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ABSTRACT

The scattering of synchrotron radiation by nuclei is extensively explored in this thesis.

From the multipole electric field expansion resulting from time-dependent nonrelativistic

perturbation theory, a dynamical scattering theory is constructed. This theory is shown,

in the many particle limit, to be equivalent to the semi-classical approach where a

quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave

equation. The MOssbauer specimen whose low-lying energy levels were probed is a

ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix.

The hyperfine fields in YIG thin films were studied at low and room temperature using

time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats

were measured using a fast plastic scintillator coincidence photodetector and associated

electronics having a time resolution of 2.5 nsec. The variation of the quantum beat

patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-MOssbauer factor of

8.2_+0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10]

', reflection revealed that one of the YIG crystals had bifurcated into two different layers.

The dynamics of nuclear superradiance was explored. This phenomenon includes the

q radiative speedup exhibited by a collective state of particles, and, in striking concurrence,

resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat

frequency shift of 1½ natural resonance linewidths were observed. Nuclear resonance

scattering was also found to be a useful way of performing angular interferometry

experiments, and it was used to observe the phase shift of a rotated quantum state. On the

whole, nuclear dynamical diffraction theory has superbly explained many of the

fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.
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NUCLEAR DYNAMICAL DIFFRACTION USING
SYNCHROTRON RADIATION



1, INTRODUCTION

" The field of nuclear resonance fluorescence has developed considerably since Kuhn

initiated the first search for this phenomena in 1929.1 In the late 1950's, a variety of

•, techniques were developed to probe the low-lying energy levels of nuclei. One method

used Coulomb-excitation reactions where nuclei were excited by the electromagnetic fields

of bombarding particles 2,3 (this later developed into the field of perturbed angular

correlations4). Another method used nuclear reactions as a gamma ray source for exciting

nuclei. 5,6 However, it was M0ssbauer's discovery in 1958 of the recoil free resonance

absorption of nuclei excited by radioactive ._ources that enabled the field of nuclear

resonance fluorescence to blossom and to become useful in a wide variety of disciplines,

ranging from biology to chemistry and physics. 7

The construction of man-made x-ray sources provided a new way to excite nuclear

transitions. Use of betatron bremsstrahlung radiation as an x-ray source was first proposed

in 1945,8 but it was not until 1962 that nuclear fluorescence radiation was observed using a

conventional x-ray tubes as a source. 9 The problem of detecting the nuclear signal resulted

mainly from the huge photoelectric background that occurred when x-rays were

" simultaneously scattered from the electrons. For this reason, pulsed x-ray sources and

time-gated detectors were proposed. 9 Because electrons scatter x-rays promptly compared

to nuclear lifetimes, properly gating out the effects due to electronically scattered x-rays

leaves the nuclear signal with almost no background. The pulsed nature of synchrotron

storage rings made them highly desirable candidates as x-ray sources for exciting nuclei.

The first proposal for using synchrotron x-rays was made in 1974,1° and the first

observation of nuclear fluorescence radiation using synchrotron x-rays was made in
1978.11

In this first experiment, an iron foil was used in reflection geometry as a target, and

the foil was enriched with 57Fe to enhance the nuclear resonance signal. The experiment

. was performed on a bending magnet beamline which produced, when using a silicon

monochromator having a 2 eV wide bandpass, roughly 109 electronically scattered photons

for each nuclear scattered photon. Since the gating method was not completely effective,
a

background problems produced serious difficulties limiting the usefulness of this

technique. Crystals were introduced to further suppress the electronic background. For

certain crystals, the s7Fe ferromagnetic or antiferromagnetic lattice is distinct from the

electronic lattice. This allows, for certain crystal orientations, the electronic reflection to be



2 Introduction Chapt. 1

forbidden while the nuclear reflection is still allowed. The first observations of nuclear

scattered radiation from perfect crystals using synchrotron x-rays were made in the early

and mid 1980's. 12,13 Since then, many nuclear resonance fluorescence experiments have

followed at synchrotron radiation facilities to explore the dynamics of nuclear diffraction
Iw

from crystals. 1419

The question usually arises as to why should one use multi-million dollar
f

synchrotron storage rings to do M6ssbauer experiments when much cheaper radioactive

sources costing a few hundred dollars can be used. For instance, Bragg diffraction off

polycrystalline materials using radioactive sources was observed more than two decades

earlier in 1960 and off perfect crystals in 1969.20,21 As described earlier, what makes

synchrotron storage rings useful is the pulsed nature of the photons. This allows one to

use gated photodetectors and electronics to reduce the electronic background. Also, unlike

a radioactive source, the energy bandwidth of the synchrotron radiation is much larger than

the nuclear energy bandwidth. This allows all resonant nuclear hyperfine lines to be

excited, and results in nuclear hyperfine quantum beats that reveal information about the

internal hyperfine fields and the collective nature of the excitation. And, unlike synchrotron

sources, time-resolved resonance fluorescence experiments using radioactive sources

require deconvoluting out the time response of the source which can significantly alter the

resonance signal from the target. Also, synchrotron radiation can provide radiation over a

broad range of energies which, with present day undulators and wigglers, can be up to

50 keV. The design of longer, high powered, undulators and wigglers can extend this

energy range up to 250 keV, 22 thus making it feasible to perform experiments with most

types of M6ssbauer samples. Also, synchrotron rings provide linearly polarized beams of

x-rays that can be used for doing polarization sensitive experiments.

However, a radioactive source can produce many more resonant photons than

present day synchrotrons. For instance, a readily obtainable s7Co source having a strength

of 250 mCi produces about 101° resonant photons/sec. However, these photons radiate

into 47r steradians, so a better measure of photon production is spectral brilliance--the

number of photons per second per square millimeter of source size per square milliradian of

photon beam size per 0.1% frequency bandwidth. A 250 mCi source having an emission

area of 1mm 2 produces about 250photons/sec.mm 2. mrad 2" For an energy bandwidth of

AE/E = 4.67 × 10 9eV/14413eV = 3 × l0 -13,

the spectral brilliance is about 1012photons/sec-mm 2. mrad2(0.1% bandwidth).

Examining Fig. 1-1, the brilliance of radioactive sources is better than x-ray tubes, but is
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Fig. 1-1. Exponential increase in the spectral brilliance from man-made sources of x-
rays. Free electron lasers (FELs) currently in the design phase are estimated to yield a
spectral brilliance on the order of 103_. In comparison, the strongest radioactive sources

12 h rml i n ro Hyield a spectral brilliance on the order of 10 . (Reprinted wit pe "ss'o f m .
Winick) z3
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Fig. 1-2. Optimistic 1988 forcast of the spectral brilliance from the PEP synchrotron "
ring. The bending magnet and the 8 and 54 pole wigglers are insertion devices on the
SPEAR ring. PEP parasitic and dedicated were calculated using a 2 m undulator. The
open circles are proposed operations which never came about, and PEP was never run in a
dedicated mode at 14 GeV. For the experiments completed in this thesis project, PEP was
operated in a colliding beam optics mode (parasitic running), and a 2 meter undulator was
used. (Reprinted with permission from H. Wiedemann) 24
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only comparable with synchrotron beamlines having bending magnet sources. However,

when wigglers and undulators are used, dramatic increases in the brilliance many orders of

magnitude greater than radioactive sources can be achieved, thus making synchrotron

sources much more desirable than radioactive sources.

In this thesis, synchrotrons having wiggler and undulator devices were used for the

first time to do nuclear diffraction experiments. For bending magnet beamlines, the nuclear dc"

counting rate is no more than a few counts/sec. On wiggler and undulator beamlines, the

counting rate increased by a factor of 100 (for the 10-2 wiggler at the 3 GeV SPEAR

storage ring, counting rates of 80 counts/sec were observed, and for the PBF1 undulator at

the 15 GeV PEP storage ring, counting rates as high as 800 counts/sec were obtained, but

these rates are highly dependent upon the quality of the monochromator (heating problems

occur at high x-ray intensities), the x-ray beam optics, the detector efficiency, and the

electron beam current and optics). As seen in Figs. 1-2 and 1-3, the SPEAR 54 pole

wiggler has a spectral brilliance of about 1014photons/sec.mm2.mrad2(0.1% bandwidth)

at 14.4 keV, while the brilliance of the 2 meter PEP undulator is a factor of 10 greater when

run in parasitic, or colliding beam, mode (When run in a dedicated, or nonparasitic, low

emittance optics mode, the brilliance of the PEP undulator is expected to be 10,000 times

greater than the SPEAR wiggler. Unfortunately, before PEP could be run at 14 GeV in

this low emittance optics mode, PEP was decommissioned by the Stanford Linear ,

Accelerator Center (SLAC) for fiscal reasons). 24-26

The Jevelopment of high energy storage rings specifically dedicated for

synchrotron experiments is expected to push counting rates even higher. Already, the

6.5 GeV Accumulator Ring at the KEK high energy facility in Japan that has recently been

outfitted with a 3.6 meter undulator, and there are reports of nuclear signal rates as high as

10,000 counts/sec. 27,28 The 7 GeV APS ring under construction at Argonne, the 6 GeV

ESRF ring under construction in France, and the 8 GeV Spring-8 ring under construction

in Japan will have beamlines equipped with 4 to 5 meter long undulators that are expected

to be 1000 times more brilliant (see Fig. 1-4) than the PEP undulator (when, that is, PEP is

operated in colliding beam mode--the brilliance would be comparable to PEP were it to be

operated in a very low emittance optics mode). A feasibility study under way at KEK is

looking into the possibility of converting the electron-positron Tristan Collider Main Ring

into a dedicated, exceptionally intense, synchrotron light source called the TSLF (Tristan

Super Light Facility). 29 The TSLF, with a 6 meter undulator operating at 10 GeV, is

expected to provide an extremely brilliant source .of x-rays that is 3 orders of magnitude

greater than the third generation synchrotron sources under construction described above

and 6 orders of magnitude greater than PEP (The design of TSLF envisages using damping
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wigglers to reduce the electron beam emittance. If PEP were outfitted with damping

wigglers, its brilliance would be comparable to TSLF--see Figs. 1-2 and 1-4). Also in the

conceptual design stage is an effort to insert a 50-60 meter FEL undulator into the SLAC

linac. 25 If the technical difficulties of operating FELs near 1 A are overcome (such as
III

modulating the electron bunch structure to a 1 A periodicity), the SLAC FEL is expected to

have an extraordinary brilliance of 103tphotons / sec. mm 2.mrad 2(0.1% band width ) --th is is

" 15 orders of magnitude brighter than PEP and makes the nuclear photon flux alone (from

nuclear resonance scattering experiments) greater than the photon flux generated by present

day synchrotron light sources! The prospects of doing useful physics across many scierce

disciplines using the highly monochromatic (micro eV energy width), very collimated

(20 btrad or 4 arcsec angular spread), extremely coherent (30 m coherence length)

fluorescence radiation from nuclear systems looks very encouraging.

1 022
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Fig. 1-4. Spectral brilliance curves for various synchrotron storage rings. MR-short
" and MR-long correspond to a 6 m short undulator and a 70 m long undulator on the TSLF

ring. The APS and ESRF calculations were done for a 4.5 m undulator, a 5 m undulator
was used for the Spring-8 calculations, and all calculations used an electron beam current
of 100 mA. (Reprinted with permission from T. Ishikawa) 29
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This thesis is organized in the following manner. In Chapters 1-4, elementary

scattering theory is reviewed, culminating in the construction of the spherical multipole

electric fields scattered by resonant particles. In Chapter 5, I have constructed the complete

form of the multipole polarization tensor for magnetic dipole scattering in a linear

polarization basis. Nuclear level mixing is reviewed, and I give several interesting

examples of magnetic dipole scattering. In Chapter 6, I have worked out a novel

formulation of dynamical scattering from resonant systems using the principles of linearity

and time invariance present in system theory. This theory is used to examine the interaction

between two resonant particles, and it reveals that superradiance is due to very elementary

multiple scattering effects. I also show that the dynamical scattering equations, in the many

particle limit, give the same results as the Maxwell equations for a medium, thus connecting

quantum mechanics with classical electrodynamics. Chapter 7 reviews nuclear dynamical

diffraction theory, with an emphasize on the superradiant effects of radiative speedup and

resonance frequency shifts. Chapter 8 describes the EWALD computer code I wrote to

perform the numerically intensive nuclear dynamical diffraction theory calculations. The

program is written generally enough to handle any crystal type, to handle reflections from

multiple crystals, and can be used for systems containing nuclei other than _7Fe. Chapter 9

describes the general experimental setup along with details about the detector and fast

timing electronics.

Chapters 10 and 11 summarize my analysis of the results of the experiments carried

out by the Stanford nuclear resonance scattering group composed of myself along with

Dr. G. S. Brown (my thesis advisor), Dr. S. Ruby, Dr. J. Arthur, and A. Q. R. Baron.

The experiments done on the SPEAR and PEP rings were done in collaboration with Dr. E.

Alp and Dr. G. K. Shenoy of Argonne National Labs, and S. Sastri from the Cornell High

Energy Synchrotron Source (CHESS) collaborated in experiments done on the CESR ring.

In the Appendices, a copy of a Physical Review Letter article titled "Phase Shift of a

Rotated Quantum State Observed in an X-Ray Scattering Experiment" is given. Also given

are two time domain calculations using the dynamical scattering equations I formulated.

These calculations illustrate that the dynamical scattering equations can be used to examine

and understand the physics behind multiple scattering in a way that is not possible using the

conventional, index of refraction, approach where the Maxwell equations for a medium are

solved in the frequency domain and Fourier transformed into the time domain.
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2, TIME DEPENDENT NONRELATIVISTIC
PERTURBATION THEORY

q,

2.1 Perturbation Theory

The essential problem in nuclear dynamical diffraction is to adequately describe the

interaction of a charged particle with an electromagnetic field. This chapter will develop the

fundamentals of a time dependent perturbation theory that will be used to explore this

interaction process. 18 The following approach leads to a direct form of a scattering

amplitude in terms of a series expansion. Once the scattering amplitude is formulated,

many types of scattering processes can be examined.

In determining the quantum mechanical behavior of a charged particle in the

presence of a time-varying interaction potential, V(x,t), the time independent part, H0(x ),

is separated from the total Hamiltonian,

H(x,t) = Ho(X)+ V(X,t). (2-1.1)

If the solution of the time independent Schrtidinger equation can be found, then the

time dependent solution can be written in terms of a perturbative expansion of the known

" solution. The time independent Schr6dinger equation obeys the relation

Ho(X)q,,(x) = E(x), (2-1.2)

where _. are the stationary eigenstates of the unperturbed Hamiltonian and satisfies ',he

orthonormal relation

fv _O_'(x)O"(x)d3x= a,,,. (2-1.3)

The solutions of the time dependent Schrtidinger equation,

,9
ih--_t _¢(X,t) = [H0(x)+ V(X,t)]_(X,t), (2-1.4)

expressed in terms of an expansion of the stationary states are

- _(x,t) = __.a.(t)_.(x)e -_:''/_. (2-1.5)

To determine the coefficients, a.(t), this solution is inserted back into the Schrtidinger

" equation. The result of this operation is

ih Z. " "t'- "X" -z"/" )e-u_'"'/"a.( )¢.t )e " = V(x,t)_. a.(t)_.(x .

Multiplying both sides of the equation above by _(x) and integrating over ali space gives

11
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ioJ_ t

a/(t) = --___a,(t)V/,(t)e , (2-1.6)

where VI"(t) = SvO;(x)V(x't)O"(x)d3x (2-1.7)

and ¢o/, = (E/ - E,)/h. (2-1.8)

So far, this formalism is exact, and solving the coupled differential equations,

Eq. 2-1-6, is equivalent to solving the Schr6dinger equation. However, in general, an

analytical solution to al(t) cannot be found, and thus al(t) must be expressed in terms of a

series expansion. The convergence of this series will be determined by whether the

perturbation V(x,t) is small enough. The series expansion of al(t) will be defined as

ai(t) =--a_°)(/)+ a_l)(t) + a_2)(t)+...+a(iU-_)(t). (2-1.9)

Using the information tha't the system is definitely in a stationary eigenstate, _(x),

at time t =-oo, the zeroth order term in the expansion can be found. At time t = -oo, the

solution to Eq. 2-1.5,

,I=--*" n I--'--*o

is a,(-oo) = 6,_. The zeroth order term in the expansion is the solution to the Schr'odinger

equation when the perturbation is absent:

d_°)(t) = 0 (2-1.10) "

a_°)(t) = _,,. (2-1.11)

The next order term in the expansion is obtained by substituting the zeroth order

term into the relation for til(t), Eq. 2-1.6:

_i_)(/) = (-i/h)V_(t)e '°':' (2-1.12)

a_l)(t) = (-i/li) f_. V_(t')e '_''''dt'. (2-1.13)

This substitution process can be done recursively to obtain ali the other higher orders. The

second order terms are:

• 2 ifOl_t t . .,

il_2)(t)=(-t/h) Zl_,(t)e __. V,a(t')e'_'"'dt" (2.1-14)
nai

a_2)(t) .2 '= (-t/h)Z__dtlV/,(tl)ei_°t'"_'dt2V, i(tz)e i_'''' (2.1-15)
nai

The constraint on the sum, n _ i, forces any intermediate state, In),tobe different from the

initial state (there is also the constraint that n _ f). Thus the intermediate state transitions
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do not conserve energy: 09/, _ 0 and to,u¢ 0. The self energy terms, Vi,, will be partially

ignored. They are described by single particle scattering loops in Feynman scattering

diagrams, and, when they are more carefully evaluated in a covariant perturbation theory,

they will only contribute energy shifts to the scattering amplitude. No attempt will be made
o

to calculate such energy shifts--they will simply be lumped with the experimentally

measured isomer shifts and appropriately inserted into the scattering amplitude,

" The third order amplitude is listed below:

.t .ei_,t._ft " V / "d_3)(t)=(-i/li)3ZZv/,t ) j_ at_ ,_l,tl)e'°_'"I_' dt2V,_(t2)ei_'"" (2-1.16)
rn_i nam

a(7)(t) ' v.r f'- c r'- r. . ._ dt,.:.,t,,e"°'"j_ dt, V,,,t2,e'°'-"j_ dt3V,_,t3,e '°'''' (2-1 17)
m_i nam

.,

2.2 The Scattering S and T Matrices

" After the interaction perturbation ceases, the system resides in a definite stationary

state, ¢/(x, t). Then the transition amplitude for a transition from an initial state to a final

-.. state can be defined in terms of the elements of a scattering operator S,

=O:lsl,>-(0/(X,t)[gt(X,t))= ___na,(t)e-Z"i'Iv O;(x_.(x)e _:''/'

=az(t) (2-2.1)

The S-operator is then a unitary operator that describes the evolution of an initial state,

[_,(x,/)),to a final state, Igt(x,/)),during the action of the perturbation'

S[dp,(x,t)) = Igt(X,/)). (2-2.2)

The unitarity of S can be seen by noting that

=1=O,Is*sl,>. (2-2.3)

This is true only if S*S = 1. Summing over ali the possible final states gives a total

" probability for a scattering event to occur of unity,

. = (2-2.4)

The matrix elements of the scattering operator can be found by evaluating the

perturbative expansion terms of a/(t), Eqs. 2-1.10 to 2-1.17. The transition probability is
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II2Sa , and the transition probability per unit time, or transition rate, is the time rate of

change of the tr_,nsition probability, 5

O_ 2 . •

r,= is,I=s;s+s;s, 2-25)
The other inte_._fing quantity desired is the T-matrix element, Ta , which should be

differentiated from the transition probability in that it describes the amplitude of a scattered

wave rather than the probability for a transition from an initial state to a final state. The

structure of the T-matrix can be seen by evaluating the transition rate for the simple case of

a constant interaction perturbation,

V(X,/) = V(x) (2-2.6)

T_e zeroth and first order terms of the S-matrix elements can be found using the

perturbative expansions of Eqs. 2-1.10 to 2-1.13:

• t i_/it'

Sa = &: + (-,/h)__. Vae dt" (2-2.V)

=(-,/h)Vae . (2-2.8)

The transition rate is then

x, ," -iaJat[c ]r a = (i/h)vae [oa + (-i/h)_"vae"°'" dt' "

+(-i/li)Vae'_'"'[_a+((,.,)_."''-"_''"]vae " dr'.

The 6-function terrns yield

(,/qv;- vo'_ '1 -,=(_/h)[(_,lv_,)-(_,lvi_,>]o
since the interaction perturbation Hamiltonian, V(x,t), is Hermetian: V t = V. Then,

F,=(I/li2)V;Va[;e'_'("-')dt'+I;e"°'('-")dt'].

Making the change of variables u = t' - t for the first integral and u = t - t' for the second

integral results in

2 " 0 __Oe,_,_,,du] = [2v,=(_/h)v;.v:[I_.e'°'"du . ('/_1i_,I'.e'°'"a,
0

: 2_[v,l'a(E,- E,) (2-2.9)fi

where the following relatio1:_ were used:
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_?.e '_'dx = 2 xdT(k) (2-2.10)

1

_(ax) = i-a-_S(x). (2-2.11)

Equation 2-2.9 is the Fermi Golden Rule to first order. Also the _-function

.. preserves the conservation of energy condition--this is usually termed in the scattering

language as the on-energy-shell condition.

To obtain the Fermi Golden Rule to second order, the S-matrix elements must be
evaluated to second order:

Sr' 6r,+(-ilh)_- "''_'''' S._.vr,e dt" + (-iiti)2_ .... ,o,,,,= aqvi.e _'**dtzV.iei°_''' (2-2.12)
nai

Inserting a small positive imaginary quantity, it where e > 0, into the exponent of the last

integral allows one to perform the integral to get a meaningful result. After integration,

taking the limit as e --4 0 gives the final result. This procedure, though seemingly ad hoc,

is very important in ensuring that the S-matrix obeys the accepted rules of causality for

incoming and outgoing particles. The last integral in the third term above then integrates to

f_' j'_' ei(E'-E','','dtzV,.ei`_''2= lim dt2V,_ei(e'-_'-i<)''/_ = iliV.i
,. _-->o Ei - E,

Then,

Sr_= <$r,+ (-i/h) Vr,+ Y_..,E,- E. -

[and Sr, = (-i/li) Vr, + _,,,,.Ei - E, el<°"'' (2-2.14)

Sr, and Sr, have the same form as their first order expressions for the substitution

v,.v,
_e ..Nii I

Then employing the same techniques as before gives

Iii

Fsi = -'_---Vr,+___Ei_E""'' (Ei-Ei) • (2-2.15)

This gives the on-energy-shell T-matrix elements to second order,
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T/i = Vt + £,,,,_ - hS,' (2-2.16)

The Fermi Golden rule to ali orders can now be written in a compact form:

2a:lr 12_(E/- E/), (2-2.17)

v,,v, v,.v.v.= + £ __-_,_//- ) +.... (2-2.18)where Tli Vt + _-"Ei- E,,,,,, ,,,. (E, E.

2.3 The Scattering Amplitude

In dealing with scattering prob|ems, knowledge of the total cross section of a

scattering event is very useful. The total cross section can be evaluated from the transition

rate using the following definition:
,ii

_ ali scattered photons/sec _ _/Ft

o'_,, - flux of incident photons - nivi/V o ' (2-3.1)

where n, and va are the number and velocity of the incident particles, and V0 is the volume

of space enclosing the interaction region. Summing over ali the possible final states gives

the total cross section. Using the Fermi Golden rule, the total cross section can be

expressed in the form

2nr/h 2 -E_) (2-3.2)°°'- ,,,v,/Vo£, Ir'l
Notice that Tt in the expression above is in units of energy. The expression for a

scattering amplitude in units of length can be obtained by showing that G,o, satisfies the

optical theorem. To do so, first note that the S-matrix elements, for t --eoo, follows the

relation

St = 5t - 21rirta(E / - Ei). (2-3.3)

Using the unitarity properties of the S-matrix yields "

= =E s.,s.
= _.,,,[gJl, a,,, + 2rcia, T/c_(E/- e,,)- 2lria,cT,,,a(E,,- E,)
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+ e.)a(e.-e,)]
Then,

, [(T; - T_)- 2zci_.,T;T,,S(E.- E, )]8(E/- E,): O,

where the identity 8(E z - E.)S(E. - E,)= _5(E/ - E_)8(E,,- El) has been used. The

-- above expression is true on the energy shell if

(T;- 2, Z - E,)-o. (2-3.4
This is simply an equivalent expression of the unitary condition expressed in terms of the

scattering amplitude. The diagonal elements yield the meaningful result

T_,- T_,."= 2i Im{T,,} = -2 _zi___,,[T,aIZS(E, - E,). (2-3.5)

The total cross section is then

2V° Im{T_,}. (2-3.6)
lin_v_

This is the optical theorem, and it relates the total cross section to the imaginary part of the

, scattering amplitude. The photons have been elastically scattered since the final state of the

system is identical to the initial state.

A normalized scattering amplitude in units of length can then be defined as

Fli,(kf,k_)=-aoT _, (2-3.7)

1 Vok/ (2-3.8)
where A° = _, 2_rfiv_

The factor 1/,f__ normalizes the square modulus of the scattering amplitude to the number

of incoming particles, and R, and k/are the incoming and outgoing photon wavectors

respecr;,'_Iv. Then, for one incoming particle undergoing elastic scattering

O'M'-- 4zrIm{Fii(k/'k'l}k-- . (2-3.9)I

" This is the familiar form of the optical theorem seen in classical electrodynamics.

However, when many scatterers are present, the total cross section is proportional to the

o forward scattering amplitude, F(k/=ki). This multiparticle scattering behavior will

explored later.
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Basic assumptions about certain symmetry laws in physics have been made in the

construction of o',,,,. For instance, a generalized scattering cross section can be constructed

from Eq. 2-3.4

,,,=-  23.10) "
kt /

This expression can be put in a form similar to Eq. 2-3.9 by applying the law of reciprocity ...

for systems possessing space-inversion symmetry. 9 The law of reciprocity states that a

scattering event in which an incoming particle scatters from k, to ks is identical to a

scattering event in which the particle scatters in the reverse direction from -k I to -k i.
Then

p,,(k,,k,)-r,(-k,,-k,)  2-3.
satisfies the principle of reciprocity (see Fig 2-3.1). As long as one remains on the energy

shell, reciprocity is simply another way of stating that time reversal invariance holds, t°

: iv

I,) Is') I,) Is)
Fs_(ks,k,) = Fj (-k,,-k/)

Fig. 2-3.1. Illustration of reciprocity where the scattering amplitudes for a scattering
process and its time reversed process are equivalent.

_,,,_/__ F_(k,,k/)I,) Is)

I,) Is) _'_. "- .
Fv (-k ,-ks)

Fig. 2-3.2. Illustration of space inversion symmetry. Photons traveling in the x
direction sees the same interaction as those traveling in the -x directon.
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If the scattering system possesses space inversion symmetry (that is, the interaction

perturbation satisfies V(x)= V(-x) ) then, from Fig 2-3.2, the scattering amplitude obeys
the relation

, P,(k,,k,).  2-3
This makes the scattering amplitude (and the scattering T-matrix) symmetric

- Tc = Ta or F¢(k,,kl) = F_(k,,k,). (2-3.13)

Under suchconditions, the generalizedcrosssectionreducesto

O'::": 47rIm{F/_(ks,k/)}k--;- . (2-3.14)

The generalized cross section reduces to the elastic cross section, Eq. 2-3.9, when the

initial and final states are identical. This also shows that the elastic cross section is valid

only when the scattering system possesses space-inversion symmetry, and time reversal
invariance holds.
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3. SCATTERING THEORY

3.1 Semiclassical Wave Theory

So far, a quantum mechanical, microscopic description of the scattering amplitude

has been derived for a single incoming particle interacting with a scatterer. The goal is to

derive a macroscopic description of the scattering amplitude for one or more incoming

particles interacting with many scatterers. And, if the scatterers are densely distributed in

space such that their interparticle separation is on the order of or less than the wavelength of

the incoming particle, multiple scattering events must be taken in to account. Purely

quantum mechanical calculations become quite difficult to compute when dealing with the

interaction of more than two particles, and are, in many cases, impossible to compute when

the number of particles exceeds several hundred. A small solid target with interatomic

distances on the order of 1/_ and that is 10 I.tmthick with a surface area of 1 mm will have

on the order of 10t9 scatterers. Clearly, a purely quantum mechanical approach toward

solving the scattering problem is not possible. "

One must therefore rely upon some other approach, such as a semiclassical theory,

to obtain a macroscopic scattering amplitude. Fortunately, the inhomogeneous classical o

wave equation inherently describes multiple scattering--it describes the propagation of a

wave (a packet of many incoming particles) in a many particle medium. Its superb success

in describing wave phenomena in classical physics is why the semiclassical framework is

commonly used to make the bridge between classical and quantum physics.

From here on, the emphasis will mainly be on scattering processes in which

photons are the incoming particles (with the knowledge that inhomogeneous wave

equations can be constructed for other particles, such as electrons). In the classical picture,

their interaction with matter is adequately described by the Maxwell equations. Jackson 1

shows how to go from the microscopic Maxwell equations,

10b o
V-b=O Vxe+-_=O

c c)t

lOe 47r.
V-e = 4n0 V ×b --M = --I, (3-1.1)

c o3t c

where e and b are the microscopic electric and magnetic fields and 7/ and j are the

microscopic charge and current densities, to the macroscopic Maxwell equations,

20
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1 0B
V-B=0 VxE+---=O

c Jt

V.D = 4Jrp V xH -1 0__.D.D= 4trj, (3-1.2)" c Ot c

where p and J are the macroscopic free charge and current densities. The transition from

. the classical microscopic equations to a semiclassical macroscopic description is done by

taking the expectation values and spatially averaging over ali microscopic quantities.

Spatially averaging over the microscopic fluctuations due to thermal motion, zero point

fluctuations, and orbital motion, gives the smooth, slowly varying macroscopic quantities

present in the Maxwell equations for a medium. The macroscopic picture is taken to be on

the order of Avagadro's number of atoms per cubic centimeter, 10_ atoms/cm 3, where the

length scale, 100 A, is taken as an absolute lower limit to the macroscopic domain. The

macroscopic electric displacement, D, and magnetic field, H, come from the spatial

average over the microscopic charge and current densities

. O_=E_+4x P_-_-O Ox-----_+''" (3-1.3)

H_ = Ba -47r{M_ + "..} (3-1.4)
q,

where P(x,t), Q'(x,t), and M(x,t) are the macroscopic electric polarization, quadrupole

density, and magnetization. For a substance that has a linear response (that is, any induced

electric or magnetic polarization is proportional to the magnitude of the applied field),

D=_:E (3-1.5)

H = I.t-lB (3-1.6)

where c and PLare the dielectric and magnetic permeability tensors. Note that the dielectric

and permeability tensors are proportional to the electric and magnetic multipole moments.

As a simple example, let both tensors be diagonal, with ali diagonal elements equal,

as for an isotropic medium. Then

Do = eoE_ , Ha = laolB_ (3-1.7)

and thus

{ teo = 1+ 4 tr P_ 1 OQ_
E_ S, yqj Ox----_+ "'" (3-1.8)
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}and /.toI = 1- 4 [ B,_ + "'" ' (3-1.9)

For multipole moments small in comparison to the electric and magnetic fields that generate
aC

them, the quantity e0,u0, which is the square of the index of refraction, is then

I } -n2 = e0/_0 = 1+ 47r Pa + Mc' 1 Ep c)Q_a+ "'"
LE a B,_ Ea ax#

+(47r) 2 x Multipole Mixtures. (3-1.10)

This shows that the index of refraction of a medium is proportional to the electric and

magnetic multipole moments generated by that medium, and it also has terms proportional

to mixtures, or products, of electric and magnetic multipoles. The quantum mechanical

expectation value of this quantity will be taken to produce a semiclassical theory for the

scattering amplitude.

3.2 inhomogeneous Wave Equation
,lP

The inhomogeneous wave equation can be constructed from the Maxwell

macroscopic equations. However, one must note that the relationship between D and E

can be nonlocal. In other words, D at time t and position x can depend upon E at tirnes

and positions other than t and x. The relationship between the sources, c(x,t), and the

fields they generate, D(x, t), must be causal to ensure that the fields do not instantaneously

propagate from one point in space to another. For the electric displacement l

Ep_d3x'_dt'e,,p(x',t')E_(x - x',t-t'). (3-2.1)D_(x,t) =

In frequency space,

D, (k. o9)= ,_p e,_p(k. _)Ep (k. _) (3-2.2)
le

andsimilarly

-I k . .(323)
where the Fourier transform is defined as

f(k, co)= .[ d3x_ dtf(x,t)e -'k'=+"a. (3-2.4)
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The inhomogeneous wave equation in frequency space can now be constructed.

The Fourier transform of the E and B fields in the second relation of Eq. 3-1.2 gives

V x E(x, w)- i (° B(x,(o) = 0. (3-2.5)
Clm

Doing the same for the fourth relation of Eq. 3-1.2, for no free current, gives

- I dooe-i"Id'x'eaX" {Vx [g-' (X', w)B(x - X', ¢0)1+ i---_e(l', to)E(x-c X', 09)} = 0.

The dielectric and permeability tensors depend upon the observation point x since they ma),

have an overall spatial distribution throughout the interaction volume. If the spatial

frequencies of the inverse magnetic permeability are far smaller than those of the magnetic

field, spatial derivatives of the inverse permeability tensor can be neglected. If the sources

that generate the multipole fields have dimensions that are small compared to the spatial

variation of the E and B fields in the medium, then they can be considered to be sharply

localized around the points x' with negligible effects outside a small volume around x'

Then, for particles such as electrons and nuclei that have diameters much smaller than the

spatial variation of light down to X-ray wavelengths, the tensor quantities can be

- approximated as

g-_ (x',(o) = 6(x- x')g-_(x, o_) (3-2.6)ql,

E(x', a_)= 6(x- x')_:(x, ¢o). (3-2.7)

Then the expression above reduces to

V x B(x, (o) + i ('°p(x, (.o)E:(x,(o)E(x, w) = O. (3-2.8)
6'

Taking the curl of Eq.3-2.5 and substituting the results into Eq.3-2.8 give the

Maxwell wave equation for a medium'

V2E(x,ro) + ( 2w.o/c)I.t(x,r.o)c(x,(o)E(x,(o) = 0 (3-2.9)

where the observation point has been placed far from the scatterer to make the longitudinal

components of the E field negligible so that V. E = O.

. A quantity 2_:o will be defined where
2

n = 1+ 2_0(X, O9) = g(X,O))_:(X,(o). (3-2.10)

- The quantity 2_:0 carries ali the information about the electric and magnetic multipoles.

This leads to an expression of the inhomogeneous wave equation for transverse electric
fields within a medium

(V=+k2,.+ = 0, (3-2.11)
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where ko, = oo/c (3-2.12)

and V- E = 0. (3- 2.13 )

3.3 Integral Scattering Equation
Q

There is a scalar wave equation for each component of E. Let q_ be one of those

components of the E field in a basis that diagonalizes the index of refraction tensor. Also

define
2

U(X, co)= ko,[2eo(X,W)]. (3-3.1)

The scalar wave equation is then

(V 2 + ko2,)_p(x,_)=-U(x, co)q_(x,_). (3-3.2)

The Green function techniques can be used to solve this inhomogeneous scalar

wave equation. Constructing a Green function that satisfies

(V2+ ko2,)G(x,x')= -4n'6(x-x') (3-3.3)

leads to the solution of Eq.3-3.2:

q_(X,lO)= O,(X,(0)+ j' G(x,x')U(x',(o)q)(x',(o)d3x ", (3-3.4) -

where ¢_(x,(o) is the solution to homogeneous wave equation

(V 2 + k0Z)_i(x, w)= 0. (3-3.5)

Thus _0,(x,t) represents the state of the system, or the wavefield in the medium, before the

perturbation U(x,t) exists -- O¿(x,t) is the initial, or incoming, wavefield.

Equation 3-3.4 is commonly referred to as the integral scattering equation or the

Lippmann-Schwinger integral equation. 24 The second term describes the scattered part of

the incoming wave. To see this more clearly, note that the Green function for outgoing

spherical waves is I

ea0,1x-x'l

G(x,x') = 47fix_x'[" (3-3.6)

For observation distances far from the scatterer, Ixl>>Ix'l,then

x .x'
Ix- x'l: 4__+x'_- 2x.x'_x-_.

X

bir " PlWl
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observation
point

- _catterer

Fig. 3-3.1. Scattering Geometry

Also note that x is approximately the direction of the fields emanating from the scatterer.

Defining a propagation vector

kI = ko,(x/x ), (3-3.7)

gives

_p(x,(o)= ¢,(x,o_) + 1 ea°',4_ x [ ( } ( _je'k"X'U'x"(°'_°'x"('°'d'x'"
(3-3.8)

.. Letting the final wavefunction, which exists when the perturbation U(x,(o) ceases, be a

normalized plane wave state

• ikI .Xe

_i(x,(o) = (2n@, (3-3.9)

and, assuming that _o(x,(o) will also have a normalized plane wave structure, then

eikO,X

q_(x,(_0)= dp,(x,(o)+_f(k/,k,) (3-3.10)X

where a scattering amplitude, f(k/,k,), has been defined as

f(kf,k_)= 2zr2I_f(X',(.o)U(x',(o)_o(x',(o)d3x', (3-3.11)

and the incoming wavector is defined as

k, : ko,.(x'/x ). (3-3.12)
,lp

So far, only a classical approach towards scattering has been followed. To obtain a

semiclassical formalism that is general enough to deal with many types of incoming

particles and scatterers, the scattering amplitude is related to the expectation value of a

perturbation operator

f(k,,k,)- > (3-3.13)
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where 10.t) is the total final quantum state of the system which includes both the incoming
9 _

particle and the scatterer, and IV) is the total quantum state of the system during the

perturbation.

The form of the operator U(x, ¢o) can easily be obtained from quantum mechanics.
4

For instance, nonrelativistic particles with mass obey the Schr0dinger equation which can

be put into the form of a scalar inhomogeneous wave equation. In frequency space the

Schr0dinger equation can be written in the form

(V z + k0Z,)_(x, ¢o)= (2m/hZ)V(x,_o)_(x, o9) (3-3.14)

where k02,= 2mE/h 2. (3-3.15)

The scattering amplitude for particles with mass is then

f(k/,k i): -(4 71:2m/h2)(_1 IvI (3-3.16)

3.4 Scattering Amplitude for Photons

To derive me scattering amplitude for massless incoming particles, a relativistic

Schr6dinger equation must be developed. This can be done by utilizing the Schr_linger

time dependent equation

0
ih--_ Ip,(x,t) = H_(X,/). (3-4.1)

The relativistic energy-momentum equation allows the construction of a Lorentz invariant

Hamiltonian for the photon:

112= p2c2 (3-4.2)

where p = -ihV and, from the SchrO:linger time dependent equation,

H = ih 0---. (3-4.3)
Ot

Then Eq. 3-4.2 reduces to
¢

c20t z

when it operates on a wavefunction V(x,t).

Define the space-time 4-momentum operator prcx.tuctas
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1 0 2
- - V2 =-OuO u (3-4.5)-Pu Pu c2 Otz

where c)u=(10,V ) Ou=(1 O -V) (3-4.6). ,c Ot ' c Or'

and pU = iOu. (3-4.7)

- Then, the relativistic operator wave equation for a photon can be written in the form

0u3u Ut(x,/) = 0. (3-4.8)

The first quantization condition instructs one to perform a gauge transformation on the
4-momentum

pU ___>pU + (e/c)A u (3-4.9)

where Au is the 4-vector potential, Au = (O,A), and • and A are the scalar and vector

potentials of the state consisting of both the photon and the scatterer. The gauge
transformation then results in

" Then

3u0u _(x,t) = V(x,t)_(x,t) (3-4.10)
,m,

where V(x,t) = i(e/c)[OuAU + AUOu]+(e/c)2AUAu. (3-4.1))

Equation 3-4.10 is the Klein-Gordon wave equation for a massless particle. Written out

explicitly, it has the form of an inhomogeneous wave equation

c2 0t 2 + V(x,t) V(x,t)=0. (3-4.12)

This expression can be written in frequency space by using the same methods as in Section

3.2 where, to maintain causality between sources and the fields they emit, the product

V(x,t)V(x,t) is more accurately expressed as the convolution in space and time of the two

quantifies. The frequency space representation of the Klein-Gordon wave equation is then

IV 2 + k0Z_,+ V(X, o9)]V(X, Og)= 0. (3-4.13)

This equation has the same form as the classical wave equation, Eq. 3-2.11. Both

equations must be equivalent in the many particle limit where the quantum and classical

pictures converge. Thus, the index of refraction effect is the physical observable found by

taking the expectation value and spatially averaging over the interaction volume of the

interaction perturbation Hamiltonian
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,o_.[2_0cx_0)]:co,st×(ofIrl_,). c3-4._4)
The constant can be determined though the optical theorem. From the Maxwell

equations the exponential decay of the intensity of a field traversing a distance d through a

medium is related to a macro,,cop ...... tal cross section ,,

! = loe-"/a='qv° (2-4.15)

where %, is the number of scatterers, 10 is the incoming field intensity, and the

macroscopic total cross set.,ltm is the spatial average of the microscopic cross section

derived in Section 2.3. But,

l = lole""xl2 = loe-k'd'mP_°}. (3-4.16)

Then, for one scatterer

Im{2eo}=-_,/kIVo=4rC {k_Vo( )}
lm F kl,k i . (3-4.17)

If the imaginary parts of the two quantities are related by the expression above, then by

analytical continuation both the real and imaginary parts are related by

nn: F(k/,k,)= nrc ,4o_--_" (3-4.18)2_°(x'_°)=_-_0 k_Vo
This is a form of the Lurentz relation seen in classical electrodynamics. 5 The

constant in Eq. 3-4.14 has then been determined along with a di_ct form of the T-matrix
elements

T,_=(_,lvl_,>. (3-4.19)

The T-matrix elements on the energy shell are given in Eq. 2-2.18. A more general

expression can now be derived by making use of the series expansion of the perturbed

wavefunction, Eq. 2-1,5

(¢;,(x,t)lV(x,t)l_(x,t))= Z a,(t)e-_"'%_:"l'[ ¢p;(x)V(x,t)dp,(x)d3xdVo

= it_r,(t ) . (3-4.20)
,B

Thus, the T-matrix elements are proportional to the time rate of change of the transition

amplitude from the final to the initial slate. Als() note thai.

(_,lvl_,>=(_,lrl_,> (3-4.21)

whichleadsto TI_,)=vl_,)=vsl¢,.) _3-4.22)
and thus T = VS. (3-4.23)

2

_

--
,,
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The T-operator is then a scattering operator that describes the combined effect of a

perturbation and an S-scattering operator.

b

3.5 Coherence Properties of the Scattering Amplitude

An examination of the S-matrix elements for a constant perturbation will yield

useful information about the coherence properties of the scattering amplitude. From

Eqs. 2-1.10 to 2-1.17 in the section on perturbation theory, and using the ie convergence

factor to do the integrals as was done in Section 2.2, gives an expression for Tr, up to third

order for the c:)nstant perturbation, Eq. 2-2.6:

• . waf,t ,, ital.t ft ,
T: = iM:(t) = ,h[(-t/h)V:e ' + (-i/h)2Z v/,e j__ V,,e'_''' dt'

n **i

"" '°-" L ...]+(-i/h)3Z Z v/,e j_.. _e dt] V,ue''°"'' dt z +
m_i nttm

.[ v,v.v.1• -e- _+ _"]_ E +-... (3-5.1)..,...( ,-e )(e,-e.)
The variable t in the expressions above is simply a parameter that indicates when

the perturbation is turned off. Since the lower limit of the integral in the evaluation of T/,

was t =-_, an assumption was made that the perturbation was left on for a time long

compared to the period of the oscillator (many oscillations occured during the perturbation)

1
t >>--. (3-5.2)

(.O/_

The coherence properties of T: are now readily evident. On the energy shell, or for

energy conserving transitions where E, = E/, the overall phase factor disappears and gives,

. as expected, the on-energy-shell T-matrix elements expressed in Eq. 2-2.18. Off the

energy shell, or for non-energy conserving transitions where E, _: El, the overall phase

- factor remains attached to T:. At this point one should note that there are no physical

systems that can instantaneously turn off a perturbation--sources have an effective decay

time associated with the lifetime of the atomic systems comprising the sources. There is

then an uncertainty relation associated with when the perturbation is turned off which will
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Fig. 3-5.1. Uncertainty, Atr , in when constant perturbation ceases.

be called a jitter, Atj. The jitter should be on the order of the inverse spontaneous

linewidth, or decay rate, of the source

Atr ~ 1/F. (3-5.3)

Typically F is on the order of or greater than 109/sec (for atomic sources). Photons with

frequencies in the visible to X-ray regime have energies E > 0.1 eV or frequencies

v> 10'4 cycles/sec. Thus, for X-ray photons, the jitter will cover many periods of
I

oscillation. Since the time parameter, t, is uncertain to within Atj, the phase is then

essentially random. If coa ¢ 0, then Ta will exhibit a type of temporal incoherence.

