this problem the dynamical phase between two widely separated resonance
lines excited by a synchrotron pulse is examined.
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Fig §-5.2. Time spectra of *’Fe for varicus speedup rates: (a) linear scale, (b) log scale.
The presence of dynamical beats becomes evident in the log plot for large speedups.
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Fig 6-5.3. The decrease in the lifetime of the collective state, as shown in Fig 6-5.2 (a),
corresponds, by the uncertainty principle, to a broadening of the linewidth in frequency
space. (a) homogeneous line broadering due to multiple scattering, (b) homogeneous
linewidth as a function of the speedup rate.
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7. DYNAMICAL DIFFRACTION
BY CRYSTALS

The underlying theory of the principles of dynamical diffraction in crystals was
developed in the early 1900's independently by Darwin and Ewald. The two theories are
quite different explanations of the same phenomenon. The Darwin-Prin's theory carefully
examines the reflected and transmitted field amplitudes from each plane of atoms within a
crystal in order to build up a total diffracted and transmitted amplitude (one ends up solving
a set of coupled difference equations). On the other hand, the Ewald-Laue theory solves
the Maxwell equations for a medium having a periodic index of refraction (one ends up
solving a set of coupled dispersion equations). A well written discussion of both
treatments can be found in James (as well as almost anything one desires to know about
X-ray diffraction).! A good discussion of the Darwin-Prins treatment can be found in
Warren? and the Ewald-Laue approach is well discussed in Zachariason® and in a paper by
Batterman and Cole.* In the field of nuclear dynamical diffraction, the Darwin-Prins
method has been extended by Hannon and Trammel,>® and the Ewald-Laue approach has
been utilized by Kagan and Afanas'ev.”!! The discussion in this chapter will concentrate
on the Ewald-Laue method of dynamical diffraction theory.

7.1 Dispersion Relations for a Medium having a Tensor
Index of Refraction

Solving the inhomogeneous wave equation for transverse electric fields in a
mediu:- Fq. 3-2.11, gives insight into the nature of fields propagating through materials
along scattering channels. Recall that the index effect, 2¢,, is a tensor quantity
proportional to the multipole scattering amplitude developed in Chapter 4. Thus, the
inhomogeneous wave equation is also a tensor wave equation.

For an anisotropic medium, the spatially averaged index effect can be modeled as a
continuous periodic function of the spatial coordinates (see Eqs. 3-4.18, 6-1.4, and 6-1.5):

an ;
2£O(X,CD)=-I;-2——‘;-ZHFH3‘H"‘ (7-1.1)

Ov' 0

113
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where a sum over all the possible scattering channels denoted by the index H is performed,
and the magnitude of the scattered wavector within the medium is assumed to be
approximately equal to the vacuum wavenumber: k; = k,,. The expression above shows
that the index effect can be written as a Fourier series of the spatial frequency components
of the scattering amplitude (the multipole scattering amplitude is given by Eq 4-3.63 or
4-3.64 with X, =0). Similarly, the electric field can be expressed as a sum of Fourier
components. When this is done, the inhomogeneous wave equation transforms to

[V v kgv N k;,(%]z”’r_-”,e‘""{lz” Ene‘k"'x =0,
ov' 0

and thus

k 'k i . 4” i S+ ).
Zu(l—”"/?“"")'s”"“ o s L B =0 11
0

v ov' 0
The above equation can be satisfied if, term by term, the arguments of the
exponentials are the same. They will be if one remains on the energy shell:
ki+H =k,,. (7-1.3)
This can also be seen through examining the Ewald sphere (or energy shell) construction in
reciprocal lattice space, Fig. 7-1.1. The reciprocal lattice points, H and S, lie on the
Ewald sphere, K is the forward scattered beam within the medium (reciprocal lattice vector
is H=0), and k,, and k; are outgoing scattering directions. To satisfy Bragg's law, the
incoming and outgoing wavectors must lie on the Ewald sphere. The relation in Eq. 7-1.3
shows that there are fields within the medium traveling in S-channels that are scattered by

the spatial distribution of the index of refraction having spatial frequency components

denoted by H’, and these scattered fields end up traveling in the outgoing H -channel.
H

Fig. 7-1.1. Ewald sphere construction for scattering. Kk, is the forward scattered
wavector for fields scattering off crystal planes having reciprocal lattice vectors H and S to
produce fields with wavectors Kk, and Kj.
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From the Ewald sphere construction, one can see that S+ H =H. Then, Eq. 7-1.2
reduces to

(1 Ky "" JE" + ZZg"SES (7-1.4)
where, using terminology similar to Kagan s, the scattering tensor is defined as

4n
HS (H- s)
5 Fap
gaﬂ k2 V
and « and B are polarization indices of the electric field. Equation 7-1.4 is the dispersion
equation for a medium having a tensor index of refraction.

(7-1.5)

7.2 The Scattering Tensor

The scattering tensor contains important polarization information about scattering
processes. For the case of photoelectric scattering far from any bound state resonance or
absorption edge, the scattering tensor is

HS
8 gxy 47 ) -5 pHs
g" = fP (7-2.1)
gyz g;;s kgvv()

where the polarization independent part of the structure factor is, from Eq. 6-1.4 for n
identical particles,

7= 'E(Dw H=S)fy + f —if"” e M1 (7-2.2)

and the polarization matrix is defined as

PHS — [lexls le;sj . (éi - éil éf ) é; J (7 2 3)
- HS HS |71 a8 aH a8 aH el
P P, \E,"E, E,-E

where &7 and é:’ are the two transverse polarizations of the scattered electric field with
wavector K, , and the other two polarizations correspond to the wavector k. The Debye-
- Waller factor, D,,(H), is a function of the scattering vector and is given by Eq. 5-1.56.

The structure of the scattering tensor can be understood by examining some simple

cases. For instance, for scattering from a transmission channel (S =0) to a reflection
channel (H),
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For the reverse process, scattering from a reflection channel (S = H) to a transmission
channel (H = 0),

aH Ao AaH a0
OH _ 47[ H B"el 81'8’ 725
g—kzvfwéo aH . g0 | (7-2.5)
0v "' 0 ey. x y'ey

For scattering from a transmission channel (S =0) to a transmission channel (H =0)
[normal transmission through a material], or, for scattering from a reflection channel
(S = H) to a reflection channel (H) [normal transmission in the diffraction direction],

0 _ qnn _| 4T of1 0 )
g =g —(kgvvo)f (0 1)- (7-2.6)

Since the polarization basis of an electric field is orthonormal, the polarization matrices for
transmission are diagonal. The polarization matrices for diffraction are diagonal only if a
convenient polarization basis is chosen such as the sigma-pi basis used in Section 5.1 and
shown in Fig. 5-1.1--in such a basis polarization mixing is no longer possible.

When the sigma-pi polarization basis discussed in Section 5.1 is used, the two
electric field components completely decouple in the dispersion relation, and the dispersion
relation reduces to two independent relations for each electric field component

(1 _ '—("k—;kﬂ-)E,’,’ + Y g™ES =0, (7-27)
N

Ov
For the electronic scattering described above or for spin averaged dipole scattering, the
polarization matrices, P*" and P"°, are equivalent, and they are given by Eq. 5-1.47 for
electric dipole scattering or Eq. 5-1.46 for magnetic dipole scattering. For spin averaged
dipole scattering from q identical particles

s __ulk)Lu(k,)C 2], +1)T, 1 Te® (1)
4k,, 2j,+1) h @, - w,+il/2h ' '

q
The quantities L,, (k,) and LM(k ,) are the Lamb-Madssbauer factors that take into account
the vibrations of the scatterers. From Eq. 4-3.66

L) = Fule™ i), L) = (fule™ i) (129
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where |i, ) and |f,) are initial and final phonon states. The quantity C is the enrichment
factor describing the concentration of resonant scatterers at the lattice sites.

In general, when multipole scattering is included, polarization mixing occurs in
both the transmission and reflection channels. For nuclear scattering the scattering tensor
in Eq. 7-2.1 has an angular independent structure factor defined as (from Eq. 5-1.4 for ¢
identical particles and averaged over the initial state spins)

Ly (K;)Ly (K, )CT(L,A) (j,m, LM}, Lj,m,)

H—S 2
f ~(2n/k) ¢ E,-E,+ho, +iT,/2 (2j; +1)

Y e ™St (7-2.10)

q
and the polarization matrix is given by Eq. 5-1.5 with the substitution &/, — &7 and
€ — &5, where a=1x,y.

7.3 Linearized Dispersion Equations

The dispersion equations, Eq. 7-1.4, are a set of homogeneous nonlinear coupled
field equations. The nonlinearity comes from the quadratic term k/ ard the polarization
directions of the fields inside the medium represented in the polarization matrices.
However, for X-ray photons, the dispersions equations can be linearized because most
materials are essentially transparent to such photons. Since incoming X-ray photons are
only slightly affected by the presence of a medium, the polarization directions of the fields
inside a medium can be approximated as the polarization directions of the fields in vacuum.
This is a common approximation used in dynamical diffraction theory.

If the index of refraction in the H channel is m where €, is a small
complex number, then the quadratic term in the dispersion equation is kj; = (1+2¢, )kZ,
where k,, is the vacuum wavenumber. The dispersion equation, Eq. 7-1.4, then reduces
to the simpler form

2e,E) =Y giE;. (7-3.1)
sp
Making the further approximation that
ky =(1+ &, )k, (7-3.2)

completes the linearization of the dispersion equations. This is shown for a two-beam (or
two-channel) example in the following section.
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7.4 Two-Beam Analytical Solution

In certain situations reasonably simple analytical expressions can be constructed for
the scattered fields within a medium. This occurs for electronic scattering with a wise
choice of the sigma and pi polarization vectors that diagonalize the scattering tensor. The
multipole scattering tensor can also be diagonalized for certain orientations between the
quantization axis of the scatterer and the scattering plane. For the two beam case where
there are only two scattering channels, S =0 and S = H, along which travel a forward
scattered and a diffracted electric field, the decoupled dispersion relations can be written in

the form
(82 —28) & ( T, ]
8ur (84 —2€) O R, l-G.v=0
(gf—zfn) g;),‘ T, =v=v d40)
l 0 & &2\ J
where
T=E" (transmitted field) (7-4.2)
R=E*" (diffracted, or reflected, field). (7-4.3)

H =1, and x,y denote the two transverse polarizations of the electric field (in the sigma
and pi polarization basis shown in Fig. 5-1.1, x =0, and y = n).
To solve the dispersion equation, a relationship between €, and € must be found.
This can be done by noting that refraction occurs for a wave entering a medium from free
space
k, =k, +k,,6n (7-4.4)
where K, is the vacuum wavector in the forward direction (all vacuum quantities will have
the index v), N is an interior normal to the crystal surface, and & is a quantity describing
how much refraction has taken place.
Using Eqgs. 7-3.2 and 7-4.4, to first order in & and ¢, (to linearize the dispersion
equations), one finds that
6 =¢€/7, (7-4.5)

~

where Yo =K, - N. (7-4.6)
Applying Bragg's law,
k, =k, +H, (7-4.7)
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yields, to first order in €, &,,and &,

ke, (142¢€) = kg, (1+2€,) + H* + 2(K,, +k,,50)

which reduces to

£ =€, +ﬂ%&i+ 6(&, —-f(o)-ﬁ
=0,y [2+€,/b (7-4.8)
where o is a deviation from Bragg parameter
oy =H-(H+2k,,)/ks,. (7-4.9)
The parameter b is an asymmetry factor
b=17v,/7 (7-4.10)
where y, =k, - . (7-4.11)

The o, parameter describes how close a reciprocal lattice point must be to the
Ewald sphere in order to still satisfy the Bragg condition. The parameter can be evaluated
by examining how Bragg's law varies near the Ewald sphere

H =K, =K | = k2 + k2 = 2k k, c0s26,

~ 2k,, sin 9,,(1 + fl-i;—e—f’) (7-4.12)
where 280, is the scattering angle between K, and k, and 6, is the Bragg angle. Also note
that

H-k,, =—-Hk,, sin6, (7-4.13)
where 6,+ /2 is the angle between H and k,, (see Fig. 7-4.1). When the Bragg

condition is satisfied, 6, is nearly equal to 6. Defining a deviation angle

AO=6,-6, (7-4.14)
that is a measure of the angular deviation from Bragg gives
a, = —2A0sin28, — 4(AE/E)sin’ 6, (7-4.15)

where E is the incoming photon energy, and AE is the deviation of the Bragg energy from
the incoming photon energy

AE = E—E, = helk,, - (k +k,)/2]- (7-4.16)
The Bragg energy has been defined to be proportional to the average wavenumber inside
the medium. To remain close to the Bragg condition, either an angular or energy constraint
must be satisfied: A@ or AE must be close to zero. For instance, when examining the

angular spectrum of a scattered field, the Bragg energy is set equal to the incoming photon
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AH

kOv

Fig. 7-4.1. Diffraction from crystal planes. The xy-plane is the crystal surface, and H
is a reciprocal lattice vector perpendicular to the crystal planes. Present geometry shows a
symmetric Bragg reflection (b=-1). Incoming beam from vacuum, K,,, strikes the
surface, and refraction produces outgoing beam, k,, shifted by A6, from the incident
angle 6,.

energy, E; = E or AE =0, and the Bragg angle is obtained through Bragg's law and
0 =—2A0sin20,. When examining the energy spectrum of a scattered field, the Bragg
angle is set equal to the incoming photon angle, 8, = 8, or A8 =0, and the Bragg energy
is obtained from Bragg's law and &, = —4(AE/E)sin’ 8,. Bragg's law, Eq. 7-4.7, can be
rewritten as the following expression:
E,;sinf, = hcH [2 (7-4.17)

where H=2r/d,,, (7-4.18)
and d,,, is the lattice spacing of the [hk /] reflection.

The solution to Eq. 7-4.1 then reduces to solving a familiar eigenvalue-eigenvector
problem. The characteristic equation is

det(G,, —2¢&,J)=0 (7-4.19)

where
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gn (D8, —bay) . ’
0 AP

The solution to the characteristic equation yields the four eigenvalues

}( gg)’ 8e 0 j

(7-4.20)

el = %( gop + bepy — bay) £ %\Kg,‘,’g — bgyy + boz,,)2 +4bgpgy  (7-4.21)
where B =1x,y.

To complete the solution to the inhomogeneous wave equation, boundary
conditions must be supplied. In order to obtain analytical expressions to the reflected and
transmitted fields, interfacial reflections at the entrant and exit crystal surfaces will be
neglected. These reflections occur when a field crosses from one medium to another (such
as from vacuum to the crystal medium). The Bragg and Laue solutions are given below
using this approximation.

BRAGG CASE: At the top and bottom surfaces of the crystal (see Fig. 7-4.2),
the boundary conditions are |

2

A-r=0: E,,=T=) Y T& (7-4.22)

1=l a
f-r=d: 0=R=¢t""Y Y Rl ! (7-4.23)

=1 a

where k, =k,, + k. (7-4.24)
k, =k =Kk, +H (7-4.25)
Ka = ko, €0a/ 7o (7-4.26)

a=x,y, I =12 is the eigenvector index, and E, is the incoming electric field from the
vacuum. For Bragg diffraction and for no interfacial reflections, all of the incoming field
scatters into the transmission channel, and, at the exit surface there is no incoming field
scattering into the reflection channel.

For each eigenvalue in Eq. 7-4.21, there is a unique eigenvector

o _(Ta
Vo=| ot | (7-4.27)
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Fig. 7-4.2. Bragg diffraction geometry.
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The reflection amplitudes can then be expressed in terms of the transmission amplitudes
R.=D.T! (7-4.28)

where D, =(va),/(va),» (7-4.29)
and (v, ). is the i component of v,. Expressing the reflection amplitudes in terms of the

transmission amplitudes enables one to solve a decoupled boundary value equation for the
four transmission and four reflected wavefields inside the crystal

u,=B.-w (7-4.30)
or, written out explicitly,

I I
. 7-4.31
E, |~ O R 1 (7-4.3)
0 D;eux,d Dyzenx,d L,I;ZJ

After some algebra, the solution to the boundary condition equation can be written
in the form

Tlhor=s)= '3 S re,

=l a

‘k . (x 1+K, d)(g —280“) (r 1+K, d)(g 280‘,)
" EEOV‘I a u’ ] ixld
(gau - 2£0a) (gaa - 2800)

, (7-4.32)



(7.4) Two-Beam Analytical Solution 123

and, at the exit surface z =d,

4(:\- +vc) 1 2
Aore o e (20, - 2¢5,) S
Tr=d)= e R e i) e 2

The reflection channel field is

R(A-r=z) = * 1Y 3 i pigintegs

=l a

bgaa( i(xidvay) ei(x‘},d+x:;))

;(ko,m) 'NE g - , 7-4.34
2 ovaba e'%a d( 2£0a) ixh d(gaa_ZSOa) ( )
and, at the entrant surface z=0,
. bo'® ixid _ ixhd
R(A-r=0)=®""YE 8" e srale™ - ) (7-4.35)

a (gaa —2800) e d(gaa _280(1)‘

LAUE CASE: The boundary conditions for this case are (see Fig. 7-4.3)

2
n-r=0: Eo,=T=) YT (7-4.36)

=zl a

2
n-r=0: 0=R=) Y REl (7-4.37)

=] a
For Laue diffraction and for no interfacial reflections, all of the incoming field scatters into
the transmission channel, and, at the entrant surface, there is no incoming field scattering
into the reflection channel.

The boundary condition matrix for Laue diffraction is

|
| x
c . (7-4.38)
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F3:. 7-4.3. Laue diffraction geometry.
Solving the boundary condition equation for the scattering channel field yields

Ao\ kg “ '(gaa 2830) e l(gaa -2 (1)a) }
T(h-r=z)=e*"Y E, &0 e, ~2eL) (7-4.40)

R(ﬁ -r= Z) = e‘(“m*“)-'z E oK bg:::'(e“".l - eir.z>

ovab (el —2e) (7-4.41)
a o O

7.5 Dynamical Characteristics of Angular Spectra

In kinematical diffraction theory the angular distribution of the scattered fields
cornsists of delta function peaks situated at Bragg angles. In dynamical diffraction theory
the anguiar width of the Bragg peaks are broadened due to multiple scattering. The angular

distribution at a Bragg peak can be characterized by an 1, parameter (or a y, parameter
described by Zachariasen)>: 4

, —b)/lee{g,m} +(b/2)ax,
Na = \[_lRe | ) (7-5.1)

The above formula assumes that the scatterers in the crystal have space-inversion symmetry

ard that the origin is chosen at an inversion center (that is, the crystal is centrosymmetric

and glo = g% ). Also, forward scattering in the transmission channel is assumed to be
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identical to forward scattering in the reflection channel: g2 = gl . For thick crystals most
of the scattered intensity lies in the range In;|<1 (see Figs. 7-5.1 and 7-5.2). Thus, an
angular width, or Darwin width, of the diffracted beam can be defined as

A6 = ZlRe{g},‘ﬁ, }' = A0y, (7-5.2)
;Hbl sin26, b|
where A@), is the symmetric Darwin width for a thick crystal (this definition is useful
mainly for Bragg diffraction as can be seen by examining Figs. 7-5.1 and 7-5.2). From
Eq. 7-5.1 note that, for Bragg diffraction, the Darwin curve is not centered at the Bragg
angle. There is an index of refraction shift from the Bragg angle where the center of the
Darwin curve (the point 77/, = 0) now lies at

65 =6, + [(1 —b)/‘Z]Re{gﬁ?,}.
bsin20,

The electric field inside the crystal consists of traveling waves propagating
perpendicular to the scattering vector, H, and standing waves with wavectors parallel to the
scattering vector. Whether a standing wave field has its nodes or antinodes at the scattering
planes depends upon the scattering angle and, thus, upon the 7, parameter. When a
standing wave has its antinodes lying at the scattering planes (that is, on the atoms)
enhanced absorption occurs, and when it has its nodes lying at the scattering planes
absorption processes are suppressed.

(7-5.3)

From the solution of the dispersion equation there turns out to be, for each
scattering channel and for each polarization, two eigenwaves that are a function of the
energy of the incident field and the deviation from Bragg, a, (the two eigenwaves
corresponds to the /=1 and 2 solutions having eigenvalues given by Eq. 7-4.21). For
Laue diffraction the two eigenwaves are damped exponentially with distance into the
crystal. One wave has its nodes lying at the scattering planes (the alpha wave) and the
other has its antinodes lying at the scattering planes (the beta wave).* Since the beta waves
suffer enhanced absorption, these fields die out more quickly leaving only the alpha waves
to contribute to the total field amplitude that exits a thick crystal. Since the alpha waves
experience suppressed absorption, these fields can travel much further through crystals
than would be expected when only photoelectric or resonant absorption is considered. This
phenomena is the Borrmann effect--anomalous transmission through crystals.

For Bragg diffraction one eigenwave is damped exponentially while the other
grows exponentially with distance inside the crystal. For photoelectric scattering they both
have their nodes lying at the scattering planes when 7, = —1 and their antinodes lying at the
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scattering planes when 7, = +1.1:3:4 Thus, as 1, varies from —1 to +1, the electric field
experiences suppressed absorption to enhanced absorption--this is the reason for the
asymmetrical shape of the Darwin curve in Fig. 7-5.1. For resonant scattering the phase of
the eigenwaves changes by 7 as the resonance curve is traversed from frequencies above
the resonant frequency to those below the resonant frequency. Thus, the 7, points where
suppressed and enhanced absorption occur are at opposite sides of the Darwin curve when
operating on opposite sides of the resonant curve--this is shown in Fig 7-5.3. As the
absorption in the forward channel, Im{gf,";}, becomes more predominant than the effective
absorption resulting from scattering from the transmission to the reflection channel,
Im{g},‘f,} , the peak intensity shifts from 7, = -1 to 717}, =0, and the Darwin curve becomes
more symmetrical. Since in general Im{go }> Im{gl. }, there is always a shift in the peak
intensity towards 7/, = 0.

The Borrmann effect is of particular interest in resonant scattering because
absorption processes are always present and are usually predominant. For instance, for an
isolated *’Fe atom, internal conversion prevents the efficiency of photon production for a
scattering event from being greater that 11%. However, by scattering off a lattice of *'Fe
atoms, the efficiency can be made much greater than 11% through the Borrmann effect.!?

The figures below are rocking curves for pi polarized 14.4 keV radiation diffracting
from a body centered cubic crystal of a—**Fe*'Fe having a lattice spacing of 5 A. There
is one **Fe and *’Fe atom per unit cell, and the *’Fe atom lies at the center. No such iron
crystal has yet been fabricated, but such a structure lets one examine resonant scattering by
partially turning off the nonresonant photoelectric scattering. For instance, resonant
nuclear diffraction is allowed for any combination of Miller indices that satisfies Bragg's
law, but when the sum of the Miller indices is odd (h+k+[=2n+1, n=0,1,2,...)
photoelelectric diffraction is forbidden. For simplicity the resonant *’Fe nuclei are
assumed to have no intenal hyperfine fields--they are therefore single line emitters (An iron
crystal is inherently magnetic, but by adding impurities, such as was done for stainless
steel or for YIG,!3 the internal fields can be suppressed. « - Fe naturally has a bec crystal
structure with a lattice spacing of 2.8665 A. The lattice spacing of 5 A is used as an
attempt at approximating the larger unit cell constructed when impurities are added to
produce a single line emitter.). Also, all Debye-Waller factors, Lamb-Mdossbauer factors,
and resonant enrichment factors have been set to unity.

Figures 7-5.1 and 7-5.2 are photoelectric rocking curves for the allowed [0 0 2]
reflection and for various thicknesses. Resonant nuclear scattering, though also allowed, is
ignored in the calculations. In Fig. 7-5.1 the oscillations, or Pendellosung fringes, for the
10im thick crystal are caused by the interference of the two eigenwaves traveling in the



(7.5) Dynamical Characteristics of Angular Spectra 127

reflection channel. For d =1cm one of the eigenwaves has completely died off
exponentially with distance which eliminates the possibility for interference between the
eigenwaves to occur at the exit surface.
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-10 -5 O 5 10 15 20 25 30
Deviation Angle from Bragg: A6 = 6 — 8, (micro rads)

Fig. 7-5.1. Bragg diffraction rocking curves for [0 0 2] reflection for various
thicknesses. Only photoelectric scattering is being considered --resonant nuclear scattering
is being ignored.

For Bragg diffraction the primary extinction length, or crystal penetration depth
through which most of the transmission channel fields are reflected out of the crystal, can
be approximated from Bragg's law, Eq. 7-4.17, as

_2n _2mtanf,
“ AH H A6,

where A8, is the angular width of the Darwin curve (full width at half maximum). This

(7-5.4)

expression describes how much of a crystal is involved in diffraction by how far a
reciprocal lattice point can be from the Ewald sphere before Bragg's law is seriously
violated. For the crystal considered in this example, the Bragg angle for the [0 0 2]
reflection is 9.9° for 14.4 keV photons, and 27/H =5A/2. For d =1cm the Darwin
width is 12 urad, and thus d,, =3.6um and the crystal is several thousand extinction
lengths thick. When d =10um a far less number of planes contribute toward diffraction,
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thus the angular width is slightly broader than for the 1cm thick crystal. The extinction
length is now approximately 3.3um, and the fields penetrate a far greater fraction of the
crystal thickness. When d =1um, the Darwin width is 41urad and the fields penetrate
the entire thickness of the crystal: d,,, = lum.
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-20 -156 -10 -5 O 5 10 15 20
Deviation Angle from Bragg: A@ =0 — 6, (micro rads)

Fig. 7-5.2. L~ue diffraction rocking curves for [00 2] reflection for various
thicknesses. Only photoelectric scattering is being considered--resonant nuclear scattering
is being ignored.

The photoelectric absorption length for this crystal is roughly 0.5um. Thus, the
Borrmann effect is readily seen in the Laue diffraction rocking curves in Fig. 7-5.2. When
the crystal is 10um, or 20 absorption lengths thick, the transmitted intensity peaks at 40%
whereas a value 9 orders of magnitude less would be expected if only photoelectric
absorption was considered.

For pure resonant scattering when @ — @, = 0, the Darwin width goes to zero since
the scattering tensor becomes pure imaginary. The Borrmann effect persists at the center of
the profile because the nodes of the fields inside the crystal lie at the scattering planes.
Increasing the crystal thickness so that more planes contribute to reflecting the field out of
the crystal pushes the peak reflectivity closer to unity. This effect is commonly referred to
as the suppression of the inelastic channel.9 Because the effective transmission absorption
length is roughly 600 A when the incoming field is on resonance, the transmitted field is
quite negligible for the 10um thick crystal used in Figs. 7-5.3 and 7-5.4.
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Fig. 7-5.3. Bragg diffraction rocking curves for [0 0 1] reflection for various positions
on the resonance curve. Only resonant nuclear scattering is being considered--
photoelectric scattering is being ignored. Crystal thickness is 10um.
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Fig. 7-5.4. Bragg diffraction rocking curves for [0 0 1] reflection for various positions
on the resonance curve. Both resonant nuclear and photoelectric scattering is considered.
Crystal thickness is 10um. The point A@ = 16urad occurs at 7, = *1,0 for the central
curve (this is where the central curve peaks), at 77, = —1 for the curve on the right, and at
7., = +1 for the curve on the left.
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7.6 Dynamical Characteristics of Energy Spectra

The expressions for the transmission and reflection channel fields are too
complicated in their present form to see the dynamical effects of frequency shifts and
speedup rates resulting from multiple scattering. Also, since there are now two eigenwaves
traveling in a particular channel, ascribing a single frequency shift or speedup rate to an
exiting field is no longer generally possible. However, in certain limiting cases in which
only one predominant eigenwave manages to exit the crystal, one can easily examine the
dynamical effects of multiple scattering. These limiting cases are described below.

CASE 1: Far Off Bragg.

When the direction of the incoming field is set to be far from any Bragg angle,

a, >>|g"°|and|g l (7-6.1)

the eigenvalues reduce to

el = —[gpﬂl+h) ba,|+— i:lba,,|—gm,l—b)|ba”|:| (7-6.2)

B
for Bragg (b <0) and Laue (b > 0) diffraction. For both Bragg and Laue diffraction, the
reflection channel field is negligible, R(w) = 0, since it falls off as gy /o, while the
transmission channel field reduces to

T(w) = e* " B, (w)Ehe = Vet (7-6.3)

where L=dly,. (7-6.4)
For combined resonant dipole and nonresonant scattering, the scattering tensor
element for forward scattering is (from Eqgs. 5-1.48 and 7-1.5)

g™ ( /2_—nF(k =K, )+ 1% ()/2k,,. (7-6.5)

The Lamb-Mossbauer and resonant enrichment factors have been included in the scattering
amplitude, and ™ (w)/k,, =[gon (o) is given by Eqs 7-2.1 and 7-2.2 for
photoelectric scattering

nonres

p®(w)=- [i”]nr[D O)f, + f(w)=if"(w)] (7-6.6)

Ov
(the imaginary part of u®(®) is the absorption coefficient). For the simple two-beam
solution in Section 7.4, the expressions on the right side of Eq. 7-6.5 are independent of

polarization since they describe forward scattering. Equation 7-6.3 is precisely the same
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solution as that obtained for the transmitted field from an isotropic medium in Section 6.5.
The dynamical effects explored in that section then also apply equally well for this off-
Bragg case.

CASE 2: Thin Crystal Approximation.

For the thin crystal approximation

ko,E05d [ Vo << 1. (7-6.7)
In this approximation, the transmission channel fields for both Bragg and Laue diffraction
are almost unity. Using the approximation e* = 1+ x for |x] << 1 gives

L ikg, et A0 1+ik°'L[g‘(’£'(l+b)_baB]/2
TBragx (w)=e ; Ey.(0)E, 1+ iko,L(bgg?z - ba,,)/2

(7-6.8)

T (@) = 7Y By (@)E3[1+ iko, Lg% /2)] (7-6.9)

The solution for Laue transmission is equivalent to Case 1 (being far off Bragg) for
a thin crystal, or equivalent to transmission through a thin isotropic siab. For combined
resonant dipole and nonresonant scattering

T (@) =e*"Y E,  (0)E) 1 - ir," /4 +in®(w)L/[2 (7-6.10)
p -, +il"/2h
where, similar to the expression in Eq. 6-5.16 in section 6.5,
I = Ly (k,)Ly(k, =k )Cno,I'L (7-6.11)

and L=d/y,. Thus, for a thin crystal, Laue transmission channel fields exhibit no
frequency shifts or decay rate speedups.
For Bragg scattering the transmission channel field is

kg “0 ia[&b—(1+b)] )
TBrasz(w)__e gEﬂva(w)ea[é + w—w0+zr/2h—1ab (7 612)

r®/an
where . S 7-6.13
1+ibu®(w)L/2 - ibagk,,L/2 ( :
. 00 .
i _ i+ b (@)L)2 — ibogky,L/2 (7-6.14)

1+ibp®(w)L/2 - ibogk,,L)2
Since & =1 in the thin crystal approximation, the transmitted field can b. simplified to



132 Dynamical Diffraction by Crystals (7.6)

_ kg ol (w, —il,/2R)/b -
Tor (V) =€ ;E"'“(“’)‘“[‘ o (@4 @) +1T +T.)/2h 7-6.19

where w, = Re{ ib(l“,"" /4h) }

! 1+ibu®(w)L/2 — ibagky,L/2

~ b(CX /4h)(Re{bu® (w)}L /2 - bargk,,L/2)
(1= m{Bu®(@)}L/2) +(Re{bu®(@)}L/2 - bagk,, L/2)

and I, = ~lm{ ib(I‘,"°/2) }

! 1+ibu®(@)L/2 —ibogky,L/[2

> (1-6.16)

~b(r® /2)(1- Im {bp* (w)} L /2)
2 .
(1-1m {bu®(@)}L/2) +(Re{bu®(@)}L /2~ basky,L/2)
The second term in the brackets of Eq. 7-6.15 exhibits, in contrast to the
transmitted field through an isotropic thin slab, a frequency shift, @,, and a speedup rate,

(7-6.17)

I',. However, since w, is proportional to the square of the crystal thickness, it is an
exceedingly small quantity. The speedup rate is roughly proportional to the on-resonance
thickness rate, T, = —b(I"* /2), for thin crystals.

Applying the thin crystal approximation to the reflection channel field for Bragg and
Laue diffraction gives

(e o). ) —iky,Lbg'2 /2

R, (0)=¢™""'VE ()" 2o, 78 ua 7-6.18
Brau( ) ; Ov(x( ) a l+lk0,L(bgg’a -—baﬂ)/2 ( )
R (@)=Y, (0)8 0 (~iky,Lbgh [2)- (7-6.19)

For combined resonant dipole and nonresonant scattering the Laue diffracted field
reduces to

ibT' /4R

o

w-w,+il’/2h

R (@)=Y E, (0)E! [ - ibul,"(w)L/z} (7-6.20)

where, for resonant dipole scattering,
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L = Lug (K, )Ly (K )CooTL(Ug" U?x)Vl-Ze"‘""' (7-6.21)

0 n
and, for nonresonant photoelectric scattering,

Uy (w)= —( :’; ]r.(éi,"- &)Y [Du(H)f, + f(@)-if (w))e™™ . (7-6.22)

ov'0

Again, as was the case for the Laue transmission field, there are no frequency shifts or
speedup rates for Laue diffraction from a thin crystal.
The Bragg diffracted field reduces to

o . ib(éna+al)
R )= i(ko, +H)-r E D) E" ‘4 l g z 7-6.23
Bragg( ) € Ea: 0"’( )a éu w—w0+il‘/2h—-iah ( )
10
where &=l (7629
1+ ibp™ (@)L[2 — ibotgk, L /2
_ 10
and ¢ Ho(@)L/2 (7-6.25)

“ T 1+ ibp™(w)L/2 — ibaky L2
and a is given by Eq. 7-6.13. This expression can also be simplified under some
assumptions about the structure of the crystal lattice. If the lattice of resonant scatterers is
different than the lattice of nonresonant scatterers, certain reflections may be found where,
due to the geometrical structure factor, diffraction from resonant particles is allowed
whereas diffraction from nonresonant particles is not allowed. This holds for certain iron
crystals such as YIG, FeBO,, and «a - Fe,0, enriched with *’Fe. Under such conditions,
& =0, and the diffracted field simplified to

(@, =il /28)(T1a /1)
o —(w, +,)+i([+T,)/2h
where I', and w, are given by Eqs. 7-6.16 and 7-6.17. The frequency shift and speedup
rate are the same as that for Bragg transmission through a thin crystal. Also note that these

quantities are dependent upon forward scattering factors and not upon diffraction scattering
factors, and they are polarization independent.