The coherence properties can be observed in the definition of the differential

scattering cross section

do'.= [F(R/,R, t2 = A_irl,[2. (3-5.4)dfl

If there is more than one final and initial state, then the total differential cross section is the

sum over ali possible states

d__.____: A_ Ta : A_ Br,e'*_ (3-5.5)dr2

where B/_is some complex scattering factor for the transition from i ---)f and ¢_ = _t is

a random phase factor. For the example in this section,

v,.v. v,v_v.
= + Y- Z - _-_._, -_ ) +..- (3-5.6)

B_
V/i+_E,-E (Ei E.n _ l rcl r_ l _ tl rtt



(3.6) Harmonic Perturbation 3 1

Since epais a random phase, ali the interference terms average to zero and

do" 2 2- 4 + y_.lo l.
. i i,f,ti

The total differential cross section is composed of two terms. The first term is a

coherent sum of amplitudes that have the same temporal phase factor: ¢, = 0. Since each9'

amplitude always lies on the energy shell, the scattering is elastic. The second term is an

incoherent sum of amplitudes with nonzero random temporal phase factors. Since each

amplitude always lies off the energy shell, the scattering is inelastic. Imbedded within each

of the terms in Eq. 3-5.7 is a coherent sum over ali possible intermediate states as

represented by the expression for B_ in Eq. 3-5.6. For this reason, calling the scattering

process represented by each term in Eq. 3-5.7 as either a coherent or an incoherent process

is misleading and ambiguous. For elastic scattering all scattering amplitudes are coherent

with each other, whereas for inelastic scattering the scattering amplitudes may or may not

be coherent with each other. This discussion is summarized below :

. Transition 1: i -->f ] Amplitudes T_and Tz are incoherent with respect to each other for

Transition 2: i--->fz_'l f_ _: f2. If f _:.fz _:i the scattering amplitudes are inelastic

" Transition 3: j -->k /J (_n :_0). If _ = co;,_then T_ and/'3 are coherent with respect toeach other (and inelastic if f_ :_ i and k _: j)

Transition 1: i -->na -->f 1 Amplitudes T_and T2 are coherent with respect to each other,

Transition 2: i -->rh ---)f[ / and if f _: i the scattering is inelastic. If w_ = ¢o_ then T3 is
/ coherent with respect to both T_ and T2.

Transition 3: j --> k --->rnJ

Transition 1: i -->na -->i ] Amplitudes T_ , Tz , and T3 are ali coherent with respect to

Transition 2: i -->n2 --> it each other and the scattering is elastic.
- Transition 3: j --->k _ j J

- 3.6 Harmonic Perturbation

The interaction of a photon with a scatterer is modeled in perturbation theory by

forcing the interaction perturbation to be a harmonic potential. Before second quantizing
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the scattering theory, important information can be extracted by examining the semiclassical

perturbation of a monochromatic harmonic potential

0 t --->-oo (3-6.1)v(x,t) = 2v(x)coso)t
The T-matrix elements, to second order, are then

<"+"e"e<°'"]. F _(_,_,,,,), -,,,), e + e +

Tr,=Vr,[e +e '(_'_ + VI.V,, _-_-(-ff_.+_) + . (3-6.2)e,-(e.-h,o)
Examining only the T-matrix elements that lie on the energy shell reveals that there can be

both elastic and inelastic scattering processes (in the constant perturbation case of the last

section only elastic scattering processes existed on the energy shell). These processes are

summarized in the diagrams below.

(1). Single photon absorption (inelastic scattering):

o)/i - o)= 0 Tr,=Vf, _J'W'k.rkJ_ / &

Fig. 3-6.1. Single photon absorption.E, + rico= Ei f_ = (.ok,
'..-----N.--- ---_
initial state final state

energy energy

(2) Single photon emission (inelastic scattering):

........ Es _s,I
o)_+o)=0 T;,=Vr,

I E

,,)

Fig. 3-6.2. Single photon emission.
E, = E/ + ilo) _2r,=--o)k,

initial state final state

energy energy
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(3) Two photon absorption (inelastic scattering)'

C0fi -2O)= 0
T'_=l-'Ei-E_+ha,u_",,,,, _" " i

E
w,

Ei + 2ho)= Ez f_,_ = o)k, E,

2o) = ¢Ok,+ o)k, f2f, = tO'k, Fig. 3-6.3. Two photon absorption.

--0) tFor monochromatic incoming beam" o)k, k,

(4) Two photon emission (inelastic scattering):

..... E/ _.f,,

. V/,V_ , ] E_ fl.
o)li + 2o)= 0 Tr, = E..,.E,- E, + tif_.i "%tM'XIXIl_

" Ei = Ez + 2ho) f'Z,,i =--o)kl Ei

2o) = o)k_+ C0'kl _/_ = --tO'k/ Fig. 3-6.4. Two photon emission

-- (/)PFor monochromatic outgoing beam: o)k/ k_

(5) Absorption reemission (elastic if o)k, = O),_):

f_,u . E. f_'.

b"v' E,

Fig. 3-6.5. Absorption reemission." E,= E: =o),,,

,,i --(-Ok/
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(6) Emission reabsorption (elastic if t.ok,= tok/):
P

_,,, E,, _,, .vi.v"* E,
t.o_= 0 Tr'= _'_,,,.,E,- E,, + h_,,,

Fig. 3--6.6. Emission reabsorption. "
E, = E! f2,, =-Wk,

P

_. = (.Ok_

Notice that even though the harmonic potential describes a single incoming particle,

some of the processes (and all of the higher order terms) have more than one photon

interacting with the oscillator. Perturbation theory then allows for many photon transitions

to occur. Even though the semiclassical perturbation was not second quantized, it must

consist of many discrete photons in order for the perturbation expansion to make sense.

This is then a reconfirmation of what a classical field is--a distribution of quantum particles.

Note that the emission reabsorption case i.,_simply the time reversed process of the

absorption reemission case. There are also time reversed processes for the two photon

absorption and emission cases that have been omitted. Performing a coherent sum over ali ,f

these different processes leads to a total scattering amplitude which is similar to that derived

in the constant perturbation case restricted to the energy shell

Vl.V V,.V.V.,
T_ = V_ + Y--',,,,E,- (E, - h_,,) + --,"",t,,",'5'_"_ [E,-(E,,- hf_,,,)]iE,-(E,- hf2,,'l +'"",l (3-6.3)

3.7 Resonant Transitions

The expression in Eq. 3-6.3 is valid as long as ali possible time ordered events are

included. However, there appears tct be a major problem for resonant transiticms. For

insta_ce, for resonant two-photon processes, h_., = E- E,. thus the second and ali

higher order terms in Eq. 3-6.3 go to infinity--the expansion appears to diverge. Tc) keep

the perturbation expansion convergent, a sum over many higher order terms must be

performed. Tct do this. note that 7}, can be rewritten in a form similar to the l_ippman-

Schwinger equation
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VI"T" (3-7.1): +Z e,- e + "..,
For instance, the third order term can be constructed by inserting the second order term in

- for T_. Doing so results in Eq. 3-6.3 when T_ is set equal to V,,,. This procedure can be

done indefinitely to obtain ali the higher order terms.

. Another problem that must be properly dealt with is the correct expression for 1Ix.
From Dirac one finds that6

1Ix = P{1/x} - izrr(x) (3-7.2)

where P is the principal value and 6(x) is a Dirac delta function. This relationship can be

inferred from noting that one would usually expect that

--_dlnx = 1Ix. (3-7.3)
dx

However, upon integrating both sides of the expression near x = 0 gives

d(lnx)= In(-1) and l/xdx =0,

where the second integral is zero because 1/x is a well behaving odd function. The

integration then leads to the contradiction: In(-1) = 0.

Using the relation for the log of a complex number

• lnx = lnlxl+ iarg(x) (3-7.4)

allows the correction of Eq. 3-7.3 by setting 1/x to its expression in Eq. 3-7.2. This is the

justification for Eq 3.-7.2 (Note that arg(-1)= +rr. The minus sign was chosen for

Eq. 3-7.2 because 1Ix ... I/(E, - E, + hf_,u + it). The it factor discussed in Section 2.2

has been suppressed in ali preceding equations for convenience, but when it is considered

in the integration above, one finds the minus sign to be the appropriate sign for Eq. 3-7.2.

The if. factor, as discussed earlier, ensures that causality is obeyed.). For compactness

define, as Heitler does, a _'-function: 7

_(x) = 1Ix : P{1/x}-izrcS(x). (3-7.5)

If only two photon processes are of interest, then the second order term in

- Eq. 3-6.3 must be split from ali the other terms. This is accomplished by summing up two

photon and all higher two photon scattering processes. Noting that there is no first order

. term, V/_,for two photon processes gives (converting Eq. 3-7.1 to operat _rform)
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1
T=V_T

E- Ho

= V I_v + V I_v l_v1----_V + ... (3-7.6) .
E-H o E-H o E-H o E-H o

where H0ln) = E'ln) = (E, - hD,u)ln) gives the energy of the intermediate state.
..=

_-'x .#.._ + '_ _/ _ ,I >
I1) ILl IF) li) ILl ' IF') IL) le) .

+ "x / "x : /> +
It) IL) IF') IL') IF") IL") IF)

Fig. 3-7.1. Two photon absorption reemission scattering diagrams to ali orders. The
sum of ali the scattering diagrams gives the total two photon scattering T-matrix elements.

This expansion is equivalent to summing two photon processes to ali orders as
11

shown in Fig.3-7.1 (for absorption reemission). This is a common procedure in quantum

field theory, and there are plenty of tools available for performing the infinite sum

(yielding, unfortunately, the same problems with ultraviolet divergences that must be dealt

properly with renormalization theory). Using the identity 8

1 1 1y1 1 1y1=----- --+--y ..... (3-7.7)
X+Y X X X X X X

gives

1
V (3-7.8)T=V 1

E-It o +V_--V
E_Ho

or, in matrix element form,

Tr,=_ (flVln)(nlvli)
." E.- E. + hf_,.- _ (nlVIf)(flVln)

/,,.E.-E/+ ti_:.
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V !

= _ I"I_" (3-7.9)

"" 2

When adding up ali higher order terms (as shown in Fig. 3-7.1), the two photon

T-matrix elements acquires a term, I-',,(E,¢), in the denominator which prevents it from

diverging on resonance (E, = E.- fin,.). F.(E.t ) is the sum of ali transitions from some

intermediate state, In), to ali possible final states, If). It is therefore usually called a

complex spontaneous transition rate. Its real and imaginary parts can be examined in more

detail by using the _'-function in Eq. 3-7.5"

F"(E'c)=2_'_V"/V/"[P{1}-iJr'_(E"-E/ +fiflI")] "/,.E. - E/ + h_'ll,, (3-7.10)

For absorption reemission, the resulting photon, _I.' is an emitted photon, -cok.
Then

" ()The real part of F, Ek_ is a level shift which is due to the self-energy of the scatterer and
has a magnitude on the order of the natural linewidth. 5 The imaginary part corresponds to

the natural linewidth and is a damping term caused by the effect of the emitted radiation on

the oscillator--the oscillator produces its own damping self-force. This expression can be

rewritten by substituting the non-physical, infinitely sharp _-function by a density of
states.

Let dp(E)dE be the number of states in the interval E to E + dE. The density of

states, dp(E), can be obtained by solving for a particle in a box with sides of length L and

imposing periodic boundary conditions. This gives rise to a discrete set of modes within
"the box:

. e,k.x= e,k.(x+t.) (3-7.12)
This is satisfied if

. k, =(27r/L)N, i=x,y,z; N=O,+l,+2 ..... (3-7-13)

The number of modes in the interval N_ + dN_, Ny + dNy, and N z+ dNz is then

aN=aNaNaN,=(14z, )akak,ak,=[Vo/iZ l ]aka (3-7.14)
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where V0 is the volume of the box. The number of states in the wavector interval k and
k + dR is then

dp(k)dk = IV0/(2 n:)3]k 2dkd_. (3-7.15)

Since dp(E)dE = dp(k)dk, then for E = fick the density of states is

dp( E) = ------_._(v° Eltl) 2 #tc---S'd_ (3-7 16){2n:Y" ' "

Notice that dp(E) is defined only within a narrow cone of angles d_. For a single isolated

oscillator, the emitted photon can travel in any direction, thus the spontaneous transition

probability is obtained by integrating over ali the possible final photon states and ali

possible final photon directions

f 2 tF,(E'k,)= P 2s_dEk, E, _lV_LEl_, dl°(Ek,)

-2 sri_ I dEk,IVs"123(E"- Es - Ek,)dp(Ek, )
f_n

where,

re(E,,)= (3-7.19)

V° (E/li) 2. (3-7.20)
and p(E)= (2 n:)._hc3

The energy level shift is 2D,*(Ek,), l".+(Eks)is the natural linewidth, and p(E n - El = E,¢)

() "is the density of states. Note that F2 Ek_ is indepenuent of the outgoing photon energy--

this is because the 6-function is infinitely sharp at Ek_= En - Es . Broadening out the delta
function will yield a natural linewidth that slowly wlries with the photon energy.
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case of emission reabsorption (Fig. 3-6.6), F,(Es, ) is now a spontaneousIrl the

absorption probability

F,(Ek, 1= 2D_ (Ek,1-iF; (Ek,1, (3-7.21)

" where

o:(e,.) e.- e,+e,,

/',_a

The first order two photon T-matrix element is the sum of ali allowable two photon

processes (absorption reemission, emission reabsorption, tw() photon absorption, two

photon emission)

Tr'= E_E,,+hOJk_D+(Et,)+iF+/2+E_E_h¢o, _D-_(Ek,)+iF:/2

c c VaV a+ v;y . I.
E, E,,+h_t, D-_(Ek;)+iF:/2 +

.(3-7.24)

• _ _ E,-E-ho&,-D*E,;j+iF+.2

When i = f, elastic scattering occurs and the last two terms become zero. When i, f, the

first two terms describe inelastic spin-flip scattering since usually the exiting photon has a .;

different spin that the incoming photon. However, in such a case, the scattering process is

off the energy shell, and one would therefore have to multiply the two terms by a random

phase factor as described in Section 3.5. When i, f, the last two terms describe an

inelastic scattering process than can still lie on the energy shell if energy conservation is

satisfied, h(_ k + ¢Ok)=+(E.r- Ei) as described in Figs. 3-6.3 and 3-6.4. For instance,

- the third term conserves energy as long as the oscillator stays in the excited state for the

duration of one's observation. However, when both of the last two terms are considered

. on the energy shell, they describe a scattering process that appears elastic since now two

photons enter and leave the system.

Finally, notice that the natural linewidth.,.F, _, is the sum of ali transitions from an

intermediate state to ali possible final states. Thus F.* contains contributions from both
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elastic and inelastic transitions. Then, F_ can be described as the sum of the transitions
rates for ali the elastic and inelastic channels

I4: = E, 'Fa,.,u_+ y___ 'F'=,a,=i¢. (3-7.25)

The level shift D,_ is discussed in Goldberger and Watson. 5 lt linearly diverges

since the limits of integration in the expression is taken from Ek= oo_ 0. This is an

example of the common problem of ultraviolet divergences found in quantum field theory.

Through renormalization of the scatterer's mass when taking care of the scatterer's self-

energy, the divergence can be eliminated. In doing so one will find that the level shift is on

the order of a natural linewidth, F,_.

REFERENCES

ill J.D. Jackson, Classical Electrodynamics ( Wiley, New York, 1975).

121 H. Frauenfelder, Subatomic Physics (Prentice-Hall, Englewood Cliffs, N.J., 1974).

I31 B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

141 C. Cohen-Tannoudji, B. Diu, and F. LalOe, Quantum Mechanics (Wiley, New York,

1977).

151 M.L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964).

161 P.A.M. Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford,

1958).

171 W. Heitler, The Quantum Theory of Radiation (Clarendon Press, Oxford, 1954).

181 J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, Mass.,

1967).



4. MULTIPOLE FIELDS

- 4.1 Interaction Perturbation Hamiltonian

- A multipole scattering amplitude can be constructed through evaluating the T-matrix

elements described in Section 3.4. I-8 In that section the T-matrix elements were shown to

be proportional to the inhomogeneous term in the Klein-Gordon wave equation, or the

interaction perturbation Hamiltonian described by Eq. 3-4.1 l, which describes the

interaction of the electromagnetic field of a photon with a charged scatterer. Noting that the

total wavefunction includes both the photon and the scatterer's wavefunction, the following

decomposition can be made:

where [¢_') is the photon wavefunction, ]¢') is the scatterer's wavefunction, and I_) is ,he

total stationary state wavefunction.

. To compute Ts the expectation value of the interaction perturbation over the initial

and final stationary states must be evaluated. The contribution from only the scatterer's

part of the total wavefunction is

V_ = fv _'V_[' o''1 ",'idSx • (4-1.2)

Then inserting Eq. 3-4.11 yields

V_ =(ie/C)_vodSX{(_/'[Ou(au(/)_, )]+ q)_'au(Ouq):)}+(e/c)2_vodSX_S'au _ . .•r/,. A_,¢i (4-1.3)

Integrating the first term by parts leads to

_VofP;" [Ou(A" _)[)]dsx = (P_/"AUfP: IVo- _Vo(Ouq)'/")A" ¢_: d3x "

The surface term goes to zero as the volume expands to infinity since the potential varies as

1/Ixl.Then

=- d x ju A +(e/c) dSx _."auc 0 o "/'" AuC' (4-1.4)

" where j_ =ie[_"/'(Ou¢?:)-(Ouc_')¢: ] (4-1.5)

and jf is the electromagnetic current of the charged spinless scatterer.

41
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"VneDirac equation can be used to evaluate j_ for a charged particle with spin:

(yup _ -"m)ll/ = 0 (4-1.6)

where ?'u is a Dirac ?,-matrix and m is the mass of .he particle. Applying a gauge

transformation on the 4-momentum, Eq. 3-4.9, leads to the expression

[?,up_ - m + (e/c)?,uAU ]I/f' = 0. (4-1.7)

Defining the perturbation as9

?,°V(x,t)=(e/c)?,uAu(x,t) (4-1.8)

leads to an interaction perturbation term similar to Eq. 4-1.4:

V},=c_ -1L, d 3x j ,:: " _'rt+ (e/ c )2Iv, d 3x ll/TA_'A_ ll_i (4-1.9)

where j_ = e_: ?,_,_ (4-1.10)

and the quadratic potential term obtained from the Klein-Gordon equation has been simply

added on (the Dirac equation is simply a "inearized form of the Klein-Gorden equation and

therefore does not yield this quadratic terr0. In this formalism, the wavefunction, W', of a

charged particle is a 4-component spinor where each component satisfies the Klein-Gordon

wave equation. The covariant normalization of fermions is usually defined as

I ll/tll/d3x = 2E -- 2m (4-1.11)

where, in the nonrelativistic caue, E = m.

When the pholon wavefunctions are included, the matrix elements of the interaction

perturbation becomes

1 e2
- d.,j,.., "lA'a, (4-1.12)' :"'" 2mc 2 @Pf;OI

The timelike component of A_', or the scalar electrostatic potential, will be partially

ignored. The scalar electrostatic potential contributes to an energy level shift called the

isomer shift, and its effect will be included in the scattering amplitude where appropriate.

Therefore, when computing the scattering amplitude, the 4-potential will be assumed to be

A_'= (0,A) (4-1.13) "

where A is the magnetic vector potential.
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4.2 Second Quantization

To conveniently manipulate the photon wavefunctions, the technique of second

quantization will be applied. Here, the fields are quantized in a Hilbert space in which the

° basis states are the eigenstates of the number operator

Nk;t = a_a_a (4-2.1)
°

ak_lri_ ) = _ln_a -1) (4-2.3)

ria = 0,1,2, ....
t

The operators akx and akx are the familiar annihilation and creation operators, k is a photon

propagation vector, & is a polarization index, n_ is an occupation number, and E:k;tis the

polarization of the photon of frequency tok .

In this notation (the notation used in Weissbluth 7 ), the vector potential is the sum

over ali the normal modes and polarizations of the system

" [ i(k'l-mkt) t" -i(k'x-mlt/)

A(x,t)=_.2_CSekxLa_xe +akxe ]. (4-2.5)k;t_ VotOk

The basis states for the system will be written, for the sake of clarity, as

= II): (4-2.6)

1¢).,)= l_'; q_;): IF): Irl,a, fs }. (4-2.7)

The T-matrix elements, Eq. 2-2.18, can now be evaluated with the help of the

scattering diagrams shown in Fig. 4-2.1.

Examining just the quadratic A 2 term in the interaction perturbation, Eq. 4-1.12, the

T-matrix elements, up to first order, are

Ts = 2m+c_

_ q2

2mqc2 y_ _, 2rchc ^ ^ _+ -,(k..-_,,,)

× [ak'_'e[,(k'.x-rak.,} rf" a_,_,e-'(k''-'_''') ]IF) (4-2.8)
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' ' l'
k_[Io) Io) II)k

(a) (b) _r (c) .

k' F) k'_ I IF') ' I0

k llI) lk_(!iI)

_ (d) (!)ll)

_lL,) IL2) k//. ill)
rt r (g) (h) kr,,.r" (i)

m Q

;_IF,) k, k

IL') _ IF,_) IF_)

II) IL_) "h_ IL_)
II) _i I)

(J) (k) (1)

Fig. 4-2.1. Scattering diagrams: (a) and (b) single photon absorption and emission, (c)
and (d) prompt two photon scattering [that the diagrams for prompt scattering and its time
reversed process are the same can be seen by shrinking the intermediate state lifetime of
diagrams (g) and (h) to zero], (e) and (f) prompt two photon absorption and emission
[omitted the time reversed process since it corresponds to an equivalent diagram], (g)
absorption reemission, (h) emission reabsorption [the time reversed diagram of (g)], (i) and
(j) two photon absorption and its time reversed diagram, (k) and (l) two photon emission
and its time reversed diagram.
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Let the initial state of the system have occupation numbers nk_t and nk,_,"

1I)= ]nka,nk,_,;i,). (4-2.9)

For prompt scattering the final state of the system has occupation numbers nka, + 1 and

. nk_--1 where one photon mode has gained a photon (the scattered photon) and another

mode has lost a photon (the incoming photon):

. IF) = [nka-1,nk, x, + 1;f,). (4-2.10)

The diagrams for this process and its time reversed process are shown in Figs. 4-2.1 (c)

and (d).

The bilinear combinations of at,_ and at,a, and their Hermetian conjugates in

Eq. 4-2.8 gives

(._-1.,_._.+1I_,._.l._.._._.)--o
(,_-1,,_,_,+110_a_,_,l,_,,_,_,>--o

(n_- 1,_._.+ lia_a_._.ln_,n_._.) =_/_, (n_._.+1).
Acknowledging that prompt scattering and its time reversed process are equivalent and

associating k with the incoming photon k,., and k' with the outgoing photon k/, leads to

the scattering amplitude

. _(k,.k,)-r,_,4_,4n,+1(_;̂ -'/', )"= -E,)(f,le -"' Ii,) (4-2.11)

q2
= (4-2.12)

where rq mqC2

and q is the charge of the scatterer with mass mq. For electrons rq= r, -- the electron

radius. The minus comes from the optical theorem, Eq. 2-3.6, and it is expected since an

oscillator tends to resist driving fields by producing induced fields that partially cancel the

incoming fields--the induced fields are 180° out of phase with the driving fields.

The differential scattering cross section is related to the scattering amplitude by the

relation shown in Eq. 3-5.4. It has a term proportional to the number of scattered photons

nI. This term is the result of stimulated scattering and is only significant at high intensities.

" For elastic scattering k_ = kI and, in the dipole approximation, the differential scattering
cross section reduces to the familiar Thomson cross section

do" = rqZ(f_;. _,)li01_ (4-2.13)dr2

fo =(i.,le-i(k'-k')"]i,) (4-2.14)where
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and f0 is a scattering angle dependent form factor.

There is also a T-matrix element term for prompt two-photon absorption _ind

emission arising from the bilinear combinations akxak,_, and a_a_,4, of the interaction

perturbation [see Figs. 4-2.1 (e) and (f)]. The final state occupation numbers for prompt

two photon absorption are nkx-- 1 and nk,:t,-- 1, and for prompt two photon emission the

occupation numbers are nk_+ 1 and nk,:t,+ 1. Each mode k and k' in the final state have

either simultaneously lost or gained a photon. The scattering amplitude is then

F(k:,ki)=-rq__i(_. ;""_,)(Zle'(k'+k')"Ii,) (4-2.15)

for prompt two photonabsorption,and

"(k;,k/) = -r,4k//k/3J(n'I" , l)(n,, l)/n,(&7 "ez)̂_Z.x"..-'(k_.k,),li.le ) (4-2. 16)

for prompt two photon emission. Since prompt two photon absorption and emission are

inelastic processes, they can be safely ignored when considering only elastic processes.

Second order A2 scattering gives rise to scattering of more than two photons and

will therefore not be investigated.

For the current-vector potential coupling term in the interaction perturbation,

Eq. 4-1.12, the T-matrix elements, up to second order, are

T_=(_;;fa[!Iv0d3xla.AI_,_,ia)C

(_;; f'_Ilc_Vod3xj/'" A10:;n_)(_:;n"I__0d3xj'" AI_'_;/°)
+_,, Ez -EN (4-2.17)

States with the index o_have been added to include quantum processes not described so far

(such as phonon scattering). The scattering diagrams (along with their time reversed

processes) are shown in Figs. 4-2.1 (g) through (1).

For the absorption reemission and its time reversed emission reabsorption process,

the initial, final, and intermediate states shown in Figs. 4-2.1 (g) and (h) are

II) = [n_x,nk,x,;iu)

IF)- I,_ - 1,,_,_,+1;fo).
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Since these scattering events have intermediate states, they are properly described only by
the second order T-matrix element term

. FIk,,k,)=_,%L t/ 'l --x" (4-2.18)
EI-E L

where
Q

A: _,42Zt;hc/V_ka[A_ + A_] (4-2.19)
k;.

and

Ato " - akxe ik'x , A_ -- a_xe-'_'x. (4-2.20)

One must now find those combinations of the matrix elements of A that yield

nonzero values for each scattering process. For the case where IL_) is an intermediate

state, Ak_t must be used to decrease the number of k photons by one in the state IL_), and

A_a, must be used to increase the number of k' photons by one in the state IF). Thus, the

only nonzero matrix element combination is

(n_x -1,_, x, + 1;ToIa_._.i,_-t,,_._.;t,o)(,_-1,,_._.;t,oIA_I_,_._.;i.)

= +1).
. The initial and intermediate state energies can be read right off the scattering diagram,

Fig. 4-2.1 (g).

El = Ei +hm k (4-2.21)

EL, -- Et . (4-2.22)

Then the scattering amplitude is

, jCk,,k,_--_ _.ffSi (]2II/c]d_xi_,"ii,,e-"'"lt,o)(t,oll/c] d3x_i" je,,e'k"mlia)F,,
e, - (Et, - htOk,)

(4-2.23)

For the emission reabsorption case, there is a loss of a k photon in the state ]F) and

" a gain of a k' photon in the state ]L2). From the scattering diagram, Fig. 4-2.1 (h), the

initial and intermediate state energies are

- Et = Ei + htok (4-2.24)

EL2 = Et2 + ht-ok, + h(/) k . (4-2.25)
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The scattering amplitude for this process is then

p,,(k,,k,)=_ k__/k,,__i(LlZ/cf. d'x_.,,j,, e""'[t,_)(t_all/cjd'x_.,. j,,,e-"'"[i,,) .
(4-2.26)

For the other scattering events in Fig. 4-2.1"

]Io)=l,_,;¢)

IFo.)-[,_,-1;io)
iFoo)-I_,,_,+l;Io>
[L3) = [nkX-- 1,%,x,;g3,_); EL, = Et, + ha)k, ; E, = Ei + htok+ htok,

IL,)=[nk,,nk._,-1;t,_) ; E,.,=E,,+ha)k; F.,= E,+ha),+ha)k.

[Ls)=lnk_ .+l,nk,_..;ts_ ) ; EL,=Et,+ha) k ; E,=E i

IL_)-I_,_,,,+1;¢o); E,..- E,.+h_,.;E,--E,
IF,)--I,_ - 1,,_,_,- 1;fo)
IF_)--I_,+ 1,nk._.+ 1;/.)

and their scattering amplitudes are found to be

ik_.x I •

Fo,(k,):-_ok,/27rhc(f,_ll/c_d3x_., . j_e II_,) (4-2.27)

Fo,(kz)--4Wokz/2_hc_/(n, +1)/n¢(f,,ll/c_d'x_,. b,e-"'"[i,,) (4-2.28>

Ft, (k:,k,) = -__,.'

•"p iki.xl • \
(f_lVcld'xF.,-l:, e";"le_o)(t_oll/cld_x_.,. jqie I',_]

x (4-2.29)
E,-(Et,-ha)k, )

--- I R pFt, (k,,k;) -__,.'

× (f=ll/cf'd3xf_'"J'tt'eik"x[g4a)(l"all/cfd3x_;" l'' e'k;"]/'_) (4-2.30)
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(k;, +])(';+')/',

• x (fall/cfd3x_:'l" l:t'e-ik'_'xlls_>(tsall/c_d3x_:" ]'"e-'_'"li") (4-2.31)

+,)(,;
-,k}-xl.

× (LI1/c_d3x_/.j/,e-""lt,.)(t_l]/cla_x_" _. j,,,e I',,) (4-2.32)

When considering only elastic scattering, the inelastic scattering amplitudes expressed by

Fqs. 4-2.27 to 4.2-32 can be ignored.

For resonant transitions, ali of the higher order terms of ali the on-energy-shell

scattering amplitudes must be taken into account as was done in Section 3.7. Following

precisely the same procedures used in that section produces a natural linewidth that

prevents the scattering amplitudes from becoming infinite on resonance.

4.3 Multipole Scattering Amplitude

The next step needed to be taken in investigating the scattering amplitude is the

examination of its multipole structure. Following Frauenfelder's approach, 2 this can be

accomplished by applying a spherical wave expansion on the plane wave

t=0 m=-t

where

. je(kr) : (n/2kr) _ Jt+½(kr) (4-3.2)

and jt(kr) is a spherical Bessel function, the coordinate (0,,_k) is the direction of the

wavector k, and the coordinate (r,0,,_),) is the location of the observation point in a

coordinate system attached to the scatterer. The sum over l, as will be shown later, gives

the various multipole components of the plane wave (for instance, the dipole field

corresponds to the t = 0, 1, and 2 terms, the quadrupole field corresponds to the t -=1, 2,
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and 3 terms, etc.) A matrix element U_ defined as (temporarily dropping the f,, al_d n,_

quantum numbers)

U,_ = 1/c _ d3x_ . I,_e,'k.x (4-3,3)

can then be expressed as

II ]U,_ =_.. _.d EYt',,,(O_'¢k) (-1)'_-, 1/c dr j2(r)Yt,,(O,,¢r)gt(kr) (4-3.4)
t=O m=-l q=-I

where the current j,, of the scatterer has been expressed in a spherical basis

1

J,. = y_(-1)' jT___ (4-3.5)
q=-I

where 6±, = -T-1/_t-2(_, +ie,) (4-3.6)

e0 =e. (4-3.7)

(-l)qe_q=e; (4-3.8)

and gt(kr) = 4 xitjt(kr) (4-3.9)

The notation used in this section will closely follow the notation used by Weissbluth and

Edmonds.7, 10

Note that the tensor product of two tensor operators of rank l and l' can be

expressed as

= T(t) (r) , , ,
V:K, [T0)U(r']_ ): y__.,_ Uq. ('qlq 1" KQ). (4-3.10)

qq'

The spherical harmonic Yt,.(0,, ¢,) is a component of an irreducible tensor operator of rank

t. Then, since j,_is a vector and therefore an irreducible tensor operator of rank 1,

[v(t/iOII(L)jM= _, y_(t)jq:(t)(tmlqltlLM ) (4-3.1 1)
mq

where the ni index on j,, is momentarily suppressed. Using the orthogonality relation for

Clebsch-Gordan coefficients, o

_._j.,(j:m(j2m_ljij2jm)(j_jzrn2ljljzjm)=_.;._ :,_2, (4-3.12)

gives

I
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Z[YCt)ic"]cL'(tmlq[fILM) Z rc'':cl)E(tm'lq'ltlLM)(tmlqltlLM)JM "-" m' Jq"
LM m'q" LM

(t) :0)
= Y_ j_ . (4-3.13)

Using this relation Uv becomes

t 1

" uv = _. _ Y_ Y. _Y:(fZ_)6:(tmlqltlLM)(j.,m.ll/c_ar [YCtlIO)lCL)g,(kr)Ij,m,)JM
t=0 m=-t q=-I LM

(4-3.14)

where the matrix elements of the current are defined in terms of the scatterer's spin and

angular momentum components

J.=(*:lJl¢)= (j,,m, lj[j,,m,). (4-3.15)

Note that the tensor product in Eq. 4-3.13 can be written in terms of a dot product

of a vector spherical harmonic with the current. A vector spherical harmonic of rank J

follows the relation

YJLsM= E Y_rq(LmSqILSJM)" (4-3.16)

The vector spherical harmonic is proportional to the amplitude of the incoming particle.

- The total angular momentum of the particle is the sum of the orbital and spin angular
momentum

J=L+S, (4-3.17)

and the vector spherical harmonic is the simultaneous eigenfunction of j2, L2, S 2, j,, L,,

and S,. The numbers M, m, and q are the projection quantum numbers of the total

orbital, orbital, end spin angular momentum vectors respectively. For a photon vector

field, S = 1, and the photon vector spherical harmonic, with the S subscript suppressed, is

Y_ = _YL,rq(LmlqIL1JM ). (4-3.18)
mq

The tensor product in Eq. 4-3.14 can be written in the more convenient form of a

. dot product between a vector spherical harmonic and the current

YuM"J= _ Yt,(tmlqItlLM)y_J¢6_ "6;,. (4-3.19)
mq q'

But, unit vectors in the spherical basis follow the orthogenality rule

e_- e_ = 6m, (4-3.20)
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SO

YuM "J= _ Yt.J, (tmlqitlLM) = [yC,)j0)lC') (4-3.21)]M
mq

by comparison with Eq. 4-3.11.

Applying the Wigner-Eckart theorem,

(otjmlT(q_'lot'j'm')= l (j'm'kqlj'kjm)(ajUTCk)[la'j') (4-3.22)

and using the relation in Eqs. 4-3.18 and 4-3.21, the matrix elements can be written in

terms of its reduced matrix elements

U, = _[_-Y'u_(f_k)] (j'm'LMIj'Lj"m") z(L,t) (4-3.23)
t=0_ 42J,, + 1

where ll,/c%rAuM(r,f,).j(r)llj,)[e'nCL't)(4-3.24)

and At_ (r,f_,) = YL_(f_,)g,(kr). (4-3.25)

The quantity z(L, g) with phase 77(L,t) is a reduced matrix element that no longer depends

upon m, or m/. Note that the z-axis of the coordinate system in which the angles

(0k, ¢_k)= Qk are measured is now the quantum axis of the scatterer (such as an electron or
nucleon).

Since

YuM(_k)= E Yt.,eq(gmlq[gl LM), (4-3.26)

the Clebsch-Gordan coefficient gives a constraint on the possible values of g due to the

selection rules for the coupling of two angular momentum

It- 11<-L_ t +1. (4-3.27)

Then, the only possible values of t for a given L are

I=L,L+I (4-3.28)

The selection rules also constrain the possible values of M

M = m + q. (4-3.29)

The expression for U,, in Eq. 4-3.23 contains information about transverse electric

and magnetic and longitudinal multipole fields. To see this, first examine the g = L

component of Y,tM'
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Yu.M=_.YL,M_,_,(L,M-q,I,q[LILM}
q

• = (-1)'-L-'.,/2L+ 1 M- 1 I -M _"M-'e+'+ 0 -M Y_eo

(L , ) }• L Y
+ M+I -1 -M t'M.le-I

: _ (-1) )Yt'M-'6.' + _/(2L +i-jiL_+ i)L YtMfi°

-}(L + 1)(2L + I)2L Yt.M,#-_ (4-3.30)

where the following identity between the Clebsch-Gordan coefficients and the Wigner 3- j

symbol was used:

/m)(j_j2mz[j_jzjm)=(_l)h-j.-,,, 2,f_f_ J2 . (4-3.31)
m 2

• Tables, such as in Weissbluth or Edmonds]. 10.11give formulas for special types of 3- j

symbols. The exponent 2(L + M) is an even integer because if L is either integral or half

integral then so is M since M = L,L- 1,.... .-L. Utilizing the properties of the lowering

and raising operators of angular momentum

L±Yt,.=T- g+l)-m(m+_l) Yt,,.±_ (4-3.32)

Loll,. =mit, . (4-3.33)

yields

yu.M=-(1/_[2)_+l)-M( M-1 ),,__ ,, M
. 4L(L + 1) Yt'M-'O+t+_

+ (1/,4r2)4L(L + 1)- M(M + 1)
_]L(L + 1i Yt'M.'e-'
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= LY_ . (4-3.34)
_UL(L + 1)

The angular momentum operator can be written as

L = r x p = -i(r x V) (4-3.35) -

where r a radial vector. Then

r" Yt._ = (-i/ai-LiL + 1))r. (r × V)= (-i/ai-_ L + ,) )V . ([ × r)

=0. (4-3.36)

Thus, Yu.._is a transverse vector spherical harmonic, and, since it is related to the angular

n_omentum operator, it is associated with the magnetic multipole electric field. Akhiezer

v(°) and Rose 5 as a magnetic multipole field ¥_)and Berestetskii 8 define this field as -LM

Thus, depending upon notation

Y/./_ :--LMV(°) : v(m)'LM" (4-3.37)

To obtain the electric multipole electric field, the cross product between the

magnetic multipole field and _ is taken as defined below
• (e) v(m)tYLM= r x _LM. (4-3.38)

= v¢_) (4-3.39) "Also similarly iYL_) r x _LM.

From Akhiezer and Berestetskii, the electric multipole field is related to the vector spherical

harmonics as follows

I j yjs+,,, +.[ j+l yjj ,.,,," (4-3.40)yj(t)=¥/(_)= 2j+l ' ' _2j+l '-

From the differential properties of the gradient of a scalar8,12

7,1+j+ 1 yj,j+_,.+(j +1) , Yj/ i,., (4-3.41)
rVYv"=J 2j+] ' 1 '-'

one can see that the electric multipole electric field is related to the linear momentum

operator

ir pyj, (4-3.42)v;<:': h4J(J+
where p : -i/iV.
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The other vector field has only longitudinal components along r'

Y_("I)= Y_(_)=rYJ"= _2--f--Y'Jj+l .-.i ,,,--[_1 i.'2j +lJ+l Yj ,.1,,,'.. (4-3.43)

• These three vector fields form an orthogonal basis about which any field can be

expanded.

- Going back to the expression for U,,, there is a summation term

L+I

__.Vuu(_ W)Vu.M(_,)g,(kr)=Vu_ (_k)Yu.M(f_,)g,(kr)
t=L-I

+ YLL_,.M(f_w)YLL_,._(f_,)gt_,(kr)+ YL.L+t.M(f_w)YLL+,.M(f_,)gL+,(kr).

The first term can be expressed in terms of the magnetic multipole field Y_). The next two

terms give the electric and longitudinal fields. First note that the vector spherical harmonics

of angular momenta j + 1 can be expressed in terms of the multipole fields

Yj,j+I,. = (1/%/2j + 1)(_/'] yj(/) _ _ y_)) (4-3.44)

(-l)).Yj.j_,.,,,: (1/__)( J-jT+'TY;('m)+ -V_"Y),,, (4-3.45)

" Then

L+I 1

• __YuM(f_w)YLL,(f_,)g,(kr) ,__,Y_)(nw(x)= )Atm(r.fl,) (4-3.46)
t=L-I X=-I

where

A(O) {r (__r (kF)_,-,f_,) = Yu., )g, (4-3.47)

1
-A_(r.f_,) 2L+I {[LgL*'(kr)+(L+l)gt_l(kr)](2)

+ _/L(L+ l)[gL__(kr)-gL.,(kr)]V(_)(_,). (4-3.48)

The matrix elements, U_, can now be expressed as a sum of the transverse and

longitudinal multipole fields

U,u = _ _[_:. y_).(_w)] (j, m, LM[j, Lj,,m,,)
--_jL+l x(L,A ) (4-3.49)A=-I LM

where (4-3.50)
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Another expression for the expansion of a vector field plane wave has thus been

derived

!

_e'*" = X 2_ [f_"vC_'_'(flk)]A(a_(r'f2')
LM ),=-1

,B

-- Z{[_: "Y(_"(f2k)]A(_ (r, f2r )+ [_:''LMv(m)*[ 1"}_,'_"k ,J'-"/d_3]A(m)(r.f2,)+ [_;"v(')"(f2,)]A_ (r, f2r)}'La •
LM

(4-3.51/

This shows the decomposition of a vector field into its transverse electric and magnetic

(e and m or _. = 1 and 0) and longitudinal (l or _ =-1) multipole components. This is

basically what Rose has done but in a different manner. 5 Another expression for the vector

potential is then

A(x,:') = VoWk ,--L-IZ(a_a[t:'x" Y'uuCf2kl]AL_(r'f2'le-""'

+ 4airOx. y,u(nk)]A'uu(r,n,)d°w)} (4-3.52) "

= .-LM IS.2k)_ALM(r,nr)e-i°'k'

+ a_.[_::x -yt_'(nkl]A(t_'(r, "-" ''°_.x,_r]e'/j]_
(4-3.53)

where the vector spherical harmonics are constructed in the quantum coordinate system of

the scatterer.

The scattering amplitude can now be expressed in terms of multipole fields. For the

case of spontaneous absorption reemission (nI = 01, the scattering amplitude on the energy
shell is

U/.U,,, (4-3.54)
F (kt,k,)= E- E. + hrOk,+ ir./2

where

U/ =(j/,m/;f,,[1/c_d3x_.'/. ie-'k'"lj.,m.;no) (4-3.55)

u. = (j.,m.;n. llicd3x, • je'k'"lj,,m:;ia). (4-3.56)
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The polarization of the scattered photon has been complex conjugated to handle complex

polarizafons.

The natural linewidth. F.. described in Section 3.7. can be readily evaluated in

• terms of the reduced matrix elements z(L.I). In terms of the matrix elements Ut.,

. F. = 2tc___Sdl'lk, (E/.) (4-3.57)

where AOis given by Eq. 2-3.8, and the density of states, p(E_.), is given by Eq. 3-7.25.

Us,' = U_ with the interchange of indices i ---)f , and U,u is given by Eq. 4-3.23 or 4-3.49.

The sum over all final states is the sum over ali final angular momentun_, spin, photon

modes, and polarization states: _z=. = Zh.., _k/X For only one photon mode. k z,
the sum over photon modes can be ignored. With the help of the orthogor_ality of spherical

harmonics.

d_:2Yt_(f_)Ye,,.,(f_) : 6., 6,.. ,. (4-3.58)

the angular integral in F. is then

=
_14111411"

=6tt,_t.L,6MM,. (4-3.59)

The natural linewidth then reduces to

F. = (ksl2.) Z Z Z (j' m_LMIj, t_,j.m.)(j smi L'M'Ij, z.,j.m.)
. h,./a.Me,L,M, (2j. + 1)

x z(L,t)z'(L',t')6.,6,.L,6uM.