Ry (@)= ™Y E, ()8! (7-6.26)

A crystal will also appear "thin" when the eigenvalues are near zero: &), = (0. The
eigenvalues can be exactly zero for Bragg diffraction when a, =0, gh =g! = and
Bowlua = 8on8aw- Under such conditions, an infinitely thick crystal will appear "thin" in

the thin crystal approximation. And as d — e, the transmission channel field becomes
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negligibly small and the reflection channel field goes to unity. These are the conditions for
the suppression of the inelastic channel.” They result in an interesting demonstration of the
Borrmann effect for resonant scattering where resonant absorption is completely
suppressed in an infinitely thick crystal. Here an infinite number of planes contribute
toward reflecting all of the incident field back out of the crystal--the reflectivity becomes
unity. This Borrmann effect can be seen in Fig. 5-7.3 (at A8 =0) for a crystal 3 primary
extinction lengths thick (unity reflectivity is nearly achieved). However, note that the
condition g2 glt = g% g'° cannot be met for nonresonant scattering since the Debye-Waller
factor for forward scattering (which is unity) is never equal to that for diffraction. Thus,
unity reflectivity through the Borrmann effect can never be achieved for nonresonant
scattering.

CASE 3: Thick Crystal Approximation.

In the thick crystal approximation

ko,E0pd [Vo >>1. (7-6.27)

For Laue diffraction the two eigenwaves of each polarization in each scattering
channel exponentially die off with distance into the crystal. Since both eigenwaves persist
at the exit surface, ascribing a single frequency shift or speedup rate to the net exiting field
is not possible. In addition, the analytical form of each eigenwave in Egs. 7-4.40 and
7-4.41 cannot be further simplified other than that they approach zero as d — oo.

For Bragg diffraction one of the two eigenwaves exponentially dies off with
distance while the other increases exponentially with distance. For the thick crystal

approximation, the transmission channel field is negligibly small while the reflection
channel field approaches

i +H)r ~ b 10
Ry (@)= ™™ S £ (@) ?6—_%% (7-6.28)
a aa Oa

where the eigenvalue that yields exponentially growing waves is chosen in the

denominator. For combined resonant dipole and nonresonant scattering, the reflected field
reduces to

RBragg (w) = ei(km e Z EOvu(w)éZ (b/Q:a)

x[w —(w, + @,)+i(C+T,)/2h i\/[w —(w, + o,)+i(T+ r,)/zh]2 + Qf,,/b]

where (7-6.29)
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0, = Re { (1-b)(I™ /4n) }

(1-b)u®(w)L/2 + bogk,,L/2

(1-b)(r¥® /4n)K1 - b)Re{u®(w)}L/2+ baBk(,,L/Zl

_ ‘ - (7-6.30)
[(1-b)Re{u® (@)}L /2 + botghs, L /2] +[(1- b)Im {u"(@)}L /2]
) (1-b)Y/2)
Ir,= —lm{(l -b)u®(w)L/2+ bankO,L/z}
(1 _b)(r;’"/z)[(l-b)lm {#m(w)}L/zl (7-6.31)

) [(1-b)Re{u™(@)}L/2+ bagky,L/2] +[(1-b)Im (@)L

Q,, = (o, —il,/2h)(T. /TX)[2b/(1- b)]. (7-6.32)
I'® and I')$ are given by Egs. 7-6.11 and 7-6.21, and, as before, a reflection was chosen
for a crystal structure that forbids nonresonant diffraction but allows resonant dipole
diffraction. Though the crystal is infinitely thick, a length factor, L, was inserted for
comparisons to previous calculations. All quantities computed for this case are actually
independent of L.
The extrema in Eq. 7-6.30 occur at

1-b
2bsin26,

where [gg'i,(a))]mw = u®(w)/k,, is a nonresonant scattering tensor element. The
maximurn frequency shift is then

A8, (Re{gte(w)} £ Im{gX(@)}) (7-6.33)

1 (0*/4n)

Aby)= . 7-6.34
ws( M) ko"L lm{g:’(w)}nmvu ( )

The maximum speedup parameter occurs at the nonresonant Bragg peak:

1 (7 /n) .
21Q.,(AB,) = > 2 /rey2s/(1-» 7-6.35
[2.0(28;) ko, L Im{gi’,‘,’,(w)}mm( L AL ( )
where the nonresonant Bragg peak is situated at
1-b)Re{g®

AB, = (=R g}, (7-6.36)

2bsin26,
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due to the index of refraction shift. The angular width of the speedup parameter, 2|Qm , is

(full width at half maximum)

_ V3(1-b)Im{gh}
- bsin26,

Because of the non-Lorentzian form of the reflected field, the quantities @, and T,
no longer fully represent a frequency shift and speedup rate, but, for certain ranges of o,
they do roughly describe the magnitude of these dynamical effects. The non-Lorentzian
characteristics of the energy spectrum embodied by Eq. 7-6.29 can be seen in Figs. 7.6-1
and 7.6-2 for various angles near the Bragg angle. The a—*Fe’’Fe crystal examined
earlier in Section 7-5 was used again in these calculations. Far from Bragg the energy
spectrum asymptotically approaches the Lorentzian lineshape a single nucleus exhibits. On
resonance and near the Bragg peak (which occurs at A6, =16urads) the collection of
nuclei generate a field intensity with a cusp-like distribution and long tails centered at the
natural frequency (this is where the Borrmann effect is predominant).

Plots of hw,(AB), the centroid of the energy spectrum, and the energy at the peak
intensity versus the angle from Bragg are shown in Fig. 7-6.3. The centroid and w,(A6)
generally follow each other with discrepancies largest at the Bragg peak, and they converge
to the energy of peak intensity at large deviations from Bragg (that is, deviations larger that
two photoelectric Darwin widths--the photoelectric Darwin width for the a—**Fe’’Fe
infinitely thick crystal is roughly 12 g rad for the [0 O 2] nearest order allowed photoelectric
reflection). The energy shifts represented by Aw,(A8) and the centroid maximize very
close to the Bragg peak positioned at Af,--at about three-fourths of a microrad from the
peak for hw,(A6) and about 1prad from the peak for the centroid.

The angular position of the on-resonance Bragg peak is totally determined by
photoelectric forward scattering since the real part of the resonant forward scattering
amplitude goes to zero (note that the first term in Eq. 7-6.33 is the index of refraction shift,

AG,, for on resonance scattering). Therefore, the extrema of ,(A8) are slightly shifted

A6, sover (7-6.37)

from A@, since nonresonant photoelectric absorption is generally much smaller than

nonresonant scattering: (1 - b)lm{,uw(a))/km}/Zb sin20, = 3/4urad (note that b = -1,
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Fig. 7-6.1. Diffracted field intensity versus deviation angle from Bragg and deviation
from the resonant energy.

fusuaiul

Fig. 7-6.2. A replot of Fig. 7-6.1 over smaller energy and angle ranges. The non-

Lorentzian energy distribution is now clearly observable along with homogeneous line
broadening and resonant energy shifts for these energy and angle ranges.
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6, =~ 4.9°, and u*(w)/k,, = (~2.8+i0.13)x 107 for the [0 0 1] symmetric reflection of
bec a—**Fe’’Fe having a lattice spacing of 5A). The energy shift seen by examining the
energy at which the field intensity is maximized has extrema that are roughly 15 times less
than that for @,(A@) and peaks (at about 11urads) much further from the angular position
of the on-resonant Bragg peak.

From Fig. 7-6.4 one can also see that 2|Q_ |+ I" approaches the full width at half

maximum as the deviation angle progresses beyond half a photoelectric Darwin width.

Thus, far off Bragg, the quantities @, and 2

Q,,| become good approximations for a
frequency shift and speedup rate.
The dynamical quantities w,, I',, and 2

Q,.| can be understood in another light by
examining the diffracted intensity in the time domain. Fortunately, due to the efforts of
Kohn,!0 an analytical expression for the Fourier transform of the diffracted field,
Eq. 7-6.29, has been evaluated through contour integral methods for the case where the
frequency spectrum of the incoming field is constant: E, (@)= E,,, (as is the case for a
synchrotron beam). The integral of interest is

1 T it
1= 5] e f(0-2)tfl0-2)@~2)]do (7-6.38)
where 2= (0, +@,)-i(T'+T,)/2h (7-6.39)
2, = (@9 +@,) = i(T +T,)/2n £ Q, (7-6.40)
and Q. = p{\/ﬁfgﬁ}. (7-6.41)

A Im{z}

Fig. 7-6.5. Contour for evaluating the Fourier transform of the diffracted field from an
infinitely thick crystal.
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Since Q,, is complex, the principal value of the square root in Eq. 7-6.41 must be
evaluated.

Since w, is much smaller that the natural frequency and Q_, < (w, —~iI‘,/2h) when
examining only the real and imaginary parts separately, an appropriate contour to integrate
over is shown in Fig. 7-6.5 which has a branch-cut between the two branch points z, and
z,. For this contour where @ is set to be complex valued

(§r. - iz )e-il'[(z —z,)% \/(z -z )(z- zz)sz =0 (7-6.42)

since there are no poles in the region between the closed contours I, and T,. The integral
over arc C* of contour I is zero by the Jordan Lemma (this can be seen by rewriting the
argument of the integral in the form of a quotient of one over a polynomial of degree 1).
The integral over the contour T, of the first term in the integral above also vanishes since it
has no poles within the contour. Then

l=:*:—§r e (z-2)z-2,)dz

=i‘2"1;(jc, + L, + J’h +f )e“‘“,/(z—z,)(z—zz)dz (7-6.43)

where C, and C, are two circles each of radius 7, and 7, and ¥, are two line segments on
opposite sides of the branch-cut between the branch points z, and z,. For the integral over
circle C, let z =z, +re*®. Then, since

.[c', e J(z-2)z-2,)dz

the integral over C; vanishes as r — () for 1 > 0. The same happens to the integral over the
other circle C,.

- 0,

r—0

< lzﬂre—i(z,+rsin 6) ‘\/reiﬂ(Q:a + reiB)

For the line segments let

z.—.[zl“l]»r[zl"zz]w. (7-6.44)
2 2

The principal value of the square root in the integral can then be expressed as

JZ=2)2=2)) = Q7 1= wrez ™1l (7-6.45)

Then, along 7, from z, to z, the square root transforms 1o

(z—2z)(z :‘5 =iQ, V1 -w’ (7-6.46)

when w is set to w = lima + ie where |¢|<1. Similarly, w= lin(1)a — i€ along 7, from gz,
£—

£-0
to z, and thus
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(z—2,)(z-2,) = =iQN1-w?. (7-6.47)

Then
et Rald ([ () [ g,
2r VW14
— $e-—i(wo+m,)le'(r+r,)l/2“ l_g_l_‘g_/_b_Jll f] _ W2 COS(Q;aWt)dW . (7'6.48)
P
With help from the integral tables in Abramowitz and Stegun,!# the integral evaluates to
, J(Qt)
j V1= w? cos(Q/ wt)dw = gt o (7-6.49)

The reflection channel field in the ime domain is then

i(Kg, +H)-T ~AH -i{wg+a, jt —(T+ . JQat
RBmgg(t)zex(kov H) ZEomeZe (wo+ ,)e (r r,)l/Zth E) st )9( ) (7-650)

sa
s

The principal value of the square root expressed by Q;, has been dropped since
T ()t = J,(Q,4t)/Q,qt (this can be seen by expanding the Bessel function in terms
of a series expansion in Q/,¢). Also, the T sign has been dropped because, as a result of
the boundary conditions, the overall phase of the reflected field is indeterminable (though
the phase can be determined when the reflection channel field interferes with another wave
such as with the incoming field at the crystal surface). Examination of the reflected field
reveals that it is frequency shifted by ,, and the natural decay rate is modified by a
speedup factor T, resulting only from forward scattering and by a speedup factor Q,,
resulting from diffraction.

The reason for the non-Lorentzian frequency response of the reflected field has now
been isolated to the dynamical beat and speedup factor J, (th)/th in the time response.
As a result, a decay rate attributed to the entire time response is no longer possible.
However, the time behavior of the reflected field simplifies in the limits of the Bessel

function for large and small arguments.!® For instance, in the short time domain when
ol<<1

Ripag (1) = €Y B, £l (00t @) (00T yen; 2 i=26(0), (7-6.51)

a

and the reflected field suffers a frequency shift, @,, and a speedup, T, of the decay rate.
In the long time domain when |Q_1| >> 1



142 Dynamical Diffraction by Crystals (7.6)

R Al ~i{wgtw, ) ~(F+T,)0 2 cos(Q,,t—3n/4
Ry (1) = ® Y E, Bl ) ‘”””t\fn (: — /)9(:). (7-6.52)

sa

Since

cos(Q, .t —3n/4) = (e““‘“"""‘"’”e'""{"""} 1 g (Rel Bt 3mt) oo ‘"““'"") /2

this long time limit exhibits both positive and negative frequency shifts and speedup and
slowdown rates. However, since [Im{Q,, }| < T, /2% there are never runaway solutions in
which the reflected field grows exponentially with time. In fact, for the case in which
Im{Q,, }|=T,/2# the reflected field reduces to

inj4  iwgt ,=T1/20
V2m 13[Q

For this situation the reflected field intensity undergoes no frequency shift and decays faster
than the natural decay rate by the factor 1/¢>.

Riyay (1) = €™t ZEM‘" € 0(1). (7-6.53)

For the intermediate case in which Ithl is neither very large or small, an
approximation of the decay behavior can be made using the result of the solution for the
scattering channel field from an isotropic slab as a guide

r, |0

| =C?(86)e (" 2(09) J‘"Z)e() (7-6.54)

I Bragg

T L

2 |66|+ 25p rads
Here, 66 is a measure of the angular deviation from the on-resonance Bragg peak
(determined by the photoelectric index of refraction shift):

60 =A0- A0, (7-6.56)
where A6, is given by Eq. 7-6.36. For this estimate {(86) is a function that varies from
unity to 2.5 as the deviation angle varies from the center of the Bragg profile to far from
Bragg. The coefficient C(88) rapidly varies from approximately 0.75 right on the Bragg
peak to a plateau of 1.1 a few microrads from the Bragg peak.

Plots of normalized reflected intensity versus time are shown in Figs 7-6.6 to 7-6.8
for angular deviations from the Bragg peak of 0, 50, and 200 prad respectively.

where £(66)=1 (7-6.55)
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66 = Ourads
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3 4 5
Time (in units of |, 1))
Fig. 7-6.6. Plots of normalized Bragg intensity versus Ith| (intensity is normalized by

dividing by |Q,, /2|'). The angular deviation from Bragg is 16jrad--this is right on the
Bragg peak. The speedup factors are 1/2|Q,,| = #/T, = 0.66 nsec.
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(b)
00 = 50urads
R IRBragg (t)/(Q:a /2)|2

————— Long time approx.
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Fig. 7-6.7. The angular deviation from Bragg is 66prad--this is S0urad from the
Bragg peak. The speedup factors are I/QIQM|"’43 nsec and A/, =2.8 usec. The
dynamical beats are now apparent at long times as can be seen in Figs. 7-6.7 (b) and (c).
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\ | 86 = 200 rads
8-\ | 2
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Fig. 7-6.8. The angular deviation from Bragg is 216urad--this is 200urad from the
Bragg peak. The speedup factors are 1/2|Qw| =~ 173 nsec and A/T’, = 45 pusec. Far from
Bragg the field intensity decays with nearly the natural lifetime.

7.7 Dynamical Characteristics of Crystals with Hyperfine
Split Spectra

To date, all crystals examined for nuclear resonant scattering have hyperfine split
spectra rather than single line spectra. If the resonant lines for a particular crystal are very
close together, the effects caused by interference between the various lines must be
carefully examined in addition to any frequency shifts and speedup rates of each individual
line. This significantly complicates the problem of analyzing the dynamical characteristics
of the reflected field (in addition, no analytical form of the Bragg diffracted intensity in the
time domain has been found).

If the resonant lines are far apart then the interference effects among the lines can be
neglected, and the results of Sections 7.5 and 7.6 can be used for each individual line. For
each individual line caused by a transition from an intermediate state |n) to a final state | f),
the dynamical quantities @,, I',, and Q,, are given by Eqgs. 7-6.30, 7-6.31, and 7-6.32
with substitution of I'* /k,,L and I'\2 /k,,L by

a
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2
—_ (4”)2 _ <J/meM|j/ Lj,m,) 00
r:)/-)/kml‘" K "‘LM(kz)LM(k/ —ki)crmd (2j,-'+l) Py (7-7.1)
and
rlO k L_ (47r)2L k L k Cl" (.’/mjLMlj/Ljnmu>2 Pm 1 2 _,'H.r'
.sa(fu)/ ovi = k(:){v M( i) M( j) rad (21‘+1) "M_‘Z)_ : e )

(7-7.2)

where P/f; is a polarization matrix described in Section 7-2.
Plots of ,(AB) and 2|Q,,(A8)| are shown below for three different crystals:
a - Fe,0,, FeBO,, and YIG (only for the d1-site). All these crystals have been used for
nuclear resonant scattering experiments, and they all exhibit hyperfine split six line spectra.

They can all be grown with enriched *’Fe atoms, and they all have the property, because of
either antiferromagnetic ordering or a ferromagnetic sublattice structure, where
photoelectric diffraction for certain lattice planes is forbidden whereas resonant nuclear
diffraction is allowed. The plots where constructed for the case in which the polarization
matrix P4 diagonalizes: there is an applied magnetic field oriented perpendicular to the
scattering plane. For lines (£,,4,,8;,2,.45,4,), Re(P'S) =(3/167)c0s26,(1,0,1,1,0,1)

ago

for incoming horizontally polarized fields, and (Ry) = (3/167)(0,2,0,0,2,0) for
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Fig. 7-7.1. Homogeneous line broadening parameter, or decay rate speedup factor, for
the various hyperfine split lines of:(a) « - Fe,0O,, (b) FeBO,, and (¢) YIG.
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Fig. 7-7.2. Resonant frequency shift for the various hyperfine split lines of: (a)
a - Fe,0,, (b) FeBO,, and (¢) YIG.

lines (£,,4,,4,,4,,45.¢;) are (1,2/3,1/3,1/3,2/3,1). The Lamb-M0ssbauer and resonant
enrichment factors have been set to unity: LM(k,.)LM(kI) =1 and C=1. The resonant
energy is 14.4125 keV, the resonant linewidth is 4.67 <107 eV, and j, =1/2. The [111]
reflection from « - Fe,0, and FeBO, have Bragg angles of 5.4° and 5.1 respectively. The
Bragg angle of the [0 0 2] reflection from YIG is 4.0°.

Since the photoelectric absorption due to the spectator oxygen atoms is small
compared to the iron atoms for o - Fe,0, and FeBO;, the extrema in the frequency shift
and speedup parameter characterized by Eqs. 7-6.34 and 7-6.35 are nearly identical as can
be seen in Figs. 7-7.1 (a) and (b) (the extrema are naturally independent of unit cell volume
and crystal thickness, but, if the photoelectric absorption of the spectator atoms is
completely neglected, they also become independent of the number of resonant nuclei per
unit cell). However, YIG has many more spectator atoms (32 other iron atoms, 24 yittrium
atoms, and 96 oxygen atoms). The photoelectric absorption from these spectator atoms
significantly limits the maximum frequency shift and speedup.

The angular range over which there is a moderate speedup is described by
Eq. 7-6.37. By decreasing the Bragg angle (such as by increasing the lattice spacing) or by
increasing the photoelectric absorption (such as by increasing the number of resonant nuclei
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per unit cell), the angular range for moderate speedup can be greatly extended. However,
increasing the photoelectric absorption by increasing the number of spectator atoms instead
of the number of resonant nuclei will decrease the maximum speedup.

7.8 Numerical Solutions of the Linearized Dispersion
Relations

The analytical two beam solution of the linearized dispersion equation was possible
because the polarization matrices were diagonal for a particular eigenpolarization basis.
The dispersion equation decoupled into two relations for each eigenpolarization, and this
resulted in simple analytical solutions for the transmitted and diffracted fields. The
eigenpolarizations for nonresonant photoelectric scattering are the sigma and pi
polarizations since mainly Thomson scattering occurs. For resonant magnetic dipole
scattering with an applied magnetic field perpendicular to the scattering plane, the
eigenpolarizations are also the sigma and pi polarizations. When the applied magnetic field
is parallel to the scattering plane and horizontally oriented (Case 3 in Section 5.1) the
eigenpolarizations are the right and left circular polarizations (however, a polarization
matrix must be reconstructed in this basis since the polarization matrices in the linear basis
represented by Eqgs. 5-1.19 and 5-1.20 no longer apply).

In general eigenpolarizations for resonant scattering are not easy to find for an
arbitrary orientation of the quantum axis. Therefore the polarization matrices are usually
constructed in a simple polarization basis (such as the sigma and pi basis), and then one
proceeds to solve the dispersion equations (which may no longer be uncoupled) through
numerical techniques. This involves solving the characteristic eigenvalue equation
expressed in Eq. 7-4.19 where

8 L Ly Lay
gu (bgu—boy) & g
G.=| » o1 00 ol . (7-8.1)
gyx gyx gyy gyy
& g gy (bey—bay)

The G,,-matrix is a 2n x 2n matrix where n is the number of scattering channels (or beams

as it is termed in the literature). For the two-beam case G, is a 4 x4 matrix, but when

there are many umveg, or simultaneous, reflections G,, can rapidly become very large to

lin
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the point where a fast computer is a necessary tool for solving the characteristic equation.
Resonant umveg reflections are not explored in this paper, thus the largest G, -matrix
investigated is the linearized 4 x 4 matrix shown above. With the help of readily available
computer programs (such as EISPACK or the NAG eigenvector-eigenvalue routines)
numerically solving the dispersion equation for both the eigenvalues and eigenvectors is a
straightforward procedure. However, insight into the dynamics of the scattering process is
lost. This insight can be partly recovered by examining simple analytical solutions such as
those presented in Sections 7-3 to 7-7.

When the incoming photon beam is near the surface grazing angle of the crystal, the
boundary conditions described in Section 7-4 are no longer adequate--the specular
reflection off the crystal surface is no longer negligible. One must now properly insure that
the normal components of the D and B fields and the tangential components of the E and
H fields of the Maxwell equations are continuous across the top and bottom surfaces of the
crystal. When this is done for the two-beam case, instead of having 4 eigenvalues to solve
for, there are now 8 to find. Four come from solving the characteristic equation in
Eq. 7-4.19, and four more come from solving two separate dispersion equations describing
fields propagating through the crystal that have been internally reflected from the top and
bottom surface of the crystal. The continuity boundary conditions yields 16 equations
(eight involving the transmission channel eigenwaves and eight involving the reflection
channel eigenwaves). They can be reduced to 8 equations by eliminating the exiting fields
and the specularly reflected field.!” Resonant grazing angle scattering from crystals is also
not explored in this thesis.

7.9 Nonlinear Dispersion Equation

The linearized dispersion equation is valid in the limit of finite and nonzero
asymmetry factors. As b — 0 or as b — *eo (that is, when the forward scattered or
diffracted field propagates nearly parallel to the crystal surface), the nonlinear dispersion
equation presented in Eq. 7-1.4 may be required. This involves finding the solution to a
quadratic characteristic equation.!?

Projecting the wavectors within the crystal onto unit vectors normal and parallel to
the crystal surface ( nand U respectively) produces a nonlinear characteristic dispersion
relation in terms of the projection of the transmission channel wavector onto the surface
normal:
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k., =K,-n. (7-9.1)
Noting that k. =k, + H, (Bragg's law) gives
2
K, -K, [k2, = k2 + ko (2H,q ko, )+ (Hoa ko, ) + KD (7-9.2)
The quadratic characteristic relation is then
(k2.B, +k,;B, +B, —GJv=0 (7-9.3)
where
"ol [ }
B, =| : O | B = 0 O
- O ] ’ o 2H1n/k0v
! O 2H, . [k,
[ \
B = I —1 2 2 0 I
° O (H”.‘/k(,,) +km_] |
2
L (H[ ko) +KE —1 J
8o 8u 8x 8 T,
10 11 10 1 T
G=|% b e Bl andu=) | (7-9.4)
gyx gyx gy, g” x
8 8 & & R,
By defining an eigenvector @ such that
V=k, .0 (7-9.5)
allows the quadratic characteristic equation to be modified to
k,;BB;v+(B,-G)B 'k . 0=" k0. (7-9.6)

This relation becomes linear in k., when both sides of the equation are divided by that

parameter. The new linear characteristic equation to be solved for is then

(Q-k,I)b=0 (7-9.7)

(7-9.8)

where Q = [
I 0

-BB; -(B,- G)B;’j
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b=(°) (7-9.9)

and 1 is the identity matrix.

Since the B and G -matrices are of order 4, the Q-matrix is of order 8. Then the
linear characteristic equation will give 8 eigenvalues, k;ﬁ, and eigenvectors, b’. The first
four elements of the eigenvector b’ yields v’ which is the desired eigenvector for the
nonlinear dispersion equation. The boundary conditions are found by the same method
explained in Section 7.8: ensuring that the normal components of D and B and the
tangential components of E and H are continuous across the crystal interfaces. Instead of
there being 16 eigenwaves inside the crystal that exists for the linearized dispersion relation
with simple boundary conditions, there are now 32 eigenwaves traveling inside the
crystal--16 for each polarization and 8 for each scattering channel direction.

When examining highly asymmetric reflections (which are also not explored in this
thesis) one may need to solve the nonlinear dispersion equation rather that the linearized
dispersion equation.

7.10 Umweganregung, or Simultaneous, Reflections

In the previous sections only 2-beam diffraction was investigated. However,
n-beam diffraction from a crystal can occur when more than one set of crystal planes reflect
the incident beam into the same outgoing direction. These umweganregung (umveg for
short) reflections occur simultaneously with the primary reflection. The Ewald sphere for a
3-beam diffraction case is shown in Fig. 7-1.1. In the figure, K, is shown to scatter into
the k,, direction due to planes having a primary scattering vector H. Simultaneously, k, is
scattered into the K direction due to planes having a scattering vector S, and then Kk, is
scattered into the K|, direction due to planes having a scattering vector H—S.

Bragg's law for satisfying both the primary H reflection and the secondary S
reflection can be obtained by studying the scattering geometry shown in Fig. 7-10.1. The
scattering plane (f( 9) consists of k,, H, and k,,, and H points in the Z-direction. S is a

secondary reciprocal lattice vector that makes and angle 6 with respect to H:

S =sin B, cos ¢ X + sin B, sin Py + cos 6,Z. (7-10.1)
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HAz

X

Fig. 7-10.1 Scattering geometry for 3-beam diffraction.

The Bragg angle between H and k;,, is 90°~8}, and the Bragg angle between S and k, is
90°-63. Then, from Fig. 7-10.1,

sin 65 =k, -§ =sin 6/ cos 6, + cos 6 sin O, sin . (7-10.2)
Bragg's law for each of the separate reflections is (recall Eq. 7-4.17)
sin@) =hcH/2E, and  sin@; = hcS/2E,. (7-10.3)

The azimuthal angle for which both of these reflections occur simultaneously is then

Sin g = — 1 L Heosds (7-10.4)
2E,sin 6| \J1 - (hcH/2E,)
and the energy at which this occurs is
he |(L—Hcos8, )
E, =20 | 2210080 | 4 2, (7-10.5)
2 sin O sin ¢

Umveg reflections can show up as undesirable glitches in crystallography
experiments. Or, they can be useful as precise energy calibration markers. As a result,
knowledge of the intensity of umveg reflections is valuable information. As a first order
approximation, the intensity of an umveg reflection is proportional to the product of the
structure factors of the umveg's two sets of reflections:
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lumveg = FSFH—S (7']06)
where F is the structure factor of a unit cell (see Egs. 6-1.4 and 6-1.5).16 More about
these umveg reflections are discussed in Section 9.5 where they are used as energy

calibration markers and where ¢ -energy graphs are constructed to chart out the regions that
should be avoided.
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8. NUMERICAL ANALYSIS PROCEDURES

8.1 Crystal Structure of Fe,0,, FeBO,,and YIG

The principle crystals used in the field of nuclear resonance scattering have been
hematite (- Fe,0,),! rhombohedral iron borate (FeBO,),’7 yittrium iron garnet
(YIG),%? and orthorhembic iron borate (Fe,BO,)!% !1 (and, to a lesser extent, potassium
ferrocyanide (K,Fe(CN), -3H,0),!? sodium nitroprusside (Na,Fe(CN);NO-2H,0),!3
157Te crystals,' and mosaic ''’Sn crystals!> -- these crystals have very large mosaic
spreads, and perfect crystals of these compounds are difficult to fabricate). All these
crystals (except for the mosaic ''°Sn crystals) have the feature that, for certain
crystallographic reflections, nonresonant photoelectric diffraction is forbidden whereas
resonant nuclear diffraction is allowed.!® This feature allows the nonresonant background
to be significantly reduced in order to observe the nuclear signal.

o—Fe,0, and FeBO, both have a rhombohedral calcite crystal structure (space
group R3c-D$,)!7-19 and exhibit a canted antiferromagnet system20-23 (see Fig. 8.1-1).
They each have two molecules per unit cell which lead to the formation of magnetic
sublattices below the Néel temperature (948°'K for a—Fe,0, and 348K for
FeBO,).2% 23 The magnetic moments lie within the (1 1 1) plane with two adjacent planes
being antiferromagnetically coupled (however, below the Morin temperature of 253°K the
o~ Fe,O; magnetic moments align themselves perpendicular to the (111) planes24).
Because the antiferromagnetic moments are canted, there is a small ferromagnetic moment
lying within the (1 1 1) plane. The ferromagnetic moments will align themselves parallel to
an external magnetic field, therefore, an applied external magnetic field can be used to
orient the antiferromagnetic moments (an alignment field of about 1 kGauss2> 26 is needed
for a— Fe,O, and only several Gauss (~ 5Gauss)?? 2" is needed for FeBO,).

Because of the antiferromagnet sublattice structure, resonant nuclear reflections are
allowed from certain lattice planes whereas photoelectric reflections are forbidden. For
instance, from planes A and B for the crystals in Fig. 8.1-1, the electric fields are reflected
180" out of phase. However, since the magnetic moments lie in nearly antiparallel
directions for the two planes, the polarization of the reflected fields for each hyperfine line

for the two planes is different (for perfect antiferromagnets, the polarizations are

156
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[111] direction and

_..)
EFG direction

a-— FCZO3

(a)

[111] direction and
_)
EFG direction

FeBO,

® Iron
O Boron
Oxygen

(b)
Fig. 8.1-1. Antiferromagnetic structure of (a) a—Fe,O, and (b) FeBO,. The electric
field gradients lie perpendicular to the (1 11) planes. Planes A and B have magnetic
moments in antiparallel directions.
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(1 3 @ (6)
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B Planes
e e, e e, Energy

Fig. 8.1-2. Hyperfine energy spectrum illustrating the case where the applied magnetic
field is perpendicular to the scattering plane (only hyperfine lines 1,3,4, and 6 are then
possible). For small canting and Bragg angles, the polarization of each hyperfine line of
the reflected field can be approximated as right and left circularly polarized: @_and e, .
Since the internal hyperfine fields are identical for the iron atoms in the A and B planes
(except for the direction of the internal magnetic fields), the hyperfine lines from the two
planes overlap with a 180° phase difference due to the position of atoms within the unit
cell. However, due to polarization differences, there is no cancellation of the fields
reflected from the two planes.

orthogonal--see Fig. 8.1-2). Complete cancellation of the reflected fields is then no longer
possible.

YIG (Y,Fe;0,,) is the crystal examined in this thesis. Even though it has a cubic
crystal structure, its unit cell is much more complex than the rhombohedral structure of the
other crystals. YIG belongs to the space group Ia3d - O}°, and it has 96 O’ ions located at
the h-sites, 24 Y** located at the c-sites, and 40 Fe’* ions located at the
a and d —sites.? Diring the 1960's and 1970's when magnetic bubbles appeared to be a
promising way to store megabytes of information, the technology was developed to grow
high quality YIG crystal films on GGG (gadolinium gallium garnet) substrates by liquid-
phase epitaxy methods. Because these YIG films can be grown nearly free of dislocations
and other crystal defects and with very uniform lattice spacings, YIG is an attractive choice
for nuclear resonant diffraction experiments.

YIG is a ferrimagnet below the Curie temperature of 559°K for ceramic materials
and 549.2°K for YIG films grown from PbO - V,0, fluxes.?? The easy direction of
magnetization is the [111] direction, though alignment fields of 100 Gauss are sufficient to
orient the magnetic moments to the [001] direction. The d —site iron atoms are surrounded
by a distorted oxygen tetrahedron stretched along a fourfold inversion axis oriented in the
[001] direction, and the a - site iron atoms are surrounded by a distorted octahedron



(8.1) Crystal Structure of Fe,0;, FeBO,, and YIG 159

— A ,
EFG | 1001]
g —
¥ L]
< _§>_P7 ] K
-t 2 _ -
AV il 4 Qe =
[100] Y
dl - site d2 —site d3 - site
A6 L -
¢t N EFG (111] EFG 1)
&\\ R
e \ - -
o 1\ ~ el /
‘/’ 4 - 2/
y - V4 i
al- site al - site a3 -—site
~
NG
{7 > —
1>
//;i\\ -~
e w3
“} 7
ad - site

Fig. 8-1.3. Orientation of magnetic moments, (4), and electric field gradients, @), for
the seven magnetic sublattices of YIG. To orient the magnetic moments, there is an applied
magnetic field in the [001] direction.

stretched along a threefold symmetry axis oriented in the [111] direction. The electric field
gradients formed within these distorted oxygen polyhedra lie along the symmetry axis. The
seven ferromagnetic sublattices within the YIG unit cell are shown in Fig. 8-1.3 with the
orientation of the magnetic moments and electric field gradients. >0 3!

For the experiments done in this thesis, crystal planes were chosen where all the
a — site reflections were forbidden and all the d —site reflections were allowed except for

the d3 —site. Therefore, ferromagnetic ordering was utilized to examine nuclear resonant
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scattering instead of antiferromagnetic ordering as was used for the a— Fe,O, and FeBO,
crystals. Nonzero reflected fields now occur because of different electric quadrupole shifts
between the d —sites rather than because of polarization differences that occur for
antiferromagnetic crystals (See Fig. 8-1.4).

) 3) ) (6)
M= -l 112 1 d1 —site
e e, e e,
|
M= -1 % 1 i -1 % 1 I d?2 —site
e. é’ e. é* Energy
>

Fig. 8-1.4. Hyperfine energy spectrum illustrating the case where the applied magnetic
field is parallel to the scattering plane.32 For small Bragg angles the polarization of each
hyperfine line can be approximated as right and left circularly polarized: @_and e,. The
magnetic moments of the two sites are parallel, but the electric field grddlents are in
perpendicular directions. This introduces small differences in the electric quadrupole field
which show up as different quadrupole shifts in the hyperfine lines for each d —site.

8.2 Crystallography

To orient a general crystal for diffraction, an orientation matrix must be found that
can perform the transformation of a vector in reciprocal space to an orthogonal lab
coordinate system. Let there be a vector V in reciprocal space with basis axes (ﬁ',f)',é'):

v=h"f"=ha" +kb" + £&' (8-2.1)
where * =a" +b" + ¢ is a unit radial vector in reciprocal space and h' = (h,k,£) is a row
vector containing the Miller indices, or reciprocal space coordinates, of the reciprocal vector
v. Let the laboratory system have a fixed orthogonal basis (X,,¥,.2, ) (see Fig. 8-2.1).
The problem is then to find the components of v in the lab space.