: Z Z (s,m, L MIj , L j. m.)(j i mi L MIj s,L j. m.)
# ,..,su (2j. + 1)
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+
t..t .//

- (4-3.60) .
Lt

The multipole linewidth, F(L,I), is a function of the multipole index L and an index g

which determines whether the process is transverse magnetic, transverse electric, or

longitudinal scattering (see Table 4-3.1). Then, the reduced matrix element expressed in

terms of the multipole linewidth is

_h [z(L,I)I 2 = (2zr/kl)(2j. + 1)F(L,I). (4-3.61)

For a two level system the sum over J[ can be ignored.

Multipole Electric: Magnetic:

index ;!,= 1 A = 0

rg= 0,2 dipoleL = 1 = 1 dipole

L=2 {lt = 1'3 quadrupole= 2 quadrupole

g#.= 2.4 sextupoleL = 3 = 3 sextupole

Table 4-3.1. Multipole fields designated by multipole index L.

The spontaneous absorption reemission on-energy-shell scattering amplitude can now be

expressed in terms of the multipole spontaneous radiative linewidth 13

F. (k/, k,.,Xo)=-(2srlk ' )e-'(l', -k','° a_ t.L_M.[_-"Yt.._(l"ll,,)] [¥:.,,w (_l,,)" c,]

 dI'(L,t)r(L'. #.')eil"(L't)-,l(t.',t')i

x Ei - E. + lifo,, + iF./2 (Js mi L MIS, L ;. m.)(j i miL' M'IJ i L" j.m.) (4-3.62)
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or

4r'(L'Z)r(L"Z')e'["c"_)-"l':'*')l L' "x (j/mlLM[j/Lj,,m,,)(jim i M'IjiL j,,m,) (4-3.63)
Ei - E, + hogk,+ iF,,/2

For convenience of notation in later sections, F,,(k/,ki)-F,(k/,ki,x o =0). If the
scattering process preserves time reversal invariance, the phase difference,

r/(L,A)- r/(L',A'), between two multipoles is zero or n:.13' 14 The spatial phase factor,

¢_,,= -(k/- k i)- x 0, comes from shifting the scatterer from the origin by the displacement

x 0 as shown in Fig.4-3.1.

X 0

r

Fig. 4-3.1. Incoming transverse plane waves with direction k, scatterers off particle
located at x 0 to produce outgoing transverse plane waves traveling in direction k/.

In general, the scattering is usually expressed as

F,i''' =(foIF.Ii ) (4-3.64)

where the matrix elements of/7, must be summed over other quantum states not discussed

so far (such as phonon states) to arrive at a final value for the scattering amplitude. For

instance, in phonon scattering, 3,6. 15._6the plane wave can be approximated as having an
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additional oscillatory spatial function, u, that describes displacements about an equilibrium

position x of a scatterer

e'_x --_e'_(x+"l. (4-3.65)

In such a case, the scattering amplitude changes to

F/'i° = F'_, ( f_, ) (4-3.66)

The vibrational factor usually lead to a diminution in the scattering amplitude, and, for

nuclear scattering, is called a Lamb-M/Sssbauer factor, or, for electronic scattering, a

Debye-Waller factor. The resonant denominator of/7, also changes to include frequency

terms that give rise to frequency sidebands.

4.4 Spherical Multipole Electric Fields

In the computations done so far, the incoming and exiting waves have been

described as plane waves. Such a description is inadequate for a single scatterer since it

usually scatters waves spherically that fall off as 1/R where R is the distance from the

scatterer to an observation point. To include this effect, the incoming and outgoing vector

fields of the photon are described as spherical Green functions

,,, eiklx-x'l

Ao,,,(x,x' ) = ¢I iX_ X'I (4-4.1)

e,klXo+X'l

A,,,(xo,x') = _:iIx0+ x'l (4-4.2)

where the incoming spherical wave originates at point x 0 in Fig.4-3.1, the scattered

spherical is observed at point x, and x' are the internal coordinates of the scatterer.

Inserting these vector potentials into the expressions for Uf, and U_ in Eqs. 4-3.55 and

4-3,56 will give the spherical multipole electric field amplitudes scattered from a particle. -

The spherical wave expansion of the spherical Green function is17

eiklx-x,[ e

IX-X-------']= 41rik_ jt(kr< )h_')(kr, )e:o,,,:Y_Yt'(Ok'd_k)Yt"(Or'C_r)-t (4-4.3)
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where h_l)(kr) is a spherical Hankel function

h_')(kr) = __x [Jt+,2 (x) + iNr+v2(x)]. (4-4.4)

" Inserting the spherical wave expansions into the expressions for U/. and U,. and carrying

out computations similar to those performed in Section 4.3 leads to the spherical multipole

- electric fields in a form very similar to Eq. 4-3.62

" 'k
E.(k/,ki)=lEfF/, ( /,ki)=_/F,(k/,kilvu,,(n,)__zu_(r,.n,) (4-4.5)

where F'(kf,ki)as similar to F.(kf,ki)in Eq. 4-3.62 but with the substitution

YuM(f_k)--> ZuM(rk,_k) (the spatial phase is now contained in the spherical Hankel

functions). The spherical Hankel harmonics follow the relation

Zu.(rk,nk ) : kft(krk )YUm(0k,Ok) (4-4.6)

ft(krk ) = i(-i) -t ht(krk ) (4-4.7)

rkr = IX-- Xo[ for IX- Xo[>> Ix'l (4-4.8)

. r., Ix01 for Ix01>>Ix'l (4-4.9)

One can also construct magnetic, electric, and longitudinal multipole electric fields
. in a manner similar to that in the last section: ]2

Z_ )= Zjjm = kfi(kr)Yjj m (4-4.10)

'-Z_ =-iv×z('m) =i(-i)-i{ljj+llhj-l(kr)Yi'J-"m-_ Jk"_ 2j+l hJ+'(kr)Yii+_',,,,}(4-4.11)

Z_o=-ivzj'k =i(-i)-i{lJ2j+l hjl(kr)¥iJ"--'-' "_2j +l[-J+lhj+l (kr)¥j _+1,.},, (4-4.12)

The magnetic multipole field is still a transverse field, but, since the electric and

longitudinal multipoles now have spherical Hankel functions multiplying the vector

spherical harmonics, they are no longer purely transverse or longitudinal fields--they both

now have mixtures of transverse and longitudinal field components. The spherical

multipole electric field expressed in terms of these multipoles can still be cast in a form very

" similar to that in Eq. 4-3.63

E.(k/,ki)=_/F'(k/,ki)=_./F.(k/,k,)[y_(,_,)__z_(,.,_, ) . (4-4.13)
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Typically the approximation is made that the incoming fields are plane waves and

the scattered fields are spherical waves. Also, if the observation point is far from the

scatterer compared to a wavelength, a far field approximation can be made for the scattered

spherical field. The spherical Hankel functions, to ali multipoles, approaches

eor

ft(kr) k,_',' k---_ (4-4.14)

e °r
and Z(_ --> _ Y_). (4-4.15)

kr> >l r

In the fax field limit, the electric and magnetic multipoles now become purely transverse

fields, and the longitudinal multipoles are purely longitudinal fields. The total electric field

at the point x is then

.orkt

E(x)= ^lz,E0e,k,.=+_/E ° ________e,k,.=oF,(k/,k,) (4-4.16)
rk/

where the first term is the incoming plane wave field of amplitude E0, the second term is

the spherically scattered multipole electric field with F, given by Eq. 4-3.62 or 4-3.63, and

rk: is given by Eq. 4-4.8. Notice that the expression for each transverse electric field
component is now equivalent to the solution of the integral scattering equation discussed in

Section 3.3 (see Eq. 3-3.10) when Ixl>>Ix01.No_ that the scattered fields from a single

particle have been found, one can then go on to solve for the net field scattered from several

particles (this is done in Chapters 6 and 7). When there axe many particles and frequent

multiple scatterings, the computations become too time consuming, and one must rely upon

the Maxwell inhomogeneous wave equation for transverse electric fields. Fortunately, a

wide range of problems involving many particle media can be handled well by the Maxwell

inhomogeneous wave equation (as shown in Chapters 6 and 7).
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5. DIPOLE POLARIZATION PROPERTIES AND
STATIC FIELD INTERACTIONS

,lt

5.1 Polarization Properties of Electric and Magnetic Dipole
Scattering

For the case of Thomson scattering, the scattering amplitude, Eq. 4-2.11, can be

written in tensor form where a polarization matrix contains ali the polarization information

about the scattering process

Fr(k /,k, ) = -rJoP T (5-1.1)

where Pr = _j"_/" e,x _ . ey= "I" ^, _:/.. (5-1.2)
_Ey- I_x Ey- y j

Since there are two directions corresponding to the incoming and outgoing photons,

there are two separate polarization bases tbr each direction, and the orientation of each basis .

with respect to one another is arbitrary. Usually a convenient orientation is chosen that

diagonalizes the polarization matrix and simplifies calculations. Constraining one

polarization component, say the x-component of both the incoming and outgoing fields, to

be perpendicular to the scattering plane--_, = _ = sigma polarized--forces the other

component to lie in the scattering plane--_, = ft = pi polarized--(see Fig. 5-1.1). Under

such conditions the polarization matrix diagonalizes to

Pr = _i _: S i k/ = cos20,

where 20 Bis the scattering angle between k_ and k/. The polarization matrix reveals that

Thomson radiation has an angular distribution commonly associated with electric dipole

scattering--horizontally polarized fields are reflected by the same amount regardless of

scattering angle while vertically polarized fields suffer a decrease in amplitude proportional

to the cosine of the scattering angle between the incoming and outgoing wave directions.

64
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i ^^ QI A

k, 4_1:, I _"

/,_ ', \ "-_.

Fig.5-1.1.Scatteringgeometryfora particleattheprigin.Sigma (pi)polarizationsare
perpendicular(parallel)totheyz scatteringplane.Q, isthequantizationaxisdirection
with polar and azimuthal angles _ and Z. 20s is the scattering angle.

For dipole scattering (and no polarization mixing), the tensor form of the scattering

amplitude is (from Eq. 4-3.63)

F(k/, ki, Xo):--(27rlkl)e-i(k'-k')"°_. P_) F(L, A.) ( I }2
_.t._ E,-E,,+h_,, +iF, I2"j/m'rLM'j!Lj'm'"

(5-1.4)

where the polarization matrix is of the form

iii,' .,
and Z = 1 - e for electric dipole scattering, A = 0 m for magnetic dipole scattering, and

L--1 for dipole scattering. The vector spherical harmonics for dipole (and also

quadrupole) scattering are given in Table 5-1.1. The scattering geometry presented in

' Fig. 5-1.1 will be used to examine the structure of the dipole polarization matrix.

\
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Yjm
• -- _ ..... ----'-'---_ r *'%'---- _

J m factor 6 _ 6
/_'-'-"2-"-'-"

1 1 .,/3--_ei' - cos 0 - i 1 icos 0
V16n:

1 0 .J_3_ sin 0 - 1 0 0 i
,R

1 - 1 _J_e -_' cos 0 - i 1 - icos
0

2 2 _5 ....sin 0e 2_' cos 0 i - 1 - icos 0
i

2 1 _16-_e i' 1- 2cos 2 0 -/coso coso i(2cos 2 0-1)

g_._

2 0 sin 0 - cos 0 0 0 icos 0

2 -1 e-" 2cos 2 O-1 -/coso coso i(1 - 2cos 2 O)

2 - 2 _5 ......sin 0e -2_* cos 0 - i l - icos 0
.....

Table 5-l.l. Electric and magnetic dipole, j= 1, and quadrupole, j= 2, vector
spherical harmonics, l

o

b

Fig. g-|.2. Wavector in quantization system defines the spherical c(×_rdinates and unit
vectors of a vector spherical harmonic.
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The dipole direction, or quantization axis l_,, points in some arbitrary direction

specified by the polar and azimuthal angles fl and Z:

(_, = coszsin f2i + sinzsin_ _ + cos_i. (5-1.6)

Recall that the spherical coordinate system for the vector spherical harmonics is defined byB

the quantum axis of the scatterer. The polar angle, O(_.f),is the angle between the incoming
or outgoing photon and the quantization axis--see Fig. 5-1.2.

it,

cos0(, f) =Q, "k(_.I)=c°sOBsinZsin_a'T'sinOac°sta (5-1.7) __'
^

where k(i.f ) = cos OB_¢:i:sin OBi, (5-1.8)

and the top sign in the -T-corresponds to I_ and the bottom sign corresponds to I_f. Since

the (Qx, Qy) basis can be arbitrarily oriented in a plane perpendicular to the quantization

axis, only the azimuthal phase difference, A$ = $/- $,, is meaningful. This phase

difference can be found through the angle addition rule

cos 2 OB : cos 0f cos 0i + sin Of sin 0, cos(C/- ¢, ). (5-1.9)

To perform the dot products in the polarization matrix, Eq. 5-1.5, the spherical unit

vectors must be transformed into Cartesian unit vectors. This transformation can be

" accomplished by noting that the azimuthal unit vector, 0, is perpendicular to both I_ and t_,

- *=Q./IQ. (5-1.10)

and the polar unit vector, t_,is perpendicular to both _ and

I.
After some algebra, the spherical unit vectors can be written down as

,, -(cosOBcos_+sinOssinzsinf_)i +coszsinf_(cosOs_+sinOn_l)

¢_i.f)= _ - (5-1.12)

(,.f) = - cos Z sin f_ _t- (sin 0 n sin Z sin f_ + cos 0n cos f_)(sin 0n_¢cos 0n _ + cos 0n i)

where (5-1.13)

. N(_.f)= (cos 0n cosf2 + sin 0n sin Z sin ft)2 + (cos Z sin ta)2. (5-1.14)
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The polarization vector directions can be read directly from Fig. 5-1.1

"("/) " =i (5-1.15)Ez = (l(i.f)

_0.I)_ ^ =+sinOa_+cos0n £ (5-1 16)y gO,l) - " "

Then, ali of the dot products in the dipole polarization matrix can be put in the form (see

Fig. 5-1.3)

ilti./)._i./)= itti./).O(,./)= cosfl(i./)= -(cosO,cos_ ± sinOBsinzsin_)/_(_./)(5-1.17)

t_(,./)- 0(,.I) = -(_,i./)" _i./))= sin ii0./) = -cos X sin f_/_(,./). (5-1.18)

b

Fig. 5-1.3. Orientation of polarization vectors with respect to spherical unit vectors
lying in the (t_,/t) plane and the wavector direction.

There is now enot]gh information to construct the dipole polarization matrix. For

magnetic dipole scattering, the M - 0 term is

3 ( sinOisinO/cosflicosfl/ -sinOisinO/cosflisinfl/)P_(°m)= 8-_[-sinO_sinO/sinfl, cosfl/ sinO_sinO/sinfl, sinfl/ ' (5-1.19)

the M - 1 term is

pi]m)= 3 e,(,,-,, )167r

((sinfli - icosOicosfli)(sinfll + icosO/cosflf ) (sinfli - icosOicosfli)(cosflf - icosOl sinfl/ f)

x _(cosfl_icosO, sinfli)(sinfl/+icosO/cosfl/) (cosfli-icosO, sinfli)(cosfl/+icosO/sinfl/))

(5-1.20)

and the M =-1 term is obtained by taking the complex conjugate of the M = 1 term

because a linear polarization basis was chosen

1.-1= (5-1.21)
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For electric dipole scattering, the polarization matrices are equivalent except for the

substitution/_ _/_-n'/2 since the electric dipole vector fields are orthogonal to the

magnetic dipole vector fields. For simple orientations of the quantization axis with respect

. to the photon directions, three examples illustrating the structure of polarization matrices are

given below.

CASE 1: Quantization axis is perpendicular to the scattering plane: (_, = i.
m.

= Jr2, ,9(,= O, Oi = Of = _/2, _I - _ = 20B

_l,._>=-b(,._)' _l,._)=_,._)' P(,._)=- _12

Then, p_m)= _ 0 _.-_1-- 1-"_e (5-1.22)

p_.l = _ 0 _'_'= _e (5-1.23)' 16_

M= 1 0 -1 M= 1 0 -1

6j _j 6j nI 6j _j

(a) %)

Fig. 5-1.4. For a dipole transition M = m,,-mf, incoming linearly polarized fields
scatter into outgoing linearly polarized fields: (a) magnetic dipole transitions, (b) electric
dipole transitions.

The polarization matrices show that the M = m,, -mf transitions emit only linearly

polarized light. For M = 0, the scattered magnetic dipole radiation is vertically, or pi,

polarized while for M = +_1 the scattered radiation is horizontally, or sigma, polarized. For

scattered electric dipole radiation the situation is opposite to that of magnetic dipole

" radiation as shown in Fig. 5-1.4.

CASE 2: Quantization axis is parallel to the scattering plane but vertically

oriented: (_, = z.

f_= z =o, o(,,s)= oa+-_12, Cf- _,= _t

Then
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P_C°r")= 8--_ 0 ' "±' - 1676 +isinO s 1 (5-1.24)

7_3(0 0 / P(=)t._:,= 3(1 -7-isin 0R3 (5-1.25) "P_C°_)=o,_0 -cos20s ' 1676 -7-isin0a -sin20B

!,

6 _ 6 _ 6

M= 1 0 -1 M= 1 0 -1
I

,|,

, _j 6j _j 6j _j 6j

(a) (b)

M= 1 -1

_¢

(c)

Fig. 5-1.5. For forward scattering (20_ =0) incoming fields scattex into outgoing
linearly polarized fields: (a) magnetic dipole transitions, (b) electric dipole transitions. For
backscattering (20 B= 180 °) polarization reversal occurs for circularly polarized fields: (c)
magnetic and electric dipole transitions.

For M = 0, the scattered magnetic (electric) dipole radiation is horizontally

(vertically) polarized. For M = +1, the scattered dipole radiation is g,merally elliptically

polarized--this is an example of polarization mixing where an incoming; polarized field can

be scattered into an outgoing field of a different polarization. However, for forward

scattering, (20 e =0), the scattered field is linearly polarized (no polarization mixing

occurs), and for backscattering, (20 B= 180°), the scattered field is circularly polarized.

For backscattering the polarization matrix for both magnetic (upper sign) and

electric (lower sign) dipole radiation is (for M = 1)
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p_m.o)= 16n" +i +1 ' (5-1.26)

If the incoming field is left circularly polarized

= =- a i + txi), (5-I.27)

then the scattered field has polarization

-o+ 16xx/2 +i +1 =T'8x_ i

This shows that left circularly polarized fields scatter into right circularly polarized fields

for M = 1. However, right circularly polarized fields do not scatter since

pl_m,o).6i= 3 1 ('T-1 +i]rl)=- l6zr_ +i +ldk-i ) O.

This is an extreme case of polarization mixing--it corresponds to complete polarization
reversal.

- For M =-1, the converse happens--incoming right circularly polarized fields

scatter into left circularly polarized fields whereas incoming left circularly polarized

. radiation does not scatter at all. This is ali shown schematically in Fig. 5-1.5 (c).

CASE 3: Quantization axis is parallel to the scattering plane but horizontally

oriented: (_z = _¢.

n = Z = nr/2, 0(,.i) = 0n, 0I -_, = nr

a-,=-_, _, =,i,,, _,=-6,, _, =6_, ,o,=_, ,o.,.=o
Then

_.,cos.)- 8-_. 0 ' ,.±1 -16"-'-_ -T-icos0n -1

3 (_ 0 ) p(o)_ 3 (-1 +/cos0n)" PI_")= _ -sin 2 On ' 1.±_ 16rtr _icos0 B -cos 2 0B (5-1.29)
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M= 1 0 -1 M= 1 0 -1

" 6j .

(a) (b)

A i .

M= 1 -I

,,!
e. ()_J

(:)
Fig. 5-1.6. For backscattering (20_= ).. . scatter180° incoming fields into outgoing
linearly polarized fields: (a) magnetic dipole transmons, (b) electric dipole transitions. For

20 B= 0 incoming fields scatter outgoing polarizedforward scattering ( ). . .. into circularly
fields' (c) magnetic and electric dipole transmons.

For M = O, the scattered magnetic (electric) dipole radiation is horizontally

(vertically) polarized. For M = +1, the scattered dipole radiation is generally elliptically

polarized. However, for forward scattering the scattered field is circularly polarized, and

for backscattering the scattered field is linearly polarized (this the reverse of Case 2).

For forward scattering the polarization matrix for both magnetic and electric dipole

radiation is the same:

1.±1 1'±1= 16rtr _i ' (5-1.30)

and for M = 0 the polarization matrices are zero. For M = 1, incoming left circularly

polarized fields scatter into outgoing left circularly polarized fields since

pCm._, ..__ 3 1 (-: i_l/= 3 1 (1/=(___)_/+,.1_ -e+ 167r_ -1 i 8Jr_ i

while incoming right circularly polarized fields do not scatter. Similarly, for M = -1, the

converse occurs (see Fig. 5-1.6). No polarization reversal occurs as happened in Case 2.
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There can be no polarization reversal for sigma or pi polarized fields because

scattering can only change the amplitude or phase of the incoming field. There is no way a

phase change can transform a sigma polarized field to a pi polarized field. However, by

, introducing an additional quantization axis, and arranging a set of scatterers in a convenient

lattice structure, this limitation can be overcome. This is discussed in Section 5.2 and 5.3.

The scattering amplitude, Eq. 5-1.4, can be greatly simplified for those cases in

which ali the angular momentum spin states are degenerate, or when operating far from any

dipole resonance. The scattering amplitude can then be spin averaged by summing over ali

intermediate, final, and initial state projection quantum numbers, or spins, mz, m i, m,, and

averaging over ali initial state spins

FJ,_)(k:,ki) = 'v_'.'_,ff'-'F(_)(k:'ki)/(2ji + 1) (5-1.31)

where 2ji + 1 is the number of initial state spins, mi .

For elastic scattering j/= Ji and ml =m i, and thus the sum over m i in the triple

sum above can be omitted. Since all of the angular momentum spin states are degenerate,

or nearly degenerate, the energy, E,, of the state with spin m,, is the energy of the unsplit

angular momentum state with angular momentum quantum number j,

E,, = Ej. (5-1.32)

The resonance denominator of the scattering amplitude is then the same for ali spins m, and

can therefore be pulled out of the sum (assuming also that the total decay rates, F,,, from

each state with spin m, are ali the same). Since the quantization axis is now unimportant--it

can point in an arbitrary direction--let it point in the same direction as in Case 3:

Q, =y. (5-1.33)

Then the polarization matrices of Case 3, Eqs. 5-1.28 and 5-1.29, can be used to perform

the spin average.

Concentrating on just magnetic dipole scattering, the main part of the spin average

calculation involves the term

" ___Pl_m)(jzm/1Mlj/lj, m,)2= 3-_( s'' s12]. (5-1.34)
,,/,,.M 16g\Szl S22J

- where (since m, = ml + M the sum over m, can be suppressed)

sl, : s22cos 2 0t_- ]_2sin 20n(jz,m/,1,Oljz,l,j,,m / (5-1.35)
m I
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s,:= _.icosO.((jl,mI,l,-Ilj/,l,j.,m+-l>2-(j+,mi,1,11ji,l,j.,m++I>2) (5-1.36)
m1

s2, = s}2 (5-1.37)
@

s22= _.,((jr,mi,l,IljI,1,J,,,ml+ I>2+(Jl,m+,l,IlJj.,l,J,,,m++ I)2) (5-1.38)
m/. 8

Since,fordipoletransitions,j.= Jl+ I,theClebsch-Gordancoefficientsreduceto

simplerelations2

<j+,,+1,o[j/,,,j/+1,m/>2 (J/-ml + l)(Jl+ ml + I)
' = (2ii + 1)(jl + 1) (5-1.39)

<jl,mi,l,+ llJI,l,j / + 1,ml + 1)2 (Jl + ml + 1)(Jl + ml + 2)
- - 2(2jl + 1)(jl + l) " (5-1.40)

Then the off-diagonal elements sum to zero since

ic°sOB(2JI + 3) _- mI =0. (5-1.41)

Q

This result already shows that polarization mixing is not possible for the spin averaged

scattering amplitude since the polarization matrix is diagonal.

For the diagonal element s22:

1 21s22= 2(2jl + 1)(Ji + 1) 2j} + 6jl + 4)(2jl + 1)+ 2Em,.,

: 1 I 12(2jl + l)(jl + 1) 2(j; + 2)(jl + 1)(2ji + 1)+ 4 J/(Jl + 1)(2J,6+ 1)

2
2 . 3)=S= 5 (2J/+ o (2j, + 1). (5-1.42)

Noting that

; 1 1E<jz,m+.,1,olj,,1j/+ 1,ml - (2jI + 1)(ji + 1) j} + 2j I + 1)(2j I + a)- y_,m_.,
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= 3(2J,, + 1) (5-1.43)

gives

s_l=cos 20n 2j.+l -2sin z0 n .(2/,,+1

41'

= 2(2j. + 1)cos20 n (5-1.44)

The spin average scattering amplitude is then

1 (2j.. 1)r,_ 1
FJ'_)(k/'ki)- 4k/(2_ + 1) h P"('_') (5-1.45)mk, -- ¢O0 + iF/21i

w ero °1) , 146,
and F,, a = F(1,m), and F is the total decay rate from the angular momentum state with

angular momentum number j,. For electric dipole scattering, the average scattering

_. amplitude is of the same form as Eq. 5-1.45 except that the polarization matrix is now

,,.,:(l° 0). ,_, cos 20n (5 1.47)

Note that the polarization matrix for spin averaged electric dipole scattering is

equivalent to that for Thomson scattering--this is one reason why Thomson scattering is

sometimes called electric dipole scattering at high photon energies• The scattering

amplitude for dipole radiation can then be written (in nontensor form) in a manner similar to

that for Thomson radiation

1 (2j. + 1)I;,,a (fiZz),.Olx)) 1
F'_')(k't'ki)= 4k/ (2j, + 1) h mk,--09o +iF/2h (5-1.48)

where for electric dipole scattering

. t)(c)=_, (5-1.49)

and for magnetic dipole scattering

. t?('_=fi=lix_. (5-1.50)
If the polarization of an electric field is _:, then the polarization of the corresponding

magnetic field is I1. Then, the scattering amplitude reveals that magnetic dipole electric

fields have the same polarization characteristics as electric dipole magnetic fields.



76 Dipole Polarization Properties and Static Field Interactions (5.1)

The total cross section for electric or magnetic dipole scattering is, from the optical

theorem,

r (r/2h)
41rlm'lFo.,_,kl,ki]_:tro 2 (5-1.51)tr_,

+(r/2h)
where tro is the total cross section on resonance

27r (2J" + 13(-_)(0 _ .Oi). (5-1.52)tr°= k] [2ji+l

This is the familiar form for the spin averaged total cross section for dipole scattering. 3

For nuclear scattering, the ratio of the radiative decay rate to the total decay rate is a

measure of how dominant the internal conversion rate is

F,,a_ 1--, (5-1.53)
F l+a_:

where a s is the internal conversion coefficient. In nuclear scattering, since the photon

energy is so high, the probability that the nuclear excited state will emit an electron, rather

than a photon, to decay back to the ground state (that is, will result in internal conversion)

can be quite high. For instance, for 57Fe, a common M6ssbauer isotope, a s = 8.23,
,,L

thereby limiting to 11% the chance that an isolated atom will scatter a photon instead of

emitting an electron. 4 However, when there is a collection of atoms, this limitation can be

overcome and there can be more than an 1 1% chance of photon emission through a

collective phased excitation effect. This is discussed in the dynamical scattering theory of

Chapters 6 and 7.

For nuclei having simple two-level systems, the total decay rate and the internal

conversion coefficient can be easily measured, and the total cross section, Eq. 5-1.51, can

be readily computed. However, electronic systems usually have many level systems with

many radiative decay schemes and cascades of Auger emissions from many different

angular momentum states. Performing a spin average over ali the possible transitions is a

formidable task for multielectron systems (recall Eq. 5-1.48 was only for a two level

system with initial and intermediate states specified by j, and j.). Therefore, the total cross

section is usually decomposed into a sum of ali the possible types of scattering processes,

and the dominant processes are selected

._ rTtlas + in,tlas _elas + intlas
tr,o, " pho,o.t..¢,c+ OCo_. + tr'rho_o.+ tr_,, p,oa._,io.+ "". (5-1.54)
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The photoelectric cross section describes a scattering event in which an incoming

photon causes an electron to be ejected into the continuum, and the atom subsequently

decays to a final state through radiative or Auger emissions. If the final state is identical to

the initial state, the scattering is "elastic" even though the incoming and outgoing particles

are different particles--energy conservation still holds. The Compton cross section

describes elastic or inelastic absorption re.emission for a multilevel system (these are bound

" state transitions)--the elastic, or Rayleigh, part is expressed in Eq. 5-1.51 for a two level

system. Pair production, where an incoming photon scatters into an outgoing photon but

changes the electron into its antiparticle in the process, becomes important at energies

greater than one MeV. In the dipole approximation, the Thomson cross section is zero

since the scattering amplitude is real. Cases for nonzero Thomson cross sections are

discussed later in this chapter.

As will be shown in the next chapter, the elastic cross sections are greatly enhanced

over the inelastic cross sections in scattering channel directions, such as in the forward

direction. When operating far from any bound state resonances, mainly photoelectric

scattering occurs, and Compton scattering can be neglected. Cromer and Liberman have

made self-consistent Hartree Fock calculations of the relativistic photoelectric cross section

of individual atoms for scattering into the forward direction. 5 The imaginary part of the

scattering amplitude is proportional to the total cross section, and the real part of the

scattering amplitude can be obtained by using the Kramer-Kronig relations (which is

equivalent to performing a Hilbert transform). Cromer and Liberman have made these

calculations along with a computation of the nonrelativistic Thomson scattering amplitude

and tabulated them in the form of parameters f0, f', and f" .5 Their parameters are related

to the scattering amplitude as follows:

FT(k/,ki)+Feho,o,,(k/,ki)=-r,(_.;..[i)(e-2Wfo+ f'-iy") (5-1.55)

where e -2w is a Debye Waller factor that takes into account the vibrations of the atoms

about their equilibrium positions. The major contribution to f0 comes from Thomson

scattering described by Eq. 5-1.1 with small relativistic corrections from the photoelectric

cross section. The Debye Waller factor is essentially the form factor, Eq. 4-2.14, modified

to take into account vibrating scatterers

. e -2w = (i, Ie-'(k'-k')u[i,), (5-1.56)

where u is a displacement vector describing the vibrations of the atoms about their

equilibrium positions. The factor W turns out to be proportional to the mean square

displacement of the atom from equilibrium in the direction of the momentum transfer 6
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.=(k,-k,)

The form factor is essentially the Fourier transform of the charge density

fo(H) = _ d3xp,(x)e -"'' , (5-1.59)

where H is given by Eq. 5-1.57, and p,(x)= _(x)_,(x). Since the charge density is a

real function of the spatial coordinates, the form factor is in general Hermitian

io(H)--f0"(-H). (S-l.60)
If the charge density has space inversion symmetry (the assumed case for ali Cromer and

Liberman calculations), the form factor is real and symmetric

p,(X) = p,(-X) :=, fo(H) = fo(H)= fo(-H). (5-1.61)

However, when atoms are brought together into a solid, the electronic charge distributions

of an atom may be distorted by the electronic and magnetic potentials of nearby atoms,

thereby, possibly breaking space inversion symmetry. 7

5.2 Hyperfine Interactions for Magnetostatic and
Electrostatic Fields

If the incoming electric field is a small perturbation, too small to significantly shift

energy levels or cause level splitting of those states that existed before the perturbation, the

eigenenergies during the perturbation can be approximated as being the eigenenergies

before the perturbation. The major effect of the perturbation will then be to cause

transitions between the various energy levels as described by the transition probability, or

S-matrix elements. In this approximation, the resonant frequencies, to,_= (E, - E_)/h, in

the multipole scattering amplitude are simply the eigenvalues of the constant perturbation,

H0, in Eq. 2-1.1. For magnetostatic and electrostatic interactions, the constant perturbation
can be written in the form -

Ho = Ho + H,,_ + H,, (5-2.1)

where H0 = p2/2m + Hl, ,, (5-2.2) -

and Hl,,, includes other possible interactions not discussed so far.
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Under the assumption that a nucleus is a pointlike magnetic dipole, H,,,,g can be

constructed by examining how the nuclear dipole interacts with the magnetic dipole field of

the electron

. H,,,,,g= -p- Ba/pot,- p .B_.. (5-2.3)

The first term represents the dipole interaction between an electron's orbital and spin

momentum with the magnetic moment of the nucleus 8
o

2..rL-_ S 3r(S-r)]B,_,, = - /./[--7 + (5-2.4)

where L and S are the orbital and spin angular momenta of an electron, and 13 is the

electron Bohr magneton

,0 = eh/2m, c. (5-2.5)

Only the orbital electrons that do not lie in an s-state, l _: 0, contribute to the dipolar

magnetic field.

The second term in Eq. 5-2.3 represents the Fermi contact interaction between an s

orbital electron and the nucleus 8

16Jz/_(r)S (5-2.6)B,,-
The computation of the total magnetic field at the nucleus can be quite involved for

multielectron atoms embedded in a medium because one must take into account the

exchange interactions among ali the internal electrons and between the internal and external

conduction electrons. 9, 10 For example, examination of Eq. 5-2.6 will show that the net

Fermi contact field is zero for a filled s shell because the two electrons in that shell have

opposite spin. The exchange interaction between electrons from outer unfilled shells and

the filled s shells polarizes the s shell electrons to produce a nonzero net Fermi contact

field at the nucleus. 1° The polarization of s electrons is a small effect, but since the Fermi

contact field for an unpaired 1s electron can be hundreds of megagauss, the polarization

effect can easily produce sizable fields on the order of hundreds of kilogauss. The field

strength of the dipole fields is an order to two orders of magnitude smaller that the net

" Fermi contact field, and there is also a contribution from the polarization of the conduction

s electrons that can also produce Fermi contact fields on the order of a hundred kilogauss. 9

. For the purpose of constructing the magnetostatic interaction Hamiltonian, the

detailed structure of the dipole and Fermi contact fields will be not be investigated, and the

magnetostatic interaction Hamiltonian will simply be expressed as

H._ 8 = -p- B=, (5-2.7)
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where Bu,t is the total magnetic field at the nucleus.

The electrostatic interaction Hamiltonian is

e 2

where rpis the position of a proton within the nucleus, and rc is the position of an electron

outside the nucleus (including those from surrounding atoms). Expanding 1lrp -rc]. in

I

terms of spherical harmonics enables H,_ to be rewritten as 11,12

H,t : _ T(0. VC_) (5-2.9)
!=0

where T(0 and V(0 are nuclear and electronic multipole electrostatic operators

_[ 4x ,
= _12-_ _'er'Y_q(Op'_p") (5-2.10)p

1

 5-2.1c %

Since the nuclear states have a well defined parity, the odd nuclear multipole

operators (those with odd l) give vanishing matrix elements. The even nuclear operators

yield nonvanishing matrix elements, and the major contribution come from the lowest order

multipoles--the Coulomb and electric quadrupoles (l = 0 and 2).

The Coulomb interaction is

'_ e---s-_ (5-2.12)Hto_ = -Zep rc

where Z is the number of protons within the nucleus. To this a correction term must be

added that is due to the finite size of the nucleus--the isomer shift 8

Ho.r : 2 (5-2.13)3

where (R 2) is the mean square charge radius of the nucleus and e l (o)l is the electronic
charge density at the nucleus.

The introduction of the electric quadrupole interaction produces additional

complexities. The electric quadrupole Hamiltonian has matrix elements that are

proportional the electric field gradient at the nucleus. However, the electric field gradient

tensor has a principal axis that may not be aligned with the quantum axis of the nucleus.

Then, there are two possible quantum axes. This arrangement gives rise to nuclear level
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mixing (a competition between quantum axes towards defining the state of the system) in

which there no longer exists any well defined, or "good", quantum numbers describing the

nuclear or electronic states. Matthias, Schneider, and Steffen have extensively worked out

. this problem. 13

. i i'

Fig. 5-2.1. Orientation of electric field gradient axes (primed system) to tile quantization
axes (unprimed system). 13

i

Fig. 5-2.1 shows the orientation of the electric field gradient system, system S'

with principal axes (ft',_',_"), with respect to the nuclear quantum axis system, system S,

in which the magnetic field direction specifies the quantum _' axis. The Euler angles,

(ct,ft,?,), specify how to rotate system S' so that it coincides with system S. For an

electric field gradient that has axial symmetry with respect to the z' axis, the angle ct can be

set to zero. For nonaxial symmetry, an asymmetry parameter 7/is introduced

71= V;',_,- V_',y, (5-2.14)
V',

02V '
- where V' =_ u,v= x,y,z. (5-2.15)

"" 3UOV

Using the rotation matrix, D(2_,(a,fl, _), to rotate the electric field gradient principal

" axis system upon the quantum axis system gives the matrix elements of the quadrupole

electrostatic Hamiltonian. (The nuclear dipole magnetostatic matrix elements are also

included below. Also, nuclear total angular _,,omentum quantum numbers are

conventionally represented as I.)
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1 (3cos2/3- 1+ r/sin z_cos2a)[3m z- !(I + 1)] (5-2.16)H,.,,, = -h(onm + ho e -_

H.,,.,±, = hCOe3 sin/3{cos/3 :F_[(1 + cos/3)e;2a - (1• cos/3)e-'2'_ ]}

x e±'r(2m + 1)_1 gm)(! +m+ 1) (5-2.17)

3{ 7/ cos/3)2e i2" (1_cos l}H,.,,.±2 = ti(oe sin2/3 + g-[(l _+ + /3)Ze-'2a

x e±;2r_(l + m + 2)(I +m + 1)(/_ m)(l -Y-m- 1) (5-2.18)

where rio)a = lzlBi,,/! (5-2.19)

ho;e = e2qQ . (5-2.20)
4/(21-1)

The magnetic moment of the nucleus has been defined as

-"-(/9 _¢_']'i I_u_l)ll,m ! I)= o '11 "'11'-,/(2,+,)(,
(5-2.21)

the nuclear electric quadrupole moment has been defined as

(: ",/<eQ/2 = (l,m, =,ITo_"It.,.,=,)=, o '11' '11')

(5-2.22)
- 4(2/+ 3)i1+))(21+ 1)2/(2/- 1)

and the electronic electric quadrupole has been defined as (averaging over space)

eq/Z=(Vo (zl) (5-2.23)

where Vo(z_= V/,, /2 (5-2.24)

I [-_-[V' iV;.,,) 0 (5-2.25)vj_)=T--__13_...+- =

v,(z),____41_3 _,I__2[V, "V' 1 . __ ,,_,-V_'y,+2t ,,y,) = _- r/V,,,,, (5-2.26)

and a coordinate system has been chosen so that Vg'_= 0 when u # v. The angular factors

come from the rotation relation
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2

V_2)= _ ,tv'C2)rJ(_)(.--,q a,/3, y) . (5-2.27)
1=-2

When the electric quadrupole interaction is small compared to the magnetic dipole

" interaction, a first order approximation can be made by dropping ali of the off diagonal

matrix elements of the total Hamiltonian. In such a first order approximation, the

• eigenvalues are given by H,.,,,, and the eigenfunctions can be written in column form as

_)r = (0,0,0,...,1,...,0) (5-2.28)

where the unity factor is in the n _' place for 1 _<n _<21 + 1, and 2I + 1 is the number of

eigenvalues. Each quantum number m is then a "good" quantum number in that they ali

define a unique state of the system--the n_hstate is specified by only one number: m.

When no approximations are made to the total Hamiltonian, the eigenfunctions

become a linear combination of the first order states of the system

_lPlle

,_vq. (5-2.29)
q=-m °

where c.q is a complex number and m' ranges from the minimum to the maximum possible

" value of m. Each quantum number m is now a "poor" quantum number since they no

longer well define the states of the system--the n_' state is now specified by a sum over ali

• possible m quantum numbers.

The polarization matrix of Eq. 5-1.5 must now be modified to include these

changes

ay q=-m' q

where _.,,,-_°)=c,_ of Eq. 5-2.29, M=q-m t, and M'=q'-m s. (the scattering
amplitude in Eq. 5-1.4 must now be summed over L and n rather than L and M as

before). Examples of magnetic dipole scattering for 57Fe are given in the following
sections.

i,,
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5.3 Linear Polarization Reversal of Fields Scattered from a

Ferromagnetic Lattice

The hyperfine energy level diagram for 57Fe is shown in Fig. 5-3.1 (ali energy

shifts are greatly exaggerated). The isomer shifts for the excited and ground states are

designated by AE_'s and AE_,. The excited and ground state magnetic splittings are
ql,

hto"B= 2#,Bi,,,/3 and hog_= 2/a_Bi,_. The ground and excited state quadrupole shifts are

AE_ = 0 and

1 _ ..(3cos_/3-11 (5-3.1)AE_ = _-e q_d[_ 2 '

Lm

me'-312
tlo_"B

AE___ m, = 112
3-

I,:-2 / V / m,=-1/2 -

Ae;,
#

j m, = -312
M=-I 0 1 -1_ 0 1

Jk ..... 1 2 3 m,=-i/2

1-
/ hco

4 5 6 m8=112

Fig. 5-3.1. Hyperfine energy levels of 57Fe of d-sites in a YIG crystal. Quadrupole
shift for ground states is zero, and p, < 0 and Bi,, < 0. .

where the electric field gradient tensor is assumed to be axially symmetric so that 7"/=0.

The electric quadrupole shift is small compared to the magnetic dipole shift for

STFe,so in most cases first order perturbation theory is adequate. The excited states are

then labeled by good quantum numbers, and the unitary eigenvec:_gr matrix (whose

columns are the eigenfunctions) that diagonaliz_s the Hamiltonian is diagonal
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oo/o,o,o,oloo/"" ,1 "r_,2'T-½,3 'T'-T,4] -" " (5-3.2)

1

" When the full theory is employed, the unitary eigenvector matrix that diagonalizes the

Hamiltonian is no longer diagonal

( cI'_ C2'_ C3'_ C4'_ /

=| % % % |
(I) "-(1_,1, ¢½,2, {__½.3, ¢__.4 )| cl'-½ C2.-½ C3'-½ C4._½/• (5-3.3)

_Cl,-_ c2.-½ c3,-_ c4,-_)

Since the ground states have no electric quadrupole interaction, their eigenvector

matrix is always diagonal. The O-matrix elements for the excited states are found by

diagonalizing the full Hamiltonian matrix to get the eigenvectors. The magnitude of the

diagonal elements are close to unity, and the off diagonal terms are small (magnitudes on

the order of 0.1 or less). The energy level diagram is negligibly changed (the energy levels

change by about 1% of a natural linewidth). The change in the nuclear states, though, is

large enough to produce noticeable effects.

One interesting effect is the case of complete polarization reversal of the linear

polarization basis of an incoming; electric field. In Section 5.1, where nuclear level mixing

was neglected, incoming right circularly polarized fields could be scattered into left

circularly polarized fields and visa-versa for a convenient orientation of the quantization

axis. Nuclear level mixing now enables vertically polarized fields to scatter into

horizontally polarized fields and visa-versa.

For example, for the [0 0 2] reflection of a YIG crystal, two 57Fe sublattices within

the unit cell, called d 1 and d 2 sites, contribute to a nonzero diffracted beam. The iron in

- these sites have identical hyperfine environments except that the electric field gradients

lying in the [0 0 2] plane are oriented 90° with respect to each site. Also, the two

, sublattices are situated such that the reflected wave fi'om each site is 180° out of phase.

Each site produces a six line emission pattern which will be labeled (_I,_2,_3,_4,_5,_ 6) for

the d l sites and (t_,t2,l;,14,t;,t6) for the d2 sites (see Fig. 5-3.1). In first order

perturbation theory, if the internal magnetic field was oriented by an external magnetic field

so that it bisected the angle between the electric field gradients, see Fig. 5-3.2, the

' ' Ill
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quadrupole shifts of the iron atoms in the two sites would be identical for each pair of lines

(t,,g_) since fl=+45 ° and (3cos2fl-l)/2= 1/4. Then, to first order, no net reflected

intensity is possible because the reflected field amplitudes from each site would cancel as a

result of the 180 ° phase difference and because each pair of lines lie at the same energy.

=-.)
d2er a dl epa

eint

it
Fig. 5-3.2. Orientation of YIG electric field gradient directions for d 1 and d 2 sites
lying in the xy plane. Internal magnetic field direction bisects angle between them.

However, when nuclear level mixing is accounted for, there is no complete

cancellation. For instance, the polarization matrix of line t_ is (using Eq. 5-2.30 for the

case where n = 1, keeping only terms that satisfy the dipole selection rules M = 0,+1, and .

knowing that 57Fe radiates only magnetic dipole fields)

Y, ,c
(5-3.4)

The scattering geometry is exactly that of Case 1 in Section 5.1. Then, using Eqs. 5-1.19

to 5-1.21 and the results of Case 1 gives the polarization matrix elements:

(p,(m)_ _ 3 (_e,2O, _e-i2o, i(_ei2O,c• -,2o,._ 1= 16_ c_,_ q,-½1k _,_-e q._½) (5-3.5)

=_( I(-e'2°,c" _e-i2o, c"(p,(,,)_ 3 i42- q,½/_, _.] _,_½j (5-3.6)_' _ /_ 16Jr

(p,(m)_ _ 3___(_ei2O, -i2o, )(-iff2c,[½) (5-3.7)_ !y_- 16n:_ c_,_-e q._½

(p(m)_ 3 2
_ ,, = _-_-ICl.½]. (5-3.8)
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Note that the Euler azimuthal angle for tl is ?'1= -zr/2 and for t_ is ?'_'= Jr/2.

Applying a unitary transformation upon the Hamiltonian, Eqs. 5-2.16 to 5-2.18, gives in
matrix form 12

H(ot,fl, O) = a( y)H(a,fl, _)a-_( y) (5-3.9)
.,..,

where aja(y)= 5ue''r (k,l= l,l-1,...,-I). (5-3.10)

The eigenvectors can then be written in the formI,

*(ct,ft, 7) : O(ct,fl, 0)A(y). (5-3.11)

Since a=0, O(ct=0,fl,0) is a real matrix. So, when ),--->-y, the eigenvectors

transform into their complex conjugates. Therefore, the eigenfunction associated with t 1 is

the complex conjugate of the one associated with t_
P

c,_ =c_. (5-3.12)

Attaching a minus sign to the amplitude of line t_ to take care of the phase

difference of the reflected fields from each sublattice, and summing the polarization

matrices for lines t 1 and t_ gives

=(°Co) 313
{ })where C = 2_- e '2°° Im[c tc'_ "_+ e -_2°°lm c,,½cl,_½ (5-3.14)• L 1,2l._j •

Because the polarization matrix has only off diagonal matrix elements, complete

linear polarization reversal occurs. For example,

This shows that incoming horizontally polarized fields scatter into vertically polarized fields

with an amplitude proportional to C. However, since the off diagonal elements of the

eigenvector matrix are small, ICIis small, and thus the scattered intensity is very low. The

nuclear resonance scattering group at Hamburg 14,15 has observed the effect of nonzero

cancellation, but to date no polarization analysis has been done to observe the effect of

" polarization reversal.
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5.4 Linear Polarization Reversal of Fields Scattered from

an Antiferromagnetic Lattice

The added complexity of nuclear level mixing is not needed to produce linear
,,f

polarization reversal for scattering from an antiferromagnetic lattice. However, similar to

the case for a ferromagnetic lattice, one still relies upon the phase difference between the

reflected fields from different iron sites within the lattice.

For this example, take the case of 57FeBO3. lt has a rhombohedral unit cell

structure containing two iron atoms located at two different b-sites. For certain reflections,

such as In n n] reflections where n is an odd integer, the reflected fields from the two sites

are 180° out of phase. However, because of the antiferromagnetic structure of the crystal

lattice (further explained in Chapter 8), the electric fields scattered from the nuclei do not

cancel out.

Let the internal magnetic field at each nuclei at the two b-sites be parallel to both the

scattering plane and the [n n n] planes (this corresponds to Case 3 in Section 5.1). The

polarization matrices for the iron site in which the internal magnetic field lies in the _¢

direction (see Fig. 5-1.1) is given by Eq. 5-1.28, and the polarization matrices for the other

site in which the internal magnetic field lies in the -y direction is given by the complex

conjugate of Eq. 5-1.28:
i

3/-sinZ0n 00/ P,(')- 3 (-c°s20B "T-ge°sOB/ (5-4.1)Pl(°m) "- 8-"-_" 0 ' 1.:t:1 16_+icosOn -1 "

For incident horizontally polarized fields, the polarization of lines g_ for the case

ft,.,= +9 is:

3 (-sin 20n 0 1
lz andg5

=_87r_,_ 0 0 0 8zr 0
/

3 (-cos20B +icosOB_;l= 3___(cosZOn)t t and _4 =*-16----_\_icosO s -1 16_:t icosO B ' "

,i

3(cos20/and t3 and g6 =:__ •
16zc_-i cos On)
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The polarization of lines g_ for the case B_,,=-y is the complex conjugate of the

expressions above. Pictorially, the polarizations the lines for the two b-sites are shown in

Fig. 5-4.1 where, for the lines g_, a minus sign was included to take into account that the

fields reflected the iron sites giving rise to these lines are 180° out of phase with those
Q

fields reflected from the other iron sites giving rise to the lines gi.

Since pairs of resonance lines lie at the same energy, the superposition of each pair

" of lines gi and t_ gives the net amplitude. As shown in Fig. 5-4.1, the net resultant field is

completely vertically polarized. Incident horizontally polarized fields are scattered into

outgoing vertically polarized fields, and visa-versa. Unlike the case for a ferromagnet,

linear polarization reversal of fields scattered from an antiferrornagnet is a strong effect and

has been clearly observed in an experiment using 57Fe203.16

li gz t3 14 g5 g6
I I I I I I
I I I I I I
I I I I I I
I I I I I I

cosZ 0n_+ 2sin 2 0BO COSZ0nO -- COS20e_+ 2sin 2 0B_ COSZ0n_ -

i COS0B_ i COS0n_ i COSOn_ i COS0B_

p I P P • P

li lz t 3 14 15 g6

- I I I I I I
I I I I I I
I I I I I I
I I I I I I

-cos 20B_+ -2sin z0nO -cos 20nO- -cos 20B_+ -2sin z0nO -cos 20nO-

i cos On_ icos 00_ i cos On_ i cos 0e_

__J
_,, _e_

I I I I I I
I I I I I I
I I I I I I
I I I I I I

. 2i{_ 0 - _ _ 0 -_}cos0 n

Energy

Fig. 5-4.1 Demonstration of linear polarization reversal. An incident _ polarized field
is scattered by iron nuclei in an antiferromagnetic lattice. The sum of the scattered fields is
a resultant field that is/t polarized.
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5.5 Angular Interferometry

As shown in Section 5.1, the direction of the quantization axis strongly influences

the nature of the scattered fields. Major differences in the spectra of scattered fields can .

also be seen when the internal magnetic field is oriented to lie in an antiparallel direction.

This phenomena allows one to do angular interferometry where quantum beat interference

patterns depend not upon the spatial distances photons travel such as in a Michelson-

Morley interferometer, but upon the angles through which photons are rotated. The

example below describes this type of interferometry using the scattering theory developed

in this chapter. An alternate description of this phenomena utilizing the rotational symmetry

properties of free space is given in Appendix A. 17

1.0 --

Il l_0.8-
M = -1 M = +1

._'_

0.6-

"_ 0.4-
N 13 l,

0.2 - M=+I M=-l

1 1
0.0 - ___J________.K__ __ ___

('_)01 0"}03 (/)04 0")06

-0.2 - i i I I I -i
- 50 -100 -50 0 50 100 150

Energy (in unitsof linewidthsl")

Fig. 5-5.1. Four line magnetic dipole energy spectrum when incoming field is
horizontally polarized.

As an example, consider just one site in YIG, such as the d 1-site discussed in the

last section. When the internal magnetic field is oriented perpendicular to the scattering

plane (see Fig. 5-1.1 where Br,, is now the quantization axis (_,),

B_.,- i, (5-5.1) .

and, for incoming horizontally polarized fields, the intensity of the scatteredfields exhibits

the 4-line spectrum shown in Fig. 5-5.1. The orientation corresponds to Case 1 in

Section 5.1, and thus lines t 2 and g_ areforbidden by polarization selection rules.
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In the kinematical limit, the total electric field amplitude scattered from the crystal is

simply the sum of the amplitudes from each particle within the crystal. Since the scattered

field from each particle is proportional to the scattering amplitude, the field amplitude of the

four allowed lines for a single particle are as follows (from Eqs. 5-1.4, 5-1.22, and!

5-1.23):

g,(0)) = °-1e-'z°" /(_- 0)0,+ ir/zh) (5-5.2)

g3(w) : a3e'2°°/(09 - 0)03+ iI"/2h) (5-5.3)

_4(0.,})= a3e -i2°"/(0)- 0)04 + ir/zh) (5-5.4)

g6(0)) = °Ie'2°'/(0)- (-006+ ir/2h) (5-5.5)

where al = Co-1, a 3 = C0 -1/3, and Co is a quantity proportional to the incoming field

amplitude. The factors multiplying co are the squares of the Clebsch-Gordan coefficients

for those lines (see Eqs. 5-1.39 and 5-1.40).

When the internal magnetic field is oriented into an antiparallel direction,

B,,, = -i, (5-5.6)

the phase of the amplitudes will change, but their magnitudes stay the same. For such an

orientation, from Fig. 5-5.2, the conditions in Case 1 in Section 5.1 change to

Oi = OI = _z/2, _I -_, = -2OB,
,t

=67,.,, = =
Because the azimuthal phase difference is now minus the scattering angle, the polarization

matrices in Eqs. 5-1.22 and 5-1.23 change to their complex conjugates. As a result, the

amplitudes of the lines for this new orientation are

g_(0))=a_e'Z°'/(0)-0)o_ +ir/2h) (5-5.7)

g;(0)) = a3e -i2°"/(0)- (003 + ir/2h) (5-5.8)

g4(0)) = a3e'z°" /(0) - 0)04+ ir/2h) (5-5.9)

g'6(0))= °1e-'=°" /( 0) - 0)06+ ir/2h). (5-5.10)

. Far off resonance where 0)-0)0i >> F/2h, the amplitudes for the two inverted

orientations of the internal magnetic field are the phase conjugates of each other: g[ = tj.

, This is so because the amplitudes ai are real. This calculation has neglected nuclear level

mixing, however, if it were included the amplitudes would still be the complex conjugates

of each other even though the amplitudes ai are now complex (this is because the Euler y

angle undergoes the transformation y --->-y upon an it,version of the quantum axis, and
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z _ Bint

Xi (Ji

£I, -
20B

'i ici

Fig. 5-5.2. Scattering geometry for inverted quantization axis. Wavectors k, and k I lie
in the QxQy-plane.

by Eqs. 5-3.10 and 5-3.11 the amplitudes ai change to their complex conjugates). Because

of the resonant denominator, resonant systems cannot experience true phase conjugate

scattering.

In frequency space this phase effect is not easily observed for spectra having

resonance lines separated by many natural linewidths--one would have to carefully examine

the interference between widely spaced lines that have little overlap. However, in the time

domain the effect stands out more because the phase of the beat patterns due to the

interference of two oscillators with different frequencies can be more easily measured.

This can be seen by examining the beating between the two dominant resonance

lines g_ and g6. The Fourier transform of their frequency amplitudes gives the familiar

damped sinusoidal expressions

g_(t ) = -ic6e -_r'/z_e -_('°°''+2o,) (5-5.1 _)

_6(t) = -ia_e-ir'/Z_e -_(°'_'-z°°). (5-5.12)

For just these two lines, the kinematic intensity from crystal is then proportional to

l(t)--- [g_(t) + g6(t)][g;(t)+ g_(t)]

= 2aaZe-r'/'{1+ cos[(a)06- o90,)/- 40hl}. (5-5.13)

Whe, the internal magnetic field is inverted, the phase of the intensity pattern changes sign

so that

l'(t)-2ee-r'/'{l+cos[(Ogo3-Ogo,)t+40,]}. (5-5.14)
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Thus, adjusting the Bragg angle tunes the phase difference, Aq_= 80B, between the beat

patterns of the two intensity distributions. For Bragg angles near 22.5 ° this is a very

noticeable effect. For instance, if 20 B = _z/4 then the intensity distributions are 180° out of

, phase and, therefore, the the peaks of one intensity pattern will lie in the valleys of the

other. This is one of the kinematical effects investigated experimentally in this thesis, and

the results are given in Chapter 10.
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6. DYNAMICAL SCATTERING BY
RESONANT SYSTEMS

o

6.1 Kinematical Scattering Theory

In kinematical scattering a photon scattered from one particle does not interact with

other particles-multiple scattering is nonexistent. The field amplitude at a point x is then

just the sum of the individually scattered fields emanating from each scatterer within the

medium. From the spherical multipole electric field equation, Eq. 4-4.16, this sum (over

N identical particles) is

=10iF(k,,k,t N+ EEe -'(k,-k'l<'.-'-, (6.1-1)
n=l m=|

where x is far from any scatterer, I0 is a constant proportional to the incoming beam

intensity, and the incoming field term has been excluded so that only the properties of the ,q

scattered fields are examined. The scattering amplitude is given by Eq. 4-3.63 or 4-3.64

with x 0 = 0.

For scattering into the forward direction, k/=k_, ali spatial phases,

¢_ =-(k.t -k,.)-x, are zero. This is a scattering channel direction--a scattering direction in

which the scattered fields from ali the particles in a medium have the same spatial phase. In

the forward direction, the intensity is proportional to the square of the number of scatterers.

To find the scattered intensity in other directions, the second term in Eq. 6-1.1 must be

evaluated. As N _ oo this term, for an isotropic medium, can be approximated as a sum

over a random disaibution of spatial phases which averages to zero--in such a case, the

nonforward scattered field intensity is formed from an incoherent sum of the scattered

fields from each scatterer. Then, the nonforward scattered intensity is proportional to the

number of scatterers, and the net intensity for elastic scattering is

l''(X) = loNlF(k , * ki)]2+ loN2lF(k I =ki)l 2. (6-1.2)

For off-energy-shell inelastic scattering where k I _ k_, a random temporal phase,

¢_, must be added to the field as discussed in Section 3.5. Because of this factor,

94
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irrespective of the scattering direction, the scattered intensity is formed from an incoherent

sum over ',dithe scattered fields from each scatterer

. /'"(x): lolF,,_,(kz,k , (6-1.3)
In=l

where F,,,,(kf,k,) is an inelastic scattering amplitude.
" For an anisotropic medium, such as a crystal, there can be many scattering channel

directions (such as those resulting from Bragg diffraction in a crystal) in addition to the

forward direction. Normally, a structure factor for a unit cell is constructed to calculate the

total field scattered from a crystal.

The structure factor is the sum of the scattering amplitudes from ali of the particles

in the unit cell. For electronic scattering (operating far from any any bound state

resonances or absorption edges) or for nuclear scattering the StTUCturefactor of a unit cell

with scatterers of type a located at r,° is

_-2w,, ,. , • ,,)e-ill.r..Fn =-r,(_,'r "_i)E( e Y0,,+ f_ -if_ (electronic scattering) (6-1.4)
O_Cla

Fn = ZFa(k/,ki)e -'Hr"" (nuclear scattering) (6-1.5)
Q',.Ia

" where H=kf-k i, (6-1.6)

and the scattering amplitudes are given by Eq. 5-1.55 (electronic scattering) and Eqs 4-3.62

or 4-3.63 (nuclear scattering). If the origin is placed at the corner, x 0, of one of the unit

cells in the crystal, then any other unit cell can be found through an integral number of

lattice displacements

x' = Xo+ ntat + n2a2+ n3a3. (6-1.7)

After calculating the structure factor for one unit cell, then, for one scattering channel, the

total scattering amplitude from the whole crystal is constructed by summing the scattering

amplitude from each cell multiplied by a phase factor, e -irt("`'`) (ni = 0,1,2,...,N i - 1 and

i = 1,2,3), each cell acquires. The resulting scattered intensity is given by1,2

1(x)-Z01F+,(x)l' sin2(NiH" ai/2)
i=, _'_a_/_ (6-1.8)

The reflectivity is maximized at the Bragg peaks according to the Laue equation

H-a i = 2_rHi (6-1.9)

where H i are integers and H is a reciprocal lattice vector

H = hb_ + kb 2 + gb 3. (6-1.I0)
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When theBragg condition is satisfied, the scattered fields travel mainly in scattering

channel directions, 121,and have narrow angular spreads. At the Bragg peaks, the intensity

is again proportional to the squareof the number of scatterers

1(x)=10Nlf.I (6-1.11) -

where N = N1N2N3 is the total number of unit cells within the crystal. The angular width

of an outgoing beam is inversely proportional to the number of scatters. Since most

materials studied are macroscopic in size (as discussed in Section 3.1)--their dimensions

are much greater than 100/_ and N >> 106--the angular widths are essentially delta

functions at the scattering angle 20 B. Examination of Eq. 6-1.8 shows that the average

intensity off the Bragg peaks is half the scattered intensity from a single unit cell--this

extremely small factor can be safely ignored.

In the kinematic domain, crystalline and isotropic media give reflectivities

proportional to the square of the. number of scatterers when examining fields traveling in

scattering channel directions. However, when examining fields not traveling in scattering

channel directions, isotropic media give intensities proportional to the number of scatterers,

while crystalline material give intensities that are essentially zero. Inelastic scattering in

crystelline media is identical to that in isotropic media because of the effect of the random

temporal phase factors of the scattering amplitude.

6.2 Dynamical Scattering Theory

Dynamical scattering includes the _,,ultiple scattering effects that are ignored in

kinematical scattering theory For linear time-invariant causal systems, multiple scattering

can be handled by linear system theory. In such a theory, if the impulse response of a

system is known (that is, the response of a system to a delta function in ume), then the

response of the system to any arbitrary analytic function is known (this is proved by

imposing linearity, or using superposition arguments). 3 The frequency response of a

scatterer to an incoming plane wave is described by the spherical multipole electric field in

Eq. 4-4.16

/kr'a t

H,_((O,X, ,X) = e----- F,_(k t,k,) (6-2.1)
t"

R a
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where x.. is the position of scatterer of type a, and r.,, = Ix - x,,. [ is the distance from the

scatterer to an observation point.

In multiple scattering, the spherical wave generated by a scatterer can interact with

" ali other scatterers which in turn produce spherical waves that can interact with the original

scatterer and all other scatterers. This multiple scattering behavior can be investigated by

- examining each step in the scattering process. For instance, for an incoming wave (the

zeroth order scattered wave)

a0(co, x ) = E0(co, x ), (6-2.2)

the response of the system (first order, or single scattering), is

N, N a

al(co,x) = _ 2ao(co, x.. )H(co, x.., x ) (6-2.3)
¢_=1 n a =1

where Na is the number of scatterers of type a, and N, is the number of different types of

scatterers. Note that Eq. 6-2.3 represents a symmetric state of excited scatterers since

interchanging the indices of identical scatters, x,. _ xr, does not change the final sum.

Double scattering (second order scattering) occurs when the single scattered wave interacts

with ali the particles

N, N,,

" a2(co, x) = _ _a_ (co,x..)H(co, x. ,x). (6-2.4)
¢X=l n a =1

By iteration, one can determine the amplitudes for triple and all higher order scattered fields

N, N a

a.(co, x): _ y a,._,(co, x.. )H(co, x. ,x) (m _>1). (6-2.5)
(Z=l a. =I

For some problems, working in the time picture rather than in frequency space may be

more convenient or illustrative. In the time picture multiple scattering involves the

convolution of the frequency response with the incoming wave

Nt Na

a.,(t,x)=Z_._£a,,,_l(t',x..)H(t-t',x..,x)dt' (m>__l) (6-2.6)
" a=l n a =l

where the limits of the convolution integral were constrained by assuming the functions are

. causal:

a,.(t',x) = 0 for t' < 0 (6-2.7)

H(t-t',x.° ,x)= 0 for t-t' < 0 or t' > t. (6-2.8)
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Working in the time domain, the multiple scattering formalism can be shown to be

equivalent to a Feynman path integral approach where a sum is made over ali the possible

scattering paths of a collection of scatterers. 4

The total scattered wavefield emanating from the medium is the sum of ali the

multiply scattered fields

E,(og,x) = _a,(m,x). (6-2.9)
m=O

Note that Eq. 6-2.9 is still a quantum mechanical expression (the multipole scattering

amplitude was obtained by finding matrix elements of quantum mechanical operators). No

connection with classical electrodynamics has been made yet. The connection comes when

the number of scatterers becomes so large (N >> 10 6) that computing Eq. 6-2.9 becomes

too time consuming. In certain cases, however, such as for an isotropic medium, one can

show that summing up an infinite number of scattering diagrams leads to the Maxwell

equations for a medium (this is done in Section 6.5).

6.3 Two Coupled Oscillators
a

Observation

r Point

rl

Origin particle # 1 r2

q

particle # 2

Fig. 6-3.1. Scattering geometry for two coupled oscillators.

For a simple example of multiple scattering scattering, consider the case of two

identical particles situated a distance r_2= Ix_- x21 apart as shown in Fig. 6-3.1. Assume,

for further simplicity, that at some time t = 0 both particles are in the excited state and



(6.3) Two Coupled Oscillators 99

decay with a probability amplitude Fo(t). This allows the zeroth order scattering term,

ao(t ), to be ignored along with ali the spatial phase factors associated with it.

Then, for the frequency response given by Eq. 6-2.1, ali of the higher order

. scattering terms can be computed through the use of the multiple scattering equation,

Eq. 6-2.5. (Below, r_=lr- x,I, r2 =lr-x2l, and the polarization matrix describing

scattering from particle #1 tor has been assumed to be equal to the polarization matrix
t

describing scattering from particle #2 to r)

ea'2
a_((o,r) = Fo((o) ea" + F0((o)-

rl r2

,li)
a3(w,r)= F0(o9 --+--

L r_z r_ rs

rea,,, "]m-l['ei_, ea,, !
a'_(°)'r)=F°(°)_TF(k/'ki) ] l_+r_ )"

(6-3.1)

The total scattered electric field is then

jr0l 1"a,, ea', '_ **Fei_,,,F kEs(o),r) = Fo((O) +-- )( ''k+

ro(_O) +--
--- r2 (6-3.2)

ea,i2

- 1- r-S-2F(k,,k/)

Evaluating this expression for dipole scattering using the spin averaged scattering
e,

amplitude, Eq. 5-1.48, gives interesting results. Eq. 6-3.2 is then valid for sigma

polarized electric dipole fields or pi polarized magnetic dipole fields. Assuming F0(_ ) has

the same resonance characteristics as the scattering amplitude

Fo(O)= Fo/(Co- ¢.oo + ir/2h), (6-3.3)
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and for r >> I_,l,lx_l Eq.6-3.2 reduces to

E,(to, r) = 2F°(e_/r)e'k("+")/2c°s[k'(xl - x2)/2]
to - (too - ro,) + i(r + F,)/2h (6-3.4)

where k = k(r/r), and to, and Fs are a coupled oscillator frequency shift and decay rate

speedup factor

1 / 2J" + I)(-F-_) c°s(krl2) (6-3.5)to' = 4 _.2ji + kt12

1( 2j, + 13 sin(krl2)krl2 (6-3.6)F =2k2j,+l F_ .

This result shows that a pair of coupled oscillators will radiate fields with a natural

frequency and natural linewidth that is different from an isolated oscillator. This is not

surprising since, as shown in Section 3.7, a single oscillator interacting with its own

electromagnetic field results in a frequency shift and a natural linewidth. In this problem

there are two oscillators interacting with the electromagnetic fields generated by both

oscillators.

For two 57Fe nuclei, the coupled frequency shift and speedup rate are

(j, = 3/2,j, = 1/2)

1(-_) c°s(krl2) (6-3.7)to, = _ kr_2

Fs = F,_ sin(kr_2). (6-3.8)
kr_2

As kr_2_ 0, the speedup rate goes to

Fs _ Fr_. (6-3.9)

Since F = F_:+ Fr_d, where Fz is the decay rate due to internal conversion, then, when the

separation between the oscillators is small compared to a wavelength, the radiative decay

rate doubles. This confirms Dicke's supperadiant result that a symmetric state of two

coupled oscillators has a radiative decay rate that is double that of a single oscillator. 5

However, as kr_2_ 0 the frequency shift becomes infinite. This is understandable

because the electric field amplitude varies as 1/kr12. The particles are then bathed in a very

high intensity electric field which will induce extremely large energy level shifts.
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The frequency shift and speedup rate are also affected by the spatial separation of

the particles--by increasing or decreasing the separation produces negative or positive

frequency shifts and results in an increase or decrease of the the natural frequency. There

is also an effect due to the angular momentum states of the particle. For very high angular
,J

momentum states and as kr_z--4O, the speedup rate approaches F, _ 3F,aa/2.

If the two particles are excited by an plane wave, the problem becomes slightly

" more complicated because the spatial phase of the plane wave must be taken into account.

Performing computations similar to before, except now with an incoming plane wave

a0(to, r) = E0e'1''' (6-3.10)

yields

e_(co,r)= Eoe'k''- eo 2j,+1 T -_-r_

× cos[H-x_//2] R+(to---------_+R_(to--------_+ k')'x'z R+(to) R-(to)

(6-3.11)

where R+(to)= to-(too - to,)+ i(r + r',)/2h (6-3.12)

. R-(to)= to-(to0 + to,)+ i(r- r,)/2h, (6-3.13)

and k I = k(r/r), H=k I -ki, x_2 = x_- x 2, and to, and F, are given by Eqs. 6-3.5 and

6-3.6. For this arrangement there are two normal modes that can exist. There is one mode

in which there are negative frequency shifts and decay rate speedups, and another with just

the reverse--positive frequency shifts and decay rate slowdowns.

6.4 Scattering Channel Fields

. Multiple scattering computations can be simplified if scattering is examined only

along the highly directional scattering channels where most of the radiation exits a medium

(such as in the forward or Bragg directions for an isotropic medium or a crystal). Fora.

example, consider the case of a one dimensional line of scatterers, as shown in Fig. 6-4.1,

where there is an incident plane wave traveling parallel to the line of scatters. The forward

direction is a scattering channel direction since the spatial phase of a scattered wave from a
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particle located at zo, _, = H- z o, is always zero. The single scattered field observed at a

distance far from any scatterer, r >> zo, is then

)[a,, )1 _(" _k,., )[ea'e_ ''" )]o-l(_,r) = _n (''t_°e'-''=" e" F(k/ = ki = _oe " F(R/: k,Lr,

= Eo--_--F(kt =k, = N,1Eo---F(k I =ki) (6-4.1)£

where rn = r- z o, and N n is the number of scatterers. Ali the single scattered fields have

the same overall spatial phase factor, and there,fore the net scattered field is a coherent sum

of ali of the single scattered fields.

k i

z= 0 z= z, z= L z= r

Fig. 6-4.1. Plane wavc field incident upon a line of scatterers of length L.

°

For the double scattered fields,

I IL, 1: /k'"'F(k I :k,) F(RI :k,) (6-4.2)az(og,r ) E_?' ei%__'e
, o' L r,0' 'o

where ro,. = Iz.- zo.I. Since double scattering has been constrained to occur only in the
i

forward direction (backscattering is ignored), z o > z.c and thus rho.= z, - zo.. Then all of

the doubled scattered fields also have the same overall spatial phase factor

elk"y_ [F(k/ = k')]2 . (6-4.3)a2(o),r) =
e0--;-- z,- z,.

By iteration, the total forward scattered electric field at the observation point is

eik" ........

E'(°9'r): E°ea" + E°--F(k' =k')_/"r l +'_-'F(k' :ki) + _-' z [F(k/ :ki)] +"'"+ ., z+z+ o.o. z+,
(6-4.4)

This infinite series expression is equivalent to the sum of an infinite number of

scattering diagrams where the vector potential of each photon, except the incoming photon,
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is defined as a spherical wave (see Fig. 6-4.2). Ali photons travel in the same direction,

and each photon can either exit the medium or scatter with a downstream particle. As seen

before for a single particle, the sum over an infinite number of scattering diagrams can lead

to frequency shifts and to changes in the natural radiative decay rate.

k "4,,,, k2NV""'f._l

11, 16__'

Z-" Z I "-0 Z-- Z 2 Z-" Z 3 Z-" Z4

Fig. 6-4.2. Scattering diagram for multiple scattering along a scattering channel
direction. Ali wavectors have the same magnitude and are in the same direction. The first
four particles are shown with time represented by the vertical axis and intennediate states

• by Ii. (For convenience, the photon arrival time at each scatterer is not correctly drawn.
Actfially, photon k i strikes ali scatterers at the same time, photon kt strikes all scatterers
located at z > z2 at the same time, etc.)

When there are many scatterers with an interparticle separation comparable to or

less than the wavelength of the inct, ming field, the discrete line of particles can be

approximated as a continuous linear distribution of particles. Eq. 6-4.4 can then be

rewritten as

• ei_ J'i { _i-a 1 [nF_]2f1-8 ds' j'i -a' ds" }--nF_L ds l + nF_o _ s, + s" - s "'+''"Es(°Lr)= E°e'_ + E° r 7--- 1- -(-----

(6-4.5)

where s = z/L, s" = z'/z, s" = z"/z', etc., n is the number of particles per unit length, and

= F(k ! = k,). The small parameters in the upper limits, 6Fo, d/z,_5' = d/z',6"= d/z",

" etc., are included to prevent the integrals from diverging. The quantity d is the average

interparticle separation. The integral series can be evaluated to first order by making the

approximation _ = d/L. For such a case
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ei_,

r (6-4.6)
E,(to,r) = Eoea" + 1+ nF(k/=ki)ln_ "

Inserting the dipole scattering amplitude, Eq. 5-1.48, into the expression above gives

E, (co,r) = Eoea" - Eo
r nk/_.2j, + 1_ a_-(to0 +to,)+ir/2h (6-4.7)

where to = _R/(2J" + 1X-_)ln6.2ji+l (6-4.8)

This shows that, for forward scattering from a line of particles, there is no change

in the natural linewidth, but there is a shift from the natural frequency of an isolated

particle. The frequency shift diverges logarithmically with decreasing interparticle

separation rather than linearly as was the case for the two pea'ticle system, but the reason for

the divergence is the same--the electric field strength of spherical waves is very intense at

small distances from the scatterer.

So far only scattering purely in the forward direction has been mentioned. Another

way a wave can scatter and end up in the forward direction is to scatter in the backward

direction and then scatter again into the forward direction. In doing so, the scattered wave

can pick up a nonzero phase factor. For instance, for double scattering where the wave

backscatters and then scatters into the forward direction, the field amplitude is that of

i2k(tll-zr/') nthEq. 6-4.3 multiplied by the spatial phase factor: -e . For order scattering there

are n! - 1 ways a field can scatter away and then back into the scattering channel direction--

ali of the amplitudes and associated phase factors for each order must then be evaluated.

For an ordered line of scatterers (such as a linear lattice), ali types of multiple scattering

must be computed to determine the total scattered field--an extremely tedious task si_,ce ali

orders of scattering must be computed, and each order has n! terms. However, if the line

of scatterers is randomly ordered (such as an isotropic distribution of a large number of

scatterers), the phase factors of fields scattered back into the scattering channel direction

will be essentially random. In such a situation, these fields can be neglected because their

contribution to the total scattered intensity will be down by a factor of I/N compared to the

intensity of the scattering channel fields (fields scattered purely in the scattering channel

direction).

A plane or volume of a large number of ordered scatterers (such as a planar lattice

or a crystal lattice) has more degrees of freedom than a line of scatterers. Because of the
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extra degrees of freedom, the intensity of scattering channel fields is a factor of N times

greater than of mu!',iply scattered fields scattered in directions other that the scattering

channel direction--the nonscattering channel fields fields pick up additional phase factors

that are essentially random for a many particle medium. Therefore, mainly the scattering
,m

channel fields will be investigated, and ali other types of scattered fields will be neglected.

6.5 Plane Parallel Slab of Scatterers

--- .!', o

0
L zo

L

- -- -- -_ J_!iiil ii'

. Fig. 6-5.1. Plane wave field incident upon a plane parallel slab of thickness L. 6

The sum over the infinite number of scattering diagrams in Fig. 6-4.2 should, in the

continuous limit, lead to a description of a scattered electric field that converges to the

expression obtained by solving the Maxwell equations for a medium. This will be shown

to be true for a plane parallel slab where boundary conditions are neglected,

In the continuous limit, the multiple scattering equations, Eq. 6-2.5, can be written

in the form (for identical particles and for scattering channel fields)

a1(to, z,z o)dz - ao(to, Z,Zo)H(co, z, zo)dz (6-5.1)

a,(co, z, zo)dz=[_ dz'a,,,_,(to, z',z)lH(co, z, zo)dz (6-5.2)

where z0 is the observation point. This gives the m_horder field amplitude for a slice

within the slab at position z of thickness dz by summing up ali of the lower order field

amplitudes of all preceding slices and multiplying by the frequency response at point z.

The net scattering channel field at the position z in the medium is then
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E,cf(to, Z,Zo)= ao(to, Z,Zo)+ '_.,,[._dz'a,,(to, z',Zo) . (6-5.3)
m=l

For forward scattering within a line of scatterers, the frequency response observed

at point z for a segment of thickness dz' loca:ed at point z' is

n(to, z',z)dz'= F(kf = k,)(_nt.dz'J (6-5.4) -2-- Z'

where nt is the number of particles per unit length. The frequency response for a slice of

thickness dz' within a plane parallel slab is simpler. Consider a slab of thickness L and

infinite in the dimensions transverse to the beam propagation direction as shown in

Fig. 6-5.1. Jackson has shown that the sum of single scattered fields from a slice of

thickness dz within the slab yields a net field with an amplitude that is independent of the

distance from the slice6

dE, u,:"= 2zr/F(kf = k,)Eoeik'°(ndz) (6-5.5)k

where n is the number of scatterers per unit volume, and the incident field was a plane

wave. The frequency response for a slice is then

H(to, z',z)dz' = 2-_ nF(kf = ki)dz '. (6-5.6)

For forward scattering, the plane wave incident field can be written as

ao(to, Z,Zo) = a0(w, z0) = Eo(to)e '_° (6-5.7)

where the amplitude E0(to ) is independent of z and z0. The spatial phase factor e i_ is

ignored because, recalling from the previous section, for forward scattering the spatial

phase of a scattered wave is zero. However, an overall phase factor ea_°must be attached

to the net scattering channel field to include the phase the field picks up in traveling from

the slab to the observation point z0. For such an incident plane wave field, using the

multiple scattering equations for a medium, Eq. 6-5.2, the scattering channel field within

the medium is

E*c/(w'z'z)=a°(to'z){ l+[ie°(tO)k]['_£[ie°(w)kz]"dz },,,=om!

= ao(to, z)d **('')_ (6-5.8)

2_r nF(kf = k_) (6-5.9)where e0(to) = -_- .
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This is precisely the solution to the Maxwell equations when neglecting boundary

conditions (and it also agrees with the semiclassical results of Section 3.4). For instance,

for a plane parallel slab of thickness L, the solution to the inhomogeneous wave equation

for transverse electric fields, Eqs. 3-2.9 and 3-2.10, isi

EM=(w,L, zo)= Eo(tO)e"t')_ea('°-_)= E,4(to, L, zo) (6-5.10)

. where the quantity n(to) = 1+ e0(w ) is the index of refraction of the medium, and the last

phase factor, ea('°-z), takes care of propagation through free space to the point z0. Since,

in the many particle limit, the multiple scattering equations for scattering channel fields give

the same answer as the inhomogeneous wave equation, for more complicated problems,

such as including boundary conditions or examining dynamical diffraction in crystals, the

inhomogeneous wave equation will be used for constructing the scattering channel fields.

No attempt will be made to examine the multiple scattered fields not traveling in scattering

channel directions--full dynamical scattering theory will not be investigated any further than

the discussion in this chapter.

The frequency shifts and speedup rates are no longer clearly observable in

Eq. 6-5.8. In some cases, calculating the scattered fields in the time domain allows these

" effects to be seen more clearly. One can then either take the Fourier transform of

Eq. 6-5.8, or, equivalently, express the multiple scattering equations for scattering channel

- fields in the time domain

al(t,Z, Zo)dz= ao(t',Z, Zo)H(t-t',Z, Zo)dt'dz (6-5.11)

, ,, ,a,,(t,z, zo)dz= dz a,,_l(t ,z ,z H(t-t ,Z, Zo)dt'dz (6-5.12)

and E,c:(t,Z, Zo)= ao(t,Z,Zo) + _ _ dz' a,,(t,z',Zo) . (6-5.13)
m=l

As an example, multiple scatteri_lg of dipole fields will be examined where the

incident plane wave field is a synchrotron pulse

ao(W,Z, Zo)= Eo e'u° or in time, ao(t,Z, Zo)= Eoe'n°lS(t) . (6-5.14)

" For dipole fields

eo(co)kL = -(r',/4h)/(_- _'o0+ i l"/2h) (6-5.15)

" where r',/h = nao(F/h)L, (6-5.16)

L is the thickness of the slab, and a o is the resonant cross section given by Eq. 5-1.52

(with the polarization factor set to unity). Inserting this factor into Eq. 6-5.8 and taking the

Fourier transform will give the scattering channel field in the time domain. A contour
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integral must be performed to complete the Fourier transform, and Lynch, Holland, and

Hamermesh have carefully described how to do this. 7

The other approach involves evaluating the time response of the system. Taking the

Fourier transform of the forward scattering amplitude (Eq. 5-1.48 with the polarization

factor set to unity) by performing a simple contour integral where there is only one pole in

the lower half complex z-plane gives

H(t,z', z) = -(F s/ 4fiL)e -'''0'- rq2_O(t) (6-5.17)

10 t>0
where 0(t)= . (6-5.18)t<0

The multiple scattered field amplitudes are then

• F,-,_,o,_r,/2,_,_(F, zt_ l(Fszt) 2 l(F, zt_ 3 ]£am(t,z',Zo)=- Eoea_°--_e L' \-_J+_"_J -_k,'_J + "'"m=l

= -e0 e'_0 (r;/a_)e-'_'*'-r'/2'Jo(_Fszt/t'tL)O(t) (6-5.19)

where the following Bessel function identity was used

y2 y3 +.... (6-5.20)J0(2_) = 1- y + (2t) (3!)
Then, using the integral relationship for a Bessel function of order zero

ug0(u)=la,(u) (6-5.2 1)

yields the scattering channel field

Es4(t,L, zo)=Eoea_°{6(t)-e-i'°'-rt/2' l [ r_'q__ttJ° uJ o(u)}O(t)

Eoeik,ol_(t)_e_i,Oo,_r,/2,t____hjJl(F__tlh)[rr', _ .O(t). (6-5.22)
_,.,.

%.

This is the same result Lynch, Holland, and Hamermesh would get if they were to

substitute their STCo source with a broadband frequency source (such as a synchrotron

pulse).7. 8 There happens to be no frequency shifts for forward scattering through a plane

parallel slab, but the natural decay rate is modified by a Bessel function (see Fig. 6-5.2).

As F, _ 0 the collection of particles within the slab behave independently instead of

cooperatively, and the collective state decays with the natural lifetime of an isolated particle

(kinematical scav:ering occurs). As F, increases the lifetime of the collective state
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decreases. Thus, Fs indicates the extent a system has undergone homogeneous line

broadening. The homogeneous broadened linewidth can be approximated as (after

examining Eq. 6-5.8 more carefully)

{FI_ = F 1 . (6-5.23)
- _ -1 ,for Fs >> F

Note that F, in Eq. 6-5.16 depends upon a thickness parameter T = nao L. T must

also be multiplied by an enrichment factor for samples that contain nonresonant particles

and by a Lamb-M6ssbauer factor to take into account vibrating scatterers. 9 The graphs

below were calculated for a 100% enriched slab of 57Fe nuclei with a Lamb-M6ssbauer

factor of unity and for no photoelectric absorption. If the photoelectric frequency response

is constant over the frequency range of the dipole resonance, then Eq. 6-5.22 need only be

multiplied by the factor e iu'(°'°)L# where/z,(¢o 0) is the photoelectric absorption coefficient

at the resonant frequency. The time spectra in Fig. 6-5.2 ignores the prompt delta-function

pulse.

- Two more examples of multiple scattering worked out in the time domain are given

in Appendix B. In Appendix B.1, Lynch, Holland, and Hamermesh's solution is

. rederived for the problem where a 57Co source excites a plane parallel slab of resonant

scatterers. In Appendix B.2, the time domain multiple scattering equations are used for a

case in which they turn out to be more convenient to use than the Fourier transform

method. In this problem the dynamical phase between two widely separated resonance

lines excited by a synchrotron pulse is examined.
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Fig 6-5.2. Time spectra of S7Fe for various speedup rates: (a) linear scale, (b) log scale.
The presence of dynamical beats becomes evidem in the log plot for large speedups.
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Fig 6-5.3. The decrease in the lifetime of the collective state, as shown in Fig 6-5.2 (a),
corresponds, by the uncertainty principle, to a broadening of the linewidth in frequency
space: (a) homogeneous line broadening due to multiple scattering, (b) homogeneous
linewidth as a function of the speedup rate.
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7. DYNAMICAL DIFFRACTION
BY CRYSTALS

4.

The underlying theory of the principles of dynamical diffraction in crystals was

•- developed in the early 1900's independently by Darwin and Ewald. The two theories are

quite different explanations of the same phenomenon. The Darwin-Prin's theory carefully

examines the reflected and transmitted field amplitudes from each plane of atoms within a

crystal in order to build up a total diffracted and transmitted amplitude (one ends up solving

a set of coupled difference equations). On the other hand, the Ewald-Laue theory solves

the Maxwell equations for a medium having a periodic index of refraction (one ends up

solving a set of coupled dispersion equations). A well written discussion of both

treatments can be found in James (as well as almost anything one desires to know about

X-ray diffraction). 1 A good discussion of the Darwin-Prins treatment can be found in

Warren z and the Ewald-Laue approach is well discussed in Zachariason 3 and in a paper by

Batterman and Cole. 4 In the field of nuclear dynamical diffraction, the Darwin-Prins

" method has been extended by Harmon and Trammel, 5-8and the Ewald-Laue approach has

been utilized by Kagan and Afanas'ev. 9-11 The discussion in this chapter will concentrate

" on the Ewald-Laue method of dynamical diffraction theory.

7.1 Dispersion Relations for a Medium having a Tensor
Index of Refraction

Solving the inhomogeneous wave equation for transverse electric fields in a

mediu: - t:q. 3-2.11, gives insight into the nature of fields propagating through materials

along scattering channels. Recall that the index effect, 2_0, is a tensor quantity

. proportional to the multipole scattering amplitude developed in Chapter 4. Thus, the

inhomogeneous wave equation is also a tensor wave equation.