A solution can be found if there are three known reflections from the crystal. Then
there are three reciprocal vectors v,, v,, and v, which are known to point in some

direction in lab space--their components in lab space are then known. This is summarized
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Fig. 8-2.1. Vector V in reciprocal and lab space.

by the following relation:33

Y=V, hy ke & \X h k¢

V=V =2y by LY |=lh k4

Vi, = V3 hy ko L \Zy hy ky ¢

or Hf, =H't (8.2-2)

(the superscript T denotes the transpose of the matrix, and vectors are always column
vectors). The coordinate axes then transform as

r,=ur (8-2.3)

where U =(HI) 'H". (8-2.4)

From Eqgs. 8-2.2 and 8-2.3, one also gets a relationship detailing how the

coordinates transform:

T 8

L3

(@3]

3

hjU’=h" (8-2.5)

which leads to
h,=(U")'h (8-2.6)
or h, =Uh (8-2.7)
where U=HH". (8-2.8)

As expected, the coordinates transform in an inverse way to the axes since u'=u-.
Thus, from a knowledge of the elements of H, and H™' for three reciprocal vectors, the
components of any reciprocal vector can be obtained in terms of lab coordinates by using
Eq. 8-2.7.

The determination of the orientation matrix can be simplified if a primary reflection,
hp, is known and a secondary reflection, h,, lies in the scattering plane such that
h, -k, >0 where k, is the scattered wavector of the primary reflection (see Fig. 8-2.2).
The third reciprocal vector can be found by taking the cross product between the primary

1] G . e
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h,,)r 2,

Fig. 8-2.2. Orientation geometry for diffraction. k;,k h_ h, yL,dnd z, all lie in the
scattering plane. k, diffracts from planes Qerpendlcular to h h , 18 parallel to z,, X, is
perpendicular to the scattenng plane and S is the outward surfdce normal of the crystal.
(x Y2 L) lab system is fixed in space and never rotates--same for k; since it comes from
a fixed source. h,,h, .k, and § all rotate with crystal as it is onented in space. h is the
desired reflection and is always eventually oriented to lie in the Z, -direction.

and secondary reciprocal vectors. Cross products can be done only in spaces with an
orthonormal basis, therefore, for crystals with noncubic structure, such as rhombohedral
crystals, one must project the reciprocal basis onto an orthonormal basis, then take the
cross product, and then project the results back into reciprocal space. The matrix that
transforms a reciprocal vector to an orthogonal space with basis (X,,¥,.2, | is** *°

a b'cosy’ ¢’ cosf’
B=|0 b'siny” —c'sinf cosa (8-2.9)
0 0 e

asinBsiny’ —asinBcosy’ acospB
B = 0 bsino bcosa (8-2.10)
0 0 c
where (ﬁ b, ) are the direct crystal axes with interaxis angles @, 8, ¥ where cosa@ =b-¢,
c

cosB=¢C-a, cosy=a-b, and (ﬁ',b',é') are the reciprocal lattice axes with interaxis
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reciprocal angles &”, B°, 7" defined in a similar manner. In the orthogonal space X, ¥,,
a*,and b’ all lie in a plane perpendicular to Z,, and a" is parallel to X,.
A third reflection is then
h,=h,xh,=B"[(Bh,)x (Bh, )] (8-2.11)

From Fig. 8-2.2, the lab coordinates of the reciprocal vectors can easily be seen. The
primary reflection is in the 2, -direction, the third reflection is in the X -direction, and the
secondary reflection is

h, =h,|(sin6,,y, +cos 0,.2.) (8-2.12)
where cos8, =h,-h,/nh,. (8-2.13)

To take the dot product of two vectors in a nonorthogonal basis, the two vectors must again
be transformed to an orthogonal space in which the dot product can be properly taken:

h,-h, =(Bh,)"-(Bh,). (8-2.14)

Note that the dot product relationship gives the metric for reciprocal space:

(g}

a-a a-b a
B'B={a’-b" b'-b" b'.¢' |=G". (8-2.15)
a-¢c b-c c¢

The dot product can then be written in the familiar way for the dot product of two vectors
within a space defined by a metric G:

h,-h, =h,G"h, (8-2.16)
where h,, and h, are the covariant components of the vectors b, and h, (that is, they are
the components of those vectors in reciprocal space), and G** are the contravariant
elements of the metric for the direct crystal axes space (that is, they are the elements of the

reciprocal space metric G™). The cross product given in Eq. 8-2.11 can also be written in
terms of the metric as>

(h,xh,), =Ge"h,h, (8-2.17)

ik

where €% is the contravariant antisymmetric tensor for a space with metric G™':
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VdetIG"l if i,j,k is a cyclic permutation of 1,2,3

e‘/’*:r detG™|  if i,j,k is acyclic permutation of 2,1,3 (8-2.18)

t

and G,; are the covariant elements of the metric for the direct crystal axes space (that is,
they are the elements of the metric G).

The orientation matrix U can now be constructed since H, and H are completely
determined:

0 otherwise

o 0 |

H =| 0 |lsin6, O (8.2-19)
lhpl h;|c030N 0
h, h, h
H=|k, & K (8-2.20)
L, ¢ ¢,
and U=HH". (8-2.21)

The Fortran code, Orient_cryst, embodying all of this section's discussion on
orienting a general crystal follows. The subroutine uses the same framework as Busing
and Levy's Algol program designed for 3 and 4-circle diffractometers.?> In addition to
what has been discussed, the subroutine can perform rotations about the desired reflection,
h, and rotations about the incoming photon direction, k;, that preserve the Bragg
condition.

The subroutine must be linked with another subroutine package called
EIS_LIN_PACK. This package contains the popular LINPACK code for solving
simultaneous equations and the EISPACK code for solving eigenvalue problems.37: 38
They were obtained from the National Energy Software Center at Argonne National
Laboratory. The subroutine Lineq in LINPACK was used to find the inverse matrix H™'
for constructing the orientation matrix.

In the Fortran code below, and in the EWALD code that follows later, to preserve

space, several lines of code are piled up onto a single line. A semicolon (never used in
actual Fortran code) separates each line of code.
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Subroutine Orient_cryst(Ee,a,alpha,hp,hs,h,S,Uo,sigmai,pii,sigmaf,pif,b)
¢ This Subroutine sets up the Crystal Oriantation for Diffraction. Uo is the Net Orientation Matrix -- to
c Transform any Reciprocal Lattice Vector to the Orthogonal Lab Coordinate System, Operate Uo on it:
c V_lab = Uo(dot)V_recip.
c VARIABLES:

a(i) = Crystal Lattice Spacings a,b,c (cm) ; alpha(i) = Crystal Lattice angles alpha,beta,gamma (deg)
Vo = Unit Cell Volume (cm**3) ; Ee = incoming Photon Energy (Ev) ; hp,hs = Primary and Secondary
Reciprocal Lattice Vectors ; S = Outward Surface Direction ; h = Desired Reciprocal Lattice Scattering
Vector ; Ki,Kf = iIncoming and Diffracted wavectors (1/Angstrom) ; sigma,pi = sigma and pi
polarization vectors ; Bragg = Bragg Angle (radians) ; b = Asymmetry Factor
PhiKi,phiH = azimuthal rotation angles about Ki and h directions (deg)
¢ psi = azimuthal rotation angle about h after azimuthal rotation about Ki iias been done.
¢ NOTE:
c(1) The Lab coordinate system is determined by Ki and its polarization vectors.
c(2) PhiKi = rotation of a plane perpendicular to Ki direction. For example, phiKi = 90 deg ==> h rotates
c from Lab_z to a vector lying in [Lab_x,Lab_y] plane. PhiH = azimuthal rotation of plane
c perpendicular to h direction. PhiKi,PhiH rotations both preserve Bragg's Condition.
c LINK:  Link with EIS_LIN_PACK
c D.E.Brown 1990 (SSRL/'STANFORD)
Real's **Everything possible** (all Matrices are 3x3 arrays)
Common /stup/ hbarc,sinBragg, Vo,phiKi,phiH,psi,Ki,Kf kis
Common /Lab/ x_Lab,y_Lab,z_Lab ; Common /conv/ rad,pi
¢ Construct a matrix Bo that transforms from non-orthogonal axes to an orthogonal axes system.
c Boi is the inverse of Bo.
Call Generate_Bo(a,alpha,Vo,Bo,Boi)
¢ Determining angle between hs and hp which gives orientation of hs in Lab coordinate systam
Call General_Dot(hp,hp,Bo,hpp) ; Call General_Dot(hs,hs,Bo,hss)
Call General_Dot(hp,hs,Bo,hps) ; Call General_Dot(S,S,Bo,ss)
hpp = Dsqrt(hpp) ; hss = Dsqgrt(hss) ; ss = Dsqri(ss)
cosps = hps/(hpp*hss) ! angle between hs and hp ; sinps = Dsqrt(1.0d0 - cosps**2)
¢ To construct a third vector, take cross product of hs and hp
Call General_Cross(hs,hp,Bo,Boi,h3) ; Call Generai_Dot(h3,h3,Bo,h33) ; h33 = Dsqrt(h33)
¢ One can now construct the Orientation Matrix U that transforms any vector in reciprocal coordinate space to
c the Lab coordinate space. Note that: hp is in Lab_z direction, hs = cosps(Lab_z) + sinps(Lab_y), and h3 is in
c Lab_x direction.
Call Lab_Vectors(hpp,hss,h33,sinps,cosps,hplab,hsiab,h3lab)
Call Orientation(hp,hs,h3,hplab,hslab,h3lab,U)
c Computation of the Bragg angle of the Desired Reflection. Note that hmag = 1.0/d(hkl) ,
c where d(hk!) = interplaner spacing for indices h,k,! (units = angstroms)
Call General_Dot(h,h,Bo,hmag) ; hmag = Dsqrt{hmag)
sinBragg = pi*hbarc*hmag*1.0d8/Ee ; cosBragg = Dsqrt(1.0 - sinBragg**2)
¢ The h reflection is desired. Then rotate h so that is is pointing in the Lab_z direction--h will point in the
c direction hp used to be directed. To Do this, transform h to Lab system, h --> Uh = hLab. From its polar and
¢ azimutha!l angles, one can now rotate h to point in the Lab_2z direction--and one can rotate all of the other
¢ vectorsattached to the crystal system with rotatation matrix Rz.
Cali Mv(U,h,hLab) ; Call Polar(hLab,x_Lab,y_Lab,z_Lab,theta,phi) ; Call Generate_Rz(theta,phi,Rz2)
c Now, the crystal can be rotated about h and Ki and still preserve the Bragg condition. The Rkh matrix
¢ performs this rotation. First the crystal is rotated azimuthally about h, and then azimuthally about Ki. The
¢ Rpsi matrix performs an addition azimuthal rotation about h after the rotation Rkh has been done (necessary
c only when a rotation about Ki has been done). Uo is the Net Orientation Matrix. First it transforms reciprocal
c lattic vector to Lab system. Then it rotates it by Rz in aligning h to point in the +z_Lab direction. Then it
c makes Rkh Bragg preserving rotation.
Call Generate_Rkh(phiH‘rad, phiKi‘rad,cosBragg.sinBragg,Rkh) ; Call MM(Rz,U,dum?2)
#{phiKi .Eq. 0.0) Then ; Call MM(Rkh,dum2,Uc) ! Uo is the Net Orientation Matrix
Else ; Call Generate_Rpsi(psi‘rad,Rz,Rkh,hLab,Rpsi) ; Call MM{Rkh,dum2,dum3) ; Call MM(Rpsi,dum3,Uo)
Endif
¢ The Ditfracted wavevector can now be determined from Bragg's law h = Kf - Ki, as well as the asymmetry
c factor b = ki{dot)n/Kf(dot)n where n = inward surface normal.
Call Mv(Uo,h,hLab) ; Call Mv(Uo,S,SLab) ; Ko = Ee*1.0d-8/hbarc

00000

Do 11=1,3
Ki(i) = Ko*(cosBragg®y_Lab(i) - sinBragg®z_Lab(i)) ; Ki{i) = 2.0*pi*hLab(i) + Ki(i)
1 pii(i) = sinBragg*y_Lab(i) + cosBragg*z_Lab(i) ; sigmai(i) = x_Lab(i)
Call Cross(Kt,z_Lab,sigmaf,norm) Idiffracted sigma polarization

Call Cross(sigmaf,Kf,pif,norm) idiffracted pi polarization
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Call Dot(Ki,SLab,kis) ; Call Det(Kf,Slabkis) ; b =kiskis ; kis = kis/(ss*Ko)
DoS =13
5 Ki(i) = Ki(iyKo ; Ki{i) = Ki(i)/Ke
Return
Ew [ ] L XAl L2 2] L2 kR *
Subroutine Ganerate_Rz(theta,phi,Rz)
¢ This subroutine rotates crystal so that the desired reciprocal lattice scattering vector is in the Lab_z direction.
¢ Rz = the rotation matrix that does this. First, crystal is rotated azimuthally by phi so that desired vector lies in
¢ (+x_Lab,+z_Lab) plana. Then, crystal is rotated polarly by theta so that the vector lies points in the +z_Lab
¢ direction.
cest = Deos(theta)  ; sint = Dsin(theta) ; cosp = Deos(phi) ; sinp = Dsin(phi)
Rz(1,1) = cost’cosp ; Rz(2,1) = -sinp ; Rz(3,1) = sint*cosp
Rz(1,2) = cost'siv ; Rz(2,2) = cosp ; Rz(3,2)= sint'sinp
Rz(1.3) = -sint ; Rz(2,3)= 0.0d0 ; Rz(3,3) = cost
Return
Subroutine Generate_Rkh(pid,pK,cosb,sinb,Rkh)
¢ This subroutine constructs Rotation Matrix Rkh that performs Bragg-preserving rotations first by pH about
¢ the reciprocal scattering vector and then by pK about the incident photon direction. All rotations obey right
c hand rule.
cosh = Deos(pH) . sinh = Dsin(pH) ; cosk = Dcos(pK) ; sink = Dsin(pK)
Rkh(1,1) = cosk*cosh + sinb*sink*sinh ; Rkh(2,1) = -sinb*sink*cosh + (sinb**2*cosk + cosb**2)*sinh
Rkh(3,1) = cosb’sink“cosh + cosb*sinb*(cosk - 1.0d0)*sinh
Rkh{1,2) = -cosk®sinh + sinb’sink*cosh ; Rkh(2,2) = sinb'sink*sinh + (sinb**2*cosk + cosb**2)*cosh
Rkh(3,2) = cosb*sink*sinh + cosb’sinb*(cosk - 1.0d0)*cosh
Rkh(1,3) = cosb*sink ; Rkh(2,3) = cosb“sinb*{cosk - 1.0d0) ; Rkh(3,3) = cosb**2*cosk + sinb**2
Return
Subroutine Generate_Rpsi(psi,Rz,Rkh,h,Rpsi)
¢ This subroutine does a crystal plane normal rotation--that is, a rotation about the scattering vector h. The
¢ Zs-direction is in the h-direction, Xs = h(cross)z_lab, Ys = h(cross)Xs.
Call Mv(Rz,h,dum) ! Rotate h to Lab_z direction ; Call Mv(Rkh,dum,h) ! Rotate h around itself and Ki
hx =h(1) ; hy =h(2) ; hz =h(3) ; d1 = Dsqri(hx**2 + hy**2) ; d2 = Dsqri(hx**2 + hy**2 + hz**2)
¢ Transform to [Xs,Ys,Zs] system
R(1,1) = hyd1 ; R(2,1) = hz'hx/(d1°d2) ; R(3,1) = hx/d2
R(1,2) = -hwd1 ; R(2,2) = hz*hy/(d1°d2) ; R(3,2) = hy/d2
R(1,3) = 0.0d0 ; R(2,3) = -(hx**2 + hy**2)/(d1°d2) ; R(3,3) = hz/d2
¢ Perform azimuthal psi rotation in [Xs,Ys] plane (right-handed sense)
Rpsi(1,1) = Dcos(psi) ; Rpsi(2,1) = Dsin{osi) - Rpsi(3,1) = 0.0d0
Rpsi(1,2) = -Dsin(psi) ; Rpsi(2,2) = Dcos(psi) ; Rpsi(3,2) = 0.0d0

Rpsi(1,3) = 0.0d0 ; Rpsi(2,3)= 0.0d0  ; Rpsi(3,3) = 1.0d0

c Inverse Transform back to Lab [Note that R(inverse) = R{transpose) since R is an orthogorial matrix]
RT(1,1) = hy/d1 ; RT(2,1) = -hx/d1 ; RT(3,1) = 0.0d0
RT(1,2) = hz*hx/(d1°d2) ; RT(2,2) = hz*hy/(d1*d2) ; RT(3,2) = -(hx**2 + hy**2)/(d1*d2)
RT(1,3) = hwd2 ; RT(2,3) = hy/d2 ; RT(3,3) = hz/d2
Call MM(Rpsi,R,dum1) ; Call MM(RT,dum1,Rpsi)
Return
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Subroutine Generate_Bo(a,alpha,Vo,Bo,Boi)
c This subroutine generates the matrix Bo that transforms crystal reciprocal laitice vactors from their crystal
¢ bases system to an orthogonal coordinate system. In this way dot and cross prostucts of reciprocal lattice
¢ vectors can be performed.
¢ VARIABLES:
¢ b(i) = Reciprocal Lattice Spacings a°,b*,c* (1/cm) ; cosb(i) = Cosine of Reciprocal Lattice Angles
c alpha’,beta®,gamma* ; Boi(i,j) = Inverse of Bo(i,j) ; Vo = Volume of Unit Cell (cm**3)

Common /conv/ rad

Do11=13

a(i) = a(i)*1.0d8 I Conversion from cm to Argstroms ; cosa(i) = Dcos(alpha(i)*rad)

1 sina(i) = Dsin(alpha(i)*rad)

V = Dsqri(1.0d0 - cosa(1)**2 - cosa(2)**2 - cosa(3)**2 + 2.0"cosa(1)*cosa(2)" cosa(3))

Vo = V*a(1)*a(2)*a(3)*(1.0d-8)**3

=1y

j=i+1;HG.GL3)j=1 k=]+1; KKGL3)k=1
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cosb(i) = (cosa(j)*cosa(k) - cosa(i))/(sina(j)*sina(k)) : sinb(i) = Dsqrt(1.0d0 - cosb(i)**2)
5 b(i) =sina(i)/(a(i)*V)

Bo(1,1) = b(1) ; Bo(2,1) = 0.0d0 . Bo(3,1) = 0.0d0
Bo(1,2) = b(2)*cosb(3) . Bo(2,2) = b(2)*sinb(3) : Bo(3,2) = 0.0d0
Bo(1,3) = b(3)'cosb(2) : Bo(2,3) = -b(3)"sinb(2)*cosa(1) ; Bo(3,3) = 1.0d0/a(3)
Boi(1,1) = 1.0d0/(1) ; Boi(2,1) = 0.0d0 : Boi(3,1) = 0.0d0
Boi(1,2) = -a(1)*sina(2)*cosb(3) ; Boi(2,2) = a(2)*sina(1) ; Boi(3,2) = 0.0d0
Boi(1,3) = a(1)'cosa(2) ; Boi(2,3) = a(2)*cosa(1) ; Boi(3,3) = a(3)
Return
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Subroutine Orientation(h1,h2,h3,h1L,h2L,h3L,U)
¢ This subroutine constructs the Orientation Matrix U that allows one to transform from the crystal reciprocal
¢ coordinate space to Lab orthogonal coordinate space: (Lab vector) V_lab = U (dot) V_recip.
nd=3 I#ofrows ; nr=3 | #0of columns ; n=3 !|orderof matrix
Do1l=13
HG,1) =h1() 5 Hi,2)=h2() ; H(i.3) = h3(i)
HL(i,1) = h1L(i) ; HL(i.2) = h2L(i) ; HL(i,3) = h3L()
Do 1J=13
1 b(i,j) = 0.0d0
b(1,1) =1.0d0 ; b(2,2)=1.0d0 ; b(3,3) = 1.0d0
Call Lineqg(H.b,Hinv,nd,n,nr,aa,ierr) ; Call MM(HL Hinv,U)
Return
Subroutine Lab_Vectors(hpp,hss,h33,sinps,cosps,h1,h2,h3)
¢ This subroutine uses the reciprocal lattice vectors in reciprocal space to construct Lab vectors in Lab space.
¢ Note that this subroutine has taken a special case -- 2 reciprocal lattice vectors lie in the scattering plane and
¢ one points in the Lab_z direction. However, if one were to know beforehand the directions of all 3
c vectors h1,h2,h3 in lab space (pointing in general directions), their lab components could be inserted in this
¢ subroutine, and no other modifications need be done in this program (except some calculations are no longer
c necessary, such as calculating sinps,cosps,etc. ).
¢ hpp = magnitude of hp, hss = magnitude of hs, h33 = mag. of h3
Common /Lab/ x_Lab,y Lab,z_Lab
h1(1) =0.0d0 ; h1(2) = 0.0d0 . h1(3) = hpp
h2(1) = 0.0d0 ; h2(2) = hss*sinps ; h2(3) = hss‘cosps
h3(1)=h33 ; h3(2) =0.0d0 . h3(3) = 0.0d0
x_Lab(1) = 1.0d0 ; x_Lab(2) = 0.0d0 ; x_Lab(3) = 0.0d0
y_Lab(1) = 0.0d0 ; y_Lab(2) = 1.0d0 ; y_Lab(3) = 0.0d0
z_Lab(1) = 0.0d0 ; z_Lab(2) = 0.0d0 ; z_Lab(3) = 1.0d0
Return
Subroutine General_Cross(u,v,B,Bi,uv)
¢ This subroutine takes the general cross product of vectors u,v defined in a non-orthogonal coordinate system.
¢ Bi = inverse of B
Call Mv(B,u,Bu) : Call Mv(B,v,Bv) ; Call Cross(Bu,Bv,BuBv,norm) ; Call Cross{u,v,uv,uvmag)
Call Mv(Bi,BuBv,uv) ; Call Dot(uv,uv,norm)

Do11=13 } Giving uv a magnitude equal
1 uv(i) = uvmag’uv(i)/Dsqrt(norm) ! to magn. of cross product of indices of u,v
Return
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Subroutine General_Dot(u,v,B,uv)
¢ This subroutine takes the general dot product of vectors u,v defined in a non-orthogonal coordinate system.
Call Mv(B,u,Bu) ; Call Mv(B,v,Bv) ; Cail Dot(Bu,Bv,uv)
Return
tﬂlt'..tlt'.tlt.'t.t'tl'.'i."tttt..ii't‘.t."'i'tt.i't..I.'!'Qt'tt'tﬁ.'!.ttt.t...'t".'t.'.'."Ot'l.tib'!ll.t"
Subroutine Polar(v,x,y,z,theta,phi)
¢ This Subroutine ¢ atermines the azimuthal and polar angles of a vector "v" in a coordinate system with basis
¢ vectors x,y,z theta = polar angle, phi = azimuthal angle -180 < phi < 180, 0 <theta < 180
Subroutine MM(A,B,C)
¢ This subroutine performs matrix muttiplication C = A*B
Subroutine Mv(A,x,Ax)
¢ This subroutine multiplies column vector x by 3x3 matrix A to obtain column vector Ax :  Ax = A’x
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Subroutine Cross{u,v,w,norm) .
¢ This Subroutine computes the Cross Product of two vectors "u™ and "v" in orthogonal space. Returns a unit
¢ vector "w" and its length "norm"
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Subroutine Dot(u,v,w) _
¢ This Subroutine computss the Dot product of two vectors "u” and "v" in orthogonal space: w = u*v

X ey e e R R R T R R R R R R R R R L)

8.3 Ewald Program

The EWALD code that follows computes the reflection and transmission amplitudes
from a crystal using the Ewald-Laue dynamical diffraction theory.>*#! The main program
Ewald controls the calculation by calling the appropriate subroutines. An initialization
subroutine is called (Initialize) to set up the dynamical diffraction calculation, and
instructions are returned (via iflg) to compute either an energy or angle spectrum over a
desired range. Program Ewald then makes calls to subroutine Dispersion at each
appropriate energy or angle value. Dispersion returns the reflection and transmission
coefficients R and T directly, and it returns the reflected and transmitted electric field
amplitudes indirectly through the common block /As/. When energy spectra are calculated,
time spectra can also be determined by taking the Fourier transform of the electric field
amplitudes. Since fast Fourier transform routines are quite ubiquitous, the routine that did
calculations for EWALD is not shown here--the actual routine used was an adapted version
of Brigham's well known Fortran code.4?

Subroutine Initialize reads in the relevant information contained in the files
nuclear.dat and atompos.dat, and it initializes physical constants to be used in further
calculations. The important physical constants pertinent to °’Fe used in EWALD are the
total lifetime, 140.95 nsecs,* the internal conversion coefficient, 8.23,*> and the magnetic
moments of the ground and excited states: 0.09024 nm and -0.1549 nm. The ground state
magnetic moment was measured by Locher and Geschwind though electron-nuclear double
resonance techniques** while the excited state magnetic moment was found by Preston,
Hanna, and Heberle through Mossbauer measurements. 4’

Calls are made to Orient_cryst to get the orientation matrix, U, and, for each
site, to YIG_basis to construct the quantum coordinate system (Hx,Hy,Hz) where Hz is
in the direction of the internal magnetic field. Thus, for multi-site crystals, no universal
quantum axis is constructed--their internal magnetic field defines what type of scattering
occurs. Using the orientation matrix, the quantum coordinate system, and the information
from the data files, an eigenvector representing the nuclear scattering tensor elements for
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each polarization combination, quantum level, and site is constructed along with associated
eigenvalues. Eigenvector is essentially g™ /2 in Eq. 7-2.1 for magnetic dipole scattering
without the resonance denominator.

ElectStrFact is also called to compute the photoelectric structure factor (the
contents of the subroutine are not shown here since the calculations are straightforward).
Since the photoelectric structure factor is essentially constant over the energy range of the
hyperfine nuclear resonance, =~ 10°eV, they only need to be calculated once. In
computing the photoelectric structure factor presented in Eq. 7-2.2, the value for f, came
from a mean atomic scattering factor (calculated from self-consistent or variational
wavefunctions) tabulated in International Tables for X-Ray Crystallography*¢ and in
Warren.*’ The value for f’ came from a database (set up by Sean Brennan at SSRL) of
Cromer and Liberman's relativistic Hartree-Fock calculations,*® and the value for f”* came
from a compilation of x-ray cross section measurements contained in McMaster.4?
Compton scattering was also included by adding the incoherent cross section values
contained in McMaster to f”’. Since the anomalous scattering factors, f’ and f”’, are
insensitive to the scattering angle when operating far from any absorption edge or bound
state resonance, the angular dependence of these terms was neglected.

Subroutine Polarmat constructs photoelectric and nuclear magnetic dipole
polarization matrices for the incident and scattered electric fields. The photoelectric
polarization matrix is equivalent to the Thomson polarization matrix given by Eq. 5-1.3.
Construction of the magnetic dipole polarization matrix is more involved. Once the
spherical unit vectors are calculated through the appropriate cross products outlined in
Section 5.1, the vector spherical harmonics can be constructed. Translating from program
symbols to those used in Section 5.1:

Y10i=\Bx/3Y)(Q, ) =isin 6, & (8-3.1)
Y1li=T62/3Y (2, ) = €™ (8, +icos6, & )- (8-3.2)

If nuclear level mixing did not occur, then the final polarization matrices could be
constructed in the form given by Eq. 5-1.5. However, to include nuclear level mixing the
matrices must be constructed as described in Section 5.2 and given by Eq. 5-2.30.
Therefore, Polarmat only finds all of the possible dot products between polarizations and
vector spherical harmonics in preparation for making the final polarization matrix given by
Eq. 5-2.30.

The coefficients c,, in Eq. 5-2.29 are calculated by the subroutine Splitting
through diagonalizing the unperturbed Hamiltonian given in Section 5-2. Once the
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coefficients are evaluated, the subroutine Polarmix puts together the magnetic dipole
polarization matrix using the dot product calculations performed in Polarmat. Polarmix
returns an array, E, to the calling subroutine, Initialize. This multidimensional array, as
explained earlier, is proportional to the scattering tensor given by Eq. 7-2.1, and it carefully
tracks which nuclear sites and energy levels were involved in the scattering process for
each scattering tensor element and for various incident and scattered photon directions
(EWALD only does a two-beam calculation in which there is a forward and only one
reflection scattering channel). These terms vary insignificantly over the hyperfine
resonance energy range and can therefore also be calculated just once (as was the case for
photoelectric scattering).

Once Initialize is finished with its calculations, the subroutine Dispersion will
be ready to solve the linearized dispersion relation given by Eq. 7-4.19 where, in the most
general case, G, is given by 7-8.1. When called by Dispersion, subroutine StrFact
constructs the G,, matrix as a function of energy and angle. Then, by making a call to
Cgg of the EIS_LIN_PACK code, Dispersion finds both the eigenvalues and
eigenvectors of G,,,. Next, a thick crystal approximation is applied if the crystal is thick
enough to cause floating point overflow problems. Then, subroutine TandR_coeff is
called to solve the boundary value relation, Eq. 7-4.30, where, in general, B, is not
decoupled. These last two steps are explained in more detail in the next section. Clineq
of EIS_LIN_PACK is used to solve the simultaneous equations represented by the
boundary value equation.

Once the boundary value equation is solved, the reflected and transmitted
amplitudes are constructed. Dispersion then proceeds to calculate the reflected and
transmitted electric field intensities by summing the square moduli of the sigma and pi
electric field amplitudes. The amplitude and intensity calculations are finally sent to the
main calling program, Ewald, for further analysis such as computing energy averaged
angular spectra, angle averaged energy spectra, time spectra, or fitting to experimental data
(none of these detailed calculations are shown here).

For the EWALD code below, program Ewald and subroutines Dispersion and
TandR_coeff are combined in one Fortran code called EWALD.FOR. Subroutines
Initialize, Strfact, Polarmat, Polarmix, YIG_basis, FeBO3 basis, and Cdot are
combined in another Fortran code called NUCLEAR.FOR.
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Program Ewald
c This Program Uses the Ewald-Laue Dynamical Diffraction Theory to Compute the Reflection and
c Transmission Coefficients from a Crystal.
c In this Program : x = sigma polarization component ; y = pi polarization component
c VARIABLES: (See INITIALIZE Subroutine for more comments on variables)
. davE = (incoming photon energy) - (Bragg energy) (eV) ; devB = (incoming angle) - (Bragg angle) (radians)
c fconv = conversion factor from Energy to Frequency (/eV-sec])
c Rx,Ry = Bragg refiected amplitudes ; Rxm,Rym = Laue transmitted amplitudes
c Txm,Tym = Transmission amplitudes ; R,T = reflected and transmitted field intensities
cLINKTO: NUCLEAR, EIS_LIN_PACK
c D.E.Brown 1990 (SSRL/STANFORD)
Complex Txm(600),Tym(600),Rx(600),Ry(600),Rxm(600),Rym{6(0),uin(4,1)
Real Freq(600),T(600),R(600) ; Complex zo,xpol,ypo! ; Real’8 b
Common uin ; Common Ats/ zo, Txm, Tym,Rx,Ry,Rxm,Rym
¢ Initializing Parameters
Call Initialize(xpol,ypol,Erange, Trange,devE0,devB0,z0,sinBragg,b,fconv,Npts, ifig)
uin(1,1) = xpol ; uin(3,1) = ypol ; uin(2,1) = 0.0 ; uin{4,1) = 0.0
lf(itig .Eq. 1) Then ; delEO = Erange/(npts-1) ; devE = devEOD - Erange/2.0 - delEO ; devB = devBO
Else ; delth = Trange/(npts-1) ; devB = devBO - Trange/2.0 - delth ; devE = devEO
Endi

Do 1 KK=1,npts
ti(ifig .Eq. 1) Then ; devE = devE + delEO ; Freq(kk) = devE*fconv
Else ; devB =devB + delth
Endif

1 Call Dispersion(devB,devE,R(kk), T(kk),b,kk)
===> Call a Fast Fourier Transform Routine to take the Fourier Transform of Rx,Ry having abscissa
points contained in the array Freq ===> This gives the Reflected Time Spectrum
End
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Subroutine Dispersion(devB,devE,R, T b,i)
c This subroutine solves the Dispersion equation for Dynamical Diffraction
Parameter (n1 = 600)
Complex w(4),g(4,4),e(4), Txm(n1),Tym(n1),Rx(n1),Ry(n1),Rxm(n1),Rym{n1),Tx(n1),Ty(n1)
Real gr(4,4),9i(4,4),vr(4,4),vi(4,4),wr(4),wi(4),fv1(4) fv2(4),iv3(4),thick(4) ; Complex zo ; Real'8 b
Common /ts/ zo,Txm,Tym,Rx,Ry,Rxm,Rym ; Common /disp/ e,g,thick
¢ Initializing Parameters
n =4 lorder of g matrix ; nm =4 lrows of g matrix ; matz =1 !compute eigenvalues and eigenvectors
===> Set Tx(i), Ty(i),Rx(i),Ry (i), Rxm (i}, Rym(i), Txm(i), Tym(i) to zero
Call StrFact(devB,devE,b,g) ! Scattering Ampiitude Computation
¢ Computation of Eigenvalues (returned in w) and Eigenvectors (returned in g) of g-matrix.
Call Cgg(nm,n,g,matz,w,fv1,fv2,1tv3,gr,gi,vr,vi,wr,wi,ierr)
-Dol=1,n
¢ Thick crystal approx. is used to take care of floating point overflow problem. Note that the conditional can be
¢ true only in the Bragg case
tf(Real(zo*w(l)) .Gt. 72.0) Then ; thick(l) = 0.0 ; o(y=1.0
Else ; o(l) = Cexp(zo'w(l)) ; thick(l)=1.0
Endif

Enddo

¢ Computation of Transmission and Reflection Coefficients
Call TandR_coeff(Tx(i), Ty(i), Txm(i), Tym(i),Rx(i),Ry (i), Rxm(i),Rym(i}),b)
T = Txm(i)*Conjg(Txm(i)) + Tym(i)*Conjg(Tym(i))

(b .Lt. 0.0) Then ; R = Rx(i}*Conjg(Rx(i)) + Ry(i)*Conjg(Ry(i)) | Bragg Case
EI:;H ; R = Rxm(i)*Conjg(Rxm(i)) + Rym(i}*Conig(Rym(i)) ! Laue Case
Retusn

R R R R R R R Ry R R R R R R R R R Y]

Subroutine TandR_coeff(Tx, Ty, Txm, Tym,Rx,Ry,Rxm,Rym,b)
Complex e(4),Bc(4,4),uin(4,1),x(4,1),aa(4,4),v(4,4),D10xx(4),D00yx(4),D10yx(4),D00xx(4),
1 ex(4),Tx,Ty,Rx,Ry, Txm,Tym,Rxm, Rym,atx,aty,arx,ary,norm
Real thick(4) ; Real'8 b
Common uin ; Common /disp/ e,v,thick
N=é4 lorder of Bc-matrix ; nm =4 Irows of Bc-matrix ; nr=1 loolumns of x and uin arrays
if(b .Lt. 0.0) Then
Do 1J=1,4 | BRAGG CASE
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Do5J=14 | LAUE CASE