For an anisotropic medium, the spatially averaged index effect can be modeled as a

continuous periodic function of the spatial coordinates (see Eqs. 3-4.18, 6-1.4, and 6-1.5):

2E0(x,c0) = 4Jr
k2o-----_oZ,, F:,,e'H" (7-1.1)

113
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where a sum over ali the possible scattering channels denoted by the index H is performed,

and the magnitude of the scattered wavector within the medium is assumed to be

approximately equal to the vacuum wavenumber: k/= kov. The expression above shows

that the index effect can be written as a Fourier series of the spatial frequency components

of the scattering amplitude (the multipole scattering amplitude is given by Eq 4-3.63 or

4-3.64 with x 0 = 0). Similarly, the electric field can be expressed as a sum of Fourier

components. When this is done, the inhomogeneous wave equation transforms to

and thus

(k.-k.) 47r +H').x_n 1 -k-gS Ene'k''x + ,'7T77-,,Zs X' F E e '(k' = 0 (7-1.2)ko_V° z..,., n" s

The above equation can be satisfied if, term by term, the arguments of the

exponentials are the same. They will be if one remains on the energy shell:

ks + H' = kn . (7-1.3)

This can also be seen through examining the Ewald sphere (or energy shell) construction in

reciprocal lattice space, Fig. 7-1.1. The reciprocal lattice points, H and S, lie on the
q,

Ewald sphere, k0 is the forward scattered beam within the medium (reciprocal lattice vector

is H = 0), and kn and ks are outgoing scattering directions. To satisfy Bragg's law, the

incoming and outgoing wavectors must lie on the Ewald sphere. The relation in Eq. 7-1.3

shows that there are fields within the medium traveling in S-channels that are scattered by

the spatial distribution of the index of refraction having spatial frequency components

denoted by H', and these scattered fields end up traveling in the outgoing H-channel.
H

O

S -""-

Fig. 7-1.1. Ewald sphere construction for scattering, k 0 is the forward scattered
wavector for fields scattering off crystal planes having reciprocal lattice vectors H and S to
produce fields with wavectors k n and ks.
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From the Ewald sphere construction, one can see that S + H' = H. Then, Eq. 7-1.2
reduces to

(1 kn'kn / galJ_lJ_ns,,s• k02 E_ + _X =0 (7-1.4)s /3

where, using terminology similar to Kagan's, 9 the scattering tensor is defined as

ns 4lr _,(n-s)
g_= 2 ._ , (7-1.5)_:0,V0

and ct and fl are polarization indices of the electric field. F_,quation7-1.4 is the dispersion

equation for a medium having a tensor index of refraction.

7.2 The Scattering Tensor

The scattering tensor contains important polarization information about scattering

processes. For the case of photoelectric scattering far from any bound state resonance or

absorption edge, the scattering tensor is

g,,S (g_S ns= = ,_TTqT',,f P (7-2.1)
• ,,_ _,,s ko,Vo_,gy,, gyy

where the polarization independent part of the structure factor is, from Eq. 6-1.4 for n

identical particles,

f,-s = _,; Z(Dw (H - S)f0 + f'-if'" )e -'(H-s)r", (7-2.2)
R

and the polarization matrix is defined as

( ^"^'"'1
p,,S PL's pnS _s. l_, ¢,. g,= = ", "s ", (7-2.3)Le;,,,pl,,) Lr,

" H " H
where ¢,, and _y are the two transverse polarizations of the scattered electric field with

wavector k,, and the other two polarizations correspond to the wavector k s . The Debye-

Waller factor, Dw(H ), is a function of the scattering vector and is given by Eq. 5-1.56.

The structure of the scattering tensor can be understood by examining some simple

cases. For instance, for scattering from a transmission channel (S = 0) to a reflection

channel (H),
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=_,k02-_0) _0y _ _ _ • (7-2.4)

For the reverse process, scattering from a reflection channel (S = H) to a transmission

channel (H = 0),

( ) (-, -o ^, -o)gO, 4n: f_ _..I;,, e, • Izy (7-2.5)
= ,_2-_o) l.., -o -, -o")_k0, Ey E, Ey Ey

For scattering from a transmission channel (S = 0) to a transmission channel (H = 0)

[normal transmission through a material], or, for scattering from a reflection channel

(S = H) to a reflection channel (H) [normal transmission in the diffraction direction],

gOO=g,., (4n'_ ofl _!-/k02-_0 Jf i0 . (7-2.6)

Since the polarization basis of an electric field is orthonormal, the polarization matrices for

transmission are diagonal. The polarization matrices for diffraction are diagonal only if a

convenient polarization basis is chosen such as the sigma-pi basis used in Section 5.1 and

shown in Fig. 5-1.1--in such a basis polarization mixing is no longer possible.

When the sigma-pi polarization basis discussed in Section 5.1 is used, the two

electric field components completely decouple in the dispersion relation, and the dispersion

relation reduces to two independent relations for each electric field component

(1 kM'k,,) _,s s
g,,a =0 (7-2.7)kL eg+, eo .

For the electronic scattering described above or for spin averaged dipole scattering, the

polarization matrices, pO, and p,0, are equivalent, and they are given by Eq. 5-1.47 for

electric dipole scattering or Eq. 5-1.46 for magnetic dipole scattering. For spin averaged

dipole scattering from q identical particles

_ +i cot,,- Wo+ iF/2h Ze-'I"-s)"'q
(7-2.8)

The quantities Lu(ki) and LM(k/)are the Lamb-M0ssbauer factors that take into account
the vibrations of the scatterers. From Eq. 4-3.66

CM(kz)=(fole-"""li,,) (7-2.9)
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where lia) and Ifa) are initial and final phonon states. The quantity C is the enrichment

factor describing the concentration of resonant scatterers at the lattice sites.

In general, when multipole scattering is included, polarization mixing occurs in

. both the transmission and reflection channels. For nuclear scattering the scattering tensor

in Eq. 7-2.1 has an angular independent structure factor defined as (from Eq. 5-1.4 for q

identical particles and averaged over the initial state spins)
t

Lu(ki)Lu(k/)CF(L,_,)(J/mlLMIJ/Lj.m.)2

fn-s = _(2n:/k0,) E,.- E. + hOOk,+ iv.2 (2j, + 1) ]_, e -'("-m' , (7-2.10)
^ li

and the polarization matrix is given by Eq. 5-1.5 with the substitution _ ---)e,, and

_,...i .__)Ea, ŝ where a = x, y.

7.3 Linearized Dispersion Equations

- The dispersion equations, Eq. 7-1.4, are a set of homogeneous nonlinear coupled

field equations. The nonlinearity comes from the quadratic term k_ and the polarization

. directions of the fields inside the medium represented in the polarization matrices.

However, for X-ray photons, the dispersions equations can be linearized because most

materials are essentially transparent to such photons. Since incoming X-ray photons are

only slightly affected by the presence of a medium, the polarization directions of the fields

inside a medium can be approximated as the polarization directions of the fields in vacuum.

This is a common approximation used in dynamical diffraction theory.

If the index of refraction in the H channel is _/1+ 2e, where el, is a small

complex number, then the quadratic term in the dispersion equation is k_ = (1 + 2e,l)k 2,

where k0, is the vacuum wavenumber. The dispersion equation, Eq. 7-1.4, then reduces

to the simpler form

• 2e, E_' = _._,,s.sg,_o" (7-3.1)
so

Making the further approximation thato

k, = (1 + e,)ko_ (7-3.2)

completes the linearization of the dispersion equations. This is shown for a two-beam (or

two-channel) example in the following section.



1 18 Dynamical Diffraction by Crystals (7.4)

7.4 Two-Beam Analytical Solution

In certain situations reasonably simple analytical expressions can be constructed for

the scattered fields within a medium. This occurs for electronic scattering with a wise

choice of the sigma and pi polarization vectors that diagonalize the scattering tensor. The

multipole scattering tensor can also be diagonalized for certain orientations between the

quantization axis of the scatterer and the scattering plane. For the two beam case where

there are only two scattering channels, S = 0 and S = H, along which travel a forward

scattered and a diffracted electric field, the decoupled dispersion relations can be written in

the form

g,., (g,,- 2e_)
ol / =G.v=0 (7-4.1)

(g_ - 2eo) g,,

!0 I1 /gyy (gn - 2et) Ry

where

T = Es--° (transmitted field) (7-4.2)

R = Es=" (diffracted, or reflected, field). (7-4.3) -

H = 1, and x,y denote the two transverse polarizations of the electric field (in the sigma

and pi polarization basis shown in Fig. 5-1.1, x = o', and y = n').

To solve the dispersion equation, a relationship between e0 and e I must be found.

This can be done by noting that refraction occurs for a wave entering a medium from free

space

ko= ko, + k0,_fl (7-4.4)

where k0, is the vacuum wavector in the forward direction (ali vacuum quantities will have

the index v), fi is an interior normal to the crystal surface, and S is a quantity describing

how much refraction has taken place.

Using Eqs. 7-3.2 and 7-4.4, to first order in _ and e0 (to linearize the dispersion

equations), one finds that

6 = eo/Yo (7-4.5) .

where Yo = I(ov"I:1. (7-4.6)

Applying Bragg's law,

k! = ko+ H, (7-4.7)
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yields, to first order in e 1,Co,and t_,

k2o,(l+2et)=ko,(l+2eo)+H +

which reduces to
,lh

H.(H+2ko,) 8(#_:iko) fiEl = Eo + 2 + - "
2ko,

= an/2 + eo/b (7-4.8)

where a s is a deviation from Bragg parameter

c%= H-(H+ 2k0v)/k02,. (7-4.9)

The parameter b is an asymmetry factor

b= ?'0]?'t (7-4.10)

where ?'1= I(l"/I. (7-4.1 1)

The cta parameter describes how close a reciprocal lattice point must be to the

Ewald sphere in order to still satisfy the Bragg condition. The parameter can be evaluated

by examining how Bragg's law varies near the Ewald sphere

- H=_t,- Ro] = qka 2 +k2o-ZkakocosZOn

=2ko, sinOn(l+ e' +e° ) (7-4.12)• 2

where 200 is the scattering angle between kt and k o, and 0n is the Bragg angle. Also note

that

H .kov = -Hkov sin 00 (7-4.13)

where 00 + 7r]2 is the angle between H and k0, (see Fig. 7-4.1). When the Bragg

condition is satisfied, 00 is nearly equal to On. Defining a deviation angle

AO= 00 -0 a (7-4.14)

that is a measure of the angular deviation from Bragg gives

ota = -2AOsin20 n - 4(AE/E)sin 2 0 n (7-4.15)

where E is the incoming photon energy, and AE is the deviation of the Bragg energy from
mt

the incoming photon energy

• AE = E- En - hc[k0,-(k n + k0)/2 ]. (7-4.16)

The Bragg energy has been defined to be proportional to the average wavenumber inside

the medium. To remain close to the Bragg condition, either an angular or energy constraint

must be satisfied: AO or AE must be close to zero. For instance, when examining the

angular spectrum of a scattered field, the Bragg energy is set equal to the incoming photon
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H

i ko

AO

kov

Fig. 7-4.1. Diffraction from crystal planes. The xy-plane is the crystal surface, and H
is a reciprocal lattice vector perpendicular to the crystal planes. Present geometry shows a
symmetric Bragg reflection (b=-l). Incoming beam from vacuum, k0v, strikes the
surface, and refraction produces outgoing beam, k 0, shifted by A0 B from the incident
angle 00.

energy, Ea = E or AE = 0, and the Bragg angle is obtained through Bragg's law and

aB = -2A0sin 20 a. When examining the energy spectrum of a scattered field, the Bragg

angle is set equal to the incoming photon angle, Oa = 00 or AO= 0, and the Bragg energy

is obtained from Bragg's law and a B=-4(AE/E)sin 2 Oa. Bragg's law, Eq. 7-4.7, can be

rewritten as the following expression:

Easin0 s = licH/2 (7-4.17)

where H = 21r/dat, (7-4.18)

and dh,_ is the lattice spacing of the [h k l] reflection.

The solution to Eq. 7-4.1 then reduces to solving a familiar eigenvalue-eigenvector

problem. The characteristic equation is

det(Gt_, - 2e01) = 0 (7-4.19)

where
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oo o_ ]
g_ g" 0I0 II

g,., (bg.. - bots) I
. G_ = oo oi 1. (7-4.20)

0 gry g, j
10 11

g, (bg.-baa)

The solution to the characteristic equation yields the four eigenvalues

e0,2) 1 11 1 3]( oo 11 +'4og,o,og,olj (7-4.21)+b,.) ""o,,o
where fl = x,y.

To complete the solution to the inhomogeneous wave equation, boundary

conditions must be supplied. In order to obtain analytical expressions to the reflected and

transmitted fields, interfacial reflections at the entrant and exit crystal surfaces will be

neglected. These reflections occur when a field crosses from one medium to another (such

as from vacuum to the crystal medium). The Bragg and Laue solutions are given below

using this approximation.

" BRAGG CASE: At the top and bottom surfaces of the crystal (see Fig. 7-4.2),

the boundary conditions are
1,

2

fi r=O: Eo,:T ZY_,T_"°• = _:a (7-4.22)
I=1 tl

2

fir = d: 0 = R =ei(ko'+H)'r Z_ ,'hl i,,'**de;t" 2_.K,,e e, (7-4.23)
I=1 Ct

where k 0 = k0v + K'an (7-4.24)

k, - k I = k 0 + H (7-4.25)
! i

_¢_= ko,eo,,/)' o (7-4.26)

ct = x,y, l = 1,2 is the eigenvector index, and !::0_is the incoming electric field from the

vacuum. For Bragg diffraction and for no interfacial reflections, ali of the incoming field

• scatters into the transmission channel, and, at the exit surface there is no incoming field

scattering into the reflection channel.

. For each eigenvalue in Eq. 7-4.21, there is a unique eigenvector

vt_= lvRr" . (7-4.27)
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n.r=0

,i

n.r -d

Eiv=O

T,

Fig. 7.4.2. Bragg diffraction geometry.

The reflection amplitudes can then be expressed in terms of the transmission amplitudes

Rt t I= OAT/, (7-4.28)

I I

where DI_,=(va)2/(v,_),, (7-4.29)
I

and (vta)_ is the i_hcomponent of v,,. Expressing the reflection amplitudes in terms of the

transmission amplitudes enables one to solve a decoupled boundary value equation for the

four transmission and four reflected wavefields inside the crystal

u_, = Bc •w (7-4.30)

or, written out explicitly,

f 0w , lr'r,,1 i_,d 2 ._2 d 0
0 u,e D,e' T,z

0 D,e D; e Ty2

After some algebra, the solution to the boundary condition equation can be written
in the form

g

2

T(hr z) ea°"22"' ,e.,..o• = = tae Iza
i=l a

eik*"Z ' ^o e'('_;'*'_-a)(g_ - 2e2oa)-ei('d'+"a)(g,,_ - 2t:lo_)
= ' Eo,,'G' e,,d.a(g,,_ 2eo2,,) ,,,'_,_/oo , (7-4.32),, - -e I,g=,,- 2t:'o.)
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and, at the exit surface z = d,

e'(_'-+_")_(2e_'_'- 2e°Z'_) (7-4.33)
T(fi "t = d) = e'_'°'' 2 E°""_:° e'd'_(g_ - 2eX, )_,- e'":"(g_,, - 2e,',,,)"

Q

The reflection channel field is

2

" R(fi- r= z) = ei(k"'+H)ry__,_.,'' ' '' 'L),,,t ;,e '""""e.,_
I=l a

ei(k,...)., _., .. ,,n bg_°(ei(";a+r")-e i(r''a+'_'-'))
= _ov,_c,__,dat oo 2e2a) _'.d/ oo , (7-4.34),_ e [,go,,,- - e l,gaa - Zeto,_)

and, at the entrant surface z = O,

- 1o I ir3d ei_C_d)
R(fi r 0) e'(k°'.")"y_ "" "" og,..,o,_e - (7-4.35)• "" --" lfl-"()vOt_'Ct iJc_d [ O0 2

,_ e _g,,,, 2eo,.,) iw',,d/OO 1 "- -e _g,_a- 2eo, )

LAUE CASE" The boundary conditions for this ca_e' are (see Fig. 7-4.3)

" 2

ft. r = 0: Eo, = T = _ _ T_: ° (7-4.36)
I=! Ct

2

o R EZ -'^''= = t¢,,E,. (7-4.37)
/=1 a

For Laue diffraction and for no interfacial reflections, ali of the incoming field scatters into

the transmission channel, and, at the entrant surface, there is no incoming field scattering
into the reflection channel.

The boundary condition matri× for Laue diffraction is

. !l 0D1_ D_

Bc 1 1 (7-4.38)-t
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fi._ =0

h.r =d

, T, R,

F;_. 7-4.3. Laue diffraction geometry.

Solving the boundary condition equation for the scattering channel field yie'ds

ei':" (g=_ - 2e2o_) - ei_:, :_,g,,,,oo_ 2eto,,)

T(h.r = z) = e'k*'"_,, E°'_:° (2e_,, - 2e02_) (7-4.40)

,o(,.:.e":')
R(r_.r = z)= e'('"+")'_.. Eo._,_._ bg,,,, e -

,, (2e_,,- 2e02,,) (7-4.41)

7.5 Dynamical Characteristics of Angular Spectra

In kinematical diffraction theory the angular distribution of the scattered fields

consists of delta function peaks situated at Bragg angles. In dynamical diffraction theory

the angmar width of the Bragg peaks are broadened due to multiple scattering. The angular

distribution at a Bragg peak can be characterized by an r/_,parameter (or a y,., parameter

described by Zachariasen) 3' 4
o

[(1- b)/Z]Re{g,,_}+ (b/2)a n

rl_, = ./i/_lRe,l.g,O1,! (7-5.1) ._/r'll t _xJ I!

The above formula assumes that the scatterers in the crystal have space-inversion symmetry

ar,d that the origin is chosen at an inversion center (that is, the crystal is centrosymmetric

and g_ = g_). Also, forward scattering in the transmission channel is assumed to be
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ident;,cal to forward scattering in the reflection channel: 0o ,_g,_ = g,=,. For thick crystals most

of the scattered intensity lies in the range Ir/_l < 1 (see Figs. 7-5.1 and 7-5.2). Thus, an

angular width, or Darwin width, of the diffracted beam can be defined as

" 21Re{g_ }l _ A0o",

A0o = _[bqsin2O B - _ (7-5.2)

- where A0o_ is the symmetric Darwin width for a thick crystal (this definition is useful

mainly for Bragg diffraction as can be seen by examining Figs. 7-5.1 and 7-5.2). From

Eq. 7-5.1 note that, for Bragg diffraction, the Darwin curve is not centered at the Bragg

angle. There is an index of refraction shift from the Bragg angle where the center of the

Darwin curve (the point 7/" = 0) now lies at

0y = On + [(1- b)/2]Re{g L } (7-5.3)
bsin20 n

The electric field inside the crystal consists of traveling waves propagating

perpendicular to the scattering vector, H, and standing waves with wavectors parallel to the

scattering vector. Whether a standing wave field has its nodes or antinodes at the scattering

• planes depends upon the scattering angle and, thus, upon the r/_ parameter. When a

standing wave has its antinodes lying at the scattering planes (that is, on the atoms)

• enhanced absorption occurs, and when it has its nodes lying at the scattering planes

absorption processes are suppressed.

From the solution of the dispersion equation there turns out to be, for each

scattering channel and for each polarization, two eigenwaves that are a function of the

energy of the incident field and the deviation from Bragg, a n (the two eigenwaves

corresponds to the l= 1 and 2 solutions having eigenvalues given by Eq. 7-4.21). For

Laue diffraction the two eigenwaves are damped exponentially with distance into the

crystal. One wave has its nodes lying at the scattering planes (the alpha wave) and the

other has its antinodes lying at the scattering planes (the beta wave). 4 Since the beta waves

suffer enhanced absorption, these fields die out more quickly leaving only the alpha waves

to contribute to the total field amplitude that exits a thick crystal. Since the alpha waves

experience suppressed absorption, these fields can travel much further through crystals

than would be expected when only photoelectric or resonant absorption is considered. This
ib

phenomena is the Borrmann effect--anomalous transmission through crystals.

For Bragg diffraction one eigenwave is damped exponentially while the other

grows exponentially with distance inside the crystal. For photoelectric scattering they both

have their nodes lying at the scattering planes when r/_ = -1 and their antinodes lying at the
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J • rscattering planes when r/a = +1 1.3, 4 Thus, as r/a varies from -1 to + 1, the electric field

experiences suppressed absorption to enhanced absorption--this is the reason for the

asymmetrical shape of the Darwin curve in Fig. 7-5• 1. For resonant scattering the phase of

the eigenwaves changes by 7ras the resonance curve is traversed from frequencies above

the resonant frequency to those below the resonant frequency. Thus, the r/_,points where

suppressed and enhanced absorption occur are at opposite sides of the Darwin curve when

operating on opposite sides of the resonant curve--this is shown in Fig 7-5.3. As the

absorption in the forward channel, Im{g_ }, becomes more predominant than the effective

absorption resulting from scattering from the transmission to the reflection channel,

{ } , ,lm g_ , the peak intensity shifts from r/,, = -1 to 7/a = 0, and the Darwin curve becomes

I l0more symmetrical. Since in general lm{g_}> m{g,_}, there is always a shift in the peak

intensity towards r/" = 0.

The Borrmann effect is of particular interest in resonant scattering because

absorption processes are always present and are usually predominant. For instance, for an

isolated 57Fe atom, internal conversion prevents the efficiency of photon production for a

scattering event from being greater that 11%. However, by scattering off a lattice of 57Fe

atoms, the efficiency can be made much greater than 11% through the Borrmann effect. 12

The figures below are rocking curves for pi polarized 14.4 keV radiation diffracting

from a body centered cubic crystal of ct-56Fe57Fe having a lattice spacing of 5 A. There

is one 56Fe and 57Fe atom per unit cell, and the 57Fe atom lies at the center. No such iron

crystal has yet been fabricated, but such a structure lets one examine resonant scattering by

partially turning off the nonresonant photoelectric scattering• For instance, resonant

nuclear diffraction is allowed for any combination of Miller indices that satisfies Bragg's

law, but when the sum of the Miller indices is odd (h+k+l=2n+l, n=0,1,2 .... )

photoelelectric diffraction is forbidden. For simplicity the resonant 57Fe nuclei are

assumed to have no internal hyperfine fields--they are therefore single line emitters (An iron

crystal is inherently magnetic, but by adding impurities, such as was done for stainless

steel or for YIG, 13the internal fields can be suppressed, ct - Fe naturally has a bcc crystal

structure with a lattice spacing of 2.8665 A. The lattice spacing of 5 /T is used as an

attempt at approximating the larger unit cell constructed when impurities are added to

produce a single line emitter.). Also, all Debye-Waller factors, Lamb-M6ssbauer factors,

and resonant enrichment factors have been set to unity.

Figures 7-5.1 and 7-5.2 are photoelectric rocking curves for the allowed [0 0 2]

reflection and for various thicknesses. Resonant nuclear scattering, though also allowed, is

ignored in the calculations. In Fig. 7-5. I the oscillations, or Pendelli3sung fringes, for the

10/zm thick crystal are caused by the interference of the two eigenwaves traveling in the
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reflection channel. For d = l cm one of the eigenwaves has completely died off

exponentially with distance which eliminates the possibility for interference between the

eigenwaves to occur at the exit surface.

o:,=-1 =+11I
" 1.0- I

I

0.8- II

"_=_ iii l d - lcre

fl 0.6 - d = 10/.tru
" ] d=ll.tmI i
.P,,l

"_ 0.4 - '1

0
Z I ',

O.2 - I I_
," t- ..... -I-

I I
_1 I

. 0.0 - i I - I I i I I I

-10 -5 0 5 10 15 20 25 30

Deviation Angle from Bragg: AO= 0- OB (micro rads)

Fig. 7-5.1. Bragg diffraction rocking curves for [0 0 2] reflection for various
thicknesses. Only photoelectric scattering is being considered --resonant nuclear scattering
is being ignored.

For Bragg diffraction the primary extinction length, or crystal penetration depth

through which most of the transmission channel fields are reflected out of the crystal, can

be approximated from Bragg's law, Eq. 7-4.17, as

d,_, - 2Jr _ 2rc tan On (7-5.4)
AH H AO,

where AO,.,is the angular width of the Darwin curve (full width at half maximum). This

- expression describes how much of a crystal is involved in diffraction by how far a

reciprocal lattice point can be from the Ewald sphere before Bragg's law is seriously

• violated. For the crystal considered in this example, the Bragg angle for the [0 0 2]

reflection is 9.9 ° for 14.4 keV photons, and 2Jr/H = 5/_/2. For d= lcm the Darwin

width is 12/trad, and thus d,_, = 3.6/am and the crystal is several thousand extinction

lengths thick. When d = lO/.tm a far less number of planes contribute toward diffraction,



128 Dynamical Diffraction by Crystals (7.5)

thus the angular width is slightly broader than for the lcm thick crystal. The extinction

length is now approximately 3.3pm, and the fields penetrate a far greater fraction of the

crystal thickness. When d = 1/zm, the Darwin width is 41/xrad and the fields penetrate

the entire thickness of the crystal: d,,, = 1/Zm.

0.5 - rl_,=-1 I r/_ = +11 d = lmm
I I

0.4- ,"

!'i /',
• p,,,l # _

_ ,,' I',,
0.3-

Z / ii

L
0.0 I i u I u

-20 -15 -10 -5 0 5 10 15 20

Deviation Angle from Bragg: AO = 0- OB (micro rads) o

Fig. 7-5.2. t,aue diffraction rocking curves for [002] reflection for various
thicknesses. Only photoelectric scattering is being considered--resonant nuclear scattering
is being ignored.

The photoelectric absorption length for this crystal is roughly 0.5/xm. Thus, the

Borrmann effect is readily seen in the Laue diffraction rocking curves in Fig. 7-5.2. When

the crystal is 10/zm, or 20 absorption lengths thick, the transmitted intensity peaks at 40%

whereas a value 9 orders of magnitude less would be expected if only photoelectric

absorption was considered.

For pure resonant scattering when _ - _0 = 0, the Darwin width goes to zero since

the scattering tensor becomes pure imaginary. The Borrmann effect persists at the center of

the profile because the nodes of the fields inside the crystal lie at the scattering planes.

Increasing the crystal thickness so that more planes contribute to reflecting the field out of

the crystal pushes the peak reflectivity closer to unity. This effect is commonly referred to

as the suppression of the inelastic channel. 9 Because the effective transmission absorption

length is roughly 600 A,when the incoming field is on resonance, the transmitted field is

quite negligible for the 10/zm thick crystal used in Figs. 7-5.3 and 7-5.4.
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Fig. 7-5.3. Bragg diffraction rocking curves for [0 0 1] reflection for various positions
on the resonance curve. Only resonant nuclear scattering is being considered--

, photoelectric scattering is being ignored. Crystal thickness is 10/zm.
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Fig. 7-5.4. Bragg diffraction rocking curves for [0 0 1] reflection for various positions
on the resonance curve. Both resonant nuclear and photoelectric scattering is considered.
Crystal thickness is 10/zm. The point A0 = 16/zrad occurs at r/_ = +1,0 for the central
curve (this is where the central curve peaks), at fl_, =-1 for the curve on the right, and at

/

r/,_= + 1 for the curve on the left.
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7.6 Dynamical Characteristics of Energy Spectra

The expressions for the transmission and reflection channel fields are too

complicated in their present form to see the dynamical effects of frequency shifts and

speedup rates resulting from multiple scattering. Also, since there are now two eigenwaves

traveling in a particular channel, ascribing a single frequency shift or speedup rate to an

exiting field is no longer generally possible. However, in certain limiting cases in which "

only one predominant eigenwave manages to exit the crystal, one can easily examine the

dynamical effects of multiple scattering. These limiting cases are described below.

CASE 1: Far ()If Bragg.

When the direction of the incoming field is set to be far from any Bragg angle,
I (X)

the eigenvalues reduce to

e(1,2)= 1 _ 1[ oo
o, -4[gao(l+b)-ba,]+ 4LIb_'l- ,,,c1- h)I° "1] (7-6.2)ha. j

for Bragg (b < 0) and Laue (b > 0) diffraction. For both Bragg and Laue diffraction, the
_I0

reflection channel field is negligible, R(c0)=-0, since it falls off as gtj_/an while the
transmission channel field reduces to

w

,̂ 0 ,[R._<,1,)/21,0.,
T(eo) = eik°"r Z Eo,,i(co)e,,e (7-6.3)

CI

where L = d/y o . (7-6.4)

For combined resonant dipole and nonresonant scattering, the scattering tensor

element for forward scattering is (from Eqs. 5-1.48 and 7-1.5)

gL(o0)/2 : 2srhF(ks :k,)+ #x°°(co)/2#:o. (7-6.5)

The Lamb-M_Jssbauer and resonant enrichment factors have been included in the scattering

amplitude, and l.i'X'(oo)lk,,,=[g,,_(co)],<,,,,, is given by Eqs 7-2.1 and 7-2.2 for

photoelectric scattering

lX'X'(co)=-f 4rC)nr[Dw(O)fo + f'(co)-if"(eo)] (7-6.6)
t ko, )

(the imaginary pan of/.t°°(og) is the absorption coefficient). For the simple two-beam

solution in Section 7.4, the expressions on the right side of Eq. 7-6.5 are independent of

polarization since they describe forward scattering. Equation 7-6.3 is precisely the same
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solution as that obtained for the transmitted field from an isotropic medium in Section 6.5.

The dynamical effects explored in that section then also apply equally well for this off-

Bragg case.

CASE 2: Thin Crystal Approximation.

" For the thin crystal approximation
I

koveo,d/y o << 1. (7-6.7)

" In this approximation, the transmission channel fields for both Bragg and Laue diffraction

are almost unity. Using the approximation e_ = 1+ x for Ixl<< 1 gives

Tn,._g(w) = e,ko..r_. Eov.(to)bo l + ikovL[g_(l + b)- b°tn ]/2
a 1+ iko_L(bg,,_ - ba n)/2 (7-6.8)

TL,,,,,,(to)= e'k°'" _ Eo_,_(to)_:°,_[1+ iko,L(gL/2)]. (7-6.9)
ot

The solution for Laue transmission is equivalent to Case 1 (being far off Bragg) for

a thin crystal, or equivalent to transmission through a thin isotropic slab. For combined

resonant dipole and nonresonant scattering

Tt""(to)=ei'°'"ZE°'r'(to)_'°a[l-c, to- iF*°°/4htoo+ iF/2h +iJu°°(to)L/21 (7-6.10)D,

where, similar to the expression in Eq. 6-5.16 in section 6.5,

F_ = LM(k,)LM(R/ = k,)CncroFL (7-6.11)

and L = d/?' o. Thus, for a thin crystal, Laue transmission channel fields exhibit no

frequency shifts or decay rate speedups.

For Bragg scattering the transmission channel field is

I ia[_b-(l +b)] ]
Tar,,,,(to)=eik°"r£ Eovc,(to)_:'.° ¢ + (7-6.12)

,, to - O90 + iF/2h- iab

F?/4h
where a = (7-6.13)

- 1+ ibt.t°°(to)L/2-ibotekovL/2

- and _ = 1+ i(1 + b)la°°(to)L/Z-ibank°vL/2. (7-6.14)
1+ ibl.t°°(to)L/2- ibotnkovL/2

Since { -_1 in the thin crystal approximation, the transmitted field can b,: simplified to
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TB,,u(to)=e°k*'"EEo,a(to)i:° 1- (to,-iF,/2h)/b ],_ to_ (to0 + to,) + i(F + F,)/2/i (7-6.15)

ib(F0o/4h ) } "
where ro, = Re

l + ibl.t°°(to)L/2 -ibotako,L/2

b(r, °°/4h )(Re{ bla°°( to)}L/2 - botako.L/2 )
-" 2

(l_Im{bl.tOo(to)}L/2)2+(Relb, OO(to)}L/2_botnko,L/2 ) (7-6.16)

ib(FOO/2) }
and F, = - lm

1+ ibla°°(to)L/2 -ibot,kovL/2

-b(F_/2)(1- lm {bla°°(to)}L/2)

= (1-lm{bl.t°°(to)}L/2) 2 +(Re{b_°°(to)}L/2-botnkovl-,/2) 2" (7-6.17)

The second term in the brackets of Eq. 7-6.15 exhibits, in contrast to the

transmitted field through an isotropic thin slab, a frequency shift, to,. and a speedup rate,

_. However, since tos is proportional to the square of the crystal thickness, it is an
iI

exceedingly small quantity. The speedup rate is roughly proportional to the on-resonance

thickness rate, F, =--b(F_ _°/2), for thin crystals.

Applying the thin crystal approximation to the reflection channel field for Bragg and

Laue diffraction gives

-iko,Lbg_° /2

FIn"u(to)=e'(k°'.")"_"E°''(to)_a l +'ko_L(bg= -botn)/2"0o (7-6.18)

_. " !1 i 1oRt.o,,,(to) e'('o'*H)rff._E0_,_(to)ra( - kovLbg,_,,/2). (7-6.19)

For combined resonant dipole and nonresonant scattering the Laue diffracted field

reduces to

I . 10 1

tbU,_/4h . lo

Rt°'(to) = e'(k°'*H)rY-',,E°v"(to)fi_ to-to0 + ir/2fi -tbla_ (to)L/2 (7-6.20)

where, for resonant dipole scattering,
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and, for nonresonant photoelectric scattering,

/a_(to)=-( 4/r _r(_."'.
_,k0vv0)" " /_°)Y--'[Dw(H)f°.+ f'(to)-if"(w)]e-"'r" (7-6.22)

Again, as was the case for the Laue transmission field, there are no frequency shifts or

speedup rates for Laue diffraction from a thin crystal.

The Bragg diffracted field reduces to

^ni ib("aa+a'_) 1
Rs,a,(tO)=e'(k°'.Hl'r_., E0,,_(Og)e _; + (7-6.23)

, tO- tOo + iF/2h - iab

10
U,_/4h

where a'u = (7-6.24)
1+ ibu°°(w)L/2- ibotnko_L/2

and _; = -U_°(w)L/2 (7-6.25)
- 1+ ibla°°(to)L/2 -ibctnko,L/2

and a is given by Eq. 7-6.13. This expression can also be simplified under some

• assumptions about the structure of the crystal lattice. If the lattice of resonant scatterers is

different than the lattice of nonresonant scatterers, certain reflections may be found where,

due to the geometrical structure factor, diffraction from resonant particles is allowed

whereas diffraction from nonresonant particles is not allowed. This holds for certain iron

crystals such as YIG, FeBO 3, and ct- Fe20 3 enriched with 57Fe. Under such conditions,

_,_= 0, and the diffracted field simplified to

Rn,a,,(w)=e,(ko.-m).,_,Eo_,,(w)_._ (m,-iF,/2h)(F_°/F_)
,_ ¢o_(mo +to,)+i(F+i., )/Zh (7-6.26)

where I'_ and o9, are given by Eqs. 7-6.16 and 7-6.17. The frequency shift and speedup

rate are the same as that for Bragg transmission through a thin crystal. Also note that these

quantities are dependent upon forward scattering factors and not upon diffraction scattering

factors, and they are polarization independent.
1

- A crystal will also appear "thin" when the eigenvalues are near zero: e0_, = 0. The

eigenvalues can be exactly zero for Bragg diffraction when a n = 0, g,_ = g_,,_, and
00 11 01 10

g,_,_go_= g_g,_,_. Under such conditions, an infinitely thick crystal will appear "thin" in

the thin crystal approximation. And as d--) ,,,,, the tran,:mission channel field becomes
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negligibly small and the reflection channel field goes to unity. These are the conditions for

the suppression of the inelastic channel. 9 They result in an interesting demonstration of the

Borrmann effect for resonant scattering where resonant absorption is completely

suppressed in an infinitely thick crystal. Here an infinite number of planes contribute

toward reflecting ali of the incident field back out of the crystal--the reflectivity becomes

unity. This Borrmann effect can be seen in Fig. 5-7.3 (at AO = O) for a crystal 3 primary

extinction lengths thick (unity reflectivity is nearly achieved). However, note that the

condition 00 tt 01 10gaagaa = go_g,,a cannot be met for nonresonant scattering since the Debye-Waller

factor for forward scattering (which is unity) is never equal to that for diffraction. Thus,

unity reflectivity through the Borrmann effect can never be achieved for nonresonant

scattering.

CASE 3: Thick Crystal Approximation.

In the thick crystal approximation
i

koveo#d/7,o >> 1. (7-6.27)

For Laue diffraction the two eigenwaves of each polarization in each scattering

channel exponentially die off with distance into the crystal. Since both eigenwaves persist

at the exit surface, ascribing a single frequency shift or speedup rate to the net exiting field "

is not possible. In addition, the analytical form of each eigenwave in Eqs. 7-4.40 and

7-4.41 cannot be further simplified other than that they approach zero as d _ o0. .

For Bragg diffraction one of the two eigenwaves exponentially dies off with

distance while the other increases exponentially with distance. For the thick crystal

approximation, the transmission channel field is negligibly small while the reflection

channel field approaches

• bg_
Ra,ou(m) = e'(k°'+")"_ E0,,,(W)e_ 0o 9,,0.2) (7-6.28)

tl g£ltX _ '_"Otl

where the eigenvalue that yields exponentially growing waves is chosen in the

denominator. For combined resonant dipole and nonresonant scattering, the reflected field

reduces to

aa,,,u (c0) : e'(k0.+u)'_ E0,,,(w)[: _ (b/f2,a)
OI

..

where (7-6.29)
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to =Re{( (1- b)(I;°°/4ti) }l - b)la°°(to)L/2 + botnko_L/2

" (1-b)(F,°°/41i)[(1-b)Re{I.t°°(to)}L/2 + botnkovL/2]= (7-6.30)

[_,-_)_o1.__)}L/2+b_.ko.,_/2]_+[_-b),m{._)},./q_

r, = -lm. (1- O)la--(_o3-_+-'b-anko,L/2 j

_- (l-b)(F_/2)[(l-b)lm{#°°(t°)}L/2] (7-6.31)

[(1- b)Re {,u°°(to)} L/2 + ba,ko.L/2] 2 + [(1- b)Im {,u°°(to)} L/2] 2

f_,,_= (tG -iFs/Zh)(F_°/F_)[Zb/(l- b)]. (7-6.31)

F_ and F_° are given by Eqs. 7-6.11 and 7-6.21, and, as before, a reflection was chosen

for a crystal structure that forbids nonresonant diffraction but allows resonant dipole

- diffraction. Though the crystal is infinitely thick, a length factor, L, was inserted for

comparisons to previous calculations. Ali quantities computed for this case are actually

. independent of L.

The extrema in Eq. 7-6.30 occur at

AOM= 1-b (Re{g_(to)}+lm{gL(to)}),,o,,,, " (7-6.33)
2bsin20 n

where [g_(to)],,o,,, _ =p°°(to)/kov is a nonresonant scattering tensor element. Tile

maximum frequency shift is then

1 (F_/4h) (7-6.34)
tG(AOM) = ko,L Im{g_(og)}.o_,'

The maximum speedup parameter occurs at the nonresonant Bragg peak:

1 (r?/h)
2In'°(a°')I=k0,Limlg._(eo)l(r_°/r?)i2bl(l-b)]__(7-6.35)

where the nonresonant Bragg peak is situated at

(1 - b) Re{g,_ },,o.,,,
A0p = (7-6.36)

2bsin20 B
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due to the index of refraction shift. The angular width of the speedup parameter, 21f2,a], is

(full width at half maximum)

A0n = _f3(l - b)Im{g_,_},,,,,,.,.,. (7-6.37)
bsin20 B

Because of the non-Lorentzian form of the reflected field, the quantities to, and Fs

no longer fully represent a frequency shift and speedup rate, but, for certain ranges of a a, o

they do roughly describe the magnitude of these dynamical effects. The non-Lorentzian

characteristics of the energy spectrum embodied by Eq. 7-6.29 can be seen in Figs. 7.6-1

and 7.6-2 for various angles near the Bragg angle. The ct-56Fe57Fe crystal examined

earlier in Section 7-5 was used again in these calculations. Far from Bragg the energy

spectrum asymptotically approaches the Lorentzian lineshape a single nucleus exhibits. On

resonance and near the Bragg peak (which occurs at A0e = 16/.trads) the collection of

nuclei generate a field intensity with a cusp-like distribution and long tails centered at the

natural frequency (this is where the Borrmann effect is predominant).

Plots of hto,(A0), the centroid of the energy spectrum, and the energy at the peak

intensity versus the angle from Bragg are shown in Fig. 7-6.3. The centroid and tos(A0 )

generally follow each other with discrepancies largest at the Bragg peak, and they converge

to the energy of peak intensity at large deviations from Bragg (that is, deviations larger that

two photoelectric Darwin widths--the photoelectric Darwin width for the o_-56Fe57Fe

infinitely thick crystal is roughly 12prad for the [0 0 2] nearest order allowed photoelectric

reflection). The energy shifts represented by hto,(A0) and the centroid maximize very

close to the Bragg peak positioned at A0p--at about three-fourths of a microrad from the

peak for hto,(A0) and about 1/arad from the peak for the centroid.

The angular position of the on-resonance Bragg peak is totally determined by

photoelectric forward scattering since the real part of the resonant forward scattering

amplitude goes to zero (note that the first term in Eq. 7-6.33 is the index of refraction shift,

A0p, for on resonance scattering). Therefore, the extrema of o_s(A0) are slightly shifted

from A0e since nonresonant photoelectric absorption is generally much smaller than

nonresonant scattering: (1- b)Im{I.t°°(to)/ko,}/2bsin20B = 3/4/_rad (note that b =-1,
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oo
OB = 4.9 °, and la (co)/kov = (-2.8 + i0.13)x 10_ for the [0 0 1] symmetric reflection of

bcc a-56Fe57Fe having a lattice spacing of 5A). The energy shift seen by examining the

energy at which the field intensity is maximized has extrema that are roughly 15 times less

than that for co,(A0) and peaks (at about 11/arads) much further from the angular position

of the on-resonant Bragg peak.

From Fig. 7-6.4 one can also see that 2[fl,,_[+ F approaches the full width at half

" maximum as the deviation angle progresses beyond half a photoelectric Darwin width.

Thus, far off Bragg, the quantities co, and 2ifl,,_l become good approximations for a

frequency shift and speedup rate.

The dynamical quantifies co,, F,, and 2]fl,,_l can be understood in another light by

examining the diffracted intensity in the time domain. Fortunately, due to the efforts of

Kohn, 1° an analytical expression for the Fourier transform of the diffracted field,

Eq. 7-6.29, has been evaluated through contour integral methods for the case where the

frequency spectrum of the incoming field is constant: E0va(oJ) = E0_,_(as is the case for a

synchrotron beam). The integral of interest is

where zo =(co o + co,)-/(I" + Fs)/2h (7-6.39)

" zo.2) =(COo+ cos)- i(F + F_)/2h + f_;_ (7-6.40)

and fl:.= P{4fl:<,/b }. (7-6.41)

Jt Ira(z}

Relz}

C1 1--z 1--I
Yz

tD

Fig. 7-6.$. Contour for evaluating the Fourier transform of the diffracted field from an
infinitely thick crystal.
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Since f2,_, is complex, the principal value of the square root in Eq. 7-6.41 must be

evaluated.

Since o9, is much smaller that the natural frequency and _2,a < (o9, - iF,/2h) when

examining only the real and imaginary parts separately, an appropriate contour to integrate

over is shown in Fig. 7-6.5 which has a branch-cut between the two branch points z t and

z2. For this contour where o9 is set to be complex valued

since there are no poles in the region between the closed contours ['t and l-"2. The integral

over arc C + of contour F t is zero by the Jordan Lemma (this can be seen by rewriting the

argument of the integral in the form of a quotient of one over a polynomial of degree 1).

The integral over the contour F 2 of the first term in the integral above also vanishes since it

has no poles within the contour. Then

!:+ 1--l_r e-i"4(z-ztl(z-z2)dz2_

where C t and C2 are two circles each of radius r, and 71 and 72 are two line segments on

opposite sides of the branch-cut between the branch points z_ and zz. For the integral over

circle C t let z = z t + re' °. Then, since

[_c"e-'"_] iz z,)(z z2)dzl<127rre-'("*"'_°)' 4 re'°)lrei°( " + O,t r-cO

the integral over C t vanishes as r --> 0 for t > 0. The same happens to the integral over the

other circle C2 .

For the line segments let

z= " + w. (7-6.44)
2 2

The principal value of the square root in the integral can then be expressed as
a,

a:,,4-, w- - = - • (7-6.45)

Then, along Tt from z t to z2 the square root transforms to

4-(z- z_)( z - z2) = ifl:_ _l - w 2 (7-6.46)

when w is set to w = lima + it; where lal<-1. Similarly, w = lira a - ic along 72 from z2_--*0 _--_0

to zt and thus
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4(z - z, )(z - z2) = -i£2:12_/1- w =. (7-6.47)

Then

l=T_e-i(_,o+°',),e-(r+r.I'/z'i",12/b(; __l-l)_l_w2e-in;.W'dw" 2Jz 1

= .#e_i(o,°.,o.),e_(r+r.),/2,i[2,_/b _l_[l_ w 2 cos(_:_wt)dw. (7-6.48)°

With help from the integral tables in Abramowitz and Stegun, 14the integral evaluates to

J_(f_t) (7-6.49),/1-wcos( :ow,)aw---1
The reflection channel field in the time domain is then

= _" _-n_-i(_Oo+OJ,),e-(r+r, J1([2,12 t)FIB,,.,,(t) e;(k°'+H)'rZ ._,0,12%e )'/2'i[2,12 O(t). (7-6.50)
a f_,at

The principal value of the square root expressed by f2_12has been dropped since

Jl ([2;j)/g2:j = J1(f_,j)/g2,_t (this can be seen by expanding the Bessel function in terms

of a series expansion in [2_t). Also, the + sign has been dropped because, as a result of

the boundary conditions, the overall phase of the reflected field is indeterminable (though

the phase can be determined when the reflection channel field interferes with another wavew,

such as with the incoming field at the crystal surface). Examination of the reflected field

reveals that it is frequency shifted by co,, and the natural decay rate is modified by a

speedup factor Fs resulting only from forward scattering and by a speedup factor f_,,_

resulting from diffraction.

The reason for the non-Lorentzian frequency response of the reflected field has now

been isolated to the dynamical beat and speedup factor J_(g2,_t)/f_,_t in the time response.

As a result, a decay rate attributed to the entire time response is no longer possible.

However, the time behavior of the reflected field simplifies in the limits of the Bessel

function for large and small arguments. 1° For instance, in the short time domain when

[f_,12/I<< 1

iCko+H)-,_".-, "n -i(_o ),e-Cr+r,),/z,i___9RB,o,s(t) = e " 2__tZo,_E12e +o,, (t), (7--6.51)Z
12

and the reflected field suffers a frequency shift, co,, and a speedup, F,, of the decay rate.

In the long time domain when ][2,j[ >> 1
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_/2 c°s(f2,J- 3Jz/4)O(t)"Rnrosg(t) e;(_o.+H).r2_. ^n-i(,o°+_o,),e-(r+r,),#_i (7-6.52)
= a LovaEae t_r-_at

Since

cos(D,,t_atc/4):(ei(r_o{n..,}-3,/')e-_.I,a..,} +e-i('_{n..,}-3,/',e+,.,i'a,.,,)/2

this long time limit exhibits both positive and negative frequency shifts and speedup and

slowdown rates. However, since Ixm{n,o}l__r',/2hthere are never runaway solutions in
which the reflected field grows exponentially with time. In fact, for the case in which

]lm{f_,,_}l= l",/2h the reflected field reduces to

eitq4 e-ia,¢e-rq2_

Rnro,,(t ) = e'(k°'+H)"2,_Eo,_.n_i _ t_q(-_,_t O(t). (7-6.53)

For this situation the reflected field intensity undergoes no frequency shift and decays faster

than the natural decay rate by the factor 1/t 3.

For the intermediate case in which [f_,,_tI is neither very large or small, an

approximation of the decay behavior can be made using the result of the solution for the

scattering channel field from an isotropic slab as a guide

IRnro.(t)[z = CZ(60)e k" z;(,o)47_) O(t) (7-6.54) -

where _(_0)= 1+ 3 160l (7-6.55)
2I,01+ 251zrads"

Here, 60 is a measure of the angular deviation from the on-resonance Bragg peak

(determined by the photoelectric index of refraction shift):

60 = AO- A0e (7-6.56)

where A0 e is given by Eq. 7-6.36. For this estimate _(60) is a function that varies from

unity to 2.5 as the deviation angle varies from the center of the Bragg profile to far from

Bragg. The coefficient C(t_0) rapidly varies from approximately 0.75 right on the Bragg

peak to a plateau of 1.1 a few microrads from the Bragg peak.

Plots of normalized reflected intensity versus time are shown in Figs 7-6.6 to 7-6.8

for angular deviations from the Bragg peak of 0, 50, and 200 bt rad respectively.
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Fig. 7-6.6. Plots of normalized Bragg intensity versus I_,ot[(intensity is normalized by
- dividing by If_,,_/212). The angular deviation from Bragg is 16/zrad--this is right on the

The speedupfactors are 1/21f_,oI=h/r, = 0.66 nsec.Bragg peak.
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Fig. 7-6.7. The angular deviation from Bragg is 66/,trad--this is 50#rad from the

Bragg peak. The speedup factors are l/2P,ol=43 nsec and /iii-', = 2.8//see. The
dynamical beats are now apparent at long tames as can be seen in Figs. 7-6.7 (b) and (c).
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i

1.0- \ I.
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Fig. 7-6.8. The angular deviation from Bragg is 216#rad--this is 200#rad from the
Bragg peak. The speedup factors are 1/2[fZ,aI= 173 nsec and h/F, = 45 #sec. Far from

• Bragg the field intensity decays with nearly the natural lifetime.

7.7 Dynamical Characteristics of Crystals with Hyperfine
Split Spectra

To date, ali crystals examined for nuclear resonant scattering have hyperfine split

spectra rather than single line spectra. If the resonant lines for a particular crystal are very

close together, the effects caused by interference between the various lines must be

carefully examined in addition to any frequency shifts and speedup rates of each individual

line. This significantly complicates the problem of analyzing the dynamical characteristics

. of the reflected field (in addition, no analytical form of the Bragg diffracted intensity in the

time domain has been found).

If the resonant lines are far apart then the interference effects among the lines can be
Q

neglected, and the results of Sections 7.5 and 7.6 can be used for each individual line. For

each individual line caused by a transition from an intermediate state In) to a final state If),
the dynamical quantities to,, F,, and f_,u are given by Eqs. 7-6.30, 7-6.31, and 7-6.32

10
with substitution of F,°°/k0,L and F_,_/ko,L by
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2

0o (4zr) 2 nLM(ki)LM(kf :R,)CF,,n,JfmfLM,jl Lj'm"
F_(f")/k°'L = ko-'--_" (2j, + 1) Pc_t_ (7-7.1)

and

F)°(f")/k°'L=_(4 n:)2Lk0," (R')Lu(k/ICF'_(Jtm/LMIj/Lj'm")2(2J,+ 1) ,LM'°'"._0.0Z e_,H.,,.1 ,_ ,

(7-7.2)

where oils is a polarization matrix described in Section 7-2."LM

Plots of ¢o,(A0) and 21ta,o(a0/Iareshownbelowfor three different crystals:

a- Fe20 3, FeBO 3, and YIG (only for the di-site). Ali these crystals have been used for

nuclear resonant scattering experiments, and they ali exhibit hyperfine split six line spectra.

They can ali be grown with enriched 57Fe atoms, and they ali have the property, because of

either antiferromagnetic ordering or a ferromagnetic sublattice structure, where

photoelectric diffraction for certain lattice planes is forbidden whereas resonant nuclear

diffraction is allowed. The plots where constructed for the case in which the polarization

matrix p,s diagonalizes: there is an applied magnetic field oriented perpendicular to themLM •

scattering plane. For lines (t,,t2.t3,t.,t,,t6), Re(P_l.°l)_a=(3/16zr)cos2On(l,O,l,l,O,1)

for incoming horizontNly polarized fields,and (p_0)_, = (3/16zr)(0,2,(),0,2,0) for

'20t
Fez03

t

_" 100 ,' , lines 1 & 6
_,_ ,

"fi .' lines 2 & 5
80 ! i

' ' lines 3 & 4

60- : i

-._<_,40- ,,,"

_ 20- .

0 _ I I I I I

30 40 50 60 70 80
Deviation Angle from Bragg: AO= 0-0B (/arads)

(a)
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• Deviation Angle from Bragg: AO= 0-O B (prads)

(c)
Fig. 7-7.1. Homogeneous line broadening parameter, or decay rate speedup factor, for
the various hyperfine split lines of:(a) o_-Fe203, (b) FeBO3,and (c) YIG.
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YIG
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:', ...... lines 1 & 6
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-4
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-8= I w i J o i
40 50 60 70 80 90 100
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(c)
. Fig. 7-7.2. Resonant frequency shift for the various hyperfine split lines of: (a)

a- Fe203, (b) FeBO 3, and (c) YIG.

. lines (t,,t2,t3,t,,ts,t6) are (1,2/3,1/3,1/3,2/3,1). The Lamb-M6ssbauer and resonant

enrichment factors have been set to unity: LM(R,)LM(kf) = 1 and C = 1. The resonant

energy is 14.4125 keV, the resonant linewidth is 4.67 x 10-9eV, and j, = 1/2. The [1 1 1]

reflection from a- Fe20 3 and FeBO 3 have Bragg angles of 5.4 ° and 5.1° respectively. The

Bragg angle of the [0 0 2] reflection from YIG is 4.0 °.

Since the photoelectric absorption due to the spectator oxygen atoms is small

compared to the iron atoms for a- Fe20 3 and FeBO 3, the extrema in the frequency shift

and speedup parameter characterized by Eqs. 7-6.34 and 7-6.35 are nearly identical as can

be seen in Figs. 7-7.1 (a) and (b) (the extrema are naturally independent of unit cell volume

and crystal thickness, but, if the photoelectric absorption of the spectator atoms is

completely neglected, they also become independent of the number of resonant nuclei per

" unit cell). However, YIG has many more spectator atoms (32 other iron atoms, 24 yittrium

atoms, and 96 oxygen atoms). The photoelectric absorption from these spectator atoms

• significantly limits the maximum frequency shift and speedup.

The angular range over which there is a moderate speedup is described by

Eq. 7-6.37. By decreasing the Bragg angle (such as by increasing the lattice spacing) or by

increasing the photoelectric absorption (such as by increasing the number of resonant nuclei
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per unit cell), the angular range for moderate speedup can be greatly extended. However,

increasing the photoelectric absorption by increasing the number of spectator atoms instead

of the number of resonant nuclei will decrease the maximum speedup.

7.8 Numerical Solutions of the Linearized Dispersion
Relations

The analytical two beana solution of the linearized dispersion equation was possible

because the polarization matrices were diagonal for a particular eigenpolarization basis.

The dispersion equation decoupled into two relations tbr each eigenpolarization, and this

resulted in simple analytical solutions for the transmitted and diffracted fields. The

eigenpolarizations for nonresonant photoelectric scattering are the sigma and pi

polarizations since mainly Thomson scattering occurs. For resonant magnetic dipole

scattering with an applied magnetic field perpendicular to the scattering plane, the

eigenpolarizations are 'also the sigma and pi polarizations. When the applied magnetic field

is parallel to the scattering plane and horizontally oriented (Case 3 in Section 5.1) the

eigenpolarizations are the right and left circular polarizations (however, a polarization

matrix must be reconstructed in this basis since the polarization matrices in the linear basis

represented by Eqs. 5-1.19 and 5-1.20 no longer apply).

In general eigenpolarizations for resonant scattering are not easy to find for an

arbitrary orientation of the quantum axis. Therefore the polarization matrices are usually

constructed in a simple polarization basis (such as the sigma and pi basis), and then one

proceeds to solve the dispersion equations (which may no longer be uncoupled) through

numerical techniques. This involves solving the characteristic eigenvalue equation

expressed in Eq. 7-4.19 where

10 11

/= oi . (7-8.1)

C" 1)g;O g;: g',_ bg.-bot.

The Gt,,,-matrix is a 2n x 2n matrix where n is the number of scattering channels (or beams

as it is termed in the literature). For the two-beam case Gr., is a 4 x 4 matrix, but when

there are many umveg, or simultaneous, reflections Ga. can rapidly become very large to
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the point where a fast computer is a necessary tool for solving the characteristic equation.

Resonant umveg reflections are not explored in this paper, thus the largest Gu,,-matrix

investigated is tile linearized 4 × 4 matrix shown above. With tile help of readily available

computer programs (such as EISPACK or the NAG eigenvector-eigenvalue routines)

numerically solving the dispersion equation for both the eigenvalues and eigenvectors is a

straightforward procedure. However, insight into the dynamics of the scattering process is

" lost. This insight can be partly recovered by examining simple analytical solutions such as

those presented in Sections 7-3 to 7-7.

When the incoming photon beam is near the surface grazing angle of the crystal, the

boundary conditions described in Section 7-4 are no longer adequate--the specular

reflection off the crystal surface is no longer negligible. One must now properly insure that

the normal components of the D and B fields and the tangential components of the l= and

H fields of the Maxwell equations are continuous across the top and bottom surfaces of the

crystal. When this is done for the two-beam case, instead of having 4 eigenvalues to solve

for, there are now 8 to find. Four come from solving the characteristic equation in

Eq. 7-4.19, and four more come from solving two separate dispersion equations describing

fields propagating through the crystal that have been internally reflected from the top and

bottom surface of the crystal. The continuity boundary conditions yields 16 equations

(eight involving the transmission channel eigenwaves and eight involving the reflection
,i,

channel eigenwaves). They can be reduced to 8 equations by eliminating the exiting fields

and the specularly reflected field. 15 Resonant grazing angle scattering from crystals is also

not explored in this thesis.

7.9 Nonlinear Dispersion Equation

The linearized dispersion equation is valid in the limit of finite and nonzero

asymmetry factors. As b----)0 or as b---) +,_ (that is, when the forward scattered or

diffracted field propagates nearly parallel to the crystal surface), the nonlinear dispersion

equation presented in Eq. 7-1.4 may be required. This involves finding the solution to a

. quadratic characteristic equation. 15

Projecting the wavectors within the crystal onto unit vectors normal and parallel to

the crystal surface (/t and u respectively) produces a nonlinear characteristic dispersion

relation in terms of the projection of the transmission channel wavector onto the surface

norm',d:
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koi' = ko -ft. (7-9.1)

Noting that k: = ko + H, (Bragg's law) gives

k_'k_/k2o. =k2oi,+ koi,(2Hl_,/ko,)+(Hi_,/ko,) 2 + k,_,2. (7-9.2)

The quadratic characteristic relation is then

(ko2_1312+ko_B I + Bo- G)_ = 0 (7-9.3) .

where

oI rio
1 0 0 /

B2 = ' B1= ' k I

2H,_I_,

I-1, _l 0 )_. [

B° -1 (H, dko,) 2+k 2 -1 I'

(H,./ko.) +k_.-1 J

f
ffg,_ gol g_ gg_! T_= g.. g_., Ty (7-9.4)/g: ,, ,o

o /g,_ g,°2e_,og_;/'and'°=/R""I,[glyO gly_ g, g,j gy

By defining an eigenvector o) such that

'O= kohO) (7-9.5)|

allows the quadratic characteristic equation to be modified to

koaB_B_'_ + (B o- G)B__ko,_m=-.ko2,_v. (7-9.6)

This relation becomes line_ in ko¢' when both sides of the equation are divided by that

parameter. The new linear charac_teristic equation to be solved for is then

(O- ko/,l)b = 0 (7-9.7)

where Ct= (7-9.8)
0
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and I is the identity malrir,.

" Since the B and G-matrices are of order 4, the Q-matrix is of order 8. Then the
t

linear characteristic equation will give 8 eigenvalues, ko_, and eigenvectors, bt. The first

o four elements of the eigenvector bt yields 9t which is the desired eigenvector for the

nonlinear dispersion equation. The boundary conditions are found by the same method

explained in Section 7.8: ensuring that the normal components of D and B and the

tangential components of E and H are continuous across the crystal interfaces. Instead of

there being 16 eigenwaves inside the crystal that exists for the linearized dispersion relation

with simple boundary conditions, there are now 32 eigenwaves traveling inside the

crystal--16 for each polarization and 8 for each scattering channel direction.

When examining highly asymmetric reflections (which are also not explored in this

thesis) one may need to solve the nonlinear dispersion equation rather that the linearized

dispersion equation.

- 7.10 Umweganregung, or Simultaneous, Reflections

In the previous sections only 2-beam diffraction was investigated. However,

n-beam diffraction from a crystal can occur when more than one set of crystal planes reflect

the incident beam into the same outgoing direction. These umweganregung (umveg for

short) reflections occur simultaneously with the primary reflection. The Ewald sphere for a

3-beam diffraction case is shown in Fig. 7-1.1. In the figure, k0 is shown to scatter into

the k u direction due to planes having a primary scattering vector H. Simultaneously, k 0 is

scattered into the ks direction due to planes having a scattering vector S, and then k s is

scattered into the k, direction due to planes having a scattering vector H- S.

. Bragg's law for satisfying both the primary H reflection and the secondary S

reflection can be obtained by studying the scattering geometry shown in Fig. 7-10.1. The

scattering plane (_t, _¢)consists of k 0, H, and k,,, and H points in the z.-direction. S is a

secondary reciprocal lattice vector that makes and angle 0s with respect to H:

= sin 0s cos _t + sin 0s sin ¢_y+ cos 0sZ. (7-10.1)



15 4 Dynamical Diffraction by Crystals (7.10)
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ko / :_ k,
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/d2 i '
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Fig. 7-10.1 Scattering geometry for 3-beam diffraction.

The Bragg angle between H and k, is o n90 -O B , and the Bragg angle between S and k, is

90°-0 s. Then, from Fig. 7-10.1, "

sin 0s = i(,-S = sin 0_' cos 0s + cos 0 g sin 0s sin #. (7-10.2)

Bragg's law for each of the separate reflections is (recall Eq. 7-4.17)

sin 0__ = hcH/2E a and sin 0s = tzcS/2E B. (7-10.3)

The azimuthal angle for which both of these reflections occur simultaneously is then

2EssinoshC( L-Hc°sOs).. - .sin#= a/I _ (tzcH/2EB )2 , (7-10.4)

and the energy at which this occurs is

/r /EB= tzC L--HcosOs + H 2. (7-10.5)
2 _ sin 0s sin _

Umveg reflections can show up as undesirable glitches in crystallography

experiments. Or, they can be useful as precise energy calibration markers. As a result,

knowledge of the intensity of umveg reflections is valuable information. As a first order

approximation, the intensity of an umveg reflection is proportional to the product of the

structure factors of the umveg's two sets of reflections:
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l_,g = FsFtt_s (7-10.6)

where F is the structure factor of a unit cell (see Eqs. 6-1.4 and 6-1.5). 16 More about

these umveg reflections are discussed in Section 9.5 where they are used as energy

calibration markers and where O-energy graphs are constructed to chart out the regions that
,lt

should be avoided.
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8. NUMERICAL ANALYSIS PROCEDURES

8.1 Crystal Structure of Fe203, FeBO3,and YIG

The principle crystals used in the field of nuclear resonance scattering have been

hematite (a-Fe203), 1-4 rhombohedral iron borate (FeBO3), 5-7 yittrium iron garnet

(YiG),8, 9 and orthorhombic iron borate (Fe3BO6)10. 11(and, to a lesser extent, potassium

ferrocyanide (K,Fe(CN)6-3HEO), '2 sodium nitroprusside (Na2Fe(CN)5 NO-2H20), 13

157Te crystals, 14and mosaic 1t9Sn crystals 15 -- these crystals have very large mosaic

spreads, and perfect crystals of these compounds are difficult to fabricate). All these

crystals (except for the mosaic 1_9Sn crystals) have the feature that, for certain

crystallographic reflections, nonresonant photoelectric diffraction is forbidden whereas

resonant nuclear diffraction is allowed. 16 This feature allows the nonresonant background

to be significantly reduced in order to observe the nuclear signal.

a-FezO 3 and FeBO 3 both have a rhombohedral calcite crystal structure (space
d

group R3c-D63d) 17-19and exhibit a canted antiferromagnet system 20-23(see Fig. 8.1-1).

They each have two molecules per unit cell which lead to the formation of magnetic

sublattices below the Nrel temperature (948°K for a-Fe20 3 and 348°K for

FeBO3).20,23 The magnetic moments lie within the (1 1 1) plane with two adjacent planes

being antiferromagnetically coupled (however, below the Morin temperature of 253°K the

a-Fe20 3 magnetic moments align themselves perpendicular to the (1 1 1) planes24).

Because the antiferromagnetic moments are canted, there is a small ferromagnetic moment

lying within the (1 1 1) plane. The ferromagnetic moments will align themselves parallel to

an external magnetic field, therefore, an applied external magnetic field can be used to

orient the antiferromagnetic moments (an alignment field of about 1 kGauss 25,26 is needed

for a- Fe/O 3 and only several Gauss (-- 5Gauss) 22,27 is needed for FeBO3).

Because of the antiferromagnet sublattice structure, resonant nuclear reflections are

allowed from certain lattice planes whereas photoelectric reflections are forbidden. For -

instance, from planes A and B for the crystals in Fig. 8.1-1, the electric fields are reflected

180° out of phase. However, since the magnetic moments lie in nearly antiparallel i,

directions for the two planes, the polarization of the reflected fields for each hyperfine line

for the two planes is different (for perfect antiferromagnets, the polarizations are

156
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[111] direction and
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(b)
• Fig. 8.1-1. Antiferromagnetic structure of (a) ct-Fe203 and (b) FeBO 3. The electric

field gradients lie perpendicular to the (1 1 l) planes. Planes A and B have magnetic
moments in antiparallel directions.
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(1) (3) (4) (6)

' ' I II I A Planes

I 1 1 I
6+ 6_ 6+ 6_ •

1 I 1 1
I I I I B Planes
I I I I

e_ i+ e_ i+ Energy

Fig. 8.1-2. Hyperfine energy spectrum illustrating the case where the applied magnetic
field is perpendicular to the scattering plane (only hyperfine lines 1,3,4, and 6 are then
possible). For small canting and Bragg angles, the polarization of each hyperfine line of
the reflected field can be approximated as right and left circularly polarized: e_ and e..
Since the internal hyperfine fields are identical for the iron atoms in the A and B planes
(except for the direction of the internal magnetic fields), the hyperfine lines from the two
planes overlap with a 180° phase difference due to the position of atoms within the unit
cell. However, due to polarization differences, there is no cancellation of the fields
reflected from the two planes.

orthogonal--see Fig. 8.1-2). Complete cancellation of the reflected fields is then no longer

possible.

YIG (Y3FesO_2) is the crystal examined in this thesis. Even though it has a cubic

crystal structure, its unit cell is much more complex than the rhombohedral structure of the

other crystals. YIG belongs to the space group Ia3d- O_°, and it has 96 03. ions located at

the h-sites, 24 y2+ located at the c-sites, and 40 Fe 3+ ions located at the

a and d-sites. 28 !3i_ring the 1960's and 1970's when magnetic bubbles appeared to be a

promising way to store megabytes of information, the technology was developed to grow

high quality YIG crystal films on GGG (gadolinium gallium garnet) substrates by liquid-

phase epitaxy methods. Because these YIG films can be grown nearly free of dislocations

and other crystal defects and with very uniform lattice spacings, YIG is an attractive choice

for nuclear resonant diffraction experiments.

YIG is a ferrimagnet below the Curie temperature of 559°K for ceramic materials

and 549.2°K for YIG films grown from PbO-VzO s fluxes. 29 The easy direction of

magnetization is the [111] direction, though alignment fields of 100 Gauss are sufficient to

orient the magnetic moments to the [001] direction. The d- site iron atoms are surrounded

by a distorted oxygen tetrahedron stretched along a fourfold inversion axis oriented in the

[001] direction, and the a-site iron atoms aie surrounded by a distorted octahedron
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10011

A _

_, [100]
_" dl - site d2 - site d3- site

--_ [11I] EFG _ -
EFG I1111

J

. a 1- site a 2 - site a 3 - site

a 4- site

Fig. 8-1.3. Orientation of magnetic moments, (_), and electric field gradients, ('i), for
the seven magnetic sublattices of YIG. To orient the magnetic moments, there is an applied
magnetic field in the [001] direction.

stretched along a threefold symmetry axis oriented in the [111] direction. The electric field

" gradients formed within these distorted oxygen polyhedra lie along the symmetry axis. The

seven ferromagnetic sublattices within the YIG unit cell are shown in Fig. 8-1.3 with the

orientation of the magnetic moments and electric field gradients. 3°'31

For the experiments done in this thesis, crystal planes were chosen where ali the

a - site reflections were forbidden and ali the d- site reflections were allowed except for

the d3- site. Therefore, ferromagnetic ordering was utilized to examine nuclear resonant
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scattering instead of antiferromagnetic ordering as was used fi_rthe or- Fe20 3 and FeBO_

crystals. Nonzero reflected fields now cx.:curbecause of different electric quadrulx_le shifts

between the d-sites rather than because of polarization differences that occur for

antiferromagnetic crystals (See Fig. 8-1.4).

(1) (3) (4) (6)

M= -1 1 -1 1 di-site

M: -1 [ I I d2 - site

Energy

Fig. 8-1.4. Hyperfine energy spectrum illustrating the case where the applied magnetic
field is parallel to the scattering plane. 32 For small Bragg angles the polarization of each
hyperfine line can be approximated as right and left circularly polarized: 6_ and e.. The
magnetic moments of the two sites are parallel, but the electric field gradients are in
perpendicular directions. This introduces small differences in the electric quadrupole field
which show up as different quadrupole shifts in the hyperfine lines for each d - site.

8.2 Crystallography

To orient a general crystal for diffraction, an orientation matrix must be found that

can perform the transformation of a vector in reciprocal space to an orthogonal lab

coordinate system. Let there be a vector v in reciprocal space with basis axes la , ,_" '
v = hJr" = h_i' + ki_"+ t_:' (8-2.1 )

.... =where r = a + + is a unit radial vector in reciprocal space and h"r (h,k,t) is a row

vector containing the Miller indices, or reciprocal space coordinates, of the reciprocal vector

v. Let the laboratory system have a fixed orthogonal basis (iL,_'c,zc) (see Fig. 8-2.1).

The problem is then to find the components of v in the lab space.

A solution can be found if there are three known reflections from the crystal. Then

there are three reciprocal vectors vi, v 2, and v 3 which are known to point in some

direction in lab space--their components in lab space are then known. This is summarized
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. _ YL
iv/ v

e

Fig. 8-2.1. Vector lt in reciprocal and lab space.

by the following relation: 33

viL v}v2L:v2/'L,L,LI( L/ii,v3, = v3 h_, k3, t3L ZL k3 t3_,
T"

or HLrt`= H"r_" (8.2-2)

(the superscript T denotes the transpose of the matrix, and vectors are always column

vectors). The coordinate axes then transform as

f, =u'f" (8-2.3)

. where U' = (H_)-'H "r. (8-2.4)

From Eqs. 8-2.2 and 8-2.3, one also gets a relationship detailing how the

coordinates transform"

h_U'=h T (8-2.5)

which leads to

ht. = (U'-')Th (8-2.6)

or ht. = Uh (8-2.7)

where U=HtH -1. (8-2.8)

As expected, the coordinates transform in an inverse way to the axes since Ur = U'-_.

Thus, from a knowledge of the elements of Ht, and H-_ for three reciprocal vectors, the

" components of any reciprocal vector can be obtained in terms of lab coordinates by using

Eq. 8-2.7.

. The determination of the orientation matrix can be simplified if a primary reflection,

hp, is known and a secondary reflection, I1,, lies in the scattering plane such that

I1,-k/> 0 where k/is the scattered wavector of the primary reflection (see Fig. 8-2.2).

The third reciprocal vector can be found by taking the cross product between the primary

;¢" I I_qll rl .... P ' ' I I _r.... I I III ,, , I I Ill lllq II' rl .... Illl _ I ' I II ' plI , II I i irq
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hp _ i:L

I h

k xi / ^

ii,. \:
Fig. 8-2.2. Orientation geometry for diffraction, ki,k/,hp,h ,,yL,and i_. ali lie in the
scattering plane, k/diffracts from planes l_erpendicular to hp, hp is parallel to i L, i L is
.perpendicular to the scattering plane, and s is the outward surface normal of the crystal.
(i,.,_L,i L) lab system is fixed in space and never rotates--same for k, since it comes from
a fixed source, hp,h,,k/, and s ali rotate with crystal as it is oriented in space, h is the -
desired reflection and is always eventually oriented to lie in the i_ -direction.

o

and secondary reciprocal vectors. Cross products can be done only in spaces with an

orthonormal basis, therefore, for crystals with noncubic structure, such as rhombohedral

crystals, one must project the reciprocal basis onto an orthonormal basis, then take the

cross product, and then project the results back into reciprocal space. The matrix that
.,,.. \

transforms a reciprocal vector to an orthogonal space with basis (i 0,_'0,z0 i!is34' 35

/ai 1
b'cos y c cosfl"

B = b'sin y* -c'sinfl'cosa (8-2.9)

0 1/c

e

/asin inasin cosacis/B-l= bsin oc bc soc (8-2.10)

0

(h,b,_) are the direct crystal axes with interaxis angles oc, ft, y where coso: =where

cosfl /: h cosy _i 15,and (h"b',_:')= • , = - , are the reciprocal lattice axes with interaxis
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reciprocal angles ct', ft', 7" defined in a similar manner. In the orthogonal space x0, _¢0,

_', and b" all lie in a plane perpendicular to i 0, and ft" is parallel to i 0.
A third reflection is then

. ,_--,,x,.- .-'[(6,,)x(.,.)]. _8-2.__)
From Fig. 8-2.2, the lab coordinates of the reciprocal vectors can easily be seen. The

, primary reflection is in the _'L-direction, the third reflection is in the iL-direction, and the

secondary reflection is

h,_=,,Ksin 0p,9,+cos0,,.i,) (8-2.12)

wh_r_ _os0,,=,,. h./lh,ll,.I. (8-2.13)
To take the dot product of two vectors in a nonorthogonal basis, the two vectors must again

be transformed to an orthogonal space in which the dot product can be properly taken'

hp-h, = (Bhp)T -(Bh,). (8-2.14)

Note that the dot product relationship gives the metric for reciprocal space:

• laaaba!c/o'BTB= a" b" b'.b" b .c" . (8-2.15)

• a* * " •C b* C C -C*

The dot product can then be written in the familiar way for the dot product of two vectors

within a space defined by a metric G:

hp .h, = hpuGUVh,v (8-2.16)

where hpu and h,,, are the covariant components of the vectors hp and h, (that is, they are

the components of those vectors in reciprocal space), and Guv are the contravariant

elements of the metric for the direct crystal axes space (that is, they are the elements of the

reciprocal space metric G-l). The cross product given in Eq. 8-2.11 can also be written in

terms of the metric as36

(hpxh,), =G _o*t, t,t.,_ ,.pi,.,, (8-2.17)

where e;j* is the contravariant antisymmetric tensorfor a spacewith metric G_:
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 detlG"I if i,j,k is a cyclic permutation
of 1,2,3

e°k -_Jdet= IG-'I if i,j,k is a cyclic permutation of 2,1,3 (8-2,18)

0 otherwise

and Gt_ are the covariant elements of the metric for the direct crystal axes space (that is,

they are the elements of the metric G).

The orientation matrix U can now be constructed since HL and H are completely
determined:

0!/H,.=| 0 }h,lsin0_, (8.2-19)

Ih.I Ih,lcosO,,,

H= k, k, (8-2.20)

t, t, t3

and U = HLH-l. (8-2.21)

The Fortran code, Orient_eryst, embodying ali of this section's discussion on

orienting a general crystal follows. The subroutine uses the same framework as Busing

and Levy's Algol program designed for 3 and 4-circle diffractometers. 35 In addition to

what has been discussed, the subroutine can perform rotations about the desired reflection,

h, and rotations about the incoming photon direction, k_, that preserve the Bragg

condition.

The subroutine must be linked with another subroutine package called

EIS LIN_PACK. This package contains the popular LINPACK code for solving

simultaneous equations and the EISPACK code for solving eigenvalue problems. 37,38

They were obtained from the National Energy Software Center at Argonne National

Laboratory. The subroutine Lineq in LINPACK was used to find the inverse matrix H-_

for constructing the orientation matrix.

In the Fortran code below, and in the EWALD code that follows later, to preserve

space, several lines of code are piled up onto a single line. A semicolon (never used in

actual Fortran code) separates each line of code.
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Subroutine Orient_cryst(Ee,a,alpha,hp,hs,h,S,Uo,sigmai,pii,sigmaf,pif,b)
c This Subroutinesets upthe CrystalOrientationfor Diffraction. Uo is the Net OrientationMatrix-- to
c Transformany ReciprocalLatticeVectorto the OrthogonalLab CoordinateSystem,Operate Uo on it:
c V_lab -, Uo(dot)V_recip.
c VARIABLES:
c a(i) - CrystalLattice Spacingsa,b,c (cre) ;alpha(i) - CrystalLattice anglesalpha,beta,gamma (dog)
c Vo - UnitCell Volume(cre'*3) ; Ee. IncomingPhotonEnergy(Ev) ; hp,hs- Primary and Secondary

" c ReciprocalLatticeVectors ; S. Outward SurfaceDirection ; h. DesiredReciprocalLattice Scattering
c Vector ; Ki,Kf. IncomingandDiffractedwavoctors(1/Angstrom) ; sigma,pi- sigma and pi
c polarizationvectors ; Bragg- BraggAngle(radians) ; b. AsymmetryFactor
c PhiKi,phiH. azimuthalrotationangles aboutKiand h directions(dog)

" c psi - azimuthal rotationangleabout h afterazimuthal rotationaboutKi has been done.
c NOTE:
c(1) The Lab coordinatesystemis determinedby Ki and itspolarizationvectors.
c(2) PhiKi. rotationof a plane perpendicularto Kidirection. Forexample,phiKi= 90 dog =-> h rotates
c fromLab z to a vectorlyingin[Lab_x,Lab_y]plane. PhiH. azimuthalrotationof plane
c perpendic-ularto h direction. PhiKi,PhiHrotationsboth preserveBragg'sCondition.
c LINK: LinkwithEIS_LIN PACK
c D.E.Brown1990 (SSRLJSTANFORD)

Real*8 **Everythingpossible**(aliMatrices are 3x3 arrays)
Common/stup/hbarc,sinBragg,Vo,phiKi,phiH,psi,Ki,Kf,kis
Common/Lab/x_Lab,y__Lab,zLab ; Common/conv/rad,pi

c Constructa matrixBe that transformsfrom non-orthogonalaxesto an orthogonalaxes system.
c Boiis the inverseof Be.

CallGenerate_Bo(a,alpha,Vo,Bo,Boi)
c Determiningangle betweenhs and hpwhichgivesorientationof hs in Labcoordinatesystem

CallGeneral_Dot(hp,hp,Bo,hpp); Call General_Dot(hs,hs,Bo,hss)
CallGeneral_Dot(hp,hs,Bo,hps); Call General_Dot(S,S,Bo,ss)
hpp- Dsqrt(hpp); hss- Dsqrt(hss) ; ss = Dsqrt(ss)
cosps-- hps/(hpp°hss) ! angle betweenhs and hp ; sinps= Dsqrt(1.0d0- cosps'°2)

• c To constructa thirdvector,takecrossproductof hs and hp
CallGeneral_Cross(hs,hp,Bo,Boi,h3);Call General_Dot(h3,h3,Bo,h33); h33 = Dsqrt(h33)

c One can nowconstructthe OrientationMatrixU that transform:,any vectorin reciprocalcoordinatespace to
c the Lab coordinatespace.Note that: hp is inLab_z direction,hs = cosps(Lab_z)+ sinps(Lab_y),and h3 is in

• c Lab_x direction.
Call Lab_Vectors(hpp,hss,h33,sinps,cosps,hplab,hslab,h31ab)
Call Orientation(hp,hs,h3,hplab,hslab,h31ab,U)

c Computationof the Braggangleof the DesiredReflection. Note thathmag = 1.0/d(hkl),
c whered(hkl)= interplanerspacingfor indicesh,k,I (units= angstroms)

CallGeneral_Dot(h,h,Bo,hmag) ; hmag = Dsqrt(hmag)
sinBragg= pi'hbarc'hmag*l.0d8/Ee ; cosBragg= Dsqrt(l.0- sinBragg*'2)

c The h reflectionis desired.Then rotateh sothat is is pointinginthe Lab_z direction--hwillpointinthe
c directionhp usedto be directed. To Dothis,transformh to Lab system,h --> Uh = hLab. From itspolarand
c azimuthalangles,onecan nowrotateh to point inthe Lab z direction--andone can rotateali ofthe other
c vectorsattachedto the crystalsystemwithrotatation matrixRz.

Call Mv(U,h,hLab) ; Call Polar(hLab,x_Lab,y_Lab,z_Lab,theta,phi); Call Generate_Rz(theta,phi,Rz)
c Now, the crystalcan be rotatedabouth and Kiandstillpreservethe Braggcondition. The Rkhmatrix
c performsthisrotation. Firstthe crystal is rotatedazimuthallyabouth, and then azimuthallyaboutKi. The
c Rpsi matrixperformsan additionazimuthalrotationabout h after the rotationRkh has been done (necessary
c onlywhen a rotationabout Ki hasbeen done). Uo isthe Net OrientationMatrix.Firstit transformsreciprocal
c latticvectorto Lab system. Then it rotatesit by Rz inaligningh to point inthe +z_Lab direction. Then it
c makes Rkh Braggpreservingrotation.

Call Generate_Rkh(phiH*rad,phiKi*rad,cosBragg,sinBragg,Rkh); Call MM(Rz,U,dum2)
" If(phiKi.Eq. 0.0) Then ; CallMM(Rkh,dum2,Uo) ! Uo is the Net OrientationMatrix

Else ; Call Generate_Rpsi(psi*rad,Rz,Rkh,hLab,Rpsi); Call MM(Rkh,durn2,dum3) ;Call MM(Rpsi,dum3,Uo)
Endif

c The Diffractedwavevectorcan nowbe determinedfrom Bragg'slawh = Kf - Ki, as well asthe asymmetry
" c factor b = ki(dot)n/Kf(dot)nwheren = inwardsurfacenormal.

Call Mv(Uo,h,hLab) ; Call Mv(Uo,S,SLab) ; Ko = Ee'l.0d-8/hbarc
Dol 1=1,3

Ki(i)= Ko*(cosBragg'y_Lab(i)- sinBragg'z_Lab(i)) ; Kf(i) = 2.0'pi*bLab(i) + Ki(i)
1 pii(i)= sinBragg*y_Lab(i)+ cosBragg'z_Lab(i) ; sk:jmai(i), x_Lab(i)

Call Cross(Kf,z_Lab,sigmaf,norm) !diffractedsigmapolarization
Call Cross(sigmaf,Kf,pif,norm) !diffractedpi polarization
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Call Dot(Ki,SLab,kis) • Call D,..,t(Kf,SI.ab,kfs); b = kis/kfs ; kis = kis/(ss*Ko)
Do5 1=1,3

5 Ki(i)= Ki(i)/Ko ; Kf(i)= Kf(i)/Ko
Return
End

,eee oe e*e*eoe t to e*t oto• e* t et**_ t woe et. ,oet** toe • ote t e • oe e eee*o • ttee t o**_**t *eo oo*_ e.o** e** _*o* t*t eot**t*te**t***

SubroutineGanerate_Rz(theta,phi,Rz)
c This subroutinerotatescrystal so that the desiredreciprocallatticescatteringvector is inthe Lab._zdirection.
c Rz = the rotationmatrixthat doesthis. First, crystalis rotatedazimuthallyby phiso that desiredvector lies in
c (+x Lab,+z_Lab)plane. Then, crystal is rotatedpolarlyby theta so thatthe vector lies pointsinthe +z_Lab
c direction.

cost = Dcos(theta) ; sint = Dsin(theta) ; cosp= Dees(phi) ; sinp= Dsin(phi) •
Rz(1,1) = cost*cosp ; Rz(2,1)=-sinp ; Rz(3,1)= sint*cosp
Rz(1,2) = cost*si,,_ ; Rz(2,2)= cosp ; Rz(3,2)= sint*sinp
Rz(l_3) =-sint • Rz(2,3)= 0.0d0 ; Rz(3,3)- cost
Return

• te. te • tct ee • t eft *t tee tee * ee *ee e e*e ** * **eeee • e,lf • _,* e e* • e* • e* • *t ee*e tct .ee*ete t e* ee* te • .et eet e _, e 1l,** t_l,t • e*e ** e*t ee*
_

Subroutine Generate_Rkh(pH,pK,cosb,_inb,Rkh)
c This subroutine constructs Rotation Matrix Rkh that performs Bragg-preserving rotations first by pH about
c the reciprocal scattering vector and then by pK about the incident photon direction. Ali rotations obey right

. c hand rule.
!

cosh = Dcos(pH) • sinh = Dsin(pH) • cosk = Dcos(pK) ; sink = Dsin(pK)
=_ Rkh(1,1) = cosk*cosh + sinb*sinkesinh ; Rkh(2,1) = -sinb*sink*cosh + (sinb**2*cosk + cosb*°2)*sinh
-- Rkh(3,1) = -cosbtsink*cosh+ cosb'sinb*(cosk - 1.0d0)esinh
¢ Rkh(1,2) = -cosk°sinh + sinbtsinktcosh • Rkh(2,2) = sinbesinkesinh+ (sinb**2*cosk + CoSb*e2)*cosh_,

Rkh(3,2) -- cosbtsinkesinh + cosb*sinb*(cosk - 1.0d0)ecosh
Rkh(1,3) = cosb*sink • Rkh(2,3)= cosb*sinb*(cosk-1.0d0) ; Rkh(3,3)= cosb**2*cosk + sinb**2

Return
t t.ect t*eete t t _,**to t.tt et**t t t**t,e.e* ce, e* e* t*e o*** e** t.ttr e t e*tt et ee.e*ee** e**** ********e**** e.* • e** e**** _*** _*

Subroutine Generate_Rpsi(psi,Rz,Rkh,h,Rpsi)
c This subroutine does a crystal plane normal rotation--that is, a rotation about the scattering vector h. The
c Zs-direction is in the h-direction, Xs = h(cross)z_lab, Ys = h(cross)Xs.