DoK=14
lf(Cabs(v(k,j)) .Gt. 1.0e-20) Then ; norm = v(K,j) ; GoTo 10
Endif

Enddo
10 DOOxx(j) = v(1,j)/norm ; D10xx(j) = v(2,j)/norm  ; DOOyx(j) = v(3,j)/norm ; D10yx(j) = v(4.jYnorm
15 Bc(1,j) = DOOxx(j)*thick(j) ; Bc(2,j) = ex(j)*D10xx(j) ; Bc(3,j) = DOOyx(j)*thick(j) ; Bc(4.)) = ex(j)*D10yx(j)
¢ Boundary Condition Constraints--Evaluation of Simultaneous Equations: Bc'x = uin
Call Clineg(Bc,uin,x,nm,n,nr,aa,ierr) !Bc*x = uin computation
¢ Computation of Tx,Ty,Ry,Rx by adding up all eigen amplitudes
Do 20 K=1,4
atx = x(k,nr)*DO0xx(k) ; arx = x(k,nr)*D10xx(k)"thick(k)
aty = x(k,nr)*D0Oyx(k) ; ary = x(k,nr)*D10yx(k)*thick(k)

(b .Lt. 0.0) Then ; Rx=Rx+anx ; Ry =Ry + ary | BRAGG CASE
Else : Rxm = Rxm + arx*e(k) ; Rym = Rym + ary*e(k) | LAUE CASE
Endif
20 Txm = Txm + atx*e(k) ; Tym = Tym + aty*e(k)
Return
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Subroutine Initialize(xpol,ypol,Erange, Trange,devEO,devB0,z0,snBrgg,b,fconv,npts,iflg)
¢ This Subroutine Receives and Computes the Initialization Factors needed to Calculate Nuclear and
¢ Photoelectric Structure Factors and their associated Polarization Matrices
c VARIABLES: (See ORIENT_CRYST Subroutine for more comments on variables)
c U = Net Orientation Matrix ; Erange = Spread of Energy to be Examined (eV) ; Trange = Spread of Angles to
¢ be Examined (radians) ; devE0,devBO = Central Deviation Energy (eV) and Angle (radians) ; Npts = # of points
c of Angle or Energy scan ; Nptsi = # of integration points; iflg = 0 --> angular scan, 1 --> Energy scan
¢ con = Relative Concentration of resonant nuclei ; DW = Debye Waller Factor for Photoelectric Scattering
¢ LM = Lamb-Mossbauer Factor for Nuclear Scattering ; efg = Electric Field Gradient direction ; to = Thickness
c of Crystal (cm) ; Z = # of Nuclei per site per unit cell ; QQ = Quadrupole Shift (mm/sec) ; isomer = Isomer
¢ Shift (mm/sec) Hint = Internal Magnetic Field (gauss) ; spindp = Spin Dipolar Anisotropic Field (gauss)
c canting = canting angle (deg) ; zo = -ii*k*to/sinBragg , k = wavenumber ; xpol,ypol = Horizontal (Sigma) and
¢ Vertical (Pi) Polarization factor ; Hz = magnetic field direction in Lab coordinate system
¢ Pjk(x,y) = Polarization matrix for Photoelectric scattering
¢ Yijk(n,x,y} = Polarization matrix element where: x,y = polarizations

c i = mg-me = differance in quantum level between ground state and excited state
c = 0,1,0r -1 for dipole transitions

c jk=00r1 where 0 = transmission channel, 1 = reflection channel

c n = 1 for incoming photon, 2 for diffracted or scattered photon

c Eigenvector(x,y,l,iw,isite,igmn) = Scattered Photon Amplitude
¢ Eigenvalue(l,iw,isite) = Scattered Photon Energy

c isite = Particular Cluster of atoms within unit cell that have same internal field parameters

c | = index for ground state quantum level ; iw = index for excited state quantum level

c igmn =1 ->g00, 2 -> g10, 3 -> g01, 4 -> g11 gmn is proportional to the scattering tensor
c X,y = polarizations elements of gmn(x,y) (see comments in STRFACT)

¢ NOTE:

¢ (1) Incoming Beam (for Zero Bragg angle) is in the positive Lab_y direction
c K-incident = (cosBragg)y_Lab - (sinBragg)z_Lab ; K-diffracted = (cosBragg)y_Lab + (sinBragg)z_Lab
¢ (2) The Quantum axis in this program is the Internal Magnetic field direction.
c (3) Initially, Hz is the External Magnetic Field Direction in the LAB coordinate system when hp & hs
c directions are known. Later, Hz is changed to point in the Internal Magnetic field direction.
¢ NEED:
¢ (1) Data File Called nuclear.dat (see read statements for variables needed)
¢ (2) Data File Called atompos.dat -- this contains hyperfine information and unit cell positions of the nuclei
¢ LINK: Link with EWALD, ORIENT_CRYST, ELECTSTRFACT, SPLITTING
Complex Y000(2,2,2),Y010(2,2,2),Y001(2,2,2),Y011(2,2,2),Y100(2,2,2),Y110(2,2,2),Y101(2,2,2),
1 Y111(2,2,2),F0(15),P00(2,2),P01(2,2),P10(2,2),P11(2,2),FH(15),Eigenvectorig(4,4),
2 Eigenvectorle(4,4),F_H(15),Eigenvaluelg(4),Eigenvaluele{4),Eigenvector(2,2,2,4,15,4)
Real*8 a(3),alpha(3),hp(3),hs(3),h(3),5(3),U(3,3),pii(3),pif(3),sigmai(3),sigmaf(3),Ki(3),Kf(3),
1 Hz(3),HzLab(3),Hx(3),Hy(3),efg(3),efglab(3)
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Real Eigenvalue(2,4,15),iv0(4),fv1(4),iv2(4),fv3(4),d 1 (4,4),d2(4,4),d3(4,4),d4(4,4),d5(4),d6(4)
Real'8 pi.rad.c.hbar,hbarc,sinBragg,Vo,phiKi.phiH,norm,beta,gamma,Ee.gammao,psi.canting.b,rx,ry,rw
Complex ii,Go,xpol,ypol,zo ; Real le,lg,Lambda,isomer,LM ; Character Crystal*10
Common /stup/ hbarc,sinBragg, Vo,phiKi,phiH,psi,Ki,Kf,gamma0 ; Common /ini/ sin2Brgg,sinBrgg2_EO
Common /stri/ PO0,P01,P10,P11,Go,Eigenvector,Eigenvalue  ; Common /Bfield/ Hz,HzLab,Hx,Hy
Common /conv/ rad,pi,ii : Common /site/ isites
===> Read in from nuclear.dat file: Crystal; a; alpha; Ee, to; iflg, Npts; Erange, devBO;
Trange, devEO; hp; hs; S; Hz; h; phiH, phiK, psi; con, LM; DW,;
xpolr, xpoli; ypolr, ypoli
i = (0.0,1.0) ; pi = Dacos(-1.0d0) ; rad = pi/180.0d0 ; c = 2.99792d10 |Speed of Light (cm/sec)
hbar = 6.58217d-16 IPlanck Constant (eV-sec) : Re = 2.817938e-13 IClassical Electron Radius (cm)
unu = 3.15245e-12 INuclear Magneton (eV/Gauss) ; uex = -0.1549 IMagnetic Moment of Excited State (nm)
ugr = 0.09024 IMagnetic Moment of Ground State (nm) ; Ttot = 140.950-9 [Total Lifetime (sec)
Alp = 8.23 lInternal Conversion Coefficient ; lg = 1.0/2.0 |Ground State Nuclear Energy Level
le = 3.0/2.0 IFirst Excited State Nucl. Level : CG13 = Sqrt(1.0/3.0) !Clebsch Gordan Coeff. for Lines 3,4
CG23 = Sqrt(4.0/3.0) IClebsch Gordan Coeff. for Lines 2,5 (Sqrt(2) Polarization Factor added)
CG11 = 1.0 |Clebsch Gordan Coeff. for Lines 1,6 : Trad = Ttot*(1.0 + Alp) |Radiative Lifetime (sec)
hbarc =hbar*c ; Go = ii*hbar/(2.0"Ttot) : feonv = 1.0/(2.0*pi*hbar) ; Polfac = 3.0/(16.0"pi)
Normalizing polarizations to unity
xpol = Cmplx(xpolr,xpoli) ; ypol = Cmplx(ypolr,ypoli)
norm = Csqrt(xpol*Conjg(xpol) + ypol*Conjg(ypol)) ; xpol = xpol/norm ; ypol = ypol/norm
Set-up Crystal Orientation for Diffraction.
Call Orient_cryst(Ee,a,alpha,hp,hs,h,S,U,sigmai,pii,sigmaf,pif,b)
Hzlab(1) = Hz(1) ; Hzlab(2) = Hz(2) ; Hzlab(3) = Hz(3)
Coeff = -4.0*pi**2*LM*con*Polfac/((2.0*lg + 1.0)*(Trad/hbar)*(Ee/hbarc)**3*Vo)
eCoeff = -2.0"pi*Re*hbarc**2/(Ee**2*Vo)
sin2Brgg = 2.0*sinBragg*Dsqrt(1.0 - sinBragg**2) ; sinBrgg2_EO = sinBragg**2/Ee
20 = -i*Ee*to/(hbarc*'gamma0) ; Lambda = 2.0*pi*hbarc/Ee ; snBrgg = sinBragg
===> Read in from atompos.dat file: isites
Do 10 isite=1,isites
===> Read in from atompos.dat file: efg; QQ, Hint; isomer, spindp; canting
02qQ = 2.0'QQ"Ee/(c*10.0) ; isomer = isomer*Ee/(c*10.0)
Construct basis of quantum coordinate system where the magnetic field direction is the z-axis
===> Call YIG_basis(Hzlab,Kf Ki,Hint,Hx,Hy,Hz) when Crystal is YIG
lincoming Beam Hits Plane from Above; Scattered beam travels in:
Call Polarmat(pii,sigmai,pii,sigmai,Ki,Ki,Y000,Y100,P00) ftransmission channel.
Call Polarmat{pii,sigmai,pif,sigmaf,Ki,Kf,Y010,Y110,P10) Ireflection channel.

c lincoming Beam Hits Plane from Below; Scattered beam travels in:

Call Polarmat(pif,sigmaf,pii,sigmai,Kf Ki,Y001,Y101,P01) ftransmission channel.
Call Polarmat(pif,sigmaf,pif,sigmaf,Kf,Kf,YO11,Y111,P11) Ireflection channel.

¢ Determining Polar Angle Beta and Azimuthal Phi Angle Between Electric Field Gradient and Quantum z-axis

Call Mv(U,efg,efgLab) ITransforming efg to Lab coord. system ; Call Dot(efglLab,efgl.ab,norm)
Do1l=13

1 efglab(i) = efgLab(i)/Dsqrt(norm)
Call Polar(efgLab,Hx,Hy,Hz,beta,gamma) ; Hint = Hint + spindp*(3.0*Dcos(beta)**2 - 1.0)

¢ Computation of Eigenvectors and Eigenvalues

ng = 2.0*lg + 1.01 ; ne=20"le+1.01
Call Spiitting(alph,beta,gamma,eta,lg,92qO,Hint,ugr,unu,Eigenvaluelg.Eigenvectorlg.ng,
fvo,tv1,fv2,fv3,d1,d2,d3,d4,d5,d6,4)
Call Spliﬁing(alph,beta,gamma,eta.Ie,quO,Hint,uex,unu,Eigenvaluele,Eigenvecmrle,ne,
+ fvo,fv1,fv2,fv3,d1,d2,d3,d4,d5,d6,4)

¢ Nuciear Geometrical Structure Factor Calculation for H and -H

===> Read in from atompos.dat file; Z
Do51=1,Z
===> Read in from atompos.dat file: rx, ry, w ICoordinate positions of atoms in unit cell
5 Ftd(isite) = FH(isite) + Cdexp(ii*2.0*pi*(h(1)*x + h(2)*ry + h(3)*rw))
F_H(isite) = Conjg(FH(isite)) ; FO(isite) =Z

¢ Computation of Nuclear Scattering Amplitude of Photon

Do 10 iw=1,ne
Call Polarmix(Eigenvector,Eigenvectorle,CG11,CG23,CG13,Y000,Y1 00,Coeff*FO(isite),isite,iw,1)
Call Polarmix(Eigenvector,Eigenvectorle,CG11,CG23,CG13,Y010,Y 11 0,Coeff*FH(isite),isite,iw,2)
Call Polarmix(Eigenvector,Eigenvectorle,CG11,CG23,CG13,Y001,Y101 ,Coeff*F_H(isite),isite,iw,3)
Call Polarmix(Eigenvector,Eigenvectorle,CG11,CG23,CG13,Y011,Y111 ,Coeff*FO(isite),isite,iw,4)
if(Real(Eigenvectorig(1,1)) .Gt. 0.0) Then
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¢ +1/2 corresponds to first eigenvalue of Ground State
Eigenvalue(1,iw,isite) = Eigenvaluele(iw) - Eigenvaluelg(1) + isomer
Eigenvalue(2,iw,isite) = Eigenvaluele(iw) - Eigenvaluelg(2) + isomer
Else
¢ +1/2 corresponds to second eigenvalue of Ground State
Eigenvalue(1,iw,isite) = Eigenvaluele(iw) - Eigenvaluelg(2) + isomer
Eigenvalue(2,iw,isite) = Eigenvaluele(iw) - Eigenvaluelg(1) + isomer
Endif
10 Continue
c Electronic Structure Factor Calculation
Call ElectStrFact(Crystal,h(1),h(2),h(3),sinBragg,Lambda,DW,FH(isite),F_Hyisite),FO(isite))
Do 15N=1,2
Do 15 M=1,2 IPhotoelectric Scattering Amplitude
P0O(m,n) = eCoeff*FO(isite)*PO0(m,n) ; P10(m,n) = eCoeff*FH(isite)*P10(m,n)
15 PO1(m,n) = eCoeff*F_H(isite)*'PO1(m,n) ; P11(m,n) = eCoeft*FO(isite)*P11(m,n)
Return L] LA L2 LA L2
Subroutine StrFact(devB,devE,b,g)
c This Subroutine Computes the Scattering Elements of the Dispersion Equation for Dynamical Diffraction
c For the 2x2 matrices: element (1,1) = xx, (1,2) = xy ; (2,1) = yx, (2,2) = yy
c In this Program : x = sigma polarization component ; y = pi polarization component
c VARIABLES: (see INITIALIZE comments)
¢ alpha = deviation from bragg parameter ; b = asymmetry parameter
Complex g(4,4),900(2,2),g11(2,2).901(2,2),910(2,2),9900(2,2),9g11(2,2),9901(2,2),9310(2,2),P00(2,2),
1 P01(2,2),P10(2,2),P11(2,2),Eigenvector(2,2,2,4,15,4),Res,ResJ,Go
Real'8 b ; Real Eigenvalue(2,4,15)
Common /init/ sin2Brgg,sinBrgg2_EO0 ; Common /strf/ P00,P01,P10,P11,Go,Eigenvector,Eigenvalue
Common /site/ isites
Res = devE + Go !Resonance Denominator Term
¢ Incoming Beam Hits Plane from Above; Scattered beam travels in:
¢ g00 ==> transmission channel ; g10 ==> reflection channel
¢ Incoming Beam Hits Plane from Below; Scattered beam travels in:
¢ g0l ==> transmission channel ; g11 ==> reflection channel
Do 1 N=1,2
Do 1M=1,2
1 gg0o0(m,n) = POO(m,n) ; gg10(m,n} = P10(m,n} ; gg01(m,n) = PO1(m,n) ; gg11(m,n) = P11(m,n)
Do 5 |=1,isites
Do 5iw=1,4
Do5J=1,2
ResJ = Res - Eigenvalua(j,iw,i)
Do5N=1,2
Do 5 M=1,2
9g00(m,n) = gg00(m,n) + Eigenvector(m,n,j,iw,i,1)/ResJ
gg10(m,n) = gg10(m,n) + Eigenvector(m,n,j,iw,i,2)/ResJ
gg01(m,n) = gg01(m,n) + Eigenvector(m,n,j,iw,:,3)/ResJ
5 gg11(m,n) = gg11(m,n) + Eigenvector(m,n,j,iw,i,4)/ResJ
alpha = -2.0*sin2Brgg“devB ; e1 =b*alpha/2.0
¢ Construction of g-matrix pertaining to dynamical diffraction formutla

g(1,1)=9g00(1,1)  ; g(1,2) =gg01(1,1) ; 9(1,3)=0900(1,2) ; g(1.4) = gg01(1,2)

g(2.1) = b'gg10(1,1) ; 9(2,2) =b*gg11(1,1)- et ; g(2,3) = b*gg10(1,2) ; g(2,4) =b*gg11(1,2)

g(3,1) =9g00(2,1) ; g(3,2) = gg01(2,1) ; 6(3,3)=gg00(2,2) ; g(3,4) =gg01(2,2)

S‘;"” =b%gg10(2,1) ; g(4,2) = b'gg11(2,1) ; 9(4,3) =b'gg10(2,2) ; g(4,4) = b*'gg11(2,2) - et
urn
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Subroutine Polarmat(pii,sigmai,pif,sigmaf,Ki,Kf,Y0,Y1,P)

¢ Polarmat Computes Polarization Mixing Matrices
~ ¢ VARIABLES: (Sea INITIALIZE subroutine for more comments on variables)

c Ki(f) = incoming(diffracted) photon direction (k-unit vector)
c coski(kf) = angle between incoming(diffracted) photon direction and quantum axis
c phiki(kf) = azimuthal phi angle of incoming(diffracted) photon direction in quantum spherica! coord. system
c thetai(f) = theta unit vector of incoming(diffracted) photon k-vector in quantum spherical coordinate system
c phii(f) = phi unit vector of incoming(diffracted) photon k-vector in quantum spherical coordinate system
c sigmai(f) = sigma polarization unit vector of incoming(diffracted) photon ; pii(f) = pi polarization unit vector of
¢ incoming(diffracted) photon ; Hx,Hy,Hz = Quantum Basis unit vectors in Lab coord. systam
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¢ Y10i(f) = Vector Spherical Harmonic for J=1,L=1M=0 ; Y11i(f) = Vector Spherical Harmonic for J=1,L=1,M=1
c P = Polarization matrix for Photoselectric scattering
Complex Y0(2,2,2),Y1(2,2,2),Y10i(3),Y10{(3),Y11i(3), Y111(3),P(2,2),ii
Real'8 Hz(3),Hx(3),Hy(3),Ki(3),K{(3),sigmai(3),sigmat(3),pii(3),pif(3),phii(3),phif(3),thetai(3) thetaf(3),
1 HzlLab(3),rad,pi,norm,Pss,Psp,Pps,Ppp,phiki,phikf theta,sinki,sinkf,coski,coskt
Common /Bfield/ Hz,HzLab,Hx,Hy ; Common /site/ isites ; Common /conv/ rad,pi,ii
¢ Nuclear Angular Factors
Call Dot{Hz,Ki,coski) ; Call Dot{Hz Kf,coskf) ; sinki = Dsqrt(1.0d0 - coski**2)
sinkf = Dsqrt(1.0d0 - cosk{**2) ; Call Polar(Ki,Hx,Hy,Hz theta,phiki)
Call Polar(Kf,Hx,Hy,Hz theta,phikf) ; Call Cross(Hz,Ki,phii,norm)
ff(norm .Gt. 1.0d-30) Then ; Call Cross(phii,Ki,thetai,norm)

Else
Do 11=13 It Ki // H then phi and theta unit vectors
1 phii(i) = sigmai(i) ; thetai(i) = pii(i) lare set to sigma and pi polarizations
Endit

Call Cross(Hz Kf,phif,norm)
f(norm .Gt. 1.0d-30) Then ; Call Cross(phif,Kf,thetaf,norm)
Else
Do51=1,3
5 phif(i) = sigmal(i) ; thetaf(i) = pif(i) 1 it Kt // H then do the same as stated above
Endit
Do 101=1,3
Y10i(i) = ii*sinki*phii(i) ; Y101(i) = ii*sinkf*phif(i) ; Y11i(i) = (thetai(i) + ii*coski*phii(i))* Cdexp(ii*phiki)
10 Y111(i) = (thetaf(i) + ii*coski*phif(i))* Cdexp(ii*phikf)
c Construction of Polarization Matrices
cM=0
Call Cdot(Y10i,sigmai,Y0(1,1,1),1) ; Call Cdot(Y10i,pii,Y0(1,2,1),1) ; Call Cdot(Y10f,sigmaf,YO(2,1,1),0)
Call Cdot(Y10f,pif,Y0(2,1,2),0)  ; YO0(1,1,2) = YO(1,1,1) ; Y0(1.2,2) = YO(1,2,1) ; Y0(2,2,1) = YO(2,1,1)
Y0(2,2,2) = Y0(2,1,2)

cM=1
Call Cdot(Y11i,sigmai,Y1(1,1,1),1) ; Call Cdot(Y11i,pii,Y1(1,2,1),1) ; Call Cdot(Y11f,sigmaf,Y1(2,1,1),0)
Call Cdot(Y11f,pif,¥1(2,1,2),0) y Y1(1,1,2) = Y1(1,1,1) 5 Y1(1,.2,2) = Y1(1,2,1) ; Y1(2,2,1) = Y1(2,1,1)

¥1(2,2,2) = Y1{2,1,2)
c Electronic Angular Factors
Cal! Dot(sigmai,sigmat,Pss) ; Call Dot(sigmai,pif,Psp) ; Call Dot(pii,sigmaf,Pps) ; Call Dot(pii,pif,Ppp)
P(1,1) =Pss ; P(1,2) =Psp  P(2,1) =Pps ; P(2,2) =Ppp
Return
Subroutine Polarmix(E,Ele,CG1,CG0,CG_1,Y0,Y1 F,isite,iw,igmn)
¢ Polarmix Computes Scattering Tensor Elements of Dispersion Equation
c VARIABLES: (See Comments in Subroutine INITIALIZE)
¢ NOTE: (1) Spherical Harmonic Y1 = Y(M=+1) = Complex Conjugate Y(M=-1)
Complex E(2,2,2,4,15,4),Ele(4,4),Y0(2,2,2),Y1(2,2,2),F Ei1,Ef1,Ei2,Ef2
Do 1 N=1,2 I M = +2 Not allowed for magnetic dipole scattering
Do 1 M=1,2
¢ +1/2 ground state amplitudes
Ei1 = CG1*Conjg(Ele(1,iw))*Y1(1,m,n) + CGO*Conjg(Ele(2,iw))*YO(i,m,n) +
+ CG_1*Conjg(Ele(3,iw))*Conjg(Y1(1,m,n))
Ef1 = CG1*Ele(1,iw)'Y1(2,m,n) + CGO*Ele(2,iw)*Y0(2,m,n) + CG_1"Ele(3,iw)*Conjg(Y1(2,m,n))
¢ -1/2 ground state amplitudes
Ei2 = CG_1'Conjg(Ele(2,iw))*'Y1(1.m,n) + CGO*Conjg(Ele(3,iw))*YO(1,m,n) +
+ CG1*Conjg(Ele(4,iw))*Conjg(Y1(1,m,n))
Ef2 = CG_1"Ele(2,iw)*Y1(2,m,n) + CGO'Ele(3,iw)'Y0(2,m,n) + CG1*Ele(4,iw)*'Conjg(Y1(2,m,n))
E(m,n,1,iw,iste,igmn) = F*(Ei1*Ef1) 1+1/2
1 E(m,n,2,iw,isite,igmn) = F*(Ei2"Ef2) |-1/2
Return
Subroutine YIG_basis(Hzlab,Kf,Ki Hint,Hx,Hy,Hz)
¢ This subroutine Constructs the Quantum Coordinate System for YIG or similiar systems
¢ The Hx-direction is perpendicular to both Hz and the diffracted wavevector.
Real"8 Hzlab(3),Hx(3),Hy(3),Hz(3),Kf(3),Ki(3),norm
Hf(Hint .Lt. 0.0) Then
Do1!=13
1 Hz(i) = -Hzlab(i)



176 Numerical Analysis Procedures (8.3)

Hint = -Hint
Else
Do51=13
5 Hz(j) = Hzlaby(j)
Endit
c Hx is perpendicular to Hz and Kf; however if Hz is parallel to Kf, Hx is perpendicular to Hz and Ki.
Call Cross(Hz,Kf,Hx,norm) ; If(norm .L1. 1.0e-3) Call Cross(Hz,Ki,Hx,norm) ; Call Cross(Hz,Hx,Hy,norm)
Renurn * * *h * * (2R R 2] thw "
Subroutine FeBO3_basis(U,canting,Hzlab,Kf,Ki,Hint,Hx,Hy,Hz)
¢ This subroutine Constructs the Quantum Coordinate System for FeBO3 or similiar systems
Subroutine Cdot(u,v,w,i)
¢ This Subroutine computes the Dot product of a Complex vector "u” and a real vector "v". I returns the dot
¢ product "w".
c i=0 ==>w = u'ComplexConjugate(v) = u*v forv real
¢ i=1 ==>w = v"ComplexConjugate(u)
Subroutine Splitting(alpha,beta,gamma,sta,l,e2qQ,Ho,u,un,Val,Ham,nH,Mfv1,fv2 fv3,hr,hi,vr,vi,wr,wi,L)
c This Subroutine determines the Energy Eigenvalues and Eigenvectors for a Nuclear State that has both Static
¢ Electric Quadrupole and Magnetic Dipole Interaction
c VARIABLES:
¢ Ham Contains the Eigenvectors -- original Hamiltonian matrix is destroyed by Subroutine CGG
Val Contains the Eigenvalues ; nH = Order of Hamiltonian Ham(i,j) ; | = Nuclear Energy Level
un = Nuclear Magneton (Ev/Gauss) ; beta = angle between Electric Field Gradient and Magnetic Field
gamma = azimuthal angle between Electric Field Gradient and Magnetic Field (radians)
alpha = Third Euler Angle needed when the Electric Quadrupole Interaction is non-axially symmetric (radians)
eta = (Vxx - Vyy)/Vzz --> the asymmetry parameter which describes the deviation of the Eiectric Field
Gradient from axial symmetry. ; e2qQ = Electric Quadrupole Splitting Factor 6**2'q*Q (eV)
He = External Magnetic Field Strength (Gauss) ; u = Magnetic Moment (nuclear magnetons)
LINKING: Need to link with Subroutine EIS_LIN PACK
Complex Val(L),Ham(L,L),ii,exp2a,expg,exp2g,Hmm1,Hmm_1,Hmm2,Hmm_2
Real M(L),fv1(L),tv2(L),fv3(L),hr{L,L},hi(L,L),vr(L,L),vi(L,L),wr(L),wi(L),|

OO0O0O0O0000

i = (0.0,1.0) ; nlevels =2.0*"1+1.0 ; WE=0.0 ; wH =Hou*un/l
(I .Ne. 0.5) wE = e2qQ/(4.0*1*(2.0*1 - 1.0})) cy=wH ; z=wE
Cos2a = Cos(2.0"alpha) ; Cosb = Cos(beta) ; Sinb = Sin(beta)

Exp2a = Cexp(ii*2.0*alpha) ; Expg = Cexp(ii‘gamma) ; Exp2g = Cexp(ii*2.0'gamma)
Hmm = 0.5*2*(3.0cosb**2 - 1.0 + eta*sinb**2*cos2a)
Hmm1 = 1,6*2"sinb*(cosb - (eta/6.0)*((1.0 + cosb)‘exp2a - (1.0 - cosb)*Conjg(exp2a)))*expg
Hmm_1 = 1.5'z"sinb*(cosb + (eta/6.0)*((1.0 - cosb)*exp2a - (1.0 + cosb)*Conjg(exp2a)))*Conjg(expg)
Hmm2 = 0.75°z*(sinb**2 + (eta/6.0)*((1.0 + cosb)**2*exp2a + (1.0 - cosb)**2*Conjg(exp2a)))*exp2g
Hmm_2 = 0.756'2*(sinb**2 + (eta/6.0)*((1.0 - cosb)**2*exp2a +
+ (1.0 + cosb)**2"Conjg(exp2a)))*Conjg(exp2g)
Do 10 J=1,nlevels
M() = 1- 1)
Do 10 K=1,nlevels
10 Ham(k,j) = 0.0
N=1
Do 15 K=N,nlevels
15 Ham(k.k) = -y*M(k) + Hmm*(3.0*M(k)**2 - I*(l + 1.0))
N=N4+1
Do 20 K=N,nlevels
Ham(k-1,k) = Hmm_1*(2.0*M(k-1) - 1.0)*Sqrt((l + M(k-1))*(I - M(k-1) + 1.0))
20 N H?\lm(l:.kﬂ = Hmm1*(2.0"M(k) + 1.0)*Sqrt((! - M{k))* (I + M(k) + 1.0))
=N+
Do 25 K=N,nlevels
Ham(k-2,k) = Hmm_2*Sqrt((i - M(k-2) + 2.0)*(1 - M(k-2) + 1.0)*(l + M(k-2))*(! + M(k-2) - 1.0})
25 Ham(kk-2) = Hmm2*Sqrt((l + M(k) + 2.0)* (I + M(k) + 1.0)*(I - M(k))*() - M(k) - 1.0))
matz =1 |Eigenvalue and Eigenvector Calculation
RCall Cgg(L,nH,Ham,matz,Val,fv1,v2,fv3,hr.hi,vr,vi,wr,wi,ierr)
eturn

titt.‘ttni.ll"l'it.!'Q.QQQQQ.Q!‘QQG.Q'.i.tt'lt"t'.it'.t'l'ttl.tlQQ"it'tttﬂi.'.ﬁt"i."'ﬁ'ﬁ‘.‘ﬁ.i"i.!‘t.iﬁiit

DATAFILE NUCLEAR.DAT
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YIG | Crystal Type

12.3797e-8,12.37976-8,12.3797e-8 |Lattice spacings a,b,c (cm)
90.0,90.0,90.0 ILattice angles alpha,beta,gamma (deg)
14412.5,5.00-4 | Incoming photon energy(eV),Crystal thickness(cm)
1,400 | (iflg=1=Energy scan,iflg=0=Angle scan) ; # points

10.06-7,65.0e-6 | Energy range (Ev),deviation from Bragg (rad)

20.0e-6,-0.0e-7 | Angle range (rad),deviation from incoming Energy (eV)

TWO RECIPROCAL LATTICE VECTORS, 1st is in LAB_z direction, 2nd is in the SCATTERING PLANE where
hs(dot)Kf > 0, Kf(dot)LAB y > 0. LAB_x is perpendicular to SCATTERING PLANE.

0.0 2 |Hp Kp Lp Reciprocal Lattice vector in LAB_z direction

1. 0. 0. IHs Ks Ls Reciprocal Lattice vector in scattering plane
0. 0. 2 | Outward Surface Direction (in Reciprocal coordinates)
0. 1.0 | External Magnaetic Field Direction (in LAB coordinates)
RECIPROCAL LATTICE VECTOR of desired reflection

0. 0. 2 IH K L Desired Reciprocal Lattice Vector

AZIMUTHAL ROTATIONS that preserve Bragg Condition. Two Rotations are made. The 1stis about H =
Reciprocal Lattice Vector, the 2nd is about Ki, and the 3rd is about H again

0.0,0.0,0.0 | Azimuthal rotation about H,Ki,H=(H,K,L.) (deg)

0.87,0.8 | Nuclear: Relative Concentration; Lamb-Mossbauer factor
0.987 | Electronic: Debeye Waller factor

1.0,0.0 ! Horizonta! Polarization of incoming Photon (real,imag)
0.0,0.0 | Vertical Polarization of incoming Photon (real,imag)

I See INITIALIZE subroutine for a more detailed description of these parameters
DATAFILE ATOMPOS.DAT
This Data file contains the positions of the Fe57 atoms corresponding to various sites in YIG and the
EFG directions of the iron atoms in the sites, and also associated hyperfine field parameters
(Winkler, Phys.B,Condensed Matter,49,331,83)
$
7 | Number of Sites within Unit Cell
D1-SITE Fe57 ATOMS [100] SYMMETRY AXIS
1. 0. 0. |Electric Field Gradient Direction [h k I]
-0.89d0,-3.68d5  !Quadrupole Shift (mm/sec),Magnetic Field (gauss)
0.0d0,0.0d0 llsomer Shift (mm/sec),Spin Dipolar Anisotropy (gauss)
0.0d0 ICanting Angle (deg) ; 8 ! #of atoms in this site
Coordinate of Fe57 atoms within unit cell:
0375 0.0 025:;0875 05 075 ;0625 05 025;0125 00 075
0625 00 075:0125 05 025;0375 05 075 ;0875 00 025
D2-SITE Fe57 ATOMS [010] SYMMETRY AXIS
0. 1. 0. ; -0.89d0,-3.68d5 ; 0.0d0,0.0d0 ; 0.0d0 ; 8
025 0375 00 ;075 0125 00 ;075 0.875 05
075 0625 0.0 ;025 0875 00 ;025 0125 05
D3-SITE Fe57 ATOMS  [001] SYMMETRY AXIS
0. 0. 1. ; -0.89d0,-3.68d5 ; 0.0d0,0.0d0 ; 0.0d0 ; 8
00 025 0375:05 025 0625 ;00 075 0125;05 075 0875
00 075 0625;:05 075 0375 ;00 025 0875;05 025 0.125
A1-SITE Fe57 ATOMS  [111] SYMMETRY AXIS
1. 1. 1. ; -0.41d0,4.40d5 ; 0.226d0,-0.035d5 ; 0.0d0 ; 4
0.00 0.00 000 ;025 025 025 ;050 050 050 ;075 075 075
A2-SITE Fe57 ATOMS |-111] SYMMETRY AXIS
-1. 1. 1. ; -0.41d0,4.40d5 ; 0.226d0,-0.035d5 ; 0.0dO ; 4
050 050 0.00 ;075 025 075 ;000 000 050 ;025 075 025
A3-SITE Fe57 ATOMS [1-11] SYMMETRY AXIS
1.-1. 1. ; -0.41d0,4.40d5 ; 0.226d0,-0.035d5 ; 0.0d0 ; 4
000 050 050 :075 075 025 ;050 000 000 ;025 025 0.75
A4-SITE Fe57 ATOMS [-1-11] SYMMETRY AXIS
-1.-1. 1. : -0.41d0,4.40d5 ; 0.226d0,-0.035d5 ; 0.0d0 ; 4
050 0.00 050 ;025 075 075 ;000 050 0.00;075 025 025

T s ey e e R R A R AR AR AR AR AR AL

025 0625 05
075 0375 05
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8.4 Boundary Conditions and the Thick Crystal
Approximation

Since in general the linearized dispersion relations are not decoupled, the dispersion
relation given by Eq. 7-4.1 must be modified to

(G, —2¢,1)-v=0 (8-4.1)

where G, is given by Eq. 7-8.1. Finding the four eigenvectors

Tl
3
vi= R, (£=1,...,4) (8-4.2)
Tl b b
y
¢
Ry
allows the boundary condition equation, Eq. 7-4.30, to be solved by setting
T!=DT!, R;=D;T!, T/'=D{T!, R!=D,T} (8-4.3)
where
L _. (4 ]
D{=(v*) /(v') (8-4.4)

and (V‘ ),. is the n* component of v*. If (V‘)] is zero, then all of the eigenamplitudes can
be expressed in terms of one of the nonzero eigenamplitudes in a similar fashion (that is, in
terms of an amlitude other than 7). The boundary condition equation can then be
explicitly written out as (for (v')1 #0)

1 1 1 1 T\ (E,.
D;eik"d Dzze;x’d D;eix’d D;eir‘d 7;2 0
D! D? p: b |1*||E,, (8-4.5
D;eix‘d Dzeirzd Dgeix’d D:eix‘d Tx4 0

where k¢ =k, el/v,. This equation is solved by the subroutine TandR_coeff in the
EWALD Fortran code.