Call Mv(Rz,h,dum) ! Rotate hto Lab z direction ; Call Mv(Rkh,dum,h) ! Rotate h around itself and Ki
hx = h(1) ; hy = h(2) ; hz = h(3) ; d_ = Dsqrt(hx*'2 + bye*2) ; d2 = Dsqrt(hx*e2+ hy**2 + hz**2)

c Transform to [Xs,Ys,Zs] system
•!_ R(1,1)= hy/dl ; R(2,1)= hzthx/(dltd2) ; R(3,1)= hx/d2

R(1,2) =-hx/dl • R(2,2)= hz'hy/(dl°d2) ; R(3,2)= hy/d2
R(1,3) = 0.0d0 ; R(2,3)=-(hxt*2 + hyee2)/(dled2); R(3,3)= hz/d2

c Perform azimuthal psi rotation in [Xs,Ys] plane (right-handed sense)
Rpsi(1,1) = Dcos(psi) ; Rpsi(2,1)= Dsin(osi) • Rpsi(3,1)= 0.0d0
Rpsi(1,2) =-Dsin(psi) ; Rpsi(2,2)= Dcos(psi) ; Rpsi(3,2)= 0.0d0
Rpsi(1,3)= 0.0d0 ; Rpsi(2,3)= 0.0d0 ; Rpsi(3,3)= 1.0d0

c Inverse Transform back to Lab [Note that R(inverse) = R(transpose) since R is an o_lhogor_almatrix]
RT(1,1)= hy/dl ; RT(2,1)=-hx/dl • RT(3,1)= 0.0d0
RT(1,2) = hzthx/(dl*d2) ; RT(2,2)= hZehy/(dled2) • RT(3,2)=-(hx**2 + l',y**2)/(dl*d2)
RT(1,3)= hx/d2 ; RT(2,3)= hy/d2 ; RT(3,3)= hz/d2
Call MM(Rpsi,R,duml) • Call MM(RT,duml,Rpsi)
Return

_,t. Q .t**e* t* e ee* • * t t e _, t e** t • ee e e t e* ** • ee _,e • e e e*_,e********** e ****e** ee e*t_**** e** e* e.t* tr**** * e t**** ¢,*** e******e**e

: Subroutine Generate_Bo(a,alpha,Vo,Bo,Boi)
c This subroutine generates the matrix Be that transforms crystal reciprocal lattice #_ctors from their crystal
c bases system to an orthogonal coordinate system. In this way dot and cross pro,_actsof reciprocal lattice
c vectors can be performed.
c VARIABLES: -
c b(i) = Reciprocal Lattice Spacings at,b*,c* (1/cm) ; cosb(i) = Cosine of Reciprocal Lattice Angles
c alphat,betae,gamma* • Boi(i,j) = Inverse of Bo(i,j) ; Vo = Volume of Unit Cell (cm**3)

- Common/conv/rad
- Dol 1=1,3 -

a(i)= a(i)el.0d8 ! Conversion from cm to Ar,gstroms ; cosa(i) = Dcos(alpha(i)*rad)
. 1 sina(i) = Dsin(alpha(i)trad)

V = Dsqrt(1.0d0 - cosa(1)**2 - cosa(2)*'2 - cosa(3)'*2 + 2.0*cosa(1)*cosa(2)*cosa(3))
Vo = V'a(1 )'a(2)*a(3)t(1.0d-8)te3
I)o5 1=1,3

j=i+l • If(j.Gt. 3) j=l • k=j+l • If(k.Gt. 3) k=l
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cosb(i) = (cosa(j)*cosa(k) - cosa(i))/(sina(j)*sina(k)) • sinb(i) -- Dsqrl(1.0d0- cosb(i)**2)
5 b(i) = sina(i)/(a(i)*V)

Bo(1,1)= I:)(1) ; Bo(2,1)= 0.0dO • Bo(3,1)= 0.0d0
I]o(1,2) = b(2)*cosb(3) ; 13o(2,2)=b(2)*sinb(3) ; I]o(3,2)= 0.0d0
!]o(1,3) = b(3)*cosb(2) ; Bo(2,3)=-b(3)*sinb(2)*cosa(1) ; Bo(3,3)= 1.0d0/a(3)
Bcl(1,1)= 1.0d0fo(1) ; Bcl(2,1)= 0.0d0 ; Boi(3,1)= 0.0dO
Bcl(1,2)=-a(1)*sina(2)*cosb(3) ; Boi(2,2)= a(2)*sina(1) ; Boi(3,2)= 0.0d0

" Bcl(1,3)= a(1)*cosa(2) • Boi(2,3)= a(2)*cosa(1) ; Boi(3,3)= a(3)
Return

• t °eor t e*t °e*° t* _°° *_* too oer tet ° °** *° t o* ° • t° ° t° ° o° • t°**o * _o °tt *ce* ° fete° ° ** °*° ect * °tteo • wt* ° ° • ct* * *** °° wt° ° to • °°

Subroutine Orientation(hl ,h2,h3,hl L,h2L,h3L,U)
" c This subroutineconstructs the Orientation Matrix U that allows one to transform from the crystal reciprocal

c coordinate space to Lab orthogonal coordinate space: (Lab vector) V_lab = U (dot) V_recip.
nd =3 i#of rows ; nr= 3 i#ofcolumns ; n = 3 !orderof matrix
Dol 1=1,3

H(i,1) = hl (i) ' H(i,2)= h2(i) ; H(i,3)= h3(i)
HL(i,1) = hlL(i) ; HL(i,2)= h2L(i) ; HL(i,3)= h3L(i)
Do 1J=1,3

1 b(i,j)= 0.Od0
b(1,1)= 1.0d0 ; b(2,2)= 1.0d0 ; b(3,3)= 1.0d0
Call Lineq(H,b,Hinv,nd,n,nr,aa,ierr); Call MM(HL,Hinv,U)
Return

t*t t toe *e e.ot ett °*t* ot. t, e*t t tt_ oo t °° • to * * °o • et et* * °o t°t* tt * ** t t, t t ** * .t • °o ° t* ttt ° oo ° °* * o° ° • • * * o* * °* * °° t t_ * ** * *°

Subroutine Lab Vectors(hpp,hss,h33,sinps,cosps,h1,h2,h3)
c This subroutine uses the reciprocal lattice vectors in reciprocal space to construct Lab vectors in Lab space.
c Note that this subroutine has taken a special case -- 2 reciprocal lattice vectors lie in the scattering plane and
c one points in the Lab z direction. However, if one were to know beforehand the directions of ali 3
c vectors hl ,h2,h3 in la-bspace (pointing in general directions), their lab components could be inserted in this
c subroutine,and no other modifications need be done in this program (except some calculations are no longer
c necessary, such as calculating sinps,cosps,etc. ).

• c hpp = magnitude of hp, hss = magnitude of hs, h33 = meg. of h3
Common/Lab/x_Lab,y_Lab,z_Lab
hl(1)=0.0d0 ; hl(2)=0.0d0 ; hl(3)=hpp
h2(1) = 0.0d0 ; h2(2)= hss*sinps ; h2(3)= hss*cosps

• h3(1) = h33 ; h3(2)= 0.0d0 ; h3(3)= 0.0d0
x_Lab(1) = 1.0d0 ; x_Lab(2) = 0.0d0 ; x_Lab(3) = 0.Od0
y_Lab(1) = 0.0d0 ; y_Lab(2) = 1.0d0 ; y_Lab(3) = 0.0d0
z_Lab(1) = 0.0d0 ; z_Lab(2) = 0.0d0 ; z_Lab(3) = 1.0d0
Return

• oft ttr tte tt ° * tttoot ttt _tt oft ot ° ** t ,toe, *e *t * to et_ t *_ _°** _o • o_ *t* * • • • t _ * _t ° _o °_° • oo * * • • o° * _* _t *o ° *° • _ * me ° °_* o*

Subroutine General Cross(u,v,B,Bi,uv)
c This subroutine takes-the general cross product of vectors u,v defined in a non-orthogonal coordinate system.
c Bi = inverse of B

Call Mv(B,u,Bu) ; Call Mv(B,v,Bv) ; Call Cross(Bu,Bv,BuBv,norm) ; Call Cross(u,v,uv,uvmag)
Call Mv(Bi,BuBv,uv) ; Call Dot(uv,uv,norm)
Do 1 1=1,3 !Giving uv a magnitude equal

1 uv(i) = uvmag*uv(i)/Dsqrt(norm) !to magn. of cross product of indices of u,v
Return

Subroutine General Dot(u,v,B,uv)
c This subroutine takes-the general dot product of vectors u,v defined in a non-orthogonal coordinate system.

Call Mv(B,u,Bu) ; Call Mv(B,v,Bv) ; Call Dot(Bu,Bv,uv)
Return

t*°ot*

Subroutine Polar(v,x,y,z,theta,phi)
c This Subroutin,__atermines the azimuthal and polar angles of a vector "v" in a coordinate system with basis
c vectors x,y,z theta = polar angle, phi = azimuthal angle -180 < phi < 180, 0 < theta < 180

SubroutineMM(A,B,C)
c This subroutine performs matrix multiplication C = A*B

Subroutine Mv(A,x,Ax)
c This subroutine multiplies column vector x by 3x3 matrix A to obtain column vector Ax: ,A,x,_A*xttttlttttt_t tt It°tot rpt ttt ttr lt lt*t °tit° L't*t ttt ttt Itr ttt °tit tt itr t t itr *_ t t° t 0° ttt ttt t ttr tt t t ttttttttllttt

_--
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SubroutineCross(u,v,w,norm)
cThis Subroutinecomputesthe Cross Productof two vectors"u=and"v"inorthogonalspace. Returnsa unit
cvector"w" and itslength"norm"
,e,o etf** ,_t, ***, ,_. ** .co _.tot tooto ** e***, t to • **e **. ** *** t _** *** _**, ,t ,_ t,, **t ***, t** ** *** t ***t ** t t, *** • *****, **

SubroutineDot(u,v,w)
c This Subroutine computes the Dot product of two vectors %" and "v" in orthogonal space: w = u*v

8•3 Ewald Program

The EWALD code that follows computes the reflection and transmission amplitudes

from a crystal using the Ewald-Laue dynamical diffraction theory. 39-4] The main program

Ewald controls the calculation by calling the appropriate subroutines. An initialization

subroutine is called (Initialize) to set up the dynamical diffraction calculation, and

instructions are returned (via iflo) to compute either an energy or angle spectrum over a

desired range. Program EwalO then makes calls to subroutine Dispersion at each

appropriate energy or angle value. Disporsion returns the reflection and transmission

coefficients R and T directly, and it returns the reflected and transmitted electric field

amplitudes indirectly through the common block/tsl When energy spectra are calculated,

time spectra can also be determined by taking the Fourier transform of the electric field

amplitudes. Since fast Fourier transform routines are quite ubiquitous, the routine that did

calculations for EWALD is not shown here--the actual routine used was an adapted version

of Brigham's well known Fortran code. 42

Subroutine Initialize read_ in the relevant information contained in the files

nuclear.dat and atompos.dat, and it initializes physical constants to be used in further

calculations. The important physical constants pertinent to 57Fe used in EWALD are the

total lifetime, 140.95 nsecs, 43the internal conversion coefficient, 8.23, 43and the magnetic

moments of the ground and excited states" 0.09024 nm and -0.1549 nm. The ground state

magnetic moment was measured by Locher and Geschwind though electron-nuclear double

resonance techniques 44 while the excited state magnetic moment was found by Preston,

Hanna, and Heberle through M6ssbauer measurements. 45

Calls are made to Orient_eryst to get the orientation matrix, U, and, for each

site, to YIG_basi$ to construct the quantum coordinate system (Hx,Hy,Hz) where Hz is

in the direction of the internal magnetic field. Thus, for multi-site crystals, no universal

quantum axis is constructed--their internal magnetic field defines what type of scattering

occurs. Using the orientation matrix, the quantum coordinate system, and the information

from the data files, an eigenvector representing the nuclear scattering tensor elements for
=_
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each polarization combination, quantum level, and site is constructed along with associated

eigenvalues. Figenvector is essentially grtS/2 in Eq. 7-2.1 for magnetic dipole scattering

without the resonance denominator.

• EleetStrFaet is also called to compute the photoelectric structure factor (the

contents of the subroutine are not shown here since the calculations are straightforward).

Since the photoelectric structure factor is essentially constant over the energy range of the

hyperfine nuclear resonance, = I0-6eV, they only need to be calculated once. In

computing the photoelectric structure factor presented in Eq. 7-2.2, the value for f0 came

from a mean atomic scattering factor (calculated from self-consistent or variational

wavefunctions) tabulated in International Tables for X-Ray Crystallography a6 and in

Warren. 47 The value for f" came from a database (set up by Sean Brennan at SSRL) of

Cromer and Liberman's relativistic Hartree-Fock calculations, 48 and the value for f" came

from a compilation of x-ray cross section measurements contained in McMaster. 49

Compton scattering was also included by adding the incoherent cross section values

contained in McMaster to f". Since the anomalous scattering factors, f' and f", are

insensitive to the scattering angle when operating far from any absorption edge or bound

, state resonance, the angular dependence of these terms was neglected.

Subroutine Polarmat constructs photoelectric and nuclear magnetic dipole

, polarization matrices for the incident and scattered electric fields. The photoelectric

polarization matrix is equivalent to the Thomson polarization matrix given by Eq. 5-1.3.

Construction of the magnetic dipole polarization matrix is more involved. Once the

spherical unit vectors are calculated through the appropriate cross products outlined in

Section 5.1, the vector spherical harmonics can be constructed. Translating from program

symbols to those used in Section 5.1'

() "Y10i = ,_73V_0 °) nk, =/si,) 0k,Ck' (8-3.1)

Ylli=_16_r/3Y_°)(Dk,)=e""(()k, +icosOk,_, ). (8-3.2)

If nuclear level mixing did not occur, then the final polarization matrices could be

constructed in the form given by Eq. 5-1.5. However, to include nuclear level mixing the

matrices must be constructed as described in Section 5.2 and given by Eq. 5-2.30.

Therefore, Polarmat only finds ali of the possible dot products between polarizations and
,a

vector spherical harmonics in preparation for making the final polarization matrix given by

Eq. 5-2.30.

The coefficients c_ in Eq. 5-2.29 are calculated by the subroutine Splitting

through diagonalizing the unperturbed Hamiltonian given in Section 5-2. Once the
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coefficients are evaluated, the subroutine Polarmix puts together the magnetic dipole

polarization matrix using the dot product calculations performed in Polarmat. Polarmix

returns an array, E, to the calling subroutine, Initialize. This multidimensional array, as

explained earlier, is proportional to the scattering tensor given by Eq. 7-2.1, and it carefully ,

tracks which nuclear sites and energy levels were involved in the scattering process for

each scattering tensor element and for various incident and scattered photon directions
P

(EW ALD only does a two-beam calculation in which there is a forward and only one

reflection scattering channel). These terms vary insignificantly over the hyperfine

resonance energy range and can therefore also be calculated just once (as was the case for

photoelectric scattering).

Once Initialize is finished with its calculations, the subroutine Dispersion will

be ready to solve the linearized dispersion relation given by Eq. 7-4.19 where, in the most

general case, Gz,, is given by 7-8.1. When called by Dispersion, subroutine StrFact

constructs the G_inmatrix as a function of energy and angle. Then, by making a call to

Cog of the EIS LIN_PACK code, Dispersion finds both the eigenvalues and

eigenvectors of G,,. Next, a thick crystal approximation is applied if the crystal is thick

enough to cause floating point overflow problems. Then, subroutine TandR_eoeff is

called to solve the boundary value relation, Eq. 7-4.30, where, in general, Bc is not

decoupled. These last two steps are explained in more detail in the next section. Clinaq

of EIS_LIN_PACK is used to solve the simultaneous equations represented by the

boundary value equation.

Once the boundary value equation is solved, the reflected and transmitted

amplitudes are constructed. Dispersion then proceeds to calculate the reflected and

transmitted electric field intensities by summing the square moduli of the sigma and pi

electric field amplitudes. The amplitude and intensity calculations are finally sent to the

main calling program, Ewalcl, for further analysis such as computing energy averaged

angular spectra, angle averaged energy spectra, time spectra, or fitting to experimental data

(none of these detailed calculations are shown here).

For the EWALD code below, program Ewald and subroutines Dispersion and

TandR cecil are combined in one Fortran code called EWALD.FOR. Subroutines

Initialize, Strfact, Polarrnat, Polarmix, YIG_basis, FeBO3_basis, and Cdot are

combined in another Fortran code called NUCLEAR.FOR.
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Program Ewald
c This ProgramUsesthe Ewald-LaueDynamicalDiffractionTheoryto Computethe Reflectionand
c TransmissionCoefficientsfrom a Crystal.
c inthisProgram: x = sigmapolarizationcomponent ; y = pi polarizationcomponent
c VARIABLES: (See INITIALIZE Subroutinefor morecommentson variables)
c,_'evE= (incomingphotonenergy)- (Braggenergy) (eV) ; devB= (incomingangle)- (Braggangle)(radians)
c fconv = conversionfactorfrom Energy to Frequency(/[eV-sec])t,

c Rx,Ry = BraggI'eflectedamplitudes ; Rxm,Rym= Laue transmittedamplitudes
c Txm,Tym= Transmissionamplitudes ; R,T = reflectedand transmittedfieldintensities
c LINKTO: NUCLEAR, EIS_LIN_PACK
c D.E.Brown1990 (SSRL/STANFORD)

" ComplexTxm(600),Tym(600),Rx(600),Ry(600),Rxm(600),Rym{600),uin(4,1)
RealFreq(600),T(600),R(600) ; Complexzo,xpol,ypol; Real*8 b
Common uin ; Common/ts/zo,Txm,Tym,Rx,Ry,Rxm,Rym

c InitializingParameters
Call Initialize(xpol,ypol,Erange,Trange,devE0,devB0,zo,sinBragg,b,fconv,Npts,iflg)
uin(1,1)- xpol ; uin(3,1)=ypol ; uin(2,1)= 0.0 ; uin(4,1)=0.0
If(iflg .Eq. 1) Then ; delE0, Erange/(npts-1); devE = devE0 - Erange/2.0- delE0 ; devB= devBO
Else ; delth=Trange/(npts-1); devB - devB0- Trange/2.0- delth ; devE = devE0
Endif
Do 1 KK=l,npts

If(iflg.Eq. 1) Then ; devE = devE + delE0 ; Freq(kk)= devE*fconv
Else ; devB= devB+ delth
Endif

1 Call Dispersion(devB,devE,Fl(kk),T(kk),b,kk)
==,.> Call a Fast FourierTransformRoutineto take the FourierTransformof Rx,Flyhavingabscissa

pointscontainedinthe arrayFreq ===> Thisgivesthe ReflectedTimeSpectrum
End

• ee * ee • e, * ** • • ee • t** ee • ee • *e * ee * e, • ee, *e * • ee * e* • * * * *e • ee *ee, e* * ,e • • e* • • * tr e* * *e • ee • *e * ** * ** • e*,, *e • ** • * * * ee * *** * •

Subroutine Dispersion(devB,devE,R,T,b,i)
° c This subroutinesolvesthe Dispersionequationfor DynamicalDiffraction

Parameter(nl = 600)
Complexw(4),g(4,4),e(4),Txm(n1),Tym(n1),Rx(n1),Ry(n1),Rxm(n1),Rym(nl ),Tx(n1),Ty(nl)
Real gr(4,4),gi(4,4),vr(4,4),vi(4,4),wr(4),wi(4),fvl(4),fv2(4),fv3(4),thick(4) ; Complexzo ; Real*8 b

" Common/ts/zo,Txm,Tym,Rx,Ry,Rxm,Rym ; Common/disp/e,g,thick
c InitializingParameters

n ,=4 iorderofg matrix ; nm = 4 Irowsof g matrix ; matz= 1 !computeeigenvaluesandeigenvectors
===> Set Tx(i),Ty(i),Rx(i),Ry(i),Rxm(i),Rym(i),Txm(i),Tym(i)tozero

Call StrFact(devB,devE,b,g) !ScatteringAmplitudeComputation
c Computationof Eigenvalues(returnedinw) and Eigenvectors(returneding) of g-matrix.

Call Cgg(nm,n,g,matz,w,fv1,fv2,fv3,gr,gi,vr,vi,wr,wi,ierr)
•Do L=I ,n

c Thickcrystal approx,is usedto take care of floatingpointoverflowproblem. Notethat the conditionalcan be
c trueonly inthe Braggcase

If(Real(zo*w(I)).Gt.72.0) Then ; thick(I)= 0.0 ; e(I) = 1.0
Else ;e(I) = Cexp(zo*w(I)) ;thick(I)= 1.0
Endif

Enddo
c Computationof Transmissionand ReflectionCoefficients

Call TandR_coeff(Tx(i),Ty(i),Txm(i),Tym(i),Rx(i),Ry(i),Rxm(i),Rym(i),b)
T = Txm(il*Conjg(Txm(i))+ Tym(i)*Conjg(Tym(i))
If(b .Lt.0.0) Then ; R = Rx(i)*Conjg(Rx(i))+ Ry(i)*conjg(Ry(i)) !BraggCase
Else ; R = Rxm(i)*Conjg(Rxm(i))+ Rym(i)*Conjg(Rym(i)) ! LaueCase
Endif
Return

Subroutine TandR_coeff(Tx,Ty,Txm,Tym,Rx,Ry,Rxm,Rym,b)
" Complex e(4),Bc(4,4),uin(4,1),x(4,1),aa(4,4),v(4,4),D10xx(4),D00yx(4),D10yx(4),D00xx(4),

1 ex(4),Tx,Ty,Rx,Ry,Txm,Tym,Rxm,Rym,atx,aty,arx,ary,norm
Real thick(4) ; Real*8 b
Common uin ;common/disp/e,v,thick
n ,. 4 iorderof Bc-matrix ; nm = 4 !rowsof Bc-matrix ; nr = 1 !columnsof x and uinarrays
If(b .Lt. 0.0) Then

Do 1J=1,4 ! BRAGG CASE
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1 ox(i)=eU)
Else

Do5 J=1,4 ! LAUECASE
5 ex(j)= 1.0

Endif
Do 15J=1,4

DoK=1,4 o
If(Cabs(v(k,j)).Gr. 1.0e-20)Then ; norm= v(k,j); GoTo 10

Endif
Enddo

10 D00xx(j)= v(1,j)/norm ; D10xx(j)= v(2,j)/norm ; D00yx(j)= v(3,j)/norm ; D10yx(j)= v(4,j)/norm
15 Bc(1,j) = D00xx(j)*thick(j) ; Bc(2,j) = exO)*D10xx(j) ; Bc(3,j) = D00yx(j)*thick(j) ; Bc(4,j) = ex(j)*D10yx(j) "

c Boundary Condition Constraints--Evaluation of Simultaneous Equations: Bc*x = uin
Call Clineq(Bc,uin,x,nm,n,nr,aa,ierr) !Bc*x = uin computation

c Computation of Tx,Ty,Ry,Rx by adding up ali eigen amplitudes
Do 20 K=1,4

atx = x(k,nr)*D00xx(k) ; arx = x(k,nr)*D10xx(k)*thick(k)
aty -- x(k,nr)*D00yx(k) ; ary = x(k,nr)*D10yx(k)*thick(k)
If(b .Lt. 0.0)Then ; Rx = Rx + arx ; Ry = Ry + ary ! BRAGG CASE
Else ; Rxm = Rxm + arx*e(k) ; Rym = Rym+ ary*e(k) ! LAUE CASE
Endif

20 Txm = Txm + atx*e(k) ; Tyro --Tym + aty*e(k)
Return

, ** ****** * ***** • °** ° t, *** ,e,e ,_, et, e, °,°* • e*** • * t* e** e*e ** e, e, e,_,, • et e*° °****° e**, co, ee e e, e °°ce *** e, e °°*e,, ,e**e

Subroutine Initialize(xpol,ypoI,Erange,Trange,devE0,devB0,zo,snBrgg,b,fconv,npts,iflg)
c This Subroutine Receives and Computes the Initialization Factors needed to Calculate Nuclear and
c Photoelectric Structure Factors and their associated Polarization Matrices
c VARIABLES: (See ORIENT_.CRYSTSubroutine for more comments on variables)
c U = Net Orientation Matrix ; Erange = Spread of Energy to be Examined (eV) ; Trange = Spread of Angles to
c be Examined (radians) ; devE0,devB0 --Central Deviation Energy (eV) and Angle (radians) ; Npts --# of points
c of Angle or Energy scan ; Nptsi = # of integrationpoints; iflg = 0 --> angular scan, 1 --> Energy scan
c con = Relative Concentration of resonant nuclei ; DW = Debye Waller Factor for Photoelectric Scattering
c LM = Lamb-Mossbauer Factor for Nuclear Scattering ; efg .--Electric Field Gradient direction ; to = Thickness
c of Crystal (cm) ; Z = # of Nuclei per site per unit cell ; QQ -- Quadrupole Shift (mm/soc) ; isomer = Isomer
c Shift (mm/soc) Hint = Internal Magnetic Field (gauss) ; spindp = Spin Dipolar Anisotropic Field (gauss)
c canting = canting angle (dog) ; zo = -ii*k*to/sinBragg, k = wavenumber ; xpol,ypol = Horizontal (Sigma) and
c Vertical (Pi) Polarization factor ; Hz = magnetic field direction in Lab coordinate system
c Pjk(x,y) = Polarization matrix for Photoelectric scattering
c Yijk(n,x,y) = Polarization matrix element where: x,y --polarizations
c i - mg - me = difference in quantum level betweenground state and excited state
c = 0,1,or -1 for dipoletransitions
c j,k = 0 or 1 where 0 = transmissionchannel, 1 -- reflectionchannel
c n ---1 for incoming photon, 2 for diffractedor scattered photon
c Eigenvector(x,y,l,iw,isite,igmn) = Scattered Photon Amplitude
c Eigenvalue(I,iw,isite) = Scattered Photon Energy
c isite = Particular Cluster of atoms within unit cell that have same internal field parameters
c I -- index for ground state quantum level ; iw = index for excited state quantum level
c igmn = 1 -> g00, 2 -> gl0, 3 -> g01,4 -> gl 1 gmn is proportionalto the scatteringtensor
c x,y = polarizations elements of gmn(x,y) (see comments in STRFACT)
c NOTE:
c (1) Incoming Beam (for Zero Bragg angle) is in the positive Lab_y direction
c K-incident = (cosBragg)y_Lab - (sinBragg)z_Lab ; K-diffracted = (cosBragg)y_Lab + (sinBragg)z_Lab
c (2) The Quantum axis in this program is the Internal Magnetic field direction.
c (3) Initially, Hz is the External Magnetic Field Direction in the LAB coordinate system when hp & hs
c directions are known. Later, Hz is changed to point in the Internal Magnetic field direction.
c NEED:
c (1) Data File Called nuclear.dat (see read statements for variables needed)
c (2) Data File Called atompos.dat -- this contains hyperfine information and unit cell positions of the nuclei
c LINK: Link with EWALD, ORIENT_CRYST,ELECTSTRFACT,SPLITTING

Complex Y000(2,2,2),Y010(2,2,2),Y001 (2,2,2),Y011(2,2,2),Y100(2,2,2),Y110(2,2,2),Y 101(2,2,2),
1 Y111(2,2,2),F0(15),P00(2,2),P01(2,2),P10(2,2),P11(2,2),FH(15),Eigenvectorlg(4,4),
2 Eigenvectorle(4,4),F_H (15),Eigenvaluelg(4),Eigenvaluele(4),E igenvector(2,2,2,4,15,4)

Real*8 a(3),alpha(3),hp(3), hs(3),h(3),S(3),U(3,3),pii(3),pif(3),sigmai(3),sigmaf(3),Ki(3), Kf(3),
1 Hz(3),HzLab(3),Hx(3),Hy(3),efg(3),efgLab(3)
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RealEigenvalue(2,4,15),fv0(4),fvl(4),fv2(4),fv3(4),dI(4,4),d2(4,4),d3(4,4),d4(4,4),d5(4),d6(4)
Real*8pi,rad,c,hbar,hbarc,sinBragg,Vo,phiKi,phiH,norm,beta,gamma,Ee,gamma0,psi,canting,b,rx,ry,rw
Complexii,Go,xpol,ypol,zo;Realle,lg,Lambda,isomer,LM;CharacterCrystal*10
Common Istuplhbarc,sinBragg,Vo,phiKi,phiH,psi,Ki,Kf,gamma0;Common/init/sin2Brgg,sinBrgg2E0
Common IstrflP00,P01,PI0,PII,Go,Eigenvector,Eigenvalue ;Common/BfieldlHz,HzLab,Hx,Hy
Common/conv/rad,pi,ii ;Common/site/isites

• ===> Read in from nuclear.datfile: Crystal; a; alpha; Ee, to; iflg,Npts; Erange, devB0;
Trange,devE0; hp; hs; S; Hz; h; phiH,phiK,psi; con, LM; DW;
xpolr,xpoli; ypolr,ypoli

ii = (0.0,1.0) ; pi= Dacos(-1.0d0) ; rad= pi/180.0d0 ; c = 2.99792d10 !Speedof Light(cm/sec)
hbar = 6.58217d-16 IPlanckConstant(eV-sec) ; Re = 2.817938e-13 IClassicalElectronRadius(cm)

• unu= 3.15245e-12 1NuclearMagneton(eV/Gauss) ; uex = -0.1549 1MagneticMomentof ExcitedState (nra)
ugr= 0.09024 IMagneticMomentof GroundState (nra) ; Trot= 140.95e-9 ITotalLifetime(sec)
Alp = 8.23 IlnternalConversionCoefficient ; Ig= 1.0/2.0 IGroundStateNuclearEnergyLevel
le = 3.0/2.0 !FirstExcitedState Nucl.Level ; CG13 = Sqrt(1.0/3.0) !ClebschGordanCoeff.forLines3,4
C,G23 = Sqrt(4.0/3.0) IClebschGordanCoeff.for Lines2,5 (Sqrt(2)PolarizationFactor added)
CG11 = 1.0 IClebschGordanCoeff.for Lines1,6 ; Trad = Ttot*(1.0+ Alp) IRadiativeLifetime(sec)
hbarc = hbar*c ; Go = ii*hbar/(2.0*Ttot) ; fconv ,I 1.0/(2.0*pi*hbar) ; Polfac= 3.0/(16.0"pi)

c Normalizingpolarizationsto unity
xpol = Cmplx(xpolr,xpoli) ; ypol = Cmplx(ypolr,ypoli)
norm= Csqrt(xpol*Conjg(xpol)+ ypol*Conjg(ypol)); xpol = xpol/norm ; ypol = ypol/norm

c Set-up CrystalOrientationfor Diffraction.
Call Orient_cryst(Ee,a,alpha,hp,hs,h,S,U,sigmai,pii,sigmaf,pif,b)

Hzlab(1)= Hz(1) ; Hzlab(2) = Hz(2) ; Hzlab(3)= Hz(3)
Coeff = -4.0*pi**2*LM*con*Polfac/((2.0*lg+ 1.0)*(Trad/hbar)*(Ee/hbarc)**3*Vo)
eCoeff = -2.0*pi*Re*hbarc**2/(Ee**2*Vo)
sin2Brgg= 2.0*sinBragg*Dsqrt(1.0-sinBragg**2) ; sinBrgg2E0 = sinBragg**2/Ee
zo =-ii*Ee*to/(hbarc*gamma0) ;Lambda = 2.0*pi*hbarc/Ee ; snBrgg= sinBragg

===> Read infromatompos.datfile: isites
Do 10 isite=l,isites

• ===> Read in from atompos.datfile: efg; QQ, Hint; isomer,spindp; canting
e2qQ = 2.0*QQ*Ee/(c*10.0); isomer= isomer*Ee/(c*10.0)

c Constructbasisof quantumcoordinatesystemwherethe magneticfield directionis the z-axis
===> Call YIG_basis(Hzlab,Kf,Ki,Hint,Hx,Hy,Hz)when Crystal isYIG

" c Ilncoming Beam Hits Plane from Above; Scattered beam travels in:
Call Polarmat(pii,sigmai,pii,sigmai,Ki,Ki,Y000,Y100,P00) ltransmissionchannel.
Call Polarmat(pii,sigmai,pif,sigmaf,Ki,Kf,Y010,Y110,P 10) lreflection channel.

c llncoming Beam Hits Plane from Below; Scattered beam travels in:
Call Polarmat(pif,sigmaf,pii,sigmai,Kf,Ki,Y001,Y101,P01) itransmission channel.
Call Polarmat(pif,sigmaf,pif,sigmaf,Kf,Kf,Y011,Y111,Pl 1) !reflection channel.

c Determining Polar Angle Beta and Azimuthal Phi Angle Between Electric Field Gradient and Quantum z-axis
Call Mv(U,efg,efgLab) ITransforming efg to Lab coord, system ; Call Dot(efgLab,efgLab,norm)
Do 1 I=1,3

1 efgLab(i) = efgLab(i)/Dsqrt(norm)
Call Polar(efgLab,Hx,Hy,Hz,beta,gamma); Hint = Hint + spindp*(3.0*Dcos(beta)**2 - 1.0)

c Computation of Eigenvectors and Eigenvalues
ng = 2.0*lg + 1.01 ; ne = 2.0*le + 1.01
Call Sp_itting(a_ph'beta_gamma_eta_g_e2qQ'Hint_ugr_unu_Eigenva_ue_g'Eigenvect_r_g_ng_

+ fv0,fv 1,fv2,fv3,d 1,d2,d3,d4,d5,d6,4)
Call Sp_itting(a_ph'beta_gamma_eta'_e_e2qQ'Hint_uex'unu'Eigenva_ue_e_Eigenvect_r_e_ne_

+ fv0,fv 1,fv2,fv3,d 1,d2,d3,d4,d5,d6,4)
c Nuclear Geometrical Structure Factor Calculation for H and -H

.... > Read in from atompos.dat file: Z
Do 5 I=1,Z

=-=> Read infrom atompos.dat file: rx, ry, rw !Coordinate positions of atoms in unit cell
5 FH(isite) = FH(isite)+ Cdexp(ii*2.0*pi*(h(l )*rx + h(2)*ry + h(3)*rw))

. F_H(isite)= Conjg(FH(isite)) ; F0(isite) = Z
c Computation of Nuclear Scattering Amplitude of Photon

Do 10 iw=l ,ne
Call Polarmix(Eigenvector,Eigenvectorle,CG11 ,CG23,CG13,Y000,Y100,Coeff*F0(isite),isite,iw,1 )
Call Polarmix(Eigenvector,Eigenvectorle,CG11,CG23,CG13,Y010,Y110,Coeff*FH(isite),isite,iw,2)
Call Polarmix(Eigenvector,Eigenvectorle,CG11,CG23,CG13,Y001,Y101,Coeff*F_H(isite),isite,iw,3)
Call Polarmix(Eigenvector,Eigenvectorle,CG11 ,CG23,CG13,Y011,Y111,Coeff*F0(isite),isite,iw,4)
If(Real(Eigenvectorig(1,1)) .Gt. 0.0) Then
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c +1/2 corresponds to first eigenvalueof Ground State
Eigenvalue(1,iw,isite)= Eigenvaluele(iw) - Eigenvaluelg(1) + isomer
Eigenvalue(2,iw,isite)= Eigenvaluele(iw) - Eigenvaluelg(2) + isomer

Else
c +1/2 corresponds to second eigenvalue of Ground State

Eigenvalue(1,iw,isite)= Eigenvaluele(iw) - Eigenvaluelg(2)+ isomer
Eigenvalue(2,iw,isite)= Eigenvaluele(iw) - Eigenvaluelg(1) + isomer ,

Endif
10Continue

c Electronic Structure Factor Calculation
Call ElectStrFact(Crystal,h(1 ),h(2),h(3),sinBragg,Lambda,DW,FH(isite),F_H(isite),F0(isite))
Do 15 N=1,2

Do 15M-,1,2 !Photoelectric Scattering Amplitude
P00(m,n) = eCoeff*F0(isite)*P00(m,n) ; P10(m,n)= eCoeff*FH(isite)*P10(m,n)

15 P01(m,n) = eCoeff*F_H(isite)*P01(m,n) ; P11(m,n) = eCoeff*F0(isite)*P11(m,n)
Return

Subroutine StrFact(devB,devE,b,g)
c This Subroutine Computes the Scattering Elements of the Dispersion Equation for Dynamical Diffraction
c For the 2x2 matrices: element (1,1) = xx, (1,2) = xy ; (2,1) = yx, (2,2) = yy
c In this Program : x = sigma polarization component ; y = pi polarization component
c VARIABLES: (see INITIALIZE comments)
c alpha = deviation from bragg parameter ; b = asymmetry parameter

Complex g(4,4),g00(2,2),g 11(2,2),g01(2,2),g10(2,2),gg00(2,2),gg11(2,2),gg01 (2,2),gg10(2,2),P00(2,2),
1 P01(2,2),P10(2,2),P11(2,2),Eigenvector(2,2,2,4,15,4), Res,ResJ,Go
Real*8 b ; Real Eigenvalue(2,4,15)
Common/init/sin2Brgg,sinBrgg2_E0 ; Common/strf/P00,P01,P10,P11,Go,Eigenvector,Eigenvalue
Common/site/isites
Res = devE + Go !ResonanceDenominatorTerm

c Incoming Beam Hits Plane from Above; Scattered beam travels in:
c g00 ==> transmission channel ; gl0 ==> reflection channel "
c Incoming Beam Hits Plane from Below; Scattered beam travels in:
c g01 ==> transmission channel ; gll ==> reflection channel

Do 1 N=1,2 ,q

Do 1 M=1,2
1 gg00(m,n) = P00(m,n) ; ggl0(m,n) = P10(m,n) ; gg01(m,n) = P01(m,n) ; gg11(m,n)= P11(m,n)

Do 5 I=1,isites
DO5 iw=1,4

I:)o5J=1,2
ResJ = Res- Eigenvalue(j,iw,i)

DO5 N=1,2
Do 5 M=1,2

gg00(m,n) = gg00(m,n)+ Eigenvector(m,n,j,iw,i,1)/ResJ
ggl0(m,n) = ggl0(m,n) + Eigenvector(m,n,j,iw,i,2)/ResJ
gg01(ro,n) = gg01(ro,n) + Eigenvector(m,n,j,iw,;,3)/ResJ

5 ggl 1(m,n) = ggl 1(ro,n) + Eigenvector(m,n,j,iw,i,4)/ResJ
alpha =-2.0*sin2Brgg*devB ; el = b'alpha/2.0

c Construction of g-matrix pertaining to dynamical diffraction formula
g(1,1) = gg00(1,1) ; g(1,2) = gg01(1,1) ; g(1,3) - gg00(1,2) ; g(1,4) --gg01(1,2)
g(2,1)=b*ggl0(1,1) ; g(2,2)=b*gg11(1,1)-e1 ;g(2,3)=b*gg10(1,2) ; g(2,4)=b*gg11(1,2)
g(3,1) = gg00(2,1) ; g(3,2) = gg01(2,1) ; g(3,3) = gg00(2,2) ; g(3,4) = gg01(2,2)
g(4,1)=b*gg10(2,1) ; g(4,2) =b*gg11(2,1) ; g(4,3)= b*ggl0(2,2) ; g(4,4)-b*gg11(2,2)-e1
Return

Subroutine Polarmat(pii,sigmai,pif,sigmaf,Ki,Kf,Y0,Y1 ,P)
c Polarmat Computes Polarization Mixing Matrices
c VARIABLES: (See INITIALIZE subroutine for more comments on variables)
c Ki(f) = incoming(diffracted) photon direction (k-unit vector)
c coski(kf) = angle between incoming(diffracted) photon direction and quantum axis
c phiki(kf) = azimuthal phi angle of incoming(diffracted) photon direction in quantum spherical coord, system
c thetai(f) = theta unit vector of incoming(diffracted) photon k-vector in quantum spherical coordinate system
c phii(f) ,=phi unit vector of incoming(diffracted) photon k-vector in quantum spherical coordinate system
c sigmai(f) = sigma polarization unit vector of incoming(diffracted) photon ; pii(f) = pi polarization unit vector of
c incoming(diffracted) photon ; Hx,Hy,Hz = Quantum Basis unit vectors in Lab coord, system
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c Y10i(f) = Vector Spherical Harmonic forJ=I,L=I,M=0 ; Ylli(f) = Vector Spherical Harmonic forJ=I,L=I,M=I
c P = Polarization matrix for Photoelectric scattering

Complex Y0(2,2,2),Y 1(2,2,2),Y10i(3),Y10f(3),Y11 i(3),Y11f(3),P(2,2),ii
Real*8 Hz(3)_Hx(3)'Hy(3)_Ki(3)_Kf(3)_sigmai(3)_sigmaf(3)'pii(3)_pif(3)__hii(3)'phif(3)'thetai(3)_thetaf(3)'

1 HzLab(3),rad,pi,norm,Pss,Psp,Pps,Ppp,phiki,phikf,theta,sinki,sinkf,coski,coskf
Common/Bfield/Hz,HzLab,Hx,Hy ; Common/site/isites ; Common/conv/rad,pi,ii

, c NuclearAngular Factors
Call Dot(Hz,Ki,coski) ; CallDot(Hz,Kf,coskf) ; sinki= Dsqrt(1.0dO-coski**2)
sinkf= Dsqrt(l.0d0- coskf**2) ; Call Polar(Ki,Hx,Hy,Hz,theta,phiki)
Call Polar(Kf,Hx,Hy,Hz,theta,phikf); Call Cross(Hz,Ki,phii,norm)

. ft(norm .Ct. 1.0d-30) Then ; Call Cross(phii,Ki,thetai,norm)
Else

Do 1 1=1,3 Ill Ki//H then phi and theta unit vectors
1 phii(i) = sigmai(i) ; thetai(i) = pii(i) lareset to sigma and pi polarizations

Endif
Call Cross(Hz,Kf,phif,norm)
If(norm .Ct. 1.0d-30) Then ; Call Cross(phif,Kf,thetaf,norm)
Else

Do51=1,3
5 phil(i) = sigmaf(i) ; thetaf(i) = pfr(i) ! If Kf//H then do the same as stated above

Endif
Do 10 I=1,3

Y10i(i) = ii'sinki*phii(i) ; Y10f(i) = ii*sinkf*phif(i) ; Y11i(i) = (thetai(i) + ii*coski*phii(i))*Cdexp(ii*phiki)
10 Y11f(i) = (thetaf(i) + ii*coskf*phif(i))*Cdexp(ii*phikf)

c Construction of Polarization Matrices
cM=O

Call Cdot(Y10i,sigmai,Y0(1,1,1),1) ; Call Cdot(Y10i,pii,Y0(1,2,1),1) ; Call Cdot(YlOf,sigmaf,YO(2,1,1),0)
Call Cdot(Y10f,pif,Y0(2,1,2),0) ; Y0(1,1,2) = Y0(1,1,1) ; Y0(1,2,2) = Y0(1,2,1) ; Y0(2,2,1) = Y0(2,1,1)
Y0(2,2,2) = Y0(2,1,2)

cM=l
" Call Cdot(Y1l i,sigmai,Y1(1,1,1),1) ; Call Cdot(Y1l i,pii,Y1(1,2,1),1) ; Call Cdot(Y1lf,sigmaf,Y1 (2,1,1),0)

CallCdot(Y11f,pif,Y1(2,1,2),0) ; Y1(1,1,2)=Y1(1,1,1) ; Y1(1,2,2)=Y1(1,2,1) ; Y1(2,2,1)=Y1(2,1,1)
Y1(2,2,2) = Y1(2,1,2)

,. c Electronic Angular Factors
Call Dot(sigmai,sigmaf,Pss) ; Call Dot(sigmai,pif,Psp) ; Call Dot(pii,sigmaf,Pps) ; Call Dot(pii,pif,Ppp)
P(1,1)= Pss ; P(1,2)= Psp ; P(2,1)= Pps ; P(2,2)= Ppp
Return

tttt t_' • _* t ****** * ** *_* **Q tt** ttt ** t,*_ d, *t** *** v,* **o * ** **t t *_t ** _t_t * tj **_ _*** _* * ** * *lr* _,_. • * 4. J. * ** l. l._ _, **_, tl* * ** **** **

Subroutine Polarmix(E,Ele,CG1 ,CG0,CG_I ,Y0,Y1,F,isite,iw,igmn)
c Polarmix Computes Scattering Tensor Elements of Dispersion Equation
c VARIABLES: (See Comments in Subroutine INITIALIZE)
c NOTE: (1) Spherical Harmonic Y1 = Y(M=+I) = Complex ConjugateY(M=-I)

Complex E(2,2,2,4,15,4),Ele(4,4),Y0(2,2,2),Y1(2,2,2),F,Ei1 ,Ell ,Ei2,Ef2
Do 1 N=1,2 ! M = +2 Not allowed for magnetic dipole scattering

Do 1M=1,2
c +1/2 ground state amplitudes

Eil = CGI*Conjg(Ele(1 ,iw))*Y1(1,m,n) + CG0*Conjg(Ele(2,iw))*Y0(t,m,n) +
+ CG_l*Conjg(Ele(3,iw))*Conjg(Yl(1,m,n))

Efl = CG1*Ele(1,iw)*Y1(2,ro,n) + CG0*Ele(2,iw)*Y0(2,m,n) + CG_I *Ele(3,iw)*Conjg(Y1(2,ro,n))
c -1/2 ground state amplitudes

Ei2 = CG_I *Conjg(Ele(2,iw))*Yl(1 ,m,n) + CG0*Conjg(Ele(3,iw))*Y0(1,ro,n) +
+ CGl*Conjg(Ele(4,iw))*Conjg(Yl(1,m,n))

o Ef2 = CG_I*Ele(2,iw)*Y1 (2,m,n) + CG0*Ele(3,iw)*Y0(2,m,n) + CG1*Ele(4,iw)*Conjg(Y1(2,m,n))
E(m,n,l,iw, isite,igmn) = F*(Eil*Efl) !+1/2

1 E(m,n,2,iw,isite,igmn)= F*(Ei2*Ef2) !-1/2
Return

Subroutine YIG_basis(Hzlab,Kf,Ki,Hint,Hx,Hy,Hz)
c This subroutine Constructs the Quantum Coordinate System for YIG or similiar systems
c The Hx-direction is perpendicular to both Hz and the diffracted wavevector.