When the exponential factor e’

“ in Eq. 8-4.5 becomes very large (for instance, t0o
large for a computer to handle), numerical solutions can be found by applying a thick
crystal approximation. Note that at the exit surface, the transmission channel field is

4
T(A-r=d)=e*"y Y Tlexe?, (8-4.6)

=l «
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. ixt . . .
Then, if €™ ¢ — ~, in order for the transmitted field to stay finite, T, must go to zero.
This is the heart of the thick crystal approximation:

e 500, T' 50
w . (8-4.7)
T e™ ¢ — a finite quantity

This approximation can then be used to modify the boundary condition equations. For

instance, let k' be the complex eigenwavenumber that gives rise to exponentially large
numbers. Then the boundary value equation to be solved is

0 1 1 1 YTl (E,.

D; Dzz eix'd 023 e.‘x’d D; eur‘d le 0

o p: b b |1 ||E| (E4
Dl Dzeix’d D:eix’d D:eix‘d T: 0

In the subroutine Dispersion and TandR_coeff, the arrays thick and e keep track
of which elements in the boundary condition matrix must be modified.
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9. EXPERIMENTAL PROCEDURES

9.1 YIG Epitaxial Films on GGG

Nal photodetector

Slits (3% 3) mm
Si [3 33] asymmetric reflection
g Bragg angle = 47.5°
b=-47
YIG [0012]
symmetric reflection

Bragg angle = 48.3°

mosen | wmmem Slits (8 vert X 4 horiz) mm

Lead

b = "'1 Shleldlng CuKa] X - rayS
(8048 eV)
L
Seen from X —ray tube, Cu target
above

Fig. 9-1.1 Experimental arrangement for high resolution measurements of the YIG
Darwin width.

The yttrium iron gamnet (YIG) crystals were grown by Gualtieri at Allied-Signal's
Electronic Materials and Devices Lab. Each sample was grown using a liquid phase
epitaxy method where a (0 0 1) oriented gadolinium gallium garnet (GGG) substrate was
inserted into a heated platinum crucible (= 890°C) containing yttrium and enriched iron
oxides dissolved in a lead oxide-vanadium oxide flux (the isotopic composition of the iron,
as measured by Oak Ridge National Lab, was 0.79% *Fe, 18.24% *Fe, 80.97% 'Fe,
and 0.0% **Fe). Using techniques very similar to those applied towards growing magnetic
bubble memory layers, Gaualtieri was able to epitaxially grow nearly perfect (001)

183
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oriented YIG crystal films of various thicknesses (2.7 to 9.5 um) onto six 5 mm thick
GGG circular substrates having a diameter of 3 cm. The formula unit for the YIG films,
obtained from lattice constant data and Faraday rotation measurements, is

(Yz.%Pbo.m )Fea(Fe1.94Yo.06 )012 .

The lead was incorporated into a few dodecahedral lattice sites normally occupied by
yttrium atoms. This was done to alleviate crystal strains by matching the YIG to the GGG
lattice spacing. The YIG films are basically free of dislocations and other surface defects
(they cover much less than 1% of the surface area), and the films have a thickness variation
of only about 0.15 £m (the edges are slightly thicker than the center).!

A major area of concern was the degree of crystal perfection of the films--whether
the films were composed of a mosaic of small crystal domains or were composed of just a
few large crystal domains. Rocking curve measurements were performed to ascertain how
perfect the crystal films were using the setup shown in Fig. 9-1.1. An x-ray generator
provided a CuK e, x-ray source beam (8048 eV) for the measurements. An asymmetric Si
[33 3] crystal was used as a nondispersive monochromator (the surface normal pointed in
the [2 2 0] direction). By reflecting from the (3 3 3) planes in asymmetric geometry, the
monochromator produced a highly collimated beam having an angular divergence of about
4.3 prads. This collimated beam was used to measure any small features in the rocking
curves of the YIG films that may be due to crystal imperfections.

Fig. 9-1.2 show the [0 0 12] rocking curves for the six YIG crystals labeled 57-1
to 57-6. The rocking curves are only for YIG films on the side of the GGG substrate that
was facing downwards in the crucible melt. The YIG [0 0 12] reflection was chosen so

that the incident beam would penetrate deep into the film allowing the entire thickness of the
film to be probed (Rocking curve measurements were initially done when the crystals were
first received from Gualtieri. However, in these measurements the YIG crystals were
rocked against each other for the [0 0 4] reflection. Thus, the angular resolution was 25 to
50 prads depending upon which YIG crystal was used as the monochromator rather than
the 4.3 prads resolution of the asymmetric Si [333] crystal, and the YIG [00 4]
reflection enabled an examination of only the first 2 um of the YIG film due to primary
extinction effects). The GGG substrate reflection, which is less prominent for thick films,
is the peak at the lowest angle (which has been set at a deviation angle of 0 urads) since
GGG has a larger lattice spacing than YIG. The figures show that the attempt at matching
the YIG to the GGG lattice spacing by substituting a few yttrium atoms with lead has
produced unexpected problems. The difference in lattice spacing between bulk GGG
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(12.3840A) and bulk YIG (12.3780A) is 6x10°A. For the crystals 57-6, 57-5, and

57-3 where the lead had the smallest effect, the lattice mismatch was successfully reduced
by 30% without significantly distorting the rocking curves. For the other crystals where
the lattice mismatch was reduced by 50-60%, the YIG films separated into two or more
regions, or sublayers. Substituting too many yttrium atoms with lead to further increase
the YIG lattice spacing appears to lead to the formation of composite YIG films having
crystal layers with different lattice spacings. The remarkable feature about this effect,
which is noticeable for crystal 57-2, is the tendency for the YIG crystal to form nearly
perfect crystals for each sublayer rather than a single layer composed of a homogeneous
distribution of mosaic crystals or lattice spacings which would form a single broadened
rocking curve.

The difference between the perfect crystal rocking curve and the measured rocking
curve gives the degree of crystal perfection of the crystal sample. The silicon crystal used
as the monochromator in the rocking curve measurements is of the same stock as those
used as SSRL beamline monochromators. They generally have Darwin widths (full width
at half maximum) that are not more than 10% greater than the ideal perfect crystal Darwin
width--the silicon monochromators are essentially perfect crystals. The YIG crystal films,
on the other hand, are not as perfect. The Ewald computer code discussed in Chapter 8
was used to evaluate the rocking curve for a perfect YIG crystal rocked against a fixed
asymmetric Si [333] perfect crystal (the asymmetry parameter is b = —4.7). For perfect
YIG crystals having thicknesses of 4.7, 3.3, and 2.7 um, the Darwin widths were 24, 34,
and 39 urads respectively. The measured Darwin widths were 43, 55, and 60 prads.
Thus, the Darwin widths for the YIG films were roughly 14 to 2 times greater than the
ideal widths. The YIG crystal perfection, though not up to par with the silicon crystals, is
still quite good. One cause for the rocking curve broadening may be due to the
incorporation of lead into the crystal in the attempt to create strain free films. The lead
increases the lattice constant of the unit cell, and, with lead atoms interspersed throughout
the YIG film, this would lead to a nonuniform lattice constant throughout the film which
would contribute towards broadening the rocking curve.
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9.2 General Experimental Setup

Time resolved nuclear resonance experiments were done at three different
beamlines: a 15 period 1.05 m wiggler beamline 10-2 at the 3-3.5 GeV SPEAR storage
ring, a 26 period 2 m undulator beamline PBF 1 at the 5-15 GeV PEP storage ring, and a

Experimental Setup
(Schematic)

Mossbauer
Absorbe
Si (111) YIG roers
Mono- Crystal
chromator

Undulator Be Window B
/ Coincidence
D Dfetectlor
i Helmholtz (fast plastic
Lot Mirro? Coils scintillator)

9-89 6477A1

Fig. 9-2.1. General experimental setup. Mirror focusing was done in the horizontal
(perpendicular to this page), not vertical, direction.

48 period wiggler beamline F2 at the 5.5 GeV CESR storage ring. The experimental setup
at each of these beamlines was similar to that shown in Fig. 9-2.1.

The wiggler or undulator consisted of a periodic dipole arrangement of permanent
magnets (Nd-Fe-B magnets for the beamline at SPEAR and Sm-Co magnets for the
beamlines at PEP and CESR). The arrangement of magnetic dipoles forces any electron
that travels down the axis to oscillate (or wiggle) about the nominal orbit and emit radiation
with a range of frequencies that is tunable by varying the magnetic field strength or the
dipole period length. The deflection parameter, K, is a measure of this tunability,

K =eByA, [2rmc, (9-2.1)
where B, is the magnetic field strength at the nominal electron orbit, and A, is the dipole
period length. For K > 5 the magnet dipole array is considered to operate as a wiggler, and
the characteristic energy spectrum of the wiggler radiation is broadband up to the critical
energy



188 Experimental Procedures (9.2)

€. =0.665E*[GeV]B,|[T] (9-2.2)
where E is the electron beam energy. For K < 2 the array is considered to operate as an
undulator, and the energy spectrum is composed of harmonics that are narrowband for the
odd harmonics. By changing K one of the narrowband harmonics can be tuned to a
desired operating energy and, to a degree, achieve energy monochromatization.

Tuning was done for the permanent magnetic arrays by changing the magnet gap
spacing which changes the magnetic field strength at the nominal electron orbit. For
instance, the desired operating energy at PEP was 14.4 keV. Placing the first harmonic at
an energy slightly greater than 14.4 keV ensured operation on the safe low energy side of
the harmonic peak that varied more slowly with energy than the edge-like high energy side.
A magnetic gap spacing of 5.5 cm resulted in a magnetic field of 1.4 kG, a K value of 1.0,
and placed the first harmonic at 14.8 keV.
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Fig. 9-2.2. DuMond diagram for the Si [111] monochromator at the SPEAR 10-2
beamline. The angular divergence of the photons arriving at the monochromator spans the
300 urad range in the figure (the energy rang:s over thousands of eVs), but the
monochromator allows only those photons having angles and energies lying within the
narrow strip having a width of 18 urads and 1.9 eV.

A double crystal Si [111] monochromator was used to provide a source beam
having a 2 eV wide bandwidth for a given scattering angle (two crystals were used to
produce an output beam parallel to the incident beam). The DuMond diagram for such a
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crystal arrangement is shown in Fig. 9-2.2. Since the energy spectrum of the radiation
impinging upon the monochromator covers thousands of eVs, the monochromator
substantially reduces the photoelectric background. However, a Si monochromator has the
shortcoming of having a narrow vertical angular acceptance of 18 prads at a given energy.

Electrons traversing a synchrotron bending magnet or a wiggler emit radiation in a
narrow cone having a half angle of 1/y where y = E/ m,*. Depending upon the lattice
design of the synchrotron, the electrons also have a vertical angular divergence at the
wiggler of 2a,. The net vertical angular divergence of the photons at the beamline is then
the quadrature of the synchrotron radiation and electron half widths

20, =2\/a2 + O (9-2.3)

For a bending magnet or a wiggler
o,=2/yV2n (9-2.4)

is the effective rms half width of the synchrotron radiation. For the beamlines used at
SPEAR and CESR, the net photon angular divergence was about 300 and 150 prads
respectively (for electron vertical half widths of roughly 50 and 30 prads respectively for
the high energy physics colliding beam mode of running). Clearly the Si monochromator,
having an angular acceptance of 18 urads, blocks out, in angular space, a sizable portion
of the beam and, thereby, reduces the beam intensity by a factor of 15 to 73. The
undulator beamline at PEP produces somewhat better results because an undulator
collimates the harmonics. The first harmonic lies in a cone with a half angle of
1 [1+K?%/2
A Y
where N is the number of periods. For PEP the electron beam energy was 13.5 GeV, thus
o, =5 prads (N =26 and K =1). The net photon angular divergence of about 100 trads
is then dominated by the electron angular divergence (the vertical half width is roughly
40 prads for colliding beam operation). The monochromator then reduces the beam
intensity by a factor of 5. If PEP were operated in a dedicated low-emittance lattice mode,
the electron beam vertical half width could be reduced to as low as 5 purads. The net
photon divergence would then be only about 15 urads, and all of the beam would pass
through the monochromator. Unfortunately, PEP was mothballed before such remarkably
brilliant beams could be used for experiments, and it is expected to be replaced by an
asymmetric B factory for studying the possibility of CP violation in the B meson system.
At the PEP and SPEAR beamlines, a bent cylinder, fused quartz, platinum coated

(9-2.5)

mirror was a standard instrument positioned upstream of the monochromator. The
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cylindrical mirror provided focusing in the horizontal direction to increase the photon flux.
The mirror could also be used to focus the photon beam in the vertical direction, however,
because this would increase the angular divergence of the beam and result in less photons
passing through the narrow vertical angular acceptance width of the Si monochromator,
vertical focusing was avoided.

Unfortunately, the monochromator also allowed higher order harmonics from the
[333],[555), [777], etc., reflections to pass through. The mirror again proved useful
in eliminating these higher order harmonics through grazing angle scattering. By setting
the grazing angle of the mirror to be near the critical angle of the [3 3 3] harmonic (29 keV),
the intensity of all the harmonics was significantly diminished. The mirror then acts as a
low pass filter. At the CESR beamline, there was no standard mirror upstream of the
monochromator, so a portable, flat, gold coated mirror was placed downstream of the
monochromator (inside the experimental hutch station). Without the mirror the
photoelectric background from the harmonics overwhelmed the photodetector, thus making
the mirror a critical component to do experiments.

Another typical piece of equipment was a 4 circle diffractometer. The crystals were
attached to the ¢ circle of the diffractometer which in turn was attached to a y circle which
in turn was attached to a @ circle. The ¢-axis could be rotated by rotating the y circle, and
the y-axis could in turn be rotated by rotating a € circle. The detector was attached to the
26 circle which rotates independently of the other circles. These combinations of possible
rotations allowed the crystals to be oriented for precision diffraction experiments.?

For low temperature experiments a cryogenic refrigerator assembly was attached to
the ¢ circle. The assembly consisted of a two stage displex expander (Air Products DE202
expander) that cools by decompressing helium gas. On the tip of this displex unit sat the
YIG crystal, and the unit was covered by a vacuum shroud having a cylindrical beryllium
window. A water-cooled rotary compressor (Air Products HC-2 compressor) supplied
high pressure helium gas to the displex expander. Before the refrigerator was turned on, a
roughing pump was used to get the expander down to a low vacuum (z 10¢ torr). A
temperature controller along with a thermistor for feedback and a small heater coil inside the
shroud was used to fix the temperature to a desired operating point.

Also attached to the ¢ circle was a magnet assembly that provided a uniform
magnetic field of about 100 Gauss across the crystal. At the PEP and SPEAR beamlines a
pair of Helmholtz coils provided the uniform magnetic field (the coils were actually attached
to an unused ¢ circle on the opposite side of the y circle). At the CESR beamline a set of
Sm-Co permanent bar magnets provided the uniform magnetic field. In all cases, the
magnetic field was parallel to the (0 0 1) planes (that is, parallel to the crystal surface).
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9.3 Detector and Fast Timing Electronics

Head - on
Photomultipliers
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Fast Plastic
Scintillator

Fig. 9-3.1. General schematic of the coincidence photodetector.

Fast plastic coincidence photodetectors were used to measure the scattered x-rays.
Each photodetector consisted of two head-on photomultipliers coupled to a fast plastic
scintillator material (Bicron 420) via an index of refraction matching layer of silicon grease
(GE Viscasil 600M silicone fluid) as shown in Fig. 9-3.1. The fast plastic is a
polyvinyltoluene based organic scintillator that fluoresces with a lifetime of 1.5 nsec. An
early photodetector used RCA 8575 photomultipliers borrowed from the Stanford Linear
Accelerator Center's (SLAC) high energy physics group (these tubes were leftover
photomultipliers used for the SLAC Mark II detector). They were old tubes, and they had
significant afterpulses (possibly due to a small amount of residual gases leaking into the
tubes) 460 and 540 nsecs after a prompt pulse. Even in coincidence geometry, for every
10 prompt pulses there was 1 afterpulse. However, the tubes could still be used by
carefully subtracting out the afterpulse background or by ensuring that the delayed resonant
signal was examined in a time window well short of the afterpulses. These
photomultipliers were later abandoned in favor of mu-metal shielded Hamamatsu R329
photomultipliers having 12 dynode stages and a rise time of 2.6 nsecs. These tubes had an
insignificant afterpulse rate. As measured against a Nal detector, they also had an
efficiency for detecting 14.4 keV radiation cf about 40%.

The fast electronics signal processing circuitry for a general experiment is shown in
Fig. 9-3.3. The electronic modules were capable of processing nanosecond pulse width
signals. After the amplified photomultiplier pulses pass through discriminators properly
biased to reject low level background, a 2-way logic module examines the signals to see if
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they are coincident (it has a double-pulse resolution of 3.3 nsecs). If the pulses are
coincident, another logic module checks to see whether the coincident pulses are prompt
pulses.

The timing pulse is appropriately delayed or advance in time (using cables lengths
or electronic circuitry not shown in the figure) so that it corresponds to the prompt pulse
that initiated the nuclear resonant response. The timing pulse is sent to a gate generator
which responds by sending out a fixed 10 nsec wide delayed pulse. This 10 nsec wide
pulse is the prompt window, and it is sent to veto the 1-way coincidence logic module.
Thus, if a coincidence occurs within the prompt time window, it is vetoed and no further
action occurs. This was done to prevent the TAC from being triggered by every prompt
pulse which would overwork the TAC and lower its performance. Performing this check
improved the time resolution of the resonance signal from 5 nsec to 2.5 nsec.

The prompt window is then further delayed by 250 nsec to act as the stop input to
the TAC. Thus, the delayed nuclear resonance signal starts the TAC anytime from 10 nsec
to 250 nsec after the prompt pulse, and the TAC is always stopped 250 nsec after the
prompt pulse (see Fig. 9-3.2). The TAC sends out a signal between 0 to 10 volts that is
proportional to the time difference between the stop and start signals. The MCA receives
this output signal for data analysis and storage.

Ring Pick-off

Stop pulse
(Prompt) Pulse

10 ns I 250 ns
Prompt window for

window resonant signal
Fig. 9-3.2. Timing structure. A 10 nsec prompt window electronically gates out the
prompt pulses. A 250 nsec window is constructed for measuring delayed resonant counts,

and the same 10 nsec prompt window delayed by 250 nsec is used as the stop pulse to the
TAC.
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Fig. 9-3.3. General schematic of the fast electronics circuitry.
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9.4 Mdossbauer Experimental Setup

Mossbauer
Absorber

Incident
beam

Wissel Motor
Drive Photodector

Fig. 9-4.1. General schematic of the Mossbauer experimental setup.

The general setup for doing Mssbauer experiments is shown in Fig. 9-4.1. The
hollow core Wissel motor drive was well adapted for doing experiments on synchrotron
beamlines. A conventional motor drive is usually designed for moving radioactive sources
against a stationary absorber, and it does not need a hollow core. For synchrotron
experiments hollow core drives were quite convenient because absorbers must be vibrated
against a fixed source. The drive works by vibrating a hollow cylinder using
electromagnetic driver coils. Attached to the end of the hollow cylinder is a sturdy
diaphragm onto which an absorber can be mounted.

A synchrotron experiment was performed to measure the energy spectra of the
hyperfine YIG resonance. To do this a single line sodium ferrocyanide, Na,Fe(CN),,
absorber was used as an analyzer. In Fig. 9-4.1 the incident beam is the YIG diffracted
beam. The electronics set up to measure both the time spectra and the energy spectra is
shown in Fig. 9-4.2. The TAC and MCA for measuring the time spectra are taken from
Fig. 9-3.3. To measure the energy spectra, a gate having a time window of 250 nsec
(positioned 10 nsec after the timing signal) activated the MCA for measuring resonant
photons. For each valid start signal, the velocity of the motor drive was measured.

To calibrate the YIG energy spectra, Mossbauer spectroscopy was performed on an
enriched *’Fe thin foil using a ¥Co radioactive source. Obtaining the well known
positions of the Fe hyperfine lines gives the calibration of the velocity drive and enables
one to determine the energies of the YIG resonances. The energy spectra of the
ferrocyanide absorber was also analyzed to get information on how the absorber disturbs
the YIG resonant time signal. The electronics for doing these measurements is shown in
Fig. 9-4.3. The transmitted beam through the absorbers was measured by a Nal inorganic
scintillator detector, and the resulting signal was sent to a pulse height analyzer. The
analyzer output signal was amplified (x20) and sent to the input of the MCA. The pulse
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height analyzer was selected to provide an energy window for only 14.4 keV photons. If a
photon had the right energy to lie within the window, the analyzer sent a gate signal to the
MCA to enable it for receiving the valid input signal (along the way the pulse is shaped to

be about 1.5 usec long and 5 V high by a gate generator so that the MCA could easily
handle it).

Ring Pick-off Signal
(or Timing Signal)
Start
Stop
Discriminator
——
T TAC
Gate & Delay
Generator
Delayed MCA
Pulse for Time Spectrum
Gate
Fanin/ | Pulse | Gate & Delay Tracor Northern 1750
Fan out Generator
Inverter Input
Gate i

>| Multichannel Analyzer
(MCA)
Tracor Northern 1705 | for Velocity Spectrum

Channel advance

pulse
NN\ [ Méssbaver MCA
Mﬁ&: uer »a driver/generator ‘____addxess
Wissel Motor Elscint MDF-N-5
Drive

Fig. 9-4.2. General schematic of the electronics for simultaneous measurements of both
Mbossbauer velocity spectra and quantum beat time spectra. The start and stop signal come
from the schematic in Fig. 9-3.2.
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Fig. 9-4.3. General schematic of the electronics for Mdossbauer spectroscopy
measurements using a radioactive source.

An early Mossbauer experiment is shown in Fig. 9-4.4. This was a push-pull
experiment where two black, single line, ammonium lithium ferroflouride absorbers
enriched to 91.2% *"Fe were used as notched filters having approximately a 2.5 mm/sec
wide absorption line (They were made by Gopal Shenoy and Ersin Alp at Argonne
National Labs--they were close collaborators on this experiment). The absorbers were
Doppler shifted to filter out the inner two lines (lines 3 and 4) of YIG. To accomplish this,
a function generator sent square wavetrains to the Mossbauer drivers. The peak-to-peak
amplitude of the square waves was adjusted so that, at any instant of time, one absorber
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was Doppler shifted to filter out one of the inner two lines while the other was shifted to
filter out the other. The square waves arriving at the drives were in phase, so in order to
make the drives operate in an antiphase, or push-pull, mode, the absorbers were fixed onto
the opposite ends of the drives (one absorber was fixed to the end where the driver coil was
[labeled DC in Fig. 9-4.4] and the other was fixed to the end opposite the driver coil). In

this early experiment, Elscint solid core motor drives were used. Therefore, to do
transmission experiments they were equipped with long paddles attached to the driver
shaft. At the tips of the paddles were attached the Mossbauer absorbers. This arrangement
was awkward to do synchrotron experiments, and the instrumentation was susceptible to

“—
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( -> ) 19
Mussbauer
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Coincidence
Elscint Motor Photodetector
Drives

Fig. 9-4.4  Push-pull Mdssbauer experiment designed to filter out the inner two
hyperfine lines of YIG
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Fig. 9-4.5 Associated electronics for the push-pull Mdssbauer experiment.
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extraneous vibrations arising from the slippage of the paddles at the joint where they were
attached to the driver shaft, the flexure of the paddles themselves, and the movement of the
mount holding the absorbers to the paddles. These drives were later abandoned in favor of
the hollow core Wissel motor drives.

9.5 Energy Calibration Techniques

The energy width of each of the hyperfine lines of >’Fe is 4.67 x10™ eV with the
outer two lines separated by about 6 x107 eV (excluding dynamical effects such as
linewidth broadening and energy shifts). The 2 eV wide energy bandpass at a given angle
from the Si [111] monochromator easily covers the full range of the hyperfine spectrum.
The huge photoelectric scattering (or prompt) background of around 10'? counts/sec
resulting from the wide vandpass is reduced by 7 orders of magnitude by using a forbidden
electronic but allowed nuclear reflection from the YIG crystal. The photomultipliers are not
shielded from the resultant prompt pulses (the prompts are gated out electronically from
triggering the TAC). Prompt rates greater than 10° counts/sec tend to blind the
photomultipliers preventing them from seeing the delayed resonant signals--the fluorescent
tails of the plastic scintillator combined with the recovery period of the photomultipliers
start to become a major problem. For prompts rates of 10° counts/sec and nuclear signal
rates of 10 to 100 counts/sec, the nuclear resonance is found by performing a
monochromator energy scan. This scan is simply a measurement of the coincident delayed
resonant counts (the starts in Fig. 9-3.3) versus the monochromator energy setting--the
prompts time window in Fig. 9-3.2 is still used to electronically gate out the prompt signal.

To reduce the range in energy that must be searched to locate the resonance, an
energy calibration is done using the krypton absorption edge. Since the krypton edge is
rather broad (see Fig. 9-5.1), the monochromator can be initially calibrated to only within
110 eV. For experiments having a counting rate of 10 to 100 counts/sec, searching over
20 eV for the resonant signal can take a few hours. For low count rate experiments of one
count/sec or less and for background rates of the same order of magnitude, a 20 eV search
can take an excessive amount of time. However, once the resonance has been found, the
krypton edge energy is known precisely. The krypton edge energy of 14326 eV is
demarcated in Fig. 9-5.1 where the uncertainty comes from the 2 eV resolution of the
monochromator. Gold also has an edge near the iron resonance. The position of its 14353
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eV edge is shown in Fig. 9-5.2 and was also calibrated using the *’Fe resonance. Gold
also has some near edge oscillatory structure which can be useful for calibration purposes.
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Fig. 9-5.1 Krypton edge energy scan.
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Fig. 9-5.2 Gold edge energy scan. The first minimum of the near edge structure
occurs at roughly 14364 eV.
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Another method of obtaining an energy calibration is to use noticeable features (or
glitches) in the energy spectrum of the monochromator. The silicon monochromator has a
strong primary reflection off a particular set of similar crystal planes. From two or more
sets of crystal planes, it also has simultaneous weaker reflections that travel in the same
direction as the primary reflection. Interference between these simultaneous, or
umweganregung, reflections and the primary reflection results in noticeable glitches in the
energy spectrum of the monochromator. Since the lattice spacing of Si is known very well
(to within 2 x 107 A), these glitches can be used as accurate energy markers. The intensity
of the umveg reflections, however, is small compared to the primary reflection, so the
glitches show up as small dips in the primary energy spectrum. Finding prominent,
narrow glitches at high energies near 14.4 keV is also a problem. Fig. 9-5.3 shows a good
candidate near 5931 eV along with its azimuthal ¢ plot. The nearly vertical reflection at
5931 eV in Fig. 9-5.3 (a) corresponds to the deep central 2 eV wide glitch in Fig. (b). This
glitch actually consists of two umveg reflections lying on top of each other: the [2 2 — 4]
and [3 3 - 3] reflections. The |2 2 — 4] umveg reflection dominates though since it has a
larger structure factor. Another good candidate closer to the resonance energy is shown in
Fig. 9-5.4. The nearly vertical reflection at 11358 eV in Fig. 9-5.4 (a) corresponds to the
small central dip in Fig. (b). The width of this glitch is about 8 eV--four times wider than
the 5931 eV glitch. This 11358 eV glitch consists of four umveg reflections: the
[-1-1-3], [44-8], [55-7], and [66 —4] reflections. The [-1-1-3] umveg
reflection dominates because of its larger structure factor. A major source of broadening of
the glitches comes from the nature of the monochromator. Since the monochromator
consists of two parallel Si crystals, there are always two sets of umveg reflections, and this
serves to broaden the glitches for Si crystals that are misoriented azimuthally in ¢.

One of the first tries at finding the nuclear resonance signal was attempted at the
SPEAR beamline 10-2. The 11358 eV glitch was used as the energy calibration even
though this glitch had a broad energy width. The 5931 eV glitch was too far from the
resonance to be reliable for energy calibration. A krypton edge energy scan was done to
check the calibration results. The nuclear resonance was precisely right where it was
expected to be (Unfortunately, by accident the glitch was labeled an 11364 eV glitch, so the
first search was off by precisely the 6 eV error. This mistake was uncovered only after
analyzing the beamline experiment results).

The YIG crystal produces much more noticeable umveg reflections since only
forbidden reflections are used--they show up as prominent peaks rather than small dips (see
Fig. 9-5.6). These umveg reflections are a major problem when searching for the nuclear
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resonance because they contribute to the prompt background (the forbidden reflection is
only nearly forbidden), and the strong umveg reflections easily reach the saturation limit of
5.12 x 10® counts/sec (the frequency of the electron pulses in the SPEAR storage ring). At
high energies, they densely pack ¢ — E space as shown in Fig. 9-5.5 (Only the largest
umveg reflections are shown where FF,,_ 210,000 (F; is the structure factor described in
Section 7.10). Had all nonzero reflections been drawn, the figure would be nearly black).
Searching for the resonance then involves finding a good, deep valley in ¢ — E space.

The YIG crystals can also be used for energy calibration by making ¢-cuts and
E -cuts in ¢ — E space and accurately mapping out the contours of all the prominent umveg
reflections. An attempt was made to do this, but, because of the dense thicket of umveg
reflections, more confusion resulted than progress. Of all the ways of making energy
calibrations, using the krypton edge (after it was calibrated once and for all using the
nuclear resonance line) was the simplest and fastest way of finding the *'Fe resonance
energy.
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Fig. 9-5.3 (a) ¢-plotif Si[111]. (b) Phi scan of the 5931 eV glitch of Si[1 11]. The
prominent dip at 5931 eV is mainly due to the [2 2 — 4] umveg reflection. Since the
monochromator was not precisely oriented to the ¢ = 0 position, there was extra structure
in the wings due to other nearby umveg reflections.
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Fig. 9-5.4 (a) Phi plot of Si [11 1]. These plots become more densly populated with
umveg reflections as the energy increases. However, occasionally there are reasonable
clearings having a vertical umveg reflection surrounded by only a few nearby reflections.
Vertical umveg reflections are desirable because their energy widths are narrow and give

good energy markers. (b) Phi scan of the 11358 eV glitch of Si {111]. The small central
reflection in Fig. (a).

dip at 11358 eV is mainly due to the [~1 — 1 — 3] umveg reflection--this is the nearly vertical
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Fig. 9-5.5 ¢-plot for YIG [0 0 2] reflection. There are no longer any convenient
vertical umveg reflections to serve as energy markers (the vertical line in the figure is a
marker for the 14412.5 eV nuclear resonance energy). Only the most intense umveg
reflections are shown (if all nonzero reflections were shown, they would cover the figure
so densly that it would be nearly black). Trying to navigate across such a terrain to find the

nuclear resonance becomes a difficult task because most of the reflections are nearly
horizontal.
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(a) ¢-plot for the YIG [0 0 2] reflection. (b) Phi scan of the [0 0 2]

reflection. For forbidden primary reflections the umveg reflections show up as peaks
(sometimes called antiglitches) rather than as dips (or glitches) typical in energy scans of
allowed primary reflections. The markers where the umveg reflections lie are shown as
sharp triangles. The position of these markers indicate that the energy of the incident beam
is 14411+ 1 eV (the dotted line). However, phi angles near 45° are not good operating

points because the diffracted nuclear signal goes to zero there (the quadrupole splitting
between the different iron sites in YIG goes to zero).
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10. KINEMATICAL EFFECTS

10.1 Nuclear Hyperfine Structure Quantum Beats

The kinematical effects described in this chapter can be understood without a
thorough knowledge of dynamical diffraction theory. They can be adequately described by
single particle interactions rather than by the many particle, collective interactions occuring
in the dynamical effects. One such striking kinematical effect is the quantum beat patterns
that show up in the nuclear resonant, time-resolved measurements. These quantum beats
arise from the interference between a coherent superposition of quantum states. For the
case of >"Fe, the coherent states are the set of hyperfine states excited when the nucleus is
bombarded with an intense, broadband x-ray pulse. These excited states then fall back to
the ground state and emit photons that coherently interfere with each other to produce the
quantum beats. The coherence results from the scattering process remaining upon the
energy shell--the nuclear state before and after the photon-nucleus interaction is identical.

Quantum beats were first observed in the early 1960's independently by
Alexandrov and Dodd in the Zeeman beats arising from a superposition of electronic
quantum states.!3 Here an external magnetic field was applied to split excited states and
produce Zeeman components which could interfere with each other. Hyperfine structure
beats arising from excited states naturally split by an internal magnetic field were observed
in the early 1970's by Haroche.* 5 Also in this same time period, fine structure beats were
seen by Haroche and Fabre,5 7 and in the late 1970's Hese used an electric field to split
excited states to produce Stark quantum beats.® The first observation of nuclear hyperfine
structure beats resulting from the excitation of nuclear quantum states was made by Gerdau
in the late 1980's.? One should note that all of the electronic quantum beats described
above were measured using gas samples while all measured nuclear quantum beats were
done using solid samples. Thus the dynamical collective effects, such as resonance
frequency shifts and decay rate speedups, present in nuclear systems have not been
observed in electronic systems.

Nuclear hyperfine structure quantum beats are dramatic features in all of the time-
resolved measurements of *’Fe enriched YIG. Recall from Section 8.1 that YIG has a
complicated antiferrimagnetic sublattice structure capable of producing 7 sets of 6-line
hyperfine spectra (42 lines altogether). By using [00(4n-2)] YIG reflections
(n=1,2,3,...), electronic reflections are forbidden along with nuclear reflections from all

207
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the a-sites and the d3-site. The hyperfine spectra then simplifies to 2 sets of 6-line spectra
from the d1 and d2-sites.

_)
dZEFG
—————— )
[010]

#57-2
YIG crystal film

(100] 6.7 um thick
GGG substrate

5 mm thick

Fig. 10-1.1. Scattering geometry for nuclear resonance diffraction. The electric field
gradients in the YIG crystal lie in the cubic (1 0 0) symmetry directions. When the applied
magnetic field is perpendicular to the scattering plane formed by k; and k , it lies in the
[1 0 0] direction parallel to the electric field gradient of the nuclear d1-site. When the
applied magnetic field is parallel to the scattering plane, it lies in the [01 0] direction
parallel to the electric field gradient of the nuclear d2-site. The incident beam is
horizontally polarized perpendicular to the scattering plane.

]EFG

For incident horizontally polarized x-rays and for an applied magnetic field
perpendicular to the scattering plane (parallel to the polarization direction), each 6-line
spectrum reduces to a 4-line spectrum (Case 1 in Section 5-1). Under such conditions, the
M = *1 transitions are allowed (see Fig. 5-3.1) and the M =0 transitions are not allowed--
they would be if the incident x-rays were vertically polarized. The scattering geometry is
shown in Fig. 10-1.1, and a simplified hyperfine diagram along with the polarization of
each line is shown in Fig. 10-1.2. Since the emitted x-rays from each line all have the
same polarization, there will be quantum beats resulting from the interference of x-rays
from all the resonance lines. The possible combinations of pairing the 8 lines in
Fig. 10-1.2 gives 8 choose 2, or (3)=28, possible beat frequencies. The corresponding
beat periods are given in Table 10-1.1.

An experimentally measured time-resolved spectrum for such a scattering geometry
is shown in Fig. 10-1.3 (using the YIG [O 0 2] reflection). Since lines 1 and 6 have the
largest Clebsch-Gordan coefficients, the amplitude of their beats dominate the overall
quantum beat pattern--the beating between lines 1 and 6 gives rise to the fast 7 nsec
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Fig. 10-1.2. Hyperfine energy spectrum illustrating the case where the applied magnetic
field is perpendicular to the scattering plane. Each hyperfine line is horizontally, or sigma,
polarized: ©.
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£ 16.4 135 73.3 12.9 146 | T~
£, 12.1 34.4 124 17.9 11.1 46.0 | T—~u
£ 7.66 13.0 17.9 124 7.25 14.4 209 | T~

Table 10-1.1. Hyperfine structure quantum beat periods (in nsecs) for the case of an
applied magnetic field perpendicular to the scattering plane. Lines £_ are from the nuclear
d1-site, and the primed lines £/ are from the d2-site. The internal magnenc field strength
is — 3.69 x 10° Gauss and the electric quadrupole splitting is -0.89 mm/sec. The dominant
(, '"tum beats are in bold face. The average fast magnetic quantum beat seen in
Fig. 10-1.3 is 7.2 nsec and the average slow electric quadrupole quantum beat is 130 nsec.

magnetic beat period seen in Fig. 10-1.3. There is also a quadrupole beat period of 130
nsec due to the electric quadrupole splitting between lines £, and £; of the d1 and 42 -sites
(and also between lines £, and £; of the two sites). This gives rise to the overall slow
modulation of the beat pattern in Fig. 10-1.3. All of the other quantum beats show up as
small perturbations upon the overall quantum beat pattern. The fit to the data in Fig. 10-1.3
utilizes the full dynamical diffraction theory for resonant scattering, but it relies heavily
upon the energy separation of the hyperfine lines that gives rise to the quantum beat periods
given in Table 10-1.1. The dynamical resonance frequency shifts discussed in Sections
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Fig. 10-1.3. Hyperfine structure quantum beat patiern for the case where the applied
magnetic field is perpendicular to the scattering plane. Full dynamical diffraction theory
has been applied to obtain the fit using the quantum beat periods given in Table 10-1.1.
The operating angle was set at -25 prads below the Bragg peak. Operating off the Bragg
peak lessens the decay rate speedup and allows the slow electric quadrupole quantum beat
to be seen.

o

7.6 and 7.7 slightly change these quantum beat periods--these small changes can lead to
drastic changes in the quantum beat patterns and are further examined in Chapter 11.

When the applied magnetic field is paralle! to the scattering plane and parallel to the
crystal surface, all 12 lines from the d -sites are allowed (Case 3 in Section 5-1). For small
Bragg angles, the M =0 lines can be neglected, and the 12 lines reduce to 8 (the magnetic
field is then nearly parallel to the incident and scattered photon directions). The simplified
hyperfine diagram for such a case was discussed earlier and is shown in Fig. 8-1.4. The
M = +1 lines emit left circularly polarized photons (polarization €,) while the M = —1 lines
emit right circularly polarized photons (polarization €_). Since photons of orthogonal
polarizations do not interfere with each other, the total number of beat frequencies is twice
4 choose 2 combinations of pairs of lines, or 12 possible beat frequencies. The beat
periods for such a case are given in Table 10-1.2.

The experimentally measured time-resolved spectrum for such a scattering geometry
is shown in Fig. 10-1.4. There are far fewer different beat periods than in the previous
case where the magnetic field was perpendicular to the scattering plane. However, there is
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Table 10-1.2. Hyperfine structure quantum beat periods (in nsecs) for the case of an
applied magnetic ticld parallel to the scattering plane. Lines £, are from the nuclear d1-site,
and the primed lines £, are from the d2-site. The internal magnetic field strength is
—13.69 x 10° Gauss and the electric quadrupole splitting is -0.89 mm/sec. The upper left-
hand and lower right-hand sections of the table represent quantum beats for right and left
hand circularly polarized x-rays respectively. The average fast magnetic quantum beat in
Fig. 10-1.4 is 12.2 and 13.0 nsec for right and left circularly polarized x-rays respectively.
The slow electric quadrupole quantum beat is 135 and 124 nsec for right and left circularly
polarized x-rays respectively.

the additional complication of two superimposed quantum beat patterns of two different
polarizations (right and left circular polarizations) having slightly different beat periods
(about 12 nsec for the right and 13 nsec for the left circular polarization). Due to the
slightly different beat periods for the two overlapping beat patterns, they go into and out of
phase as time goes on. In Fig. 10-4.1, the point in which the overlapping beat patterns get
out of phase is around 60 to 70 nsec and gives rise to the anomalous feature present there
where the overall beat pattern is nearly washed out. This null point is one of the most
difficult features of the beat pattern to fit because it is very sensitive to a wide host of
kinematical and dynamical effects.

In the sections to follow, the quantum beat patterns will be examined to investigate
interesting physical properites such as the polarization of the incident beam, the Lamb-
Maossbauer factor, and the internal hypefine crystalline fields at room and low temperatures.
In the final section angular interferometry is used to explore the phase shift of a rotated
quantum state. Quantum beats are seen to be a very useful effect that can be used to
understand and explore many fascinating physical phenomena in resonant scattering
physics.
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Fig. 10-1.4. Hyperfine structure quantum beat pattern for the case where the applied
magnetic field is parallel to the scattering plane. Full dynamical diffraction theory has been
applied to obtain the fit using the quantum beat periods given in Table 10-1.2. The
operating angle was set at -20 yrads below the Bragg peak.

10.2 Analysis of Internal Hyperfine Fields

Time and frequency lie in dual spaces that are the reciprocal of each other. The
decision to examine a scattering process in either temporal or frequency space will not
change the underlying physics of that process. A Mossbauer velocity measurement should
yield the same information as a timg-resolved measurement. However, the collected
information may be more difficult or easier to interpret depending upon what type of
measurement is made. For instance, the phase information in a scattering process is more
easily seen in a time-resolved measurement while the hyperfine resonance energies are
more easily seen in a Mossbauer velocity measurement.

In this section, the internal magnetic dipole and electric quadrupole fields are
investigated through time-resolved spectroscopy. The main utility this method has over
Mossbauer velocity spectroscopy is the length of time needed to take sufficient data for low
count rate experiments. For counting rates of around 100 counts/sec, the time spectra can
be collected in about 1 minute to get enough statistics to determine the hyperfine field
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parameters adequately, while a Mossbauer velocity spectra would need several hours of
collection time to get the same information. One reason for this is because the velocity
measurement is an absorption measurement collecting information about missing resonant
photons, and it therefore has a larger background problem. Also, the velocity analyzer
must be a reasonably thin-line absorber in order to scan the hyperfine spectra of the sample
without significantly distorting, or modifying, the sample's spectra--this further increases
data collection times.

To acquire an intuitive grasp of how the time spectra vary with changing hyperfine
field parameters, multiple graphs are given in Figs. 10-2.1, 10-2.2, and 10-2.3. Each plot
is normalized to unity and covers the first 250 nsec after the prompt excitation. The YIG
[00 2] spectra were calculated at an angle -40 urad below the Bragg peak in order to
clearly show the electric quadrupole quantum beat. The higher order YIG [0 010] spectra
were calculated at an angle right at the Bragg peak. The difference in operating angles
gives rise to the difference in intensities between the [0 0 2] and [0 0 10] reflections--
operating far off the Bragg peak significantly reduces the reflected intensity. The spectra
were calculated for an internal magnetic field, B,,, perpendicular and parallel to the
scattering plane. When the internal magnetic field strength was varied in steps of 2 kGauss
from 364 to 374 kGauss, the electric quadrupole splitting, e’qQ/2, remained fixed at
0.89 mm/sec. When the electric quadrupole splitting was varied in steps of 0.02 mm/sec
(or 1 neV) from 0.84 to 0.94 mm/sec (or 40 to 45 neV), the internal magnetic field strength
remained fixed at 369 kGauss. The incident x-rays were fixed to be 100% horizontally
polarized, and the full dynamical diffraction theory was used to perform the calculations.
(The curve in bold-face in the figures is pointed to by the graphic arrow {.)

Increasing the internal magnetic field strength increases the magnetic energy level
splitting thus forcing the hyperfine lines to be spaced further apart in energy. Increasing
the energy spacing between the hyperfine lines decreases the beat period and causes the
beat pattern to be compressed in time. This accordion effect is clearly shown in
Fig. 10-2.1 where increasing the internal magnetic field strength compresses the beat
pattern and decreasing the field strength expands the pattern. The accordion effect is most
dramatic during the second peak of the electric quadrupole beat occurring after 130 nsec.
When operating far off the Bragg peak, changes in the internal magnetic field strength of
2 kGauss can be unambiguously seen in the time spectra (this is even more revealing in the
fast beat spectra where the internal magnetic field is perpendicular to the scattering plane).
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Fig. 10-2.1. YIG [0 0 2] time spectra for various internal magnetic field strengths.
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Fig. 10-2.2. YIG [0 0 2] time spectra for various electric quadrupole energy level
shifts.
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Fig. 10-2.3. YIG [O 0 10] time spectra for various magnetic field strengths and electric
quadrupole energy level shifts.
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Changes in the internal magnetic field strength dramatically affects the fast magnetic
beat pattern. Changes in the electric quadrupole splitting factor, €’qQ/2, dramatically
affects the slow electric quadrupole beat pattern. Increasing the quadrupole splitting
increases the energy spacing between lines £, and £; of the d1 and d2 iron sites (and also
between lines £, and ¢’ of the two d -sites). This leads to a decrease in the quadrupole beat
period, and this shows up in Fig. 10-2.2 as a compression of the modulation envelope over
the fast magnetic beats. Again, when operating far off the Bragg peak, small changes in
€%qQ/2 lead to striking changes in the overall beat pattern. Changes in the beat pattern due
to changes in e?qQ/2 of 1 neV are quite evident.

Many other factors can play a role in modifying the quantum beat patterns: variation
of the magnitude of the internal hyperfine fields throughout the crystal film, nonuniformity
of the applied magnetic field, depolarization of the magnetic dipoles, nonuniformity of the
electric field gradient directions at each nuclear site, nonuniformity of the lattice spacing
within the crystal film, the mosaic crystal spread, and the polarization of the incident field
to name a few. One could probably fit any set of experimental data by varying an unlimited
number of parameters. So, only a few factors that were known to have a significant effect
were considered.

The polarization of the incident beam had to be considered in certain cases. Since
the experiments were done on wiggler or undulator beam lines, elliptically polarized beams
were not a problem (Furthermore, there was no strong evidence for elliptically polarized
beams in the data. The result may have been different if a bending magnetic beam line was
used since elliptically and even circularly polarized x-rays exist when operating above or
below the plane of the electron orbit.). A partially unpolarized mix of horizontally
polarized x-rays with a small amount of uncorrelated vertically polarized x-rays was
considered in the hyperfine field analysis. A few examples of such a mixture containing 70
to 100% horizontally polarized x-rays is shown in Fig. 10-2.4. When the internal magnetic
field is parallel to the scattering plane, an admixture containing up to 30% vertically
polarized x-rays barely changed the beat pattern--only the sensitive null region near 70 nsec
is affected. The beat pattern is significantly affected when the magnetic field is
perpendicular to the scattering plane. This is not an unexpected result. When B, is
parallel to the scattering plane, both horizontally and vertically polarized x-rays can excite
lines 1,3,4, and 6 which in turn radiate circularly polarized x-rays--horizontally and
vertically polarized x-rays do about the same thing. When B, is perpendicular to the
scattering plane, horizontally polarized x-rays can excite lines 1,3,4, and 6, but vertically
polarized x-rays can excite only lines 2 and 5. The beat period between lines 2 and 5
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The other major factors considered were the mosaic spread of the crystal film and
the angular distribution of the incident beam. Both of these factors were treated in a simple
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Fig. 10-2.4. Time spectra tor various amounts of horizontally and vertically polarized
X-rays.
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The other major factors considered were the mosaic spread of the crystal film and
the angular distribution of the incident beam. Both of these factors were treated in a simple
fashion by performing a Gaussian angular average centered over the incident angle.
Multiple time spectra were calculated at various incident angles, and the final fit was a
Gaussian weighted average of each spectrum. This method takes into account both the
angular divergence of the incident beam and the mosaic crystal spread of the YIG thin film.

The time resolution of the detector apparatus was handled by convolving a
Gaussian pulse with the beat patterns. This is simply a Gaussian weighted time average,
and its main effect is to partially wash out the oscillations in the beat pattern.
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Fig. 10-2.5. Time spectrum along with the background. The background measurement
was taken 5 eV above the 14412.5 eV nuclear resonance energy. The YIG [0 0 2] time
spectrum was taken about 10 urad above the Bragg peak with B, parallel to the scattering
planc. This is the second time spectrum ever to be taken at the PBF1 beamline at PEP (the
very first was a rough demonstration measurement and was not used in the hyperfine field
analysis).

No background subtraction was done to the data. The data was analyzed at a time
long enough after the prompt excitation that the fluorescent signal from the photodetector's
plastic scintillator was negligible--this was ensured by analyzing the data 25 nsec from the
prompt pulse. Fig. 10-2.5 shows a typical beat pattern together with the prompt pulse.
The width of the prompt pulse is quite wide (FWHM = 4.3 nsec), but this was later found
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out :0 be due to the TAC being overworked trying to process data at a prompt rate of
12,000 counts/sec. When the prompt rate fell to around 5,000 counts/sec, the prompt
pulse width fell to a more respectable 2.5 nsec. The background run was done by tuning
the menochromator energy S <V above the nuclear resonance energy. The background rate
beyond 25 nsec was about 0.23 counts/sec. Compared to the delayed nuclear signal rat< of
roughly 190 counts/sec, the background car be safely ignored.
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Fig. 10-2.6. Dramatic improvement in the time resolution of the measurements.
Fig. (a) is a measurement without the veto signal in Fig. 9-3.3 to the coincidence logic unit;
Fig. (b) is a measurement with the veto signal. By not overworking the TAC the time
resolution was improved by a factor of two from 5 nsec to 2.5 nsec.

The data shown in Fig. 10-2.5 was taken without the veto signal to the coincidence
logic unit shown in Fig. 9-3.3. This resulted in the TAC being overworked at high
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counting rates and contributed towards broadening the time resolution of the
measurements. By using the veto signal which allowed the TAC to be triggered only at
times 10 nsec after the prompt pulse, the TAC could be used at high prompt rates without
worsening the inherent time resolution of the photomultipliers. In such an arrangement,
data as far back as 10 nsec after the prompt pulse can be measured with very low
background rates, and the time resolution improves to around 2.5 nsec. This is shown in
Fig. 10-2-6. The improvement in time resolution by a factor of two, however, did not
change the values of the hyperfine field parameters used to fit the data. The improvement
enabled small subtle effects to be seen in the time distribution. For instance, for data
having a 7 nsec beat pattern blurred with a 5 nsec time resolution (see Fig. 10-2.6), the
polarization content of the incident beam could not be deterrined when the crystal was
positioned at the Bragg peak. However, he incident polarization content could be measured
when the time resolution was reduced to 2.5 nsec.

For the hyperfine field parameters given in Tables 10-2.1 and 10-2.2 (B,, is the
internal magnetic field strength and e2Q/2 is the electric quadrupole splitting factor), x’
fits were performed. Using a Fortran subroutine, VAO2A, acquired from the Argonne
National Labs computer center, a grid-gradient search algorithm for minimizing x* was
employed by varying S to 7 parameters: B, €>qQ/2, the incident polarization distribution,
the Gaussian angular and time resolution, the deviation angle from Bragg, and the starting
time.

An analysis of 25 time spectra (from the Run #1 set in Table 10-2.1) where the
deviation angle from the Bragg peak was less than £20urad and where 6 parameters were
varied (the incident polarization was fixed to be 100% horizontally polarized) resulted in a
Gaussian angular width (FWHM) of 213 prad--about 17% greater that the perfect Si
crystal Darwin width. The fitting routine had a difficult time determining the angular
resolution for time spectra taken at deviation angles greater that 20 yrad beyond the Bragg
peak giving angular widths of up to 50 prad, thus these spectra were omitted. The net
angular resolution appears to be largely limited by the Darwin width of the Si
monochromator (which is 18 jtrad for perfect crystals) rather than by the mosaic spread of
the YIG crystal.

For fits to all of the data in the tables below, the Gaussian angular resolution was
fixed at 20 purad, and only 6 parameters were varied (Except for the case where B, was
parallel to the scattering plane. The incident polarization was simply fixed to be 100%
horizontally polarized since, as shown in Fig 10-2.4, such time spectra are insensitive to
the polarization distribution). There was little coupling between the parameters--the
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variation of one parameter to minimize x> had little effect upon the value of the other
parameters that minimized x*.

For data taken without the coincidence logic veto signal blocking out the prompt
signal from the TAC, the time resolution was 4.1+0.8 nsec (This was compiled from the
Run #1 data in Table 10-2.1 and from some of the Run #2 data in the same table. The Run
#2 data was taken during a beamline run were the improvement in time resolution was
tested and implemented). When the coincidence logic veto signal was used, the time
resolution improved to 2.4+0.1 nsec (This was compiled from the data in Tables 10-2.1
and 10-2.2).

The polarization of the incident radiation differed at the PEP and CESR synchrotron
ring beamlines. The polarization of the incident beam at the PBF1 undulator beamline at
PEP was found to consist of 93+3% horizontally polarized radiation (the data in
Table 10-2.1 taken during the two different runs gave the same result). At the F2 wiggler
beamline at CESR the incident beam consisted of 84+2% horizontally polarized radiation.
This decrease in polarization of the source beam may be due to the use of a wiggler rather
than an undulator, and because the electron beam energy was lower at CESR than at PEP
(5.5 GeV versus 14 GeV).

The hyperfine field parameters for the crystals labeled 57-2 and 57-6 are given in
the Tables 10-2.1 and 10-2.2. An extensive investigation of the combined hyperfine
interactions in YIG was made by Winkler through Mgssbauer transmission spectroscopy
measurements.!® He found that for YIG single crystals 60 #m thick:

B,, =-399.9+ 1.5 kGauss and e’qQ/2 =—0.89+0.01 mm / sec.

The YIG thin crystal films exhibit somewhat different hyperfine properties. For crystal
#57-2, B, is roughly 6% to 8% less than B,, for a pure single crystal, and, for crystal
#57-6, B, is smaller by 4%. The reduction in B,, is primarily due to the films being
impregnated with a small amount of lead occupying the yttrium lattice sites. This has
changed the local electrostatic and magnetostatic environment around the iron atoms and
has resulted in a decrease in the internal magnetic field at the iron nuclei.

There is an interesting problem with crystal #57-2. For two different beamline runs
different hyperfine fields were measured. B,, has increased by 2% and €’gQ/2 has
increased by 6% between Runs #1 and #2. Recall from Section 9.1 (see Fig. 9-1.2) that
crystal #57-21is a 6.7 um thick crystal consisting primarily of 2 layers of YIG films having
different lattice spacings. However, the data indicates that this crystal nonuniformity is not
the reason for the difference in hyperfine fields between the two runs. The [00 2]

reflection has a primary extinction length of 1.1 gm, thus these reflections probe only the



(10.2) Analysis of Internal Hyperfine Fields 223

first micron of the crystal film. The x? fits to the higher order reflections in both runs
found that these reflections were probing a crystal film sublayer roughly 2.6 um thick (see
Section 11.4). Crystal #57-2 is then composed of two films 2.6 and 4.1 um thick. Since
the first micron of the crystal is uniform, the difference in B,,, between Runs #1 and #2 for
the [0 0 2] reflections is not due to thickness nonuniformity.

There is also reason to believe that a nonuniformity in the local hyperfine field
environments across the surface area of the crystal is not responsible for the differences.
As a result of the focusing properties of the upstream cylindrical mirror and the small Bragg
angle, the incident beam lit up a stripe across the crystal 3 mm wide by 3 cm long for the
[0 0 2] reflection. For the higher order reflections the area of this stripe substantially
decreases--the [0 0 14] reflection lights up a stripe 3 mm wide by 1 mm long (the incident
beam area was roughly 3x0.5 mm). However, the higher order reflections scanning ever
smaller sections of the crystal area gave the same hyperfine parameters as the [O 0 2]
reflection (as shown in Run #2). Nonuniformity of hyperfine fields across the crystal
surface area is not evident in the data.

What may have occurred between the runs (which occurred 14 years apart) is that
the crystal deteriorated to some degree. Some of the iron may have oxidized to become
Fe,0,. The change in B, is in the right direction (B, for pure Fe,0, is -515 kGauss) but
the change in e2gQ/2 is in the wrong direction (e’qQ/2 for pure Fe,O, is -0.12 mm/sec).
The reason for the change remains unclear, but what is impressive is that 2% changes in the
hyperfine field parameters is easily detectable through examining the quantum beat patterns.

Unlike crystal 57-2, crystal 57-6 is composed of a single layer of YIG (see
Fig. 9-1.2). The %’ fitto the data yielded a thickness of 4.3£0.4 um which is reasonably
close to the expected value of 4.7 um. The difference in hyperfine parameters between
crystal 57-2 and 57-6 should be mainly due to the difference in lead concentrations in the
two crystals. As a result of the odd behavior displayed by the other crystal, the effect of
the lead upon the local electric quadrupole field is not readily determinable. €*qQ/2 is 4%
greater than Winkler's value for YIG, but there are large variations in this value stated
throughout the literature (measured values varied from 0.78 to 1.03 mm/sec).!!-14

Time-resolved spectroscopy is just as sensitive as Mossbauer velocity spectroscopy
towards measuring hyperfine field parameters. They both can measure the hyperfine field
values to within 1-2%. As a result, time-resolved spectroscopy was able to reveal subtle
differences in the hyperfine properties of YIG between various thin film samples, and that
these properties may slightly change over time for each thin film. Time-resolved
spectroscopy using synchrotron x-rays may become more useful than Mdossbauer

spectroscopy when trying to measure the hyperfine fields of extremely smali or very thin
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Reflection Bm, B, e’qQ/2 # of ﬁrgi;(;—s;)ectraﬁ
direction (kGauss) (mm/sec)
PEP Beamline Run #1
[002] I -369+2 -0.88+0.02 27
[002] 1 -369t 1 -0.8810.02 9
[0 0 6] | -373%3 -0.87+0.02 1
[0010] | -37312 -0.88+0.02 1
[0010] 1 -370+2 -0.87£0.02 1
All reflections -369+2 -0.88+0.02 39
PEP Beamline Run #2
[002] | -377+4 -0.93+0.04 1
[002] 1 -377%2 -0.9410.01 7
[006] I -374%3 -0.931+0.03 1
[006] 1 -37612 -0.91+0.03 1
[0010] I -377+2 -0.92+0.01 2
[0010] 1 -376x1 -0.93+£0.02 1
[0014] | -376+2 -0.92+0.02 1
[0014] L -376t 1 -0.9410.02 1
All reflections -376%1 -0.931+0.01 15

Table 10-2.1. Hyperfine field parameters for crystal # 57-2. The uncertainties for each
set of data represent the square root of the variance in the data using a weighted average for
the mean. For each individual time spectrum the uncertainty in the parameters represents

what it takes to produce a 10% change in the ¥’ minima. B

perpendicular to the scattering plane.

int

is either parallel or

Reflection B, B, e*qQ/2 # of time spectra
direction (kGauss) (mm/sec)
[00 2] I -384+2 -0.95+0.01 2
[002] 1 -38414 -0.96+0.04 1
[O 0 10] 1 -383+1 —0.98i0.01 2 i
All reflections -383+1 -0.95£0.01 5

Table 10-2.2. Hyperfine field parameters for crystal # 57-6. The data was taken at the
CESR F2 wiggler beamline.
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materials consisting of just a few nuclei or a few layers of nuclei. Such materials would
produce signals that are too weak to be measurable by Mossbauer spectroscopy techniques.
However, time-resolved spectroscopy performed at future third generation synchrotrons

having high powered undulator or wiggler insertion devices will provide way of probing
such exotic materials.

10.3 Low Temperature Measurements

A low temperature experiment was performed to examine the scattering and
hyperfine properties of YIG.!> The crystal was mounted in a cryostat centered on a four
circle diffractometer as explained in Section 9.2. Measurements were made at room
temperature and at 150°K. A temperature controller was used to stabilize the temperature
during the course of the measurements. The results are shown in Fig. 10-3.1.

One unexpected result can be quickly noticed in the two measurements shown in
Fig. 10-3.1. Both measurements were taken for the same length of time, but the low
temperature measurement has a much lower count rate than the room temperature
measurement (17 counts/sec versus 110 counts/sec, or a factor of 6% times less). What
was expected was an increase in counting rate as the temperature decreases because the
Lamb-M®ssbauer factor, or recoilless fraction of resonant nuclei, increases to the limit of
unity as the number of phonon modes goes to zero. A cause for this discrepancy may be
because the YIG crystal is a thin film epitaxially grown on a GGG substrate. There is
naturally some strain in the film since YIG and GGG have different lattice constants.
Going to low temperatures may have magnified these strains and caused the film to distort,
or warp, resulting in the much lower counting rates. The measurement was done with
crystal #57-2 before having any accurate knowledge of its structure. During or after the
fabrication process, the crystal bifurcated due to lattice mismatching problems. What these
resules suggest is that YIG films thinner than 2.5 um grown on GGG are not good
samples to do low temperature perfect crystal diffraction experiments.

Though the crystal diffracts poorly at low temperature, the hyperfine parameters
could still be measured and were found to be very different than the room temperature
values. The internal magnetic field strength increased by 15% to 429 + 4kGauss when the
temperature was lowered to 150°K. The value of B, at low temperatures does not
significantly depart from measurements made by others--Mossbauer transmission
measurements at 85°K yielded values of B,, ranging from 460 to 467 kGauss, and a
nuclear magnetic resonance measurement at 77°K yielded 468 kGauss (these were all done
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on pure YIG polycrystalline samples).!®!® Extrapolating to 150°K using the careful
NMR measurements of Ogawa gives a value of 452 kGauss.!® This is about 5% greater
than the thin film measurement, and, since the room temperature measurements are about

7% greater than the thin film measurements, this difference is not unreasonable.
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Fig. 10-3.1. Time spectra for [0 0 10] reflection at (a) room temperature and at (b)
150°K. B, is parallel to the scattering plane and the crystal surface. At room temperature
B,, =—373%2kGauss and e’q0/2 =-0.88+0.02mm/sec. At 150°K |B,,| increased
15% to 429 + 4 kGauss and |e2qQ/2| decreased 61% to 0.54 + 0.04 mm / sec.
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The electric quadrupole splitting factor decreased almost by half (61%) to
0.54+0.04 mm/sec when the temperature was lowered to 150°K. The temperature
dependence of e’qQ/2 has apparently not been explored in detail experimentally since there
is little information about it in the literature. Most early temperature dependence
experiments have been done with polycrystals since they were easier to obtain, and these
experiments examined the behavior of only the internal magnetic field. Since the direction
between the electric field gradient and the magnetic field is completely random for a
polycrystal, the electric quadrupole splitting should average to zero, thus no reliable value
of €’qQ/2 can be measured. This problem can be overcome by applying a sufficiently
strong external magnetic field to remagnetize the polycrystal--in this case the angle between
B, and the electric field gradients is random and can be averaged over to obtain fits to the
data. This was done to YIG polycrystals at room temperature (the external magnetic field
strength was 20 kGauss), and quite accurate values of e’qQ/2 were extractable from the
data.!3 However, there is no account in the literature of using this procedure to find the
temperature dependence of e°gQ/2.

10.4 Angular Interferometry: Observation of the Phase
Shift of a Rotated Quantum State

Scattering angle dependent quantum beat interference has been used to examine the
phase shift of a quantum state that has undergone a rotation. A physical interpretation of
this effect using the scattering theory formalism developed in Chapter 4 is given in Section
5.5. From a different perspective, the angular phase shift can be understood from basic
rotational and mirror symmetry properties of free space!® (see Appendix A.1).

The YIG [0 010] reflection was chosen to get the maximum effect. In the
experiment at the CESR beamline, the internal magnetic field was oriented, by using an
external guide field, in the two antiparallel directions perpendicular to the scattering plane,
and the net phase difference between the time beat patterns for the two orientations of the
magnetic field was measured. Changing the direction of the magnetic field was equivalent
to performing a [0 0 +10] and a [0 0 -10] reflection. This was observed during
experiments at the PEP beamline where upward and downward reflecting experiments
(without changing the direction of the magnetic field) gave phase shifts equivalent to
orienting an internal magnetic field in the two antiparalle! directions perpendicular to the
scattering plane (without changing the orientation of the crystal).
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Fig. 10-4.1. Quantum beat patterns of YIG [0 0 10] reflections for (a) right-handed
scattering and (b) left-handed scattering. (b) Calculated fits to the data are shown
superimposed and expanded. The nearly 180° phase shift is clearly evident.
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The results of the CESR beamline experiment is shown in Fig. 10-4.1. Note that in
the diagram in Fig. 10-4.1 (a) the incident photon is rotated in a right-handed sense in
going from K; to K --this will be called right-handed scattering. Left-handed scattering is
illustrated in the diagram in Fig. (b) where the incident photon is rotated in a left-handed
sense in going from k; to k,. The Bragg angle for the YIG [0 0 10] reflection is about
20°. Diffraction from this reflection results in a net phase difference, Ap =86,, of 160°
between the quantum beat patterns of left and right-handed scattering. As can be seen in
Fig. 10-4.1 (c), the peaks of one beat pattern lie almost in the valleys of the other beat
pattern. This dramatiéally illustrates the angular phase a photon acquires upon undergoing
an angular momentum conserving rotation, !?

As can be seen in Fig. 10-4.1, more is going on than the phase shifts discussed
above, for the overall shapes of the beat patterns for left and right-handed scattering are not
the same. The reason for this can be understood by examining Table 10-1.2. The quantum
beats with the largest amplitudes comes from the interference between lines 1 and 6 having
a beat period of 7 nsec (averaging over the two iron d -sites in the crystal). Since these
lines have a total angular momentum component of M = %1, they contribute to the 46,
phase shift of the right or left-handed scattered photons that is observed in the experiment.
However, there are 24 other beats affecting the net quantum beat pattern. Of these, 12
occur from pairs of lines having the same value of M. There is no phase shift for pairs of
lines having identical M values, thus the phase shifted, dominant 7 nsec beat pattern is
modulated by unshifted, though less dominant, beat patterns (having an average beat period
of 130 nsec and 11 nsec). This additional unshifted amplitude modulation causes the
difference in the shape of the beat patterns for right and left-handed scattering. For the
[0 0 2] reflection where the net phase shift is negligible (86, = 32° corresponds to a shift
in time of 3 nsec which is unobservable for detectors having a resolution of 2.5 nsec),
these amplitude variations are the only predominant differences between left and right-
handed scattering (see Fig. 10-4.2).

In addition to the perturbations upon the 7 nsec beat pattern, there are dynamical
effects, such as resonance frequency shifts and decay rate speedups, that modify the beat
pattern. Thus, to get good fits to the data, the full nuclear dynamical diffraction theory was
applied. However, as can be noticed in Section 5.5, the angular phase shifts can be
calculated using kinematical, or single particle, scattering theory.

Note that the scattering diagram in Fig. 10-4.1 (a) shows a scattering interaction
that appears to be time reversed from that shown in the scattering diagram in
Fig. 10-4.1 (b). A physical process and its time reversed process should give identical
experimental results unless time reversal symmetry is broken. Since the time beat patterns
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for the two scattering processes are different, time reversal symmetry appears to be
violated. This perplexing problem is resolved by noting that the magnetic field behaves as
a pseudovector that is odd under time reversal. Thus, the actual time reversed process of
the diagram in Fig. (a) is the diagram in Fig. (b) with the magnetic field changed in sign to
point in the opposite direction (into the page instead of out of it)--this gives back the
scattering diagram in Fig. (a), and time reversal invariance is upheld.
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Fig. 10-4.2. Quantum beat patterns of YIG [0()2] reflections for right-handed
scattering and left-handed scattering. The phase shift is imperceptible, but the amplitude
variations between the patterns are noticeable.

This characteristic of magnetic fields makes them a common source of problems when
trying to investigate the breaking of time reversal symmetry in physical interactions.

One interesting result from these angular interferometry experiments is that the sign
of the internal magnetic field can be uniquely determined. Right-handed rotations of the
photon quantum state about the quantization axis (which is the internal magnetic field
direction) gives rise to quantum interference patterns that are phase retarded by 46,. Left-
handed rotations lead to quantum interference patterns that are phase advanced by 46,.
Finding which pattern is advanced or retarded in phase immediately gives the sign of the
internal magnetic field. Upon careful examination of the [0 0 10] data in Fig. 10-4.1, the
internal magnetic field at the iron d-sites was verified to be oriented antiparallel to the
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externally applied magnetic field (this would have been more easily seen by going to a
reflection that did not give nearly 180° net phase shifts).
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11. DYNAMICAL EFFECTS

11.1 Radiative Speedup

The nuclear hyperfine quantum beats are one of the most striking kinematical effects
seen in the nuclear resonance time spectra. Similarly, one of the most dramatic dynamical
effects seen in the nuclear resonance time spectra is the nuclear decay rate speedup. Rather
than decaying with the lifetime of an isolated excited-state *’Fe nucleus (which is
141 nsec), a group of *’Fe nuclei, for a single photon interaction, behaves as an excited
collective state that decays much faster than an isolated nucleus. This single photon
quantum effect has been discussed in Sections 7.6 and 7.7.

As shown in Figs. 7-6.6 to 7-6.8, the collective total nuclear decay rate varies as a
function of time. This is due to the non-Lorentzian nature of the collective nuclear
resonance frequency response. Actually, there are two decay rate speedup factors: T

s

resulting from forward scattering in the crystal and is important at early times, Q,,
resulting from Bragg diffraction and is important at intermediate times, and both speedup
factors are important at later times. Also, the definition of short, intermediate, and long
times varies as a function of the deviation from the Bra‘gg diffraction peak. An additional
complication arises from hyperfine split nuclei. As shown in Fig. 7-7.1, the speedup
factors are different for lines possessing different Clebsch-Gordan coefficients (see
Egs. 7-7.1 and 7-7.2). Thus, in the frequency domain, different lines can be
homogeneously broadened in a non-Lorentzian fashion by different amounts at different
deviation angles from Bragg.

The YIG crystal increases the complexity one notch further. Even for the simplest
scattering geometries described in Section 10.1, there are up to 8 different resonance lines.
Unambiguously clear dynamical speedup effects are therefore unobtainable from the YIG
quantum beat spectra (to date, no single line crystals have been fabricated--such crystals
would enormously simplify the task of observing clear dynamical effects).

Rather than trying to extract dynamical speedup factors such as Q_, or I, from the
data, an effective average speedup rate is determined. To do this, the time spectra for YIG

[0 0 2] reflections at different deviation angles were fitted with a simple function

1(6)= 1,e™** "™ sin? (Aw,t 2) (11-1.1)

232
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where s/ h is the effective average speedup rate, and Aw,, is the average electric

quadrupole beat frequency due to the electric quadrupole splitting between the d1 and d2-
sites (scattering geometries, described in Section 10.1, were chosen to make these the only
sites contributing to a diffracted field). In this simple approximation to the time spectra, the
magnetic hyperfine quantum beats are averaged away.

Typical fits for deviation angles below, at, and above the Bragg diffraction peak are
shown in Fig. 11-1.1 where the internal magnetic field was oriented perpendicular to the
scattering plane. The full nuclear dynamical diffraction theory was used to get the best fit
to the data, and the fit is shown by the solid curve that closely follows the fast magnetic
beats in the data. The modulation envelope that is characterized by a slow electric
quadrupole beat is the fit of Eq. 11-1.1 to the data. The third curve presented in each figure
characterizes what would happen if therg were no magnetic dipole or electric quadrupole
beats and no speedup. This curve is essentially the resonance exponential decay curve for
an isolated nucleus:

I(t)=1,e"™". (11-1.2)
When there is no speedup, the single nucleus decay curve is tangent to the peaks of the
electric quadrupole beat curve, Eq. 11-1.1. This can be almost seen in Fig. 11-1.1 (a)
where the speedup is only about a third of the single nucleus total decay rate.
All of the curves have been normalized to the data closest to the Bragg peak
(Fig. 11-1.1 (b) where 60 =+2purad). Atthe Bragg peak, the diffracted intensity and the
speedup maximizes. This is where the spatial phases of the electric fields scattered from
the lattice of nuclei are all the same, and thus the collective, cooperative effect becomes
prominent. As the crystal is rotated off the Bragg peak, spatial dephasing among the
scattered fields occurs, and this results in diminishing the collective, cooperative effect
among the nuclei--the speedup is therefore reduced.
The variation of speedup with angle is shown in Fig. 11-1.2 for the scattering
geometries where the internal magnetic field is parallel and perpendicular to the scattering
plane. The decay rate speedup tends to be greater when B,,, is parallel to the scattering

plane rather than perpendicular to the scattering plane. This occurs because the polarization
matrices for the two orientations are different and give a larger nuclear structure factor
when B, is parallel to the scattering plane (see Egs. 7-2.1, 5-1.22, and 5-1.28).

Since, in theory, the dynamical speedup factor follows a Lorentzian distribution as
a function of deviation angle from Bragg, the data was fitted with a Lorentzian function.
For the perpendicular (parallel) case the fit yielded a Bragg peak at 68+ 8urad
(67 £ 3urad) which, within the uncertainty, agrees with the predicted value of 68 yrad --



i,

A‘II‘\\

234

0.30

0.25

0.20

0.15

0.10

Normaliz~d Intensity

0.05

0.00

0.8

0.6

0.4

Normalized Intensity

0.2

0.0 |

0.20

0.15

0.10

Normalized Intensity

0.05

0.00 |

Dynamical Effects

v
-
-

7"

-1'Illllll!lllil'll

)

'll"ll'l'llll'l"l

(a)

©

1[""!"""'
.

50 100

Time (ns)

(b)

Wllll"]llllllll'l'll'

66 =26 urad

s=0.38T
ATEQ = 141nsec

60 = +2 urad
§s=2.2I
ATy, =137nsec

60 =+20 urad
=10I
AT, =122nsec

150 200

sasilssaabaosalanssbsaanliosy

_IFUN U YA B EE NN BN B B U SN N W

Lassalsenrlangslsns

250

(11.1)

Fig. 11-1.1.  YIG [0 02] quantum beat patterns for various angles near the Bragg
peak: (a) —26urad (b) +2prad, and (c) +20urad from the angle corresponding to the
Bragg peak. The exponential decay curve is Eq. 11-1.2, the curve with slow beats is Eq.
11-1.1, and the dJata is fit using the full nuclear dynamical diffraction theory. The average
electric quadrupole quantum beat period is AT, and s is the average decay rate speedup.
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Fig. 11-1.2. A plot of the average speedup, s, versus the deviation angle from Bragg.
At the Bragg peak, when B, is parallel to the scattering plane, the average total decay rate
is roughly 4 times as fast, and it becomes 3 times as fast when B, is perpendicular to the
scattering plane. All data was fitted with a Lorentzian function.

this is the position of the nonresonant Bragg peak. The angular linewidth was measured to
be 32+20urad (36+11urad). The large uncertainties for the perpendicular case result
from collecting too few data points on the low angle side of the peak. On the basis of the
fits, one can assume that s follows a Lorentzian angular distribution centered at the Bragg
peak.

The average speedup, s, is not to be confused with the dynamical speedup factors.
Even when factoring in the 20 urad angular resolution in the data, the dynamical speedup
factors are much greater than the average speedup. This can be seen by examining
Fig. 7-1.7 (c) (one can neglect lines 3 and 4 since they have small scattering amplitudes
compared to lines 1 and 6). Thus, near tiic Bragg peak, the dynamical speedup factors Q. ,
and T, do not describe the effective speedup of the quantum beat spectra (one could have

inferred this from examining the collapse in the resonance width near the Bragg peak as
shown in Fig. 7-6.4). At the Bragg peak the effective speedup is considerably smaller than
the dynamical speedup factors. Also, the effective speedup may only increase marginally if
the angular divergence of the incident beam is decreased significantly from the 20 rad that

existed for these measurements.
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11.2 Resonance Frequency Shifts

The other remarkable feature that stands out in the nuclear hyperfine quantum beat
patterns are resonance frequency shifts. As discussed in Section 3.7, a single nucleus
interacting with its own self-fields gives rise to frequency shifts. In a similar manner, the
collective state of a distribution of nuclei interacts with its own self-fields which, in this
case, are the multiply scattered fields in the medium. This cooperative interaction among
the nuclei gives rise to a collective resonance frequency shift. This effect has been
observed in the frequency domain through careful Mossbauer experiments by van Biirck.!
In the time domain, this effect is much more dramatic and significantly modifies the time
spectra.

The same problems encountered in trying to examine the dynamical speedup factors
Q,, and T, discussed in Section 11.1 are present when trying to extract the characteristics

of the dynamical frequency shift factor, w,, from the quantum beat data (except,

fortunately, that the collective resonance frequency shift does not vary with time)--the non-
Lorentzian resonance behavior, the variation of @, with the deviation angle from Bragg and

for lines with different scattering amplitudes, and the plethora of hyperfine lines from YIG.

Determining the precise behavior of the collective resonance frequency shift
becomes even more intractable because there are a myriad of other effects that can cause the
resonance lines to shift about. For instance, the theory that gave rise to @, in Section 7-6
and 7-7 had some approximations made: that the crystal was infinitely thick and had a
single resonance line. Neither of these cases hold for the YIG crystals used in the
experiments. The effects of crystal thickness are discussed in Section 11-4. When there
are two or more resonances, coupling can occur between them and produce phase shifts in
the time spectrum 2 3(see Appendix B.2), and, when the resonances are close together, the
resonant lines can interfere with each other enough to shift the peak intensities of each
resonance line.

The spectator iron atoms occupying the a and d3-sites also modify the frequency
and time spectra. The a-sites have little effect upon the time spectra since, because their
internal magnetic field strengths are much larger that those for the d -sites, their resonance
lines interact little with the d -site resonance lines. However, the resonance lines of the d3-
site lie at the same energies as the lines of the d2-site because they have the same
quadrupole energy shifts. Because the geometrical structure factor for the d3-site is zero,
this site does not reflect any fields and only transmission can occur. This transmission
channel opens up another avenue for an incident photon to escape through rather than



(11.2) Resonance Frequency Shifts 237

traveling in the reflection channel of the d2-site. The interaction between the d2 and d3-
sites in the frequency domain is shown in Fig. 11-2.1. In the figure the reflected fields
from the d1 and d2-sites are shown--their hyperfine resonance lines are shifted from each
other because they have different electric quadrupole energy shifts. However, the
amplitude of each pair of lines should be identical. Yet the figure shows that for each pair
of closely spaced lines the d2-line typically has a smaller amplitude. The reduction in
amplitude of the d2-line is the result of photons being diverted into the transmission
channel opened up by the d3-site. This interaction between the d2 and d3-sites
significantly alters the shape and slightly shifts the position of the d2-resonance lines.
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Fig. 11-2.1.  YIG [00 2] energy spectrum for fields reflected from the d1 and d2-
sites. The incident angle is +20urad from the Bragg peak. The incident field is o
polarized and the internal magnetic field is parallel to the scattering plane and crystal surface
(that is, nearly in the photon direction). The d2-lines suffer a diminution in amplitude
because of additional absorption from the nonreflecting d3-site that has resonance lines
coincident with the d2-lines.

The d2-d3 interaction is not the only effect that can cause frequency shifts.
Nuclear level mixing resulting from two competing quantization axes (the magnetic field
and electric field gradient directions) changes the scattering amplitudes of each hyperfine
line. Since the resonance frequency shifts are proportional to the scattering amplitude, they
will vary depending upon the amount of nuclear level mixing. When the electric field
gradient axis is parallel to the internal magnetic field direction, there is no nuclear level
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mixing since there is only one clearly defined quantization axis. When the two axes are
perpendicular, the amount of nuclear level mixing maximizes. However, since the electric
quadrupole interaction is small compared to the magnetic dipole interaction, this effect is
small. Fig. 11-2.2 shows that shifts of up to 1.5 neV (or 0.3I") can occur when nuclear
level mixing is included (for the case in which the internal magnetic field is parallel to the
d1-electric field gradient and perpendicular to the d2 -electric field gradient).
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i Full theory
010 [l al-¢4 /A ... 1st order theory
0.08 | ‘ ]
g . L d2-g ]
= C , .
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-0.32 -0.3 -0.28 -0.26 -0.24

Energy (ueV)
Fig. 11-2.2. Lines £, and £/ for the d1 and d2-sites. Same scattering geometry as that
used in Fig. 11-2.1 except that the incident angle is + 40 rad from the Bragg peak. The
solid curve is calculated using the full dynamical diffraction theory including nuclear level
mixing while the dotted curve excludes nuclear level mixing. Nuclear level mixing causes a
shift in the d2-line of 1.5 neV (or 0.3I").

All the additional effects that cause apparent shifts in the resonant frequency
increases the difficulty of conclusively stating anything about the dynamical resonance
frequency shifts discussed in Chapter 7. And the multiplicity of hyperfine lines for
complicated systems such as YIG can make life even harder. For instance, one would be
hard pressed to say anything about dynamical resonance frequency shifts for the quantum
beat data exhibited in Fig. 11-1.1 (the magnetic field, in this case, is perpendicular to the
scattering plane). The asymmetry in the beat patterns for reflections on both sides of the
Bragg peak is due to resonance frequency shifts and a host of other dynamical factors in a
way that is not clearly apparent. This is because all of the hyperfine lines beat with each
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other with the beating between the strongest lines, lines 1 and 6, dominating the pattern.
Since lines 1 and 6 have the same scattering amplitude, these lines are frequency shifted by
the same amount. Thus, to first order, the beat pattern will look the same between two
angular positions symmetric about the Bragg diffraction peak even though the resonance
frequency shift is antisymmetric about the Bragg diffraction peak (see Fig. 7-2.7). The
differences in the beat patterns comes about because of the beating between lines 1 and 6
with the weaker lines 3 and 4, and due to the dynamical effects described earlier in this
section.

Going to the scattering geometry where the magnetic field is parallel to the
scattering plane simplifies matters. For this geometry the pair of line 1&4 and 3&6 beat
with each other (see Fig. 8-1.4), and, most importantly, each pair of lines beats with the
same amplitude. If lines 1 and 6 are frequency shifted by 6 and lines 3 and 4 are
frequency shifted by A, then the two possible beat frequencies are shifted by the difference
between these individual frequency shifts:

(0, +A)~ (0, +8)= (0, - @)~ (6 -A)=Aw,, -

(0 +8)— (0, +A)= (s — @) +(6 - A) = Awy + f
where Aw is the beat frequency shifted by f = (6 — A). Going from one side of the Bragg
peak to the other side causes f to change sign, and each beat frequency shifts in the
opposite direction. For large enough f this results in clearly visible effects that can
dominate other effects caused by all other possible sources of frequency shifts.

An illustration of how resonance frequency shifts modify quantum beat patterns is
given in Figs. 11-2.3 and 11-2.4. They were calculated at symmetric positions about the
Bragg peak for a horizontally polarized field incident at 40 urad from the Bragg peak.
Since the incident and scattered field directions are nearly parallel to the magnetic field, the
scattered fields can be approximated as both left (€, ) and right (€_) circularly polarized for
the pair of lines 1&4 and 3&6 respectively. The €, fields interfere producing the shifted
beat frequency Aw,, — f, and the €_ fields interfere producing the shifted beat frequency
Aw, + f. The quantum beat patterns of each polarized field is shown in (a) of Figs. 11-
2.3 and 11-2.4. The sum of these beat patterns is shown in (b) of each figure. Because f
changes sign on opposite sides of the Bragg peak, the total field intensity differs on
symmetrical sides of the Bragg peak. These patterns were calculated only for reflections
from the d1 and 42 sites. The effect of adding absorption from the d3 is shown in (c) of
each figure--small additional frequency shifts results.
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Fig. 11-2.3.  YIG [0 0 2] beat patterns for a 6 field incident — 40y rad from the Bragg
peak. B, is parallel to scattering plane and crystal surface (nominally in the incident and
scattered photon directions). The e, and é_ field intensities in (a) are summed to produce
the net field intensity in (b) when only scattering from the d1 and d2-sites. The effect of
including the d3-site is shown in (c).
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To get a handle on understanding the resonant frequency shifts, a simple semi-
kinematical theory based on average beat frequencies and frequency shifts can be applied.
This is justified because the 4 magnetic beat periods are all nearly equivalent (the same goes
for the 2 electric quadrupole beats) as illustrated in Table 10-1.2. The net intensity of the
diffracted fields can be approximated as

Aw,, - Aw, + Aw,,t
I(1)= loe“(“r)'/"{sinz[(——%%——flt—}+ sinz[g—f"-’%—f)f]}sin{—%@—) (11-2.1)

where Aw,, Aw,, and Awg, are average magnetic and electric quadrupole beat

frequencies, s is the average speedup discussed in Section 11.1, and f is an average beat
frequency shift.
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Fig. 11-2.5. As a demonstration, the semi-kinematical formula, Eq. 11-2.3, was fit to
the dynamical diffraction calculation (shown in Fig. 11-2.3 (¢)). The best kinematic fit
gave an average beat frequency shift of f =3.4+.5neV, or 0.7+ 0.1T".

This formula was fitied to the quantum beat pattern shown in Fig. 11-2.3 (¢). The
average magnetic beat periods used were AT, =12.2nsec and AT, =13.0nsec. The

values s, A, and f were allowed to vary to get the best x’ fit. The results of the fit,

shown in Fig. 11-2.5, gave s=0.310.1T, ATEQ =138t 2nsec, and f=3.4%+.5neV, or
0.7£0.1' where I' is the natural linewidth (I“zz4.67><l()'9 eV). What this fit
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demonstrates is how closely semi-kinematical diffraction theory parallels dynamical
diffraction theory when a few dynamical quantities are inserted into kinematical
expressions. When using Egs. 7-6.30 and 7-7.1, the collective dynamical frequency shift
40urad below the Bragg peak (taking the difference in @, between lines 1&4 or 3&6) is
1.1neV (0.23T') which is the same order of magnitude as the average beat frequency shift.
The discrepancy between the two values shows that there are other frequency shifts that
must be taken into account.

For f=3.4neV (at 8@ =-40urad), the beat period between lines 1 and 4
decreases by 0.1 nsec and the beat period between lines 3 and 6 increases by 0.1 nsec--the
beat periods then diverge by an extra 0.2 nsec forcing the beat pattern of the €, fields to be
more out of phase with the pattern of the é_ fields. This causes the beat pattern to become
washed out as shown by the diminished peak to valley contrast in Fig. 11-2.3 (b).
Symmetrically on the other side of the Bragg peak (at 6 = +40purad), the beat period
between the two circularly polarized fields should converge by 0.2 nsec making the beat
patterns more in phase and increasing the peak to valley contrast as shown in Fig. 11-2.4
(b). The effect of the d3-site causes additional frequency shifts that are not symmetrical on
both sides of the Bragg peak--they appear to cause more drastic effects on the positive side
of the Bragg peak (as shown in (c) in Figs. 11-2.3 and 11-2.4).

The striking changes in the quantum beat patterns as a function of the deviation
angle from the Bragg peak are presented in Fig. 11-2.6. Full nuclear dynamical diffraction
theory was used to obtain the fits (Eq. 11-2.1 was not used). As can be clearly noticed, in
going from the low angle side of the Bragg peak to the high angle side, the &, and é_ time
beat patterns progress from nearly out of phase to nearly in phase. In other words, the
contrast improves as the deviation from Bragg increases over the angular range given in the
figure.

The data in Fig. 11-2.6 was also fit using the simple semi-kinematical formula
described by Eq. 11-2.1. The average beat frequency shift as a function of angle is shown
in Fig. 11-2.7. On the low side of the Bragg peak, the parameters Aw,, and Aw,, were
fixed (their periods were set at AT,, =12.2nsec and AT, =13.0nsec). However, on the

high angle side of the Bragg peak, because of the drastic effects by the d3-site which
played havoc with the fits, these parameters were varied. An attempt was made to fit the
data with a Lorentzian dispersion curve noting that, since the angular divergence in the data
was 20purad, semi-kinematic fits near the Bragg peak become difficult to interpret since
both positive and negative frequency shifts can exist simultaneously. The fit shows that,
like the dynamical resonance frequency shift, the average beat frequency shift follows a
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dispersive relationship. The data also reveals that it is possible to easily measure average
frequency shifts smaller than a linewidth.
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Fig. 11-2.6. Nuclear hyperfine quantum beat patterns as a function of the deviation
from the Bragg peak. Measurements for (a), (b), and (c) were taken on the low angle side
of the Bragg peak at -34, -20, and O urad respectively. Measurements for (d) and (e) were
taken on the high angle side of the Bragg peak at 21 and 40 urad. Note that the contrast
improves when going from the low angle side to the high angle side of the Bragg peak.
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Fig. 11-2.7. The average beat frequency shift versus the deviation angle from Bragg
appears to follow a Lorentzian dispersive curve. Average beat frequency shifts of up to 15
linewidths occurred near the Bragg peak. The dispersion curve is centered at 67 £ 5 urad
and has a 17 7 urad linewidth.

11.3 The Lamb-Mdssbauer Factor

The change in the quantum beat patterns as a function of the deviation angle from
Bragg provides a unique opportunity to measure the Lamb-Mossbauer factor. This
opportunity comes about because the angular independent part of the structure factor,

Eq. 7-2.10, is directly proportional to the Lamb-Mdssbauer factor, LM(k,.)LM (kf), and

three well known experimentally measured quantities: T'(L,4) is the radiative decay rate
I, =T/(1+a) where #/T =140.95nsec and o =8.23 for >’ Fe, and C is the isotopic

concentration which has been accurately measured to be 0.8097 for the YIG crystal
samples. Since changes in the quantum beat patterns are directly correlated with the
strength of the scattering amplitude, information can be extracted from these changes to
determine the Lamb-Maossbauer factor.
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Fitting the data in Fig. 11-2.6 by allowing the Lamb-Mossbauer factor to vary
produces new fits that are precisely the same as the old fits except that the value of 66
giving the best fit is different. This results because increases in the Lamb-Méssbauer factor
only serves to increase the nuclear Darwin width (see Fig. 11-3.1). If the Lamb-
Mossbauer factor is increased to a new value, the new beat pattern can be made identical to
the old pattern by simply going to a point further from the Bragg peak (a horizontal line
drawn in Fig. 11-3.1 intercepts the curves having a larger Lamb-M®ossbauer factor further
out from the peak). Thus, by precisely measuring the difference in angle between two
reflections, the Lamb-Mdssbauer factor that most closely results in describing these
differences can be found.
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Fig. 11-3.1. Darwin curves for a 2.6um thick YIG crystal for the [0 0 2] reflection
and for a magnetic field parallel to the scattering plane. The Lamb-Maossbauer factor for the
top curve was set at unity, and the lower curves illustrate what happens when this factor is
decreased to 0.6 in steps of 0.1--the peak intensity decreases and the Darwin width
narrows. The Bragg peak is centered at 65urad, and the Darwin width is 41urad for a
Lamb-Madssbauer factor of 0.82 (this is the value used in all the previous fits in this and the
preceding chapter).

Two experimental runs were made in which the YIG crystal was rotated in steps of
1 millidegree (17.4urad). The crystal was centered on a Huber 4-circle diffractometer

having a 6-circle consisting of a Huber 430 goniometer connected with a 20:1 gear
reducer. As a result, the @-circle was able to make step sizes of + millidegrees.
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Unfortunately, because these measurements were made without the intention of measuring
the Lamb-Mossbauer factor (the possibility of doing this was discovered only after the
measurements), the experiment was not carefully tailored for this application. Any
backlash problems in the §-circle would show up as large 4.4 urad discrepancies because
of the large rtepping size. For each run 4 measurements were taken at one and two
millidegrees above and below the Bragg peak, and one measurement was taken at the
Bragg peak. Before each off-Bragg measurement was made, a rocking curve measurement
was performed to re-determine the position of the Bragg peak. This additional check was
done because the synchrotron beam direction stability and the backlash problems of the
Huber goniometers caused real or apparent shits in the position of the Bragg peak.

The results are shown in Fig. 11-3.2. Plotted is the standard deviation, oy,
between the actual and measured angle (obtained by the best fit to the data) versus the
Lamb-M®ossbauer factor

oy =+(a6,, - A8, )’ /N. (11-3.1)
The quantity A@,, is either 1 or +2 millidegrees, and A6, is the difference iir angle
between the angle measured at the Bragg peak and the angle measured off-Bragg. The
minimum standard deviation for two sets of runs lie at different Lamb-Mossbauer factors--a

parabolic fit to the data yielded Lamb-Mossbauer factors of 0.78 and 0.86 at thr minima.
Thus, the Lamb-M®dssbauer factor could be determined to only with 5%:

Ly (K, )Ly (k) = 0.82%0.04.

On the agenda were improvements to the experimental apparatus in order to perform
more sensitive measurements about the YIG Bragg peak. A Si [10 6 4] channel cut
monochromator having a Darwin width of 2 urad was built and attached to an Ishikawa
sine-bar rotation stage capable of making 0.05 urad steps. This system would have greatly
improved the angle measurements, but, unfortu. ately due to lack of time, this system was
never used (the Si {10 6 4] reflection reduces the nuclear counting rate by a factor of 10
forcing one to count 10 times longer to get the same statistics as before).

Also, of major interest would be to perform these measurements at other reflections
than the YIG [0 0 2] reflection. Little is known about how the Lamb-Méssbauer factor

varies with the ~rder of reflection (or the scattering angle).
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Fig. 11-3.2. Two trial runs to determine the Lamb-Maossbauer factor for the YIG
&o 0 2] reflection. The minimum standard deviation gives an average Lamb-Mdssbauer
actor between the two trial runs of 0.82+0.04.

11.4 Crystal Thickness Effects

The time evolution of radiation scattered by a collection of resonant particles can be
significantly influenced by the total number of resonant scatterers. This property provides
the opportunity to infer the thickness of a medium of scatterers directly from the time
distribution of the scattered radiation.

The fields reflected from a thin crystal have characteristics that are similar to the
fields transmitted through a thin isotropic slab (that is, a thin absorber) except that there are
small resonance frequency shifts and small increases in the decay rate (see Section 7-6).
For a thick crystal, because many more scatterers contribute to the scattered fields, there
can be substantial frequency shifts and increases in the decay rate (as seen in Sections 11-1
and 11-2). Simply due to speedup effects, as the thickness of a crystal increases, the time
distribution of the scattered radiation is squeezed into earlier times.

Care must be taken when trying to determine the thickness of crystals when Bragg

scattering is used. This is because primary extinction can severely limit the depth that fields
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can penetrate into the crystal. If the crystal is thicker that the extinction length for a
particular order of reflection, then information about the crystal thickness cannot be
extracted because changes in the time distribution saturate at the extinction length.

A YIG thickness greater than 1um cannot be measured using the [0 0 2] reflection
because the penetration depth for 14.413 keV radiation is about 1.1um. However, the
penetration depth for the [0 0 10] reflection is roughly six times greater giving the
possibility of measuring crystal thicknesses up to 6.4um.

Calculations of YIG [0 0 10] quantum beat patterns for various crystal thickness are
shown in Fig. 11-4.1. The area of each curve is normalized to the area of the data
presented in (a) in Figs. 10-3.1 and 10-4.1 for the case in which the internal magnetic field
is parallel and perpendicular to the scattering plane (the intensity variation with thickness
was normalized away because this information is absent in the data). From the figures, one
can see that the second peak (past 150 nsec) of the electric quadrupole beat is much more
prominent for thin crystals than for thick crystals. For the thicker crystals, the beat pattern
is squeezed towards earlier time giving prominent peaks below 50 nsec.

Using the result that the quantum beat patterns were sensitive to thickness variations
produced surprising results. One of the crystals grown by Gualtieri, crystal #57-2, was
stated to have a thickness of 6.7 ym 4 The YIG [0 0 2] quantum beat patterns were not
sensitive to crystals this thick since the penetration depth is only 1.1 um, thus the
calculations showed no discrepancy. However, a significant discrepancy existed for the
YIG [0 0 10] quantum beat patterns. The YIG [0 0 10] data (together with lower order

YIG [0 0 6] and higher order [0 0 14] data) yielded a thickness for crystal #57-2 of
2.6£0.2um rather than the expected 6.7 um. This unexpected result precipitated a
second set of rocking curve measurements to understand more about the structure of this
particular crystal. These precision rocking curve measurements are discussed in Section
9.1, and the results are shown in Fig. 9-1.2. The rocking curve for crystal #57-2 showed
that the YIG film had bifurcated into two separate layers having slightly different lattice
spacings. The YIG reflections were probing only one of these layers--the one 2.6 um
thick.

No attempt was made in further experiments to investigate the second 4.1 um thick
layer of crystal #57-2. Instead, the crystal having the best crystal perfection, crystal #57-6,
was used in further experiments. This determination was made using the data in

Fig. 9-1.2. The YIG [0 0 10] quantum beat data for crystal #57-6 was consistent for a
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crystal having a thickness of 4.3+ 0.4um. Within the uncertainty, this value agrees with
Gaultieri's measured value of 4.7um.
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Fig. 11-4.1.  YIG [0 0 10] quantum beat patterns for various crystal thicknesses (from

0.5 t0 8.5 um in steps of 2.0 um). The bold-faced curve represents the 8.5 um thick
crystal and is pointed to by the 1l arrow.
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11.5 Mossbauer Filter Experiment

Quantum beat patterns can be drastically modified by inserting x-ray optical
elements in the beam path. For instance, consider the case when the magnetic field applied
across a YIG crystal is parallel to the scattering plane. The net reflected field will then have
a four line spectrum (see Fig. 8-1.4) composed of right and left circularly polarized fields.
The lines having the same polarization interfere with each other to produce the typical
quantum beat pattern having a 12 to 13 nsec beat period. However, this magnetic beating
can be completely eliminated by inserting in the beam path a "black” Mdssbauer absorber
that completely absorbs all resonant photons of the inner lines (lines 3 and 4). With the
inner two lines blocked out, the only beating that can occur is the electric quadrupole
beating between the two d -site lines.

An experiment was performed to eliminate the magnetic hyperfine beats present in a
quantum beat pattern. The experimental setup is described in Section 9.4. The "black"
Maossbauer absorbers used in the push-pull arrangement shown in Fig. 9-4.4 were 91.2%
enriched ammonium lithium ferrofluoride absorbers having a single line resonance energy
spectrum. The push-pull arrangement ensures that both inner lines of YIG are filtered out
simultaneously.

Figure 11-5.1 shows the YIG [0 0 2] quantum beat pattern without the "black"
absorbers in the beam path. This figure requires some explaining. This experiment was
the first time-resolved Mossbauer measurement made by the Stanford nuclear resonance
group (in collaboration with Ercan Alp and Gopal Shenoy from Argonne National Labs).
In this first successful search for the nuclear resonance signal, many problems were
encountered that were unanticipated.

One problem is clearly shown in Fig. 11-5.1 (a) and (b). The nuclear resonance
signal sat on top of a large undulating background that was later found out to be due to
afterpulses in the phototubes of the detector. They had a large 1 in 10 afterpulse rate with
the afterpulses occurring 460 and 540 nsec after a prompt pulse. The experiment was done
on the 10-2 beamline at SSRL. This storage ring operated in a timing mode where electron
pulses were separated by 195 nsec (unlike CESR and PEP where pulses were separated by
400 nsec and 2 pusec respectively). Thus, the oscillations seen in the background time data
were due to afterpulses initiated by prompt pulses occurring well before the prompt pulse
giving rise to the nuclear resonance signal. Fortunately, by using background runs, the
background could be adequately subtracted from the nuclear resonance time data. The
results of such a background subtraction is shown in Fig. 11-5.1 (c).
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Fig. 11-5.1. Nuclear resonance signal for a scattering geometry that produces
significant nuclear level mixing. Total signal plus background is in (a), background due to
phototube afterpulses is in (b), and (c) is the result after background subtraction. Nuclear
scattering counting rate was about 3.6 counts/sec. (Lines are drawn though data in (a) and
(b)).
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The other problem resulted from a confusion about the crystallographic directions in
the YIG crystal samples. The YIG crystal #57-2 was aligned so that its flat was
perpendicular to the incident beam. The flat turned out to be the YIG [t 10] direction. For
this orientation of the YIG crystal, the internal magnetic field (which was nominally parallel
to the incident beam direction) bisects the electric field gradient [100] and [010]

directions. When the angle between the magnetic field and both electric field gradients is
45°, the electric quadrupole splitting between the dl and d2-sites is identical. The lines
from each site then lie at the same energy, and, because of the crystallographic 180° phase
difference between the two sites, the reflection becomes forbidden for nuclear diffraction.
In the experiment, the crystal was set at an azimuthal angle of 44° thus making the
reflection nearly forbidden. At this orientation, the nuclear signal is reduced by a factor of
15 over the optimum orientation (that is, for an azimuthal angle of 0°). An extremely
painstaking and time consuming effort was undertaken to find the nuclear resonance signal

under such low counting rates (= 3.6 counts/sec).
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Fig. 11-5.2. Comparison between the full nuclear dynamical diffraction theory and
when the theory neglects nuclear level mixing.

Sometimes accidents, as in this situation, can lead to some interesting physics.
When the angle between the internal magnetic field and the d1 and d2-site electric field
gradients is at 45°, the nuclear reflection is forbidden only to first order, and second order
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effects come into prominence. Nuclear level mixing, which is almost negligible for other
angles between the magnetic field and electric field gradients, becomes quite significant at
the 45° angle. As described in Section 5.3, the mixing of nuclear states becomes so strong
that linear polarization reversal occurs--incident 6 polarized fields are scattered into
outgoing x polarized fields. Including nuclear polarization mixing in the nuclear dynamical
diffraction theory was necessary to fit the data. Fig. 11-5.2 shows the effect of nuclear
level mixing for the fit in Fig. 11-5.1. This phenomena of strongly mixed nuclear states
where each resonant line amplitude results from superpositions of all possible nuclear
quantum states was later investigated more carefully by the Hamburg nuclear resonance
scattering group.”: ©

The result of inserting the "black" Mossbauer absorbers in push-pull mode is
shown in Fig. 11-5.3. Magnetic hyperfine beats are no longer visible--the "black"
absorbers were successful in significantly filtering out the inner resonant lines. What is left
is the slow electric quadrupole beat between the two d -sites. The data was fitted with the
simple kinematic formula given by Eq. 11-1.1 to illustrate that the time distribution follows
an expected slow beat pattern on top of an exponential decay curve. The data exhibited a
speedup of s =2.9+0.3 which is consistent for fields reflected at an angle near the Bragg
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Fig. 11-5.3. Time distribution for an experiment where "black" Mdssbauer absorbers
filter out hyperfine lines to eliminate magnetic beats. Only the electric quadrupole beat is
evident. The counting rate was about 1.3 counts/sec.
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peak (the data in Fig. 11-5.1 indicates the reflection was about —Surad from the Bragg

peak). The precise quadrupole beat period was indeterminable due to the lack of good
statistics in the data, so the theoretical value of 3.7 psec was used in the fit.

11.6 General Dynamical Scattering

Nuclear dynamical diffraction theory has been quite successful in explaining all the
data obtained by scattering resonant x-rays off ' Fe enriched YIG crystals. The fits have
not been perfect, but this problem may be due to crystal imperfection, nonuniformities in
the hyperfine fields throughout the crystal, or the inability to accurately characterize the
polarization of the field incident upon the crystal. Even certain physical interactions that
one would neglect upon first thought because their effects are small can produce noticeable
perturbations in the quantum beat patterns. For instance, even though the a-sites have
much larger internal magnetic fields that the d-sites, and the a-sites do not reflect any
fields for the scattering crders considered in the experiments, these sites can produce small,
noticeable effects for incident angles near the Bragg peak. This is shown in Fig. 11-6.1 for
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an 11-6.1. Small perturbations upon the time beat patterns due to the presence of

*" Fe occupying the a-sites in YIG. The dotted curve shows the effect of eliminating the
a-sites. The incident angle is —1 g rad from the Bragg peak.
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a case in which the internal magnetic field is parallel to the scattering plane. The major
effect of the a-sites shows up in the null region where the €, and €_ polarized field
intensities are out of phase. Yet, theses effects are too small to yield any meaningful
information about the a-sites in the data collected.

One interesting problem that was analyzed was whether there was any additional
dephasing in the scattering process that would cause the quantum beats to wash out earlier
than expected. To see this effect required a long count rate experiment that covered a range
of several lifetimes. Two TACs were used to perform this experiment--one measured time
spectra from 0 to 250 nsec, and the other measured spectra from 200 to 450 nsec. The
TACs could be put in synch by using the overlapping measurement (the TACs were
actually found to be in synch making time corrections between TACs unnecessary). The
results are shown in Fig. 11-6.2. Clear, unmistakable beats can be seen up to 21 lifetimes
(340 nsec), and beyond that time both data and theory start to become washed out--natural
dephasing due to the decay of the nuclear excited state makes it necessary to perform
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Fig. 11-6.2. Three hour measurement of YIG [0 0 2] time spectrum covering over 3
natural lifetimes. The incident angle is -9 yrad from the Bragg peak, the internal magnetic
field is parallel to the scattering plane, and a background of 1.5 counts/sec was used in the
fit. Data collected over a long time is typically more difficult to fit than data collected over a
short time. This is probably because there is more time for settings to change during the
experiment (such as the incident beam direction). Ringing can be seen up to 24 lifetimes
revealing that the crystal operates similar to a set of oscillators having a high Q.
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measurements lasting longer than 3 hours to find out what is happening beyond 2+
lifetimes.

The only difference between the scattering amplitudes for the YIG [0 0 2n] (where
n is odd) reflections is that the angular factors in the polarization matrices change and that
the real part of the photoelectric scattering amplitude decreases as the Bragg angle increases
(thatis, f, > 0 in Eq. 7-2.2 as the scattering angle approaches 90°). The decrease in the
real part of the photoelectric scattering amplitude only serves to decrease the index of
refraction shift and the Darwin width of the Bragg peak. This makes the peak speedup and
frequency shifts occur at a smaller deviation angle from Bragg, and it causes the reflected
intensity to decrease. What significantly changes the shape of the beat patterns between the
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Fig. 11-6.3.  YIG [0 0 6] quantum beat patterns for the cases in which the internal
magnetic field is (a) parallel and (b) perpendicular to the scattering plane. A horizontally
polarized field is incident at an angle (a) =2 urad (b) ~1urad from the Bragg peak.
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various YIG reflections are the differences in the polarization matrices (Eqs. 5-1.22 and
5-1.28 for the common scattering geometries used in the experiments).

Time spectra for the YIG [0 0 2] and [0 0 10] reflections have already been shown
in Figs. 10-1.3, 10-1.4, 10-3.1, and 10-4.1 for the two cases in which the magnetic field
is parallel and perpendicular to the scattering plane (the incoming field was incident at an
angle from the Bragg peak of —3urad for Fig. 10-3.1 (a) and —4urad for Fig. 10-4.1
(a)). To complete the set, YIG [0 0 6] and [0 0 14] are shown in Figs. 11-6.3 and 11-6.4.

800 L U. L] L} ITI LI B IT' LI I LI AL B |
g 600 3 YIG [0 014]
2 2 B,.| scattering plane
£ E
= 400 (a)
g 3
E 3
© 200 F

0 el ey

2500 N L LI A Fl LA | TI LI A '_]7' L B I L AL

2000 F YIG[0014] ]
“é C . B, L scattering planc
g 1500 F N -
= ' 1 (b ]
4 . ]
§ 1000 . ]
© " ]

500 -

0
0 50 100 150 200 250

Time (ns)
Fig. 11-6.4.  YIG [0 014] quantum beat patterns for the cases in which the internal

magnetic field is (a) parallel and (b) perpendicular to the scattering plane. A horizontally
polarized field is incident at an angle (a) —6urad (b) +2urad from the Bragg peak.
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Nuclear dynamical diffraction theory should hold equally well for multiple crystal
reflections. The only change comes in the boundary conditions in which the incident field
on the proceeding crystal is the reflected field from the preceding crystal. Double crystal
diffraction experiments were performed by the nuclear resonance scattering group at
Hamburg,” but only fcr the case in which both YIG crystals were operated identically. In
contrast, double crystal diffraction experiments were performed for various orientations of
the internal magnetic field across the two crystals and for various combinations of
reflections. Fig. 11-6.5 shows the results of a double reflection from two YIG crystals
oriented for the [0 0 2] reflection. In Fig. (a) and (b) both crystals have their internal
magnetic fields parallel and perpendicular, respectively, to the scattering plane. In Fig. (c)
the first crystal has its internal magnetic field oriented parallel to the scattering plane, while
the second crystal has its field oriented perpendicular to the scattering plane. The very
noticeable difference between the single and double reflection measurements is an overall
shift in the quantum beat patterns. This shift results because the double crystal reflection
performs a convolution of two single crystal beat patterns.

Another experiment was performed in which the first crystal was oriented for the
[0 0 2] reflection and the second crystal was oriented for the [0 0 4] reflection (the internal
magnetic field for both crystals was oriented parallel to the scattering plane). The results
are shown in Fig. 11-6.6. The [0 0 4] reflection allows both photoelectric and nuclear

diffraction. The double crystal beat pattern should then, to first order, show a YIG [0 0 2]
beat pattern since the YIG [0 0 2] diffracted field should reflect promptly from the electrons
in the second crystal. To second order, a convolution of single crystal YIG [0 0 2] and
YIG [0 0 4] beat patterns should be present.

Double crystal experiments allows one to probe the hyperfine structure of crystals
for allowed photoelectric reflections. For instance, observing the quantum beat signal from
a YIG [0 0 4] reflection is not possible with the present detector because of the intensity of
the allowed photoelectric reflection (unless one uses a narrow bandpass crystal
monochromator, but these monochromators also drastically reduce the nuclear signal
intensity). The YIG [0 0 2]-[0 0 4] double crystal reflection allows one to get around this
problem and to extract information about the photoelectrically allowed [0 0 4] reflection.

Using the first crystal as a monochromator produces extremely monochromatic
x-rays to be used in further experiments involving not only crystals but other types of
samples. Unfortunately, YIG is a hyperfine split crystal, and its complicated time response
must be deconvolved from any experimental results--its time response must, therefore, be
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Fig. 11-6.5. Double crystal YIG quantum beat patterns. Both crystals are oriented in
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Fig. 11-6.6. Double crystal YIG quantum beat pattern. Both crystals have their
internal magnetic fields oriented parallei to the scattering plane, but the first crystal is
oriented in the [0 0 2] direction and the second crystal is oriented in the [0 0 4] direction.

well known. However, there is a possibility of constructing single line YIG crystals by
impregnating them with certain elements. Even so, the linewidth would not be broad
enough to eliminate the necessity of performing deconvolutions to erase the effects of the
monochromator when it is used for experiments involving % Fe enriched samples (even
using the properties of the decay rate speedup does not help because speedups, or, in

frequency space, an increase in the linewidth, of only as great as 3 have been observed for
YIG).
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12. CONCLUSION

The theory of the scattering of x-rays by resonant nuclei is, in principle, much
simpler that the theory describing the scattering of x-rays from electrons. This is because
electronic dynamical diffraction theory requires relativistic Hartree-Fock calculations to
determine the resonant or nonresonant photoelectric scattering amplitude for many
electron atoms. Because nuclei can be approximated as point particles, such calculations
for nuclear systems are unnecessary. A simple nonrelativistic perturbation theory,
treating the nuclei as point particles, can be used to understand the nature of
electromagnetic fields scattered from nuclei.

Once the spherical multipole scattering amplitude, whether for nuclear or
electronic interactions, has been formulated, the differences between nuclear and
electronic scattering theory disappear. The electromagnetic fields scattered from particles
can then be expressed in terms of spherical multipole fields. In this thesis, a dynamical
scattering theory has been developed where spherical multipole fields interact with a
system of particles and undergo multiple scattering. When elastic scattering is assumed,
there is no way to determine which photon scattered off which particle since the state of
the particle before and after the scattering process is the same. Thus, to describe the
scattering interaction, one must coherently sum up all the probability amplitudes of
scattering from all of the particles in the system. This sum forms a collective state of
many particles--the sysicm <f particles acts collectively as an entirely different particle.

Dynamical scattering theory reveals that a collective state has properties similar to
a single particle. A single particle interacting with a photon undergoes frequency shifts
and has a resonance linewidth due to its interaction with the generated self-fields.
Similarly, when the collective state interacts with a photon, it interacts with its generated
self-fields which, in this case, are the multiply scattered fields in the medium. These
interactions are shown to also lead to resonance frequency shifts and linewidth
broadening (or radiative speedup).

The connection between quantum mechanics and classical mechanics was bridged
by performing a sum over all of the multiply scattered fields in a medium. What was
found was interesting but not surprising. The net electric field multiply scattered from a
phased collection of particles was found to be identical to the solution of the Maxwell
equations for a medium when the quantum mechanical form of the scattering amplitude is

264
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used in the inhomogeneous wave equation. This semi-classical result confirms that
dynamical diffraction theory rests on solid ground.

Nuclear dynamical diffraction effects were strongly evident in the time-resolved
M@ssbauer spectra measured in synchrotron x-ray diffraction experiments involving >’ Fe
enriched YIG films. In the time domain, resonant frequency shifts and decay rate
speedups were observed, and they were seen to vary as a function of the deviation from
the Bragg angle of a YIG crystal. The average decay rate speedup varied in a Lorentzian
fashion with the deviation angle, and the peak was centered at the nonresonant Bragg
peak. The average resonant frequency shift was seen to vary in a Lorentzian dispersive
fashion. Both effects were predicted by nuclear dynamical diffraction theory. A peak
speedup of 3I" and a peak frequency shift of 1.5" (where I' =4.67neV is the natural
linewidth) was measured for YIG. The incident beam from a monochromator had an
angular divergence of about 20urad, and should this divergence be reduced in future
experiments, larger peak speedups and frequency shifts should be obtainable.

By measuring the variations in the quantum beat patterns as a function of the
deviation angle from the Bragg peak, the Lamb-Mossbauer factor was deduced. A Lamb-
Mossbauer factor of 0.82 with a 5% uncertainty was measured for the YIG [0 0 2]

reflection. Of interest would be to repeat these measurements for other orders of
reflection. How this factor depends with scattering angle or upon the order of reflection
is not well known.

Another nuclear dynamical effect observed was the variation in the quantum beat
patterns due to the thickness of the crystal film. In one measurement using the YIG
[0 0 10] reflection, the nuclear dynamical theory gave a thickness (2.6um) that was
inconsistent with a measurement made during the fabrication of the crystal film (6.7 gm).
With more careful diffraction experiments to measure the rocking curve of the crystal, the
dynamical theory was vindicated--the rocking curve measurements showed that the
crystal had bifurcated into two layers having different lattice constants. Thus, dynamical
effects were shown to be sensitive to thickness variations in a crystal.

Nuclear dynamical diffraction theory was also tested in a double crystal reflection
experiment. In this case, the idea of a collective state must be extended to two crystals
separated in space. However, since diffraction is essentially a phased scattering
phenomena, the separation of two crystals poses no problem as long as all of the
diffracting particles have the same spatial phases (modulo 27). The two crystal YIG
[0 02]-[0 0 2] reflection data was well explained by dynamical diffraction theory for

different orientations of the internal magnetic field across each crystal. A double crystal
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YIG [0 0 2]-[0 0 4] reflection experiment was also done. This experiment showed that,
using the first [0 0 2] crystal as a monochromator source, an electronically allowed

[0 0 4] reflection could be probed. Without the YIG [0 0 2] crystal, the photoelectric
prompt reflection would have overwhelmed the detector (a scintillator coincidence
photodetector where the scintillator is a plastic material possessing a short fluorescent
lifetime).

Nuclear dynamical scattering theory is necessary to describe the results of time-
resolved Mossbauer spectroscopy principally because multiple scattering is no longer
insignificant. However, there remains a whole host of physical phenomena that have
nothing to do with multiple scattering (such as nuclear hyperfine structure quantum beats,
the orientation and strength of the various hyperfine fields, nuclear level mixing,
polarization and angular scattering characteristics, and angular interferometry) which
were also investigated in this thesis.

One such kinematic effect investigated involved a dual time and frequency
experiment that utilized information from both frequency and time space. A "black"
Mossbauer absorber was used to completely filter out the inner two lines of a hyperfine
split YIG spectrum. The inner magnetic field was oriented nominally parallel to the
incident and outgoing photon directions. For such a case, filtering out the inner two lines
prevents any magnetic beating. The time-resolved experiment showed no fast magnetic
hyperfine beats--only a slow electric quadrupole beat remained (due to the beating
between lines from iron nuclei lying in different crystallographic sites).

Another kinematic scattering phenomena investigated involved a situation in
which time domain measurements have advantages over frequency domain
measurements. This advantage lies in the ability to easily detect relative phase
differences between resonant amplitudes. Since resonant lines are usually spaced far
apart, very little phase information can be extracted from the interference between the
lines. However, since the interference between resonant lines shows up as a beat pattern
in the time domain, phase shifts in the amplitudes show up as clearly observable shifts in
the beat patterns.

An angular interferometry experiment took full advantage of the ability to observe
purely geometrical phase changes in the time domain. In this experiment, the phase shift
of the quantum state of a photon that has undergone « rotation was measured--these phase
shifts are purely geometrical effects independent of dynamical, or multiple, scattering or
the number of scatterers. By using nuclear transitions, photons could be prepared having
a defirnite component of angular momentum along a quantization axis (the internal
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magnetic field direction). These photons underwent phase shifts depending upon the
amount of azimuthal (angular momentum-conserving) rotation about the quantization
axis. These phase shifts were observed to be different between right-handed rotations and
left-handed rotations about the quantization axis. For scattering angles near 45°, the
phase difference was large enough to shift the quantum beat patterns for right and left-
handed rotations almost 180° out of phase. Such striking phase effects would be
extremely difficult, if not impossible, to observe through traditional Mssbauer velocity
experiments.

One interesting question that may be posed by Mdssbauer experimentalists is
whether measurements made in the time domain reveal any information that cannot be
obtained by traditional measurements in the frequency domain. For the samples used in
this thesis, both time-resolved and conventional Mdssbauer spectroscopy would most
likely yield the same results when analyzing the internal hyperfine fields. The hyperfine
field values for the internal magnetic field and the electric quadrupole splitting could be
measured to within 1-2% through the analysis of quantum beat patterns. This is about as
well as traditional Mossbauer velocity measurements. Where time-resolved
measurements using synchrotron x-ray sources become more useful is in hyperfine field
measurements of samples that are not amenable to conventional Mossbauer spectroscopy.
For example, when using radioactive sources, the scattering intensity from extremely
small samples is generally too small to extract information about the hyperfine fields.
Such samples may include materials in highly pressurized diamond anvil cells where
magnetic phase transitions can be explored, or nanostructures and micro-crystals where
one, two, or three dimensional magnetism can be explored. For instance, one
dimensional magnetism can be investigated in small magnetic fibers, and two
dimensional magnetism can be explored in the surface layer of materials or in thin
magnetic crystal or multilayer films composed of only a few monolayers of resonant
nuclei. When the third generation synchrotron sources are constructed, undulator
beamlines should be able to provide the necessary high brilliance to make such
measurements not only possible but straightforward.
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APPENDIX A

A.1  Angular Interferometry (Physical Review Letter)

The discussion in Chapter 5 explored the properties of angular phase shifts from the
perspective of the § and T -matrix scattering formalism presented in the previous chapters.
To complement the discussion, the angular phase shifts are understood in this appendix by
using the fundainental rotational and mirror symmetry properties of free space which leads
to the realization that bosons, such as photons, essentially behave as three dimensional
irreducible representations of the group O*(3). (In a similar fashion, these symmetry
properties reveal that fermions, such as electrons or neutrons, can be realized as two
dimensional irreducible representations of the group SU(2).) The following is a recently
published journal article: D. E. Brown, J. Arthur, A. Q. R. Baron, G. S. Brown, and S.
Shastri, Phys. Rev. Lett. 69, 699 (1992).
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Phase Shift of a Rotated Quantum State Observed in an X-ray
Scattering Experiment

D. E. Brown, J. Arthur, A. Q. R. Baron
Stanford Synchrotron Radiation Laboratory, P. O. Box 4349, Bin 69, Stanford,

California 94309

G. S. Brown
Dept. of Physics, University of California at Santa Cruz, Santa Cruz, California 95064

S. Shastri
Cornell High Energy Synchrotron Source and the School of Applied and Engineering
Physics, Cornell Univ., Ithaca NY 14853

Abstract

The rotation of the reference frame of a particle is known to lead to a phase change of its
wavefunction proportional to its angular momentum. This can manifest itself as an angle-
dependent phase shift of a photon scattered by a fixed target, when the photon state is an
eigenstate of the component of total angular momentum perpendicular to the scattering
plane. This phase shift has been observed in the quantum beat pattern resulting from the
transient excitation of *’Fe nuclei by synchrotron radiation.

PACS number: 03.65.-w,78.70.Ck,42.10.Jd,76.80.+y
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Quantum wavefunctions and classical wave fields reflect the symmetries of space
and time that result in conservation laws and phase factors involving the conserved
quantities. For example, the homogeneity of time leads to the conservation of energy and
the uniformity of space leads to the conservation of total linear momentum for an isolated
system. Such systems are invariant under translations in time or space, and the translated
wavefunctions acquire phase shifts depending on the conserved values.!2 For simple
eigenstates of energy and linear momentum

w(t+Ar)=e"My(r) (1)

w(r—Ar)=e ™" y(r). (2)
Of particular interest in this Letter are the effects of rotations on the properties of a system.
Rotational symmetry results in the conservation of total angular momentum, J, and a
rotated eigenstate acquires an angular phase shift:

w(g—Ag)=e"y(g). 3)

A vivid consequence of this angular phase is the 4 rotational symmetry of fermions that
has been demonstrated in neutron interferometer experiments.3-3 The angular phases for
photons are dramatically illustrated in this Letter in an elastic scattering experiment
involving resonant scattering of x-rays from nuclei.

Considering only basic symmetry properties of free space (such as rotational and
mirror symmetry) angular momentum wavefunctions of a general particle can be
constructed. The rotational symmetry properties lead to the formation of irreducible

representations, D/ (k - i), describing rotations of a system with quantization axis K into

a system with quuntizatio: axis Z, and having rotation-angle-dependent matrix elements
that depend only upon the geometry of space and not upon the dynamics, or interactions, in
the system. When j (the total angular momentum quantum number) is integral, these
irreducible representations are naturally present in classical electrodynamics in the multipole
field solutions of the Maxwell equations.

Consider a process that changes the direction of propagation of a photon without
changing its total angular momentum. According to Eq.(3), a phase shift should arise
depending on the projection of the total angular momentum along the axis of rotation. The
angular momentum of a photon perpendicular to its direction of propagation is often not
well-defined, but a photon state of well-defined propagation direction can be expanded in
terms of basis states (spherical helicity states) having well-defined angular momenta about
an axis that is not necessarily the propagation direction. Superpositions of these basis states
form the multipole vector spherical harmonics.5 In this case the total angular momentum
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includes orbital angular momentum, and need not be limited to the photon spin value of 1.
The rotated photon state has a phase factor ¢4 and the transition amplitude for forming
such a rotated state has the conjugate phase factor e*#**. The quantity A¢ is the change in
the photon's direction expressed as an azimuthal angle in a spherical coordinate system
aligned along the axis of rotation, and M is the projection of the photon's total angular
momentum along that axis. (If expressed in a spherical coordinate system that is not
aligned along the rotation axis, the rotated wavefunction will in general also depend on the
values of the polar angles of the photon propagation vectors.) The phase factor e is
independent of the polarization of the incident or rotated photon, and it is also independent
of the dynamical details of the interaction that causes the photon direction to change.

To measure the angular phase change of a photon, it is sufficient to prepare a
photon state with definite angular momentum about an axis perpendicular to its propagation
direction, cause the state to rotate about this axis through a known angle without changing
its total angular momentum, and observe the interference between the rotated state and
another coherent reference photon state. We realized such an experiment using elastic
scattering of synchrotron x-rays by nuclear resonances. The photon-nuclear interaction
served to select photon states with definite values of M. Bragg scattering served to define
the rotation angle, and the coherent, pulsed nature of the synchrotron excitation provided
reference photons for the interference measurement.

For the experiment a yttrium iron gamet (YIG) crystal enriched with *'Fe was used
in Bragg geometry to diffract an incident beam of 14.4 keV photons through a scattering
angle, 26,, equal to twice the Bragg angle. The YIG magnetic crystal structure allowed us
to observe pure nuclear resonant scattering from a ferromagnetically aligned subset of *'Fe
nuclei.” A small external magnetic field was used to orient the internal ferromagnetic field
perpendicular to the scattering plane, so that the rotation angle of the scattered photons
around the nuclear quantization axis was equal to 26,.

In a magnetic field, the 14.4 keV *"Fe nuclear resonance is generally split into a
hyperfine six line spectrum (see Fig. 1). In our experiment the incident photons, due to the
nature of the synchrotron source, were linearly polarized parallel to the nuclear quantization
axis. Under these conditions the transitions labeled 2 and 5 in Fig. 1 are not allowed by
polarization selection rules. The remaining four transitions are allowed, and the sca:tering
process does not change the polarization state of the light. The two strongest transitions are
those labeled 1 and 6 in Fig. 1. They are separated by about 6 X1 07" eV, and the energy
width of each resonance is approximately 5x10~° eV. When excited coherently by an
abrupt pulse of synchrotron light, the resonant states decay with a lifetime of about 141 ns.
Because states with different frequencies are excited coherently, the decay curve exhibits
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interference beats, principally the 7 ns beat period due to the interference of transitions 1
and 6.

Transitions 1 and 6 select photon states having total angular momentum projections
along the nuclear quantization axis of M =-1 and M =+1. Thus, for the line with M = +1
the angular phase shift in the scattering amplitude is 26, while for the line with M = -1 it is
-26,. The time beat pattern resulting from the interference of the two lines is phase
retarded by 46,:

1(e) ~ (1+ cos[ Awt ~ 46,)) (4)

where Aw is the beat frequency. If the direction of scattering is reversed (see Fig. 2), the
angular phase shifts change sign, resulting in a phase advanced time beat pattern
1(t) ~ (1+ cos[Awt +486,]). (5)

The time beat pattern contains a phase factor that is twice the scattering angle; the
phase factor is negative for right handed rotations around the quantization axis and positive
for left handed rotations. The net phase difference between time beat patterns with opposite
rotation angles is four times the scattering angle: 86,. This is a very noticeable effect for
scattering angles near 45°.

The YIG time beat pattern involves more than two resonant lines (the four lines
mentioned above are further split by an electric quadrupole interaction giving a total of §
lines), so the patterns are more complicated than those described by Egs.(4) and (5). Yet,
since all the lines have M = %1, the 88, phase difference is the dominant effect.

The experiment was performed at the 24 pole wiggler beamline F2 at the Cornell
High Energy Synchrotron Source (CHESS). A double crystal Si [111] monochromator
provided a source beam having a 2 eV bandwidth at the nuclear resonance energy of
14.413 keV. A gold-coated flat mirror was used in grazing incidence geometry to filter out
the higher order harmonics coming through the silicon monochromator. The diffracted
light from the YIG crystal was detected by a fast plastic scintillator coincidence detector,
and the photon arrival time was recorded by fast timing electronics. Similar experimental
techniques have been used in a number of previous resonant nuclear scattering
experiments.8 The angular phase shift was not explicitly noted in these earlier experiments
since they either involved small Bragg angles, or they involved antiferromagnetic samples
from which all reflections involve both right and left handed scattering rotations.
However, it should be pointed out that the angular phase factor is implicitly present in the
polarization matrices for nuclear scattering described by various authors.%-13 We found it

experimentally convenient to change the sense of the scattering angle by reversing the
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magnetic field direction, but it is conceptually simpler to think of the scattering angle being
reversed, as shown in Fig. 2.

YIG [0 0£10] reflections have Bragg angles of +20°, giving a net phase
difference of 160° between their line 1—line 6 time beat patterns. The peaks of the
[0 0 10] pattern lie nearly in the valleys of the [0 0 —10] pattern. This is shown in Fig. 3

where, despite comiplications due to the multiplicity of hyperfine levels, the advance or
retardation of the 7 ns beat period is clearly visible. To get good fits to the data, we used
the full Ewald-Laue dynamical diffraction theory for resonant scatterers,!!-14.15 including
small contributions from the electronic and nuclear index of refraction. However, the
angular phase shift which advances or retards the observed beat pattern is a purely
kinematical, geometrical effect.

Recently, two resonant nuclear scattering experiments have demonstrated shifts in
the time beat patterns due to passage of the radiation through the scattering material.!6.17
These shifts are caused by dynamical, index of refraction effects in the material, and they
are not related to the angular phase shifts.

The fundamental symmetry properties of wave mechanics predict that an angular
momentum-conserving rotation of a wavefunction is accompanied by an angular phase
shift. A dramatic way to demonstrate this phase effect involves elastic resonant nuclear
scattering of photons. The nuclear scatterer serves as a filter, allowing only photon states
with well-defined angular momentum components to pass. Coherent generation of more
than one angular momentum state using synchrotron light permits the angular phase shifts
to be clearly observed in an interference measurement. A measurement of this type may
have practical applications: for a given scattering angle, the time beat pattern can be used to
uniquely determine the sign of the magnetic field at the scattering nuclei. In our
experiment, the time beat patterns indicate that for the selected *'Fe nuclei (the nuclei
occupying the sites in YIG with local tetrahedral symmetry7), the internal magnetic field
direction is opposite to the external guide field.

Support for this research was provided by the U. S. Department of Energy, Office
of Basic Energy Science, Division of Materials Sciences. CHESS is supported by the
National Science Foundation under Award No. 90-21700.
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Fig. 1. Hyperfine nuclear resonance of *’Fe. The magnetic quantum numbers are given
with respect to a quantum axis oriented parallel to the internal magnetic field. When the
magnetic field is perpendicular to the scattering plane, lines 2 and 5 are excitable by and
radiate linearly polarized light perpendicular to the magnetic field. The other four lines are
excitable by and radiate linearly polarized light parallel to the magnetic field. Radiated
photons from lines 1,3,4,6 have the same polarization but different phases depending upon
their scattering angles and angular momentum components, M.
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Fig. 2. Complementary scattering geometries. Incident photons K; can be scattered b
equivalent Bragg reflections in either a right-handed sense kf or a left-handed sense k;
about the nuclear quantization axis, Z, parallel to the internal magnetic field B,

!
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Fig. 3. (a) Time beat patterns for left and right handed scattering. Solid curves are
dynamical diffraction theory calculations, including the angular phase. Because some of
the interfering transitions share identical M values, the shifted beat patterns are modulated
with an unshifted beat pattern of longer period, giving different heights to corresponding
intensity peaks in the [0 0 10] and [0 0 —10] patterns. (b) Expanded, superimposed view
of the fits to the data. The nearly 180° phase difference is clearly evident.
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B.1 Time Domain Calculation for a Plane Parallel Slab of
Resonant Scatterers Excited by a Co Source

In this example, a plane parallel slab of single line resonant scatterers is excited by a
*’Co source. The field emanating from this source will be approximated as a decaying
exponential wave Doppler shifted by Aw to take into account the relative motion between
the source and the scatterers:

ay(1,2,2,) = E g™ g (o a0)Ti2n (B.1-1)
Let the scatterers have the same natural frequency, ®,, and linewidth, I, as the source.
The impulse response of the scatterers is then
H(t,2’,z)=—(T, /4RL)e™ """ 6(1) (B.1-2)
where I’ is given by Eq. 6-5.16
Using the multiple scattering equations, Eqs. 6-5.11 and 6-5.12, first order
scattering gives

a, (t,z,zo)dz _ J‘(:[Eoeikzoe—i(womw)r-n/zu][_(r:/4hL)e-iwo(:-:')-r(r_,')/zn]dt,dz

1 .
= A(t e ~1)d B.1-3
()(—iAw)( ) : ( )
where A(t) = —(T, /4RL)E,e* e T, (B.1-4)

Second order scattering gives

tre ’ ’ 1 —iAwt’ —iwg (1—1")-T{¢-1' ’
a2(t,z,zo)dz=JOL)dz Alr )(mj(e " —1)[-(Fs/4hL)e (=)-1 V"]dt dz

= A(:)( _i;w)[( _;\w)(e"‘““ -1)- t]H Ihz )]dz. (B.1-5)

Similarly, third and fourth order scattering gives

s =0 i (i (g e 015 () 1)

(B.1-6)
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(12,2 dz = A(t)( —izlsw)[(—ulsw ﬂ —izlla) )[( —ilAw )(emm 1) t} ) tﬂ ) ﬂ
o) 5

Adding up all the scattering terms, and ordering them in powers of —1/iAw results in a

comprehensible series expansion:

(a, +a,+a,+a,+)dz =

ol ) s ) () 5
S I A ) = 3
=) 2 & - @]
() | |
]

) _(‘12 )3,1_ ;o
i anL) 3!

e—iAan [Foa/anL (- i) i o i 2 a

— =i, —iAw N , [ i

A(t){(_mw)e (AwJJO( T, zt/hL) (Aw) atJO( T, zt/hL)

e O e S

Using the expression for the scattering channel field, Eq. 6-5.13, and using the
relations

s

It/h

s

J(VT,t/h)

L
[ Jo(VT zt/RL)dz = 2L, (B.1-9)
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and

9 JUTTR) (L LT @110

JL.t/h 2h /. ((Toa/R)™

gives

[RYE il A n
ESCI(I,L’ZO)z_EOe:boe—:w,,I Fr/’zu{e ‘[4m A ]_2( 11", ) J,.( r;t/ri)} (Bl-ll)

~\2hAw ( [‘st/r,)
This expression can be simplified by using the generating function for Bessel functions:

ei'(“'i) = iu”‘],,(x). (B.1-12)

m=—oo

Then

2(2_;1'2;,)”"( Ch)_$ (o )Jw(rf_—) /?) i(z-;zw)"f(»(r;}th/;)

(JTe/m)  w==\2hbe

where i ( il )" Jn( I’st/h) =e—i[4:/;m*13w;]

e\20A0 ) (\T/n)

and ) ’( (% ) io(“z’iA“’] (VR 1.7,

Finally, after collecting all terms, the scattering channel field can be expressed as

Escf(t,L,zo)zEoe""°e"“’°'"r‘mi( ‘ZM“’) (VTt/m) 1, (JTt/r).  (B.1-13)

n=0 .r

This result agrees precisely with Lynch, Holland, and Hamermesh's Fourier
transform solution using contour integral methods.! The obvious drawback to this time
domain multipole scattering approach is that one must have a deft faculty towards
massaging complicated infinite series expansions into familiar analytical functions. The
beauty of this time domain formalism is that one may completely work out problems
entirely in the time domain and observe how the physics evolves at each step of the
calculation--performing Fourier transforms can obscure the actual physics behind the
scattering process (for instance, the entire issue of multiple scattering appears to be
completely absent in the Fourier transform method).
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B.2 Investigation of the Dynamical Phase between Two
Resonant Lines Excited by a Synchrotron Source

. In this example the dynamical phase between two widely spaced resonant lines is
calculated using the time domain multiple scattering formalism. For a plane parallel slab of
scatterers, this phase is shown to be proportional to the thickness of the slab and inversely
proportional to the frequency separation between the resonant lines. The source field
incident upon the slab is a synchrotron pulse

a,(t,2,2,) = Eye"* 8(t), (B.2-1)
and the impulse response of the system of scatterers is the sum of two resonant amplitudes
H(t,2',2) = (T, /4RL){e™ " + &' }eT20(1) (B.2-2)

where T, is given by Eq. 6-5.16, and @, and w, are the two resonant frequencies.

Using the multiple scattering equations, Eqs. 6-5.11 and 6-5.12, the first order
scattered field amplitude is

a,(t,2,2,)dz = j;[Eoe“’o5(:')][—(1“x /4hL){e“‘“"("") + e“‘“’z““’)}e‘”'“’V”]dz'dz

= A(){1+ e} dz (B.2-3)
. where A(t) = —(T, JARL)E g™ e (B.2-4)
and Aw=w, -, (B.2-5)

The second order scattered field amplitude is

a,(t,2,2,)dz = J(: fozdz’A(t’){l + e'“‘“’"} [(A(t - t')e*”"°/E0){1 + e‘iA“’("")}] dr’ dz

= A(t)[—(;:;lz )]{t(l +e7) + Eza(] — e )}dz : (B.2-6)

Crunching out the convolution integrals for the third and fourth order scattered field
ampli‘udes give

. , _ I“sz 2 1 t2 —iAw! 3t —iAwt
a,(t,2,2,)dz —A(t)[(z—h—i) asz—!(l+e )-+ :K—a;(l ~e )}d

N

(B.2-7)
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I:Z } 1 13 —iAw1 4t2 —iAwt
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The sum of the scattering terms up to fourth order can be expressed in a series
expansion in l/iAw:
a+a,+a+a,+=

1+e"“°” - F zt F zt) 1 (F zt ..
anL) (2! \4nL (z' 2
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Whether this series expansion can be expressed in a compact analytical form is unknown,
but, for widely separated lines, summing all the scattering terms is unnecessary. To first
order in 1/iAw only the first two separate series expansions labeled (1) and (2) in the
expression above need be evaluated.

Using the Bessel function identity in Eq. 6-5.20, the series expansion (1) reduces
to

(1) —  AQ)(1+e™)Jy(T,z/RL),

and (2) reduces to the simpler form

(1 __e—iAau) (9

2 -» A

@) (1) (iAw) OdH,0t
where H,=T, /4nL. (B-2.10)

Using the relations expressed in Eqs. B.1-9 and B.1-10 and the following Bessel function
relationships

[Ho4o(2 Hyzt)|
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9 J,(AHLt) 1
5 AL - —-2-;12(1/411(,1,:) (B-2.11)

2 10) = 2a0) = I ) B-2.12)
1= 220,06 = 3), (B-2.13)

and after a little algebra, the scattering channel field (Eq. 6-5.13) reduces, to first order in
l/iAw, to ’

ikzq —iant-T7, Fs J r‘:t/h —-iAwit . F.; —iAwt
E, (1) = Ee® {S(I)—-e r"”ﬁ—'(—r—&;ﬁ—)[(l+e 4 )+zm(l—e 4 )j”

(B-2.14)
Ignoring the prompt delta function pulse, the resonant intensity is then

1 (8) = |y (1) = Ege™ 8(0)]

= 253(3)2[1 + ( L, )2 ][ j‘(‘/r‘—t/h-)}z {1+ cos(Awt + p)}e™  (B-2.15)

2h 4hAw \/ [.t/h

2
=4E2(_1_1\'_)2 1+( rs )2 J]( r;t/h) CosZ(_é_a)_t_*_g)e—ﬁ/h (B_2 16)
\2n 4hAw JT.t/h 2 2 '

2(T, /4hA0)
1-(T,/4r00)" |

where ¢ = tan“‘{ (B-2.17)

The expression above is similar to the field intensity from a plane parallel slab (described in
Section 6-5) multiplied by a sinusoidal beating term due to the beating between lines having
different resonant frequencies. The interesting phenomenon is the dynamical phase shift,
¢, of the quantum beat pattern. This dynamical phase shift is related to the thickness-rate,
I, =no LT, and the splitting between the two resonance lines, Aw. Thus, when the
splitting is large compared to the thickness-rate, Aw >> T, /4%, ¢ is directly proportional
to the thickness of the slab and inversely proportional to the frequency separation of the

resonance lines:
¢ =T, /2hAw =T no,L/2hAw (B-2.18)
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This dynamical phase shift has been seen by van Biirck er. al.,! and, in the
comparison of their data with Eq. B.2-15, the time domain multiple scattering formalism
accurately describes the phase shift phenomenon for all thicknesses of the sample. The
calculations van Biirck et. al. performed to fit their data relied upon the frequency domain
Fourier transform method. Unfortunately, analytically performing the Fourier transform is
difficult, so the fits were done by numerically Fourier transforming the frequency
response, and this prevented any insight into the physics behind the dynamical phase shift.
(One can integrate the Fourier transform using the method of contour integration, but the
result is a complicated series expansion requiring a laborious amount of algebra to extricate
the results expressed by Eq. B.2-15). The beauty of the multiple scattering formalism is
that the physics behind the scattering process can be investigated at each order of scattering.
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