Real'8 Hzlab(3),Hx(3),Hy(3),Hz(3),Kf(3),Ki(3),norm
ft(Hint .Lt. 0.0) Then

Dol 1=1,3
1 Hz(i)= -Hzlab(i)



176 Numerical Analysis Procedures (8.3)

Hint---Hint
Else
Do5 I--I,3

5 Hz(i)= Hzlab(i)
Endif

c Hx is perpendicularto Hz and Kf;howeverif Hz is parallelto Kf,Hx is perpendicularto Hz and Ki.
Call Cross(Hz,Kf,Hx,norm) ; If(norm.Lt. 1.0e-3) Call Cross(Hz,Ki,Hx,norm) ; Call Cross(Hz,Hx,Hy,norm)
Return

Subroutine FeBO3_basis(U,canting,Hzlab,Kf,Ki,Hint,Hx,Hy,Hz)
c This subroutine Constructs the Quantum Coordinate System for FeBO3 or similiar systems

SubroutineC,dot(u,v,w,i)
c This Subroutinecomputesthe Dotproductof a Complexvector "u"anda realvector "v". lt returnsthe dot
c product"w".
c i = 0 ==> w = u*ComplexConjugate(v)= u*v forv real
c i= 1 ==> w = v*ComplexConjugate(u)

Subroutine Splitting(alpha,beta,gamma,eta, l,e2qQ,Ho,u,un,VaI,Ham,nH,M,fvl ,fv2,fv3,hr,hi,vr,vi,wr,wi,L)
c This Subroutine determines the Energy Eigenvalues and Eigenvectors for a Nuclear State that has both Static
c Electric Quadrupole and Magnetic Dipole Interaction
c VARIABLES:
c Ham Contains the Eigenvectors -- original Hamiltonian matrix is destroyed by Subroutine CGG
c Val Contains the Eigenvalues ;nH = Orderof Hamiltonian Ham(i,j) ; I = Nuclear Energy Level
c un = Nuclear Magneton (Ev/Gauss) ; beta = angle between Electric Field Gradient and Magnetic Field
c gamma = azimuthal angle between Electric Field Gradient and Magnetic Field (radians)
c alpha = Third Euler Angle neededwhen the Electric Quadrupole Interaction is non-axially symmetric (radians)
c eta = (Vxx - Vyy)/Vzz --> the asymmetryparameterwhichdescribesthe deviationof the ElectricField
c Gradientfrom axialsymmetry. ; e2qQ = ElectricQuadrupoleSplittingFactore**2*q*Q (eV)
c H, = ExternalMagneticFieldStrength(Gauss) ; u = MagneticMoment(nuclearmagnet,ns)
c LINKING: Need to link with Subroutine EIS LIN PACK

Complex Val(L),Ham(L,L),ii,exp2a,expg,exp2g,Hmml ,Hmm_l ,Hmm2,Hmm_2
Real M(L),fvl (L),fv2(L),fv3(L),hr(L,L),hi(L,L),vr(L,L),vi(L,L),wr(L),wi(L), I

ii= (0.0,1.0) ; nlevels= 2.0"1+ 1.0 ; wE = 0.0 ; wH = Ho*u*un/I
If(I .Ne. 0.5) wE = e2qQ/(4.0*l*(2.0*l - 1.0)) ; y = wH ; z = wE
Cos2a = Cos(2.0*alpha) ; Cosb = Cos(beta) ; Sin, = Sin(beta)
Exp2a = Cexp(ii*2.0*alpha) ; Expg = Cexp(ii*gamma) ; Exp2g = Cexp(ii*2.0*gamma)
Hmm = 0.5*z*(3.0*cosb**2 - 1.0 + eta*sinb**2*cos2a)
Hmml = 1.5*z°sinb*(cosb - (eta/6.0)*((1.0 + cosb)*exp2a - (1.0 - cosb)*Conjg(exp2a)))*expg
Hmm_l = 1.5*z*sinb*(cosb + (eta/6.0)*((1.0 - cosb)*exp2a - (1.0 + cosb)*Conjg(exp2a)))*Conjg(expg)
Hmm2 = 0.75*z*(sinb**2 + (eta/6.0)*((1.0 + cosb)**2*exp2a + (1.0- cosb)**2*Conjg(exp2a)))*exp2g
Hmm_2 = 0.75*z*(sinb**2 + (eta/6.0)*((1.0 - cosb)**2*exp2a +

+ (1.0 + cosb)**2*Conjg(exp2a)))*Conjg(exp2g)
Do 10 J=l,nlevels

M(j) = I- (j-l)
Do 10K=I ,nlevels

10 Ham(k,j) - 0.0
N=I
Do 15 K=N,nlevels

15 Ham(k,k) = -y*M(k) + Hmm*(3.0*M(k)**2- I*(I + 1.0))
N=N+I
Do 20 K=N,nlevels

Ham(k-l,k) - Hmm_l*(2.0*M(k-1) - 1.0)'Sqrt((I + M(k-1))*(I - M(k-1)+ 1.0))
20 Ham(k,k-1) = Hmml*(2.0*M(k) + 1.0)*Sqrt((I - M(k))*(I + M(k) + 1.0))

N=N+I
Do 25 K=N,nlevels

Ham(k-2,k) = Hmm_2*Sqrt((I - M(k-2)+ 2.0)*(I- M(k-2) + 1.0)*(I + M(k-2))*(I + M(k-2) - 1.0))
25 Ham(k,k-2) ---Hmm2*Sqrt((I + M(k) + 2.0)*(I + M(k) + 1.0)*(I - M(k))*(I - M(k)- 1.0)) "

rnatz -- 1 !Eigenvalue and Eigenvector Calculation
Call Cgg(L,nil, Ham,ma,z,Val,fv 1,fv2,fv3,hr:hi,vr,vi,wr,wJ,ierr)

Return

DATAFILE NUCLEARDAT
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YIG I CrystalType
12.3797o-8,12.3797o-8,12.3797o-8 ILattice spacings a,b,c (cm)
90.0,90.0,90.0 ILattice angles alpha,beta,gamma (dog)
14412.5,5.0e-4 I Incoming photon energy(eV),Crystal thickness(cre)
1,400 l (iflg-l=Energy scan,iflg=0=Anglescan) ; # points
10.0e-7,65.0e-6 ! Energy range (Ev),deviationfrom Bragg (rad)
20.0e-6,-0.0e-7 ! Angle range (rad),deviation from incoming Energy (eV)

" TWO RECIPROCALLATTICEVECTORS, 1st isin LAB_zdirection,2nd is inthe SCATTERING PLANEwhere
hs(dot)Kf> 0, Kf(dot)LABy > 0. LAB._xis perpendicularto SCATTERING PLANE.
0. 0. 2. ! Hp Kp Lp ReciprocalLatticevectorinLAB_z direction
1. 0. 0. !Hs Ks Ls ReciprocalLatticevectorinscatteringplane

" 0. 0. 2. ! OutwardSurfaceDirection(in Reciprocalcoordinates)
0. 1. 0. I ExternalMagneticFieldDirection(inLAB coordinates)
RECIPROCAL LATTICEVECTOR ofdesiredreflection
0. O. 2. lH K L DesiredReciprocalLatticeVector

AZIMUTHALROTATIONS that preserveBraggCondition.Two Rotationsare made. The 1st isaboutH =
ReciprocalLatticeVector, the 2nd isabout Ki,andthe 3rdis about H again
0.0,0.0,0.0 I Azimuthalrotationabout H,Ki,H=(H,K,L)(deg)
0.87,0.8 I Nuclear:RelativeConcentration;Lamb-Mossbauerfactor
0.987 !Electronic:Debeye Waller factor
1.0,0.0 I HorizontalPolarizationof incomingPhoton(real,imag)
0.0,0.0 I VerticalPolarizationof incomingPhoton(real,imag)

I See INITIALIZE subroutinefor a moredetaileddescriptionof theseparameters
t t _. e * o t fa* fl t* **t* **_. t ** *** • Q*_ _'* tefs fl_ t* * _ _t o** * ** * ** t * * e,f_t fie iii tt • *** * ** • ** * Q**** II *e* **, *e • etr _ * e* * i.t ** * * ,11, • *** e*

DATAFILE ATOMPOS.DAT
This Data filecontainsthe positionsof the Fe57 atoms correspondingto varioussitesin YIG andthe
EFG directionsof the iron atoms inthe sites, and alsoassociatedhyperfinefield parameters

(Winkler,Phys.B,CondensedMatter,49,331,83)
$
7 ! Numberof SiteswithinUnitCell

" D1-SITE Fe57 ATOMS [100] SYMMETRYAXIS
1. 0. 0. ! Electric Field Gradient Direction [h k I]
-0.89d0,-3.68d5 !Quadrupole Shift (mm/sec),Magnetic Field (gauss)
0.0d0,0.0d0 llsomer Shift (mm/sec),Spin Dipolar Anisotropy (gauss)

" 0.0d0 !CantingAngle (deg) ; 8 ! # of atoms in this site
Coordinate of Fe57 atoms within unit cell:
0.375 0.0 0.25 ;0.875 0.5 0.75 ;0.625 0.5 0.25 ; 0.125 0.0 0.75
0.625 0.0 0.75 ;0.125 0.5 0.25 ;0.375 0.5 0.75 ; 0.875 0.0 0.25
D2-SlTE Fe57 ATOMS [010] SYMMETRYAXIS
0. 1. 0. ; -0.89d0,-3.68d5 ; 0.0d0,0.0d0 ; 0.0d0 ; 8
0.25 0.375 0.0 ;0.75 0.125 0.0 ; 0.75 0.875 0.5 ; 0.25 0.625 0.5
0.75 0.625 0.0 ; 0.25 0.875 0.0 ;0.25 0.125 0.5 ; 0.75 0.375 0.5
D3-SlTE Fe57 ATOMS [001]SYMMETRYAXIS
0. 0. 1. ;-0.89d0,-3.68d5 ; 0.0d0,0.0d0 ; 0.0d0 ; 8
0.0 0.25 0.375 ;0.5 0.25 0.625 ;0.0 0.75 0.125 ; 0.5 0.75 0.875
0.0 0.75 0.625;0.5 0.75 0.375 ;0.0 0.25 0.875 ;0.5 0.25 0.125
Al-SITE Fe57 ATOMS [111] SYMMETRYAXIS
1. 1. 1. ; -0.41d0,4.40d5 ; 0.226d0,-0.035d5 ; 0.0d0 ;4
0.00 0.00 0.00;0.25 0.25 0.25;0.50 0.50 0.50;0.75 0.75 0.75
A2-SITE Fe57 ATOMS [-111] SYMMETRYAXIS
-1. 1. 1. ; -0.41d0,4.40d5 ; 0.226d0,-0.035d5 ; 0.0d0 ;4
0.50 0.50 0.00;0.75 0.25 0.75 ;0.00 0.00 0.50;0.25 0.75 0.25

o A3-SITE Fe57 ATOMS [1-11]SYMMETRYAXIS
1.-1. 1. ; -0.41d0,4.40d5 ; 0.226d0,-0.035d5 ; 0.0d0 ;4
0.00 0.50 0.50;0.75 0.75 0.25 ;0.50 0.00 0.00 ;0.25 0.25 0.75
A4-SlTE Fe57 ATOMS [-1-11] SYMMETRYAXIS
-1.-1. 1. ;-0.41d0,4.40d5 ; 0.226d0,-0.035d5 ; 0.0d0 ; 4

0.50 0.00 0.50 ;0.25 0.75 0.75 ;0.00 0;50 0.00 ;0.75 0.25 0.25
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8.4 Boundary Conditions and the Thick Crystal
Approximation

Since in general the linearized dispersion relations are not decoupled, the dispersion

relation given by Eq. 7-4.1 must be modified to

(Gu. - 2eoI) -v = 0 (8-4.1) .

where Gu,, is given by Eq. 7-8.1. Finding the four eigenvectors

=lR:
v' lT: (g=l .... ,4) (8-4.2)

tR:
allows the boundary condition equation, Eq. 7-4.30, to be solved by setting

, DtT t OtT t t t tT: = D:T: Rr,= 2._ , T/= 3.,, R, = D:_T_ (8-4.3)

where

Dr.=(Vt)./(vt)l (8-4.4)

and (vr), is the n" component of v t. lf(v t), is zero, then all of the eigenamplitudes can
be expressed in terms of one of the nonzero eigenamplitudes in a similar fashion (that is, in

terms of an amlitude other than T:). The boundary condition equation can then be

explicitly written out as (for (vt)l _ 0)

u2 e U2 e 4 ip¢ d 2 ._

I ,.2O_itc2dO3eirld03 404i_:4d (EoY (8-4.5)_D]e '_'a Uae D4e )[T_)

where K"e= ko,eto/Yo. This equation is solved by the subroutine TandFl_coeff in the
a

EWALD Fortran code.

When the exponential factor e_r'_in Eq. 8-4.5 becomes very large (for instance, too

large for a computer to handle), numerical solutions can be found by applying a thick

crystal approximation. Note that at the exit surface, the transmission channel field is

4

T(l_r : d): eik°"r___" ,_'a^o• the ea. (8-4.6)
/=1
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Then, if e_'¢'d_ ,,,, in order for the transmitted field to stay finite, Tt must go to zero.

This is the heart of the thick crystal approximation:

I e '" d --->** , T_ _ O l
° [Tt_ei''_ _ a finite quantityJ' (8-4.7)

This approximation can then be used to modify the boundary condition equations. For

instance, let r I be the complex eigenwavenumber that gives rise to exponentially large

numbers. Then the boundary value equation to be solved is

I! _ 1 1 1 _T)e '_'d_ IEo, I

_2 i_Cid ,..3 i_3d n4 itc4d

u2e t)2e u2e [ T_ . (8-4.8)

°'2 °; /
tO_ u_e"2,:', ,4e"3i,,a -4e"4'"_L T: to)

InthesubroutineDispersionandTandR._coeff,thearraysthickande keeptrack

ofwhichelementsintheboundaryconditionmatrixmustbemodified.
o

D
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9. EXPERIMENTAL PROCEDURES

• 9.1 YIG Epitaxial Films on GGG

" [ ] Nalphotodetector '

Slits (3 × 3) mm

Si [3 33] asymmetric reflection

I _ Braggangle =47.5 o

 :47J .
• symmetric reflection _ Slits (8 vert x 4 honz) mm

Bragg angle = 48"3° hi"L_Iel_'ng
• b = - 1 /S .L.e._ CuKoq(8048X-ev)rays

.,'7
4e" , j j

I

( Seen from I X - ray tube, Cu target

_, above [

Fig. 9-1.1 Experimental arrangement for high resolution measurements of the YIG
Darwin width.

The yttrium iron garnet (YIG) crystals were grown by Gualtieri at Allied-Signal's

Electronic Materials and Devices Lab. Each sample was ga'own using a liquid phase

epitaxy method where a (0 0 1) oriented gadolinium gallium garnet (GGG) substrate was

inserted into a heated platinum crucible (= 890°C) containing yttrium and enriched iron

" oxides dissolved in a lead oxide-vanadium oxide flux (the isotopic composition of the iron,

as measured by Oak Ridge National Lab, was 0.79% 54Fe, 18.24% 56Fe, 80.97% 57Fe,

and 0.0% 5SFe). Using techniques very similar to those applied towards growing magnetic

bubble memory layers, Gaualtieri was able to epitaxially grow nearly perfect (0 0 1)

183
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oriented YIG crystal films of various thicknesses (2.7 to 9.5/zm) onto six 5 mm thick

GGG circular substrates having a diameter of 3 cm. The formula unit for the YIG films,

obtained from lattice constant data and Faraday rotation measurements, is

(Yz96Pb0.04)Fe3(Fe,.94Y0.06)Olz.

The lead was incorporated into a few dodecahedral lattice sites normally occupied by

yttrium atoms. This was done to alleviate crystal strains by matching the YIG to the GGG ,

lattice spacing. The YIG films are basically free of dislocations and other surface defects

(they cover much less than 1% of the surface area), and the films have a thickness variation

of only about 0.15 pm (the edges are slightly thicker than the center). 1

A major area of concern was the degree of crystal perfection of the films--whether

the films were composed of a mosaic of small crystal domains or were composed of just a

few large crystal domains. Rocking curve measurements were performed to ascertain how

perfect the crystal films were using the setup shown in Fig. 9-1.1. An x-ray generator

provided a CuKa_ x-ray source beam (8048 eV) for the measurements. An asymmetric Si

[3 3 3] crystal was used as a nondispersive monochromator (the surface normal pointed in

the [2 2 0] direction). By reflecting from the (3 3 3) planes in asymmetric geometry, the

monochromator produced a highly collimated beam having an angular divergence of about

4.3 /zrads. This collimated beam was used to measure any small features in _he rocking

curves of the YIG films that may be due to crystal imperfections.

Fig. 9-1.2 show the [0 0 12] rocking curves for the six YIG crystals labeled 57-1

to 57-6. The rocking curves are only for YIG films on the side of the GGG substrate that

was facing downwards in the crucible melt. The YIG [0 0 12] reflection was chosen so

that the incident beam would penetrate deep into the film allowing the entire thickness of the

film to be probed (Rocking curve measurements were initially done when the c13,stalswere

first received from Gualtieri. However, in these measurements the YIG crystals were

rocked against each other for the [0 0 4] reflection. Thus, the angular resolution was 25 to

50/zrads depending upon which YIG crystal was used as the monochromator rather than

the 4.3 /zrads resolution of the asymmetric Si [3 3 3] crystal, and the YIG [0 0 4]

reflection enabled an examination of only the first 2/zm of the YIG film due to primary

extinction effects). The GGG substrate reflection, which is less prominent for lhick films,

is the peak at the lowest angle (which has been set at a deviation angle of 0/zrads) since -

GGG has a larger lattice spacing than YIG. The figures show that the attempt at matching

the YIG to the GGG lattice spacing by substituting a few yttrium atoms with lead has

produced unexpected problems. The difference in lattice spacing between bulk GGG
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Fig. 9-1.2 Rocking curves for six YIG films 2.7 pm to 9.5 pm thick.
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(12.3840A) and bulk YIG (12.3780A)is 6×10-3A. For the crystals 57-6, 57-5, and

57-3 where the lead had the smallest effect, the lattice mismatch was successfully reduced

by 30% without significantly distorting the rocking curves. For the other crystals where

the lattice mismatch was reduced by 50-60%, the YIG films separated into two or more

regions, or sublayers. Substituting too many yttrium atoms with lead to further increase

the YIG lattice spacing appears to lead to the formation of composite YIG films having

crystal layers with different lattice spacings. The remarkable feature about this effect,

which is noticeable for crystal 57-2, is the tendency for the YIG crystal to form nearly

perfect crystals for each sublayer rather than a single layer composed of a homogeneous

distribution of mosaic crystals or lattice spacings which would form a single broadened

rocking curve.

The difference between the perfect crystal rocking curve and the measured rocking

curve gives the degree of crystal perfection of the crystal sample. The silicon crystal used

as the monochromator in the rocking curve measurements is of the same stock as those

used as SSRL beamline monochromators. They generally have Darwin widths (full width

at half maximum) that are not more than ]0% greater than the ideal perfect crystal Darwin

width--the silicon monochromators are essentially perfect crystals. The YIG crystal films,

on the other hand, are not as perfect. The Ewald computer code discussed in Chapter 8

was used to evaluate the rocking curve for a perfect YIG crystal rocked against a fixed

asymmetric Si [333] perfect crystal (the asymmetry parameter is b =-4.7). For perfect

YIG crystals having thicknesses of 4.7, 3.3, and 2.7/zm, the Darwin widths were 24, 34,

and 39/zrads respectively. The measured Darwin widths were 43, 55, and 60/zrads.

Thus, the Darwin widths for the YIG films were roughly 1½ to 2 times greater than the

ideal widths. The YIG crystal perfection, though not up to par with the silicon crystals, is

still quite good. One cause for the rocking curve broadening may be due to the

incorporation of lead into the crystal in the attempt to create strain free films. The lead

increases the lattice constant of the unit cell, and, with lead atoms interspersed throughout

the YIG film, this would lead to a nonuniform lattice constant throughout the film which

would contribute towards broadening the rocking curve.
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9.2 General Experimental Setup

Time resolved nuclear resonance experiments were done at three different

. beamlines: a 15 period 1.05 m wiggler beamline 10-2 at the 3-3.5 GeV SPEAR storage

ring, a 26 period 2 m undulator beamline PBF 1 at the 5-15 GeV PEP storage ring, and a

Experimental Setup
(Schematic)

Mossbauer

YIG AbsorbersSi (111) /M nn Crystal...o__- \ g E3

chromator

..... BeWindow _ Sllits_- ' ' _
unauta_or \ ". _-._" • - .

\ _ /' Coincidence////'///////] _./_ \ / Det ector
. o Helmholtz (fast .plastic

. Ilator)

° 9-89 6477AI

Fig. 9-2.1. General experimental setup. Mirror focusing was done in the horizontal
(perpendicular to this page), not vertical, direction.

48 period wiggler beamline F2 at the 5.5 GeV CESR storage ring. The experimental setup

at each of these beamlines was similar to that shown in Fig. 9-2.1.

The wiggler or undulator consisted of a periodic dipole arrangement of permanent

magnets (Nd-Fe-B magnets for the beamline at SPEAR and Sm-Co magnets for the

beamlines at PEP and CESR). The arrangement of magnetic dipoles forces any electron

that travels down the axis to oscillate (or wiggle) about the nominal orbit and emit radiation

with a range of frequencies that is tunable by varying the magnetic field strength or the

dipole period length. The deflection parameter, K, is a measure of this tunability,

K =eBoZ,/2rcm, c, (9-2.1)

where B0 is the magnetic field strength at the nominal electron orbit, and &, is the dipole

period length. For K > 5 the magnet dipole array is considered to operate as a wiggler, and

the characteristic energy specmma of the wiggler radiation is broadband up to the critical

energy
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cc : 0.665E2[GeV]Bo[T] (9-2.2)

where E is the electron beam energy. For K < 2 the array is considered to operate as an

undulator, and the energy spectrum is composed of harmonics that are narrowband for the

odd harmonics. By changing K one of the narrowband harmonics can be tuned to a

desired operating energy and, to a degree, achieve energy monochromatization.

Tuning was done for the permanent magnetic arrays by changing the magnet gap

spacing which changes the magnetic field strength at the nominal electron orbit. For

instance, the desired operating energy at PEP was 14.4 keV. Placing the first harmonic at

an energy slightly greater than 14.4 keV ensured operation on the safe low energy side of

the harmonic peak that varied more slowly with energy than the edge-like high energy side.

A magnetic gap spacing of 5.5 cm resulted in a magnetic field of 1.4 kG, a K value of 1.0,

and placed the first harmonic at 14.8 keV.

150 j iiii jiiii j iii i iii ir_

:
_ 100

_ 50
_ .

I °
_ -50

0

• -lOO-150 ,, ,,, I ,,,, I,,, t l _ ,, IX,N,

-15 -10 -5 0 5 10 15 20

Deviation Energy from Bragg (eV)

Fig. 9-2.2. DuMond diagram for the Si [1 1 1] mnnochromator at the SPEAR 10-2
beamline. The angular divergence of the photons arriving at the monochromator spans the
300 /zrad range in the figure (the energy rang_.s over thousands of eVs), but the
monochromator allows only those photons having angles and energies lying within the
narrow strip having a width of 18/zrads and 1.9 eV.

A double crystal Si [1 1 1] monochromator was used to provide a source beam

having a 2 eV wide bandwidth for a given scattering angle (two crystals were used to

produce an output beam parallel to the incident beam). The DuMond diagram for such a
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crystal arrangement is shown in Fig. 9-2.2. Since the energy spectrum of the radiation

impinging upon the monochromator covers thousands of eVs, the monochromator

substantially reduces the photoelectric background. However, a Si monochromator has the

., shortcoming of having a narrow vertical angular acceptance of 18/trads at a given energy.

Electrons traversing a synchrotron bending magnet or a wiggler emit radiation in a

narrow cone having a half angle of 1/y where y = E/m,c 2. Depending upon the lattice

design of the synchrotron, the electrons also have a vertical angular divergence at the

wiggler of 2 o"s . The net vertical angular divergence of the photons at the beamline is then

the quadrature of the synchrotron radiation madelectron half widths

2err = 24o-_ + o'_, (9-2.3)

For a bending magnet or a wiggler

_, = 2/ yq_-d (9-2.4)

is the effective rms half width of the synchrotron radiation. For the beamlines used at

SPEAR and CESR, the net photon angular divergence was about 300 and 150/_rads

respectively (for electron vertical half widths of roughly 50 and 30 #rads respectively for

the high energy physics colliding beam mode of running). Clearly the Si monochromator,

having an angular acceptance of 18 #rads, blocks out, in angular space, a sizable portion

of the beam and, thereby, reduces the beam intensity by a factor of 15 to 7½. The

• undulator beamline at PEP produces somewhat better results because an undulator

collimates the harmonics. The first harmonic lies in a cone with a half angle of

1 ]1 + K2/2

_ =_ 2N
(9-2.5)

where N is the number of periods. For PEP the electron beam energy was 13.5 GeV, thus

o's = 5/.trads (N = 26 and K = 1). The net photon angular divergence of about 100 ,urads

is then dominated by the electron angular divergence (the vertical half width is roughly

40 _rads for colliding beam operation). The monochromator then reduces the beam

intensity by a factor of 5. If PEP were operated in a dedicated low-emittance lattice mode,

the electron beam vertical half width could be reduced to as low as 5/.trads. The net

photon divergence would then be only about 15/.trads, and ali of the beam would pass

through the monochromator. Unfortunately, PEP was mothballed before such remarkably

" brilliant beams could be used for experiments, and it is expected to be replaced by an

asymmetric B factory for studying the possibility of CP violation in the B meson system.

At the PEP and SPEAR beamlines, a bent cylinder, fused quartz, platinum coated

mirror was a standard instrument positioned upstream of the monochromator. The
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cylindrical mirror provided focusing in the horizontal direction to increase the photon flux.

The mirror could also be used to focus the photon beam in the vertical direction, however,

because this would increase the angular divergence of the beam and result in less photons

passing through the narrow vertical angular acceptance width of the Si monochromator,

vertical focusing was avoided.

Unfortunately, the monochromator also allowed higher order harmonics from the

[3 3 3], [5 5 5], [7 7 7], etc., reflections to pass through. The mirror again proved useful

in eliminating these higher order harmonics through grazing angle scattering. By setting

the grazing angle of the mirror to be near the critical angle of the [3 3 3] harmonic (29 keV),

the intensity of ali the harmonics was significantly diminished. The mirror then acts as a

low pass filter. At the CESR beamline, there was no standard mirror upstream of the

monochromator, so a portable, flat, gold coated mirror was placed downstream of the

monochromator (inside the experimental hutch station). Without the mirror the

photoelectric background from the harmonics overwhelmed the photodetector, thus making

the mirror a critical component to do experiments.

Another typical piece of equipment was a 4 circle diffractometer. The crystals were

attached to the ¢ circle of the diffractometer which in turn was attached to a Z circle which

in turn was attached to a 0 circle. The ¢)-axis could be rotated by rotating the Z circle, and

the z-axis could in turn be rotated by rotating a 0 circle. The detector was attached to the

20 circle which rotates independently of the other circles. These combinations of possible

rotations allowed the crystals to be oriented for precision diffraction experiments. 2

For low temperature experiments a cryogenic refrigerator assembly was attached to

the _ circle. The assembly consisted of a two stage displex expander (Air Products DE202

expander) that cools by decompressing helium gas. On the tip of this displex unit sat the

YIG crystal, and the unit was covered by a vacuum shroud having a cylindrical beryllium

window. A water-cooled rotary compressor (Air Products HC-2 compressor) supplied

high pressure helium gas to the displex expander. Before the refrigerator was turned on, a

roughing pump was used to get the expander down to a low vacuum (= 10.6 torr). A
temperature conu'oller along with a thermistor for feedback and a small heater coil inside the

shroud was used to fix the temperature to a desired operating point.

Also attached to the Cpcircle was a magnet assembly that provided a uniform

magnetic field of about 100 Gauss across the crystal. At the PEP and SPEAR beamlines a

pair of Helmholtz coils provided the uniform magnetic field (the coils were actually attached

to an unused _ circle on the opposite side of the Z circle). At the CESR beamline a set of

Sm-Co permanent bar magnets provided the uniform magnetic field, In ali cases, the

magnetic field was parallel to the (0 0 1) planes (that is, parallel to the crystal surface).
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9.3 Detector and Fast Timing Electronics

Head - on

Photomultipliers

- t Output Signal

. Output Signal

l High Voltage
Fast Plastic
Scintillator

Fig. 9-3.1. General schematic of the coincidence photodetector.

Fast plastic coincidence photodetectors were used to measure the scattered x-rays.

Each photodetector consisted of two head-on photomultipliers coupled to a fast plastic

scintillator material (Bicron 420) via an index of refraction matching layer of silicon grease

(GE Viscasil 600M silicone fluid) as shown in Fig. 9-3.1. The fast plastic is a

polyvinyltoluene based organic scintillator that fluoresces with a lifetime of 1.5 nsec. An

early photodetector used RCA 8575 photomultipliers borrowed from the Stanford Linear

Accelerator Center's (SLAC) high energy physics group (these tubes were leftover

photomultipliers used for the SLAC Mark II detector). They were old tubes, and they had

significant afterpulses (possibly due to a small amount of residual gases leaking into the

tubes) 460 and 540 nsecs after a prompt pulse. Even in coincidence geometry, for every

10 prompt pulses there was 1 afterpulse. However, the tubes could still be used by

carefully subtracting out the afterpulse background or by ensuring that the delayed resonant

signal was examined in a time window well short of the afterpulses. These

photomultipliers were later abandoned in favor of mu-metal shielded Hamamatsu R329

" photomultipliers having 12 dynode stages and a rise time of 2.6 nsecs. These tubes had an

insignificant afterpul.se rate. As measured against a Nal detector, they also had an

. efficiency for detecting 14.4 keV radiation of about 40%.

The fast electronics signal processing circuitry for a general experiment is shown in

Fig. 9-3.3. The electronic modules were capable of processing nanosecond pulse width

signals. After the amplified photomultiplier pulses pass through discriminators properly

biased to reject low level background, a 2-way logic module examines the signals to see if
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they are coincident (it has a double-pulse resolution of 3.3 nsecs). If the pulses are

coincident, another logic module checks to see whether the coincident pulses are prompt

pulses.

The timing pulse is appropriately delayed or advance in time (using cables lengths °

or electronic circuitry not shown in the figure) so that it corresponds to the prompt pulse

that initiated the nuclear resonant response. The timing pulse is sent to a gate generator

which responds by sending out a fixed 10 nsec wide delayed pulse. This 10 nsec wide

pulse is the prompt window, and it is sent to veto the 1-way coincidence logic module.

Thus, if a coincidence occurs within the prompt time window, it is vetoed and no further

action occurs. This was done to prevent the TAC from being triggered by every prompt

pulse which would overwork the TAC and lower its performance. Performing this check

improved the time resolution of the resonance signal from 5 nsec to 2.5 nsec.

The prompt window is then further delayed by 250 nsec to act as the stop input to

the TAC. Thus, the delayed nuclear resonance signal starts the TAC anytime from 10 nsec

to 250 nsec after the prompt pulse, and the TAC is always stopped 250 nsec after the

prompt pulse (see Fig. 9-3.2). The TAC sends out a signal between 0 to 10 volts that is

proportional to the time difference between the stop and start signals. The MCA receives

this output signal for data analysis and storage.

Ring Pick-off Stop pulse
(Prompt) Pulse

i!iiii iiiiiiiiii!ii!iliiii
10 ns

Prompt
window resonant signal

Fig. 9u3.2. Timing structure. A 10 nsec prompt window electronically gates out the
prompt pulses. A 250 nsec window is constructed for measuring delayed resonant counts,
and the same 10 nsec prompt window delayed by 250 nsec is used as the stop pulse to the
TAC.
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Photomultiplier Photomultiplier Ring Pick-off Signal
#1 #2 (or Timing Signal)

i

. LeCroy 612A i _ [
12 Channel PM I X10 Amplifier | X10 Amplifier
amplifier I I

__
EG&G Ortec [ Discriminator Discriminator Discriminator
934 Quad CFD [ #1 #2

_ LogicUnit _J Delayedl I _

Phillips Scientific 2 way Pulse Gate & Delay754 Quad 4-fold Coincidence
Logic Unit Generator

LeCroy 222

EG&G-ESN I ]
LF4000 Logic Fan in/ Fan in/ Dual Gate
Fan irt/Fan out Fan out Fan out Generatori

Logic Unit L Veto Gate & Delay

/

1 way

Coincidence !- Generator

" Delayed
Pulse

ls,o
!

EG&GTAcTH200 i Time to Amplitude(TAC)Converter
!

i

Multichannel AnalyzerTracor Northern 1750 (MCA)

e

Fig. 9-3.3. General schematic of the fast electronics circuitry.
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9.4 M6ssbauer Experimental Setup

M'6ssbauer
Absorber

Incidentbeam ....."- "_'_/¢_}_"- _k_k__ _ ."
Wissel Motor

Drive Photodector

Fig. 9-4.1. General schematic of the M6ssbauer experimental setup.

The general setup for doing M6ssbauer experiments is shown in Fig. 9-4.1. The

hollow core Wissel motor drive was well adapted for doing experiments on synchrotron

beamlines. A conventional motor drive is usually designed for moving radioactive sources

against a stationary absorber, and it does not need a hollow core. For synchrotron

experiments hollow core drives were quite convenient because absorbers must be vibrated

against a fixed source. The drive works by vibrating a hollow cylinder using

electromagnetic driver coils. Attached to the end of the hollow cylinder is a sturdy

diaphragm onto which an absorber can be mounted.

A synchrotron experiment was performed to measure the energy spectra of the

hyperfine YIG resonance. To do this a single line sodium ferrocyanide, Na4Fe(CN)6,

absorber was used as an analyzer. In Fig. 9-4.1 the incident beam is the YIG diffracted

beam. The electronics set up to measure both the time spectra and the energy spectra is

shown in Fig. 9-4.2. The TAC and MCA for measuring the time spectra are taken from

Fig. 9-3.3. To measure the energy spectra, a gate having a time window of 250 nsec

(positioned 10 nsec after the timing signal) activated the MCA for measuring resonant

photons. For each valid start signal, the velocity of the motor drive was measured.

To calibrate the YIG energy spectra, M6ssbauer spectroscopy was performed on an

enriched 57Fe thin foil using a 57Co radioactive source. Obtaining the well known

positions of the Fe hyperfine lines gives the calibration of the velocity drive and enables

one to determine the energies of the YIG resonances. The energy spectra of the

ferrocyanide absorber was also analyzed to get information on how the absorber disturbs

the YIG resonant time signal. The electronics for doing these measurements is shown in

Fig. 9-4.3. The transmitted beam through the absorbers was measured by a Nai inorganic

scintillator detector, and the resulting signal was sent to a pulse height analyzer. The

analyzer output signal was amplified (×20) and sent to the input of the MCA. The pulse
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height analyzer was selected to provide an energy window for only 14.4 keV photons. If a

photon had the right energy to lie within the window, the analyzer sent a D,te signal to the

MCA to enable it for receiving the valid input signal (along the way the pulse is shaped to

" be about 1.5 _t sec long and 5 V high by a,gate generator so that the MCA could easily

handle it).

Ring Pick-off Signal
(or Timing Signal)

Start

I Stop

Discriminator ___ TAC

- Gate & Delay |
Generator

" / Delayed MCA
Pulse for Time Spectrum

Gate

Fan in/ _.. Pulse Gate & Delay Tracor Northern 1750
Fan out -- Generator

Inverter \ Input

Gate _..._[.._Multichannel(McA)Analyzer!Tracor Northern 1705 I for Velocity Spectrum
Channel "advance

pulse

]L__ MiSssbauer I MCA

" Mtissbauer driver/generator a_ddressdrive --"

. Wissel Motor Elscint MDF-N-5
Drive

Fig. 9-4.2. General schematic of the electronics for simultaneous measurements of't_oth
M6ssbauer velocity spectra and quantum beat time spectra. The start and stop signal come
from the schematic in Fig. 9-3.2.
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+900 Volts

Bicron * Nal L
1XMP040B Detector !- Preamp

___ _ Power .
Analyzer ! Analyzer .

input 1 Pulse Height outputCanberra 1718 [ _ Analyzer

L Amplifer
output

Positive
input

Gate & Delay I Delay

Ortec 416A Generator I Amplifier Ortec 427A

I Positive delay

output

$ Gate _ Input

Multichannel Analyzer [
Tracor Northern 1705 (MCA) !

Channel advance
pulse

MiSssbauer _/_/_ MiSssbauer I MCA
drive driver/generator a<ddress

Elscint MDF-N-5Wissel Motor
Drive

Fig. 9-4.3. General schematic of the electronics for MiSssbauer spectroscopy
measurements using a radioactive source.

An early Mtssbauer experiment is shown in Fig. 9-4.4. This was a push-pull

experiment where two black, single line, ammonium lithium ferroflouride absorbers

enriched to 91.2% 57Fe were used as notched filters having approximately a 2.5 mm/sec

wide absorption line (They were made by Gopal Shenoy and Ersin Alp at Argonne

National Labs--they were close collaborators on this experiment). The absorbers were

Doppler shifted to filter out the inner two lines (lines 3 and 4) of YIG. To accomplish this,

a function generator sent square wavetrains to the Mtssbauer drivers. The peak-to-peak

amplitude of the square waves was adjusted so that, at any instant of time, one absorber
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was Doppler shifted to filter out one of the inner two lines while the other was shifted to

filter out the other. The square waves arriving at the drives were in phase, so in order to

make the drives operate in an antiphase, or push-pull, mode, the absorbers were fixed onto

o the opposite ends of the drives (one absorber was fixed to the end where the driver coil was

[labeled DC in Fig. 9-4.4] and the other was fixed to the end opposite the driver coil). In

o this early experiment, Elscint solid core motor drives were used. Therefore, to do

transmission experiments they were equipped with long paddles attached to the driver

shaft. At the tips of the paddles were attached the M6ssbauer absorbers. This arrangement

was awkward to do synchrotron experiments, and the instrumentation was susceptible to

Incident beam DC) )

.
Coincidence

Photodetector
Elscint Motor

Drives

Fig. 9-4.4 Push-pull Mt_ssbauer experiment designed to filter out the inner two
hyperfine lines of YIG

t[ i Moss auer
_ Driver/generator M'6ssbauer

Function

Generator _ Drive # 1#1

Wavetec 166

_ M_ssbauer Miissbauer
Driver/generator _ Drive # 2

• #2

Elscint Motor
Elscint MDF-N-5 Drive

Fig. 9-4.5 Associated electronics for the push-pull M6ssbauer experiment.
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extraneous vibrations arising from the slippage of the paddles at the joint where they were

attached to the driver shaft, the flexure of the paddles themselves, and the movement of the

mount holding the absorbers to the paddles. These drives were later abandoned in favor of
the hollow core Wissel motor drives.

9.5 Energy Calibration Techniques

The energy width of each of the hyperfine lines of 57Fe is 4.67 × 10-9 eV with the

outer two lines separated by about 6 × 10 -7 eV (excluding dynamical effects such as

linewidth broadening and energy shifts). The 2 eV wide energy bandpass at a given angle

from the Si [1 1 1] monochromator easily covers the full range of the hyperfine spectrum.

The huge photoelectric scattering (or prompt) background of around 1012 counts/sec

resulting from the wide b,tndpass is reduced by 7 orders of magnitude by using a forbidden

electronic but allowed nuclear reflection from the YIG crystal. The photomultipliers are not

shielded from the resultant prompt pulses (the prompts are gated out electronically from

triggering the TAC). Prompt rates greater than 106 counts/sec tend to blind the

photomultipliers preventing them from seeing the delayed resonant signals--the fluorescent

tails of the plastic scintillator combined with the recovery period of the photomultipliers

start to become a major problem. For prompts rates of 105 counts/sec and nuclear signal

rates of 10 to 100 counts/sec, the nuclear resonance is found by performing a

monochromator energy scan. This scan is simply a measurement of the coincident delayed

resonant counts (the starts in Fig. 9-3.3) versus the monochromator energy setting--the

prompts time window in Fig. 9-3.2 is still used to electronically gate out the prompt signal.

To reduce the range in energy that must be searched to locate the resonance, an

energy calibration is done using the krypton absorption edge. Since the krypton edge is

rather broad (see Fig. 9-5.1), the monochromator can be initially calibrated to only within

+ 10 eV. For experiments having a counting rate of 10 to 100 counts/sec, searching over

20 eV for the resonant signal can take a few hours. For low count rate experiments of one

count/sec or less and for background rates of the same order of magnitude, a 20 eV search

can take an excessive amount of time. However, once the resonance has been found, the

krypton edge energy is known precisely. The krypton edge energy of 14326 eV is

demarcated in Fig. 9-5.1 where the uncertainty comes from the 2 eV resolution of the

monochromator. Gold also has an edge near the iron resonance. The position of its 14353
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eV edge is shown in Fig. 9-5.2 and was also calibrated using the 57Fe resonance. Gold

also has some near edge oscillatory structure which can be useful for calibration purposes.
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'_ 140000
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60000
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14.26 14.28 14.3 14.32 14.34 14.36 14.38

Energy (keV)

Fig. 9-5.1 Krypton edge energy scan.
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,  ooo4,

132000 _, , , i , , , I , , , I , , , ,-1

14.28 14.3 14.32 14.34 14.36 14.38 14.4

Energy (keV)
Fig. 9-5.2 Gold edge energy scan. The first minimum of the near edge structure
occurs at roughly 14364 eV.
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Another method of obtaining an energy calibration is to use noticeable features (or

glitches) in the energy spectrum of the monochromator. The silicon monochromator has a

strong primary reflection off a particular set of similar crystal planes. From two or more

sets of crystal planes, it also has simultaneous weaker reflections that travel in the same

direction as the primary reflection. Interference between these simultaneous, or

umweganregung, reflections and the primary reflection results in noticeable glitches in the

energy spectrum of the monochromator. Since the lattice spacing of Si is known very well

(to within 2 × 10.-4A), these glitches can be used as accurate energy marke_. The intensity

of the umveg reflections, however, is small compared to the primary reflection, so the

glitches show up as small dips in the primary energy spectrum. Finding prominent,

mwrow glitches at high energies near 14.4 keV is also a problem. Fig. 9-5.3 shows a good

candidate near 5931 eV along with its azimuthal _0plot. The nearly vertical reflection at

5931 eV in Fig. 9-5.3 (a) corresponds to the deep central 2 eV wide glitch in Fig. (b). This

glitch actually consists of two umveg reflections lying on top of each other: the [2 2 - 4]

and [3 3 - 3] reflections. The [2 2 -4] umveg reflection dominates though since it has a

larger structure factor. Another good candidate closer to the resonance energy is shown in

Fig. 9-5.4. The nearly vertical reflection at 11358 eV in Fig. 9-5.4 (a) corresponds to the

small central dip in Fig. (b). The width of this glitch is about 8 eV--four times wider than

the 5931 eV glitch. This 11358 eV glitch consists of four umveg reflections: the

[-1-1-3], [44-8], [55-7], and [66-4] reflections. The [-1-1-3] umveg

reflection dominates because of its larger structure factor. A major source of broadening of

the glitches comes from the nature of the monochromator. Since the monochromator

consists of two parallel Si crystals, there are always two sets of umveg reflections, and this

serves to broaden the glitches for Si crystals that are misoriented azimuthally in _.

One of the first tiles at finding the nuclear resonance signal was attempted at the

SPEAR beamline 10-2. The 11358 eV glitch was used as the energy calibration even

though this glitch had a broad energy width. The 5931 eV glitch was too far from the

resonance to be reliable for energy calibration. A krypton edge energy scan was done to
,,,,,

check the calibration results. The nuclear resonance was precisely right where it was

expected to be (Unfortunately, by accident the glitch was labeled an 11364 eV glitch, so the

first search was off by precisely the 6 eV error. This mistake was uncovered only after

analyzing the beamline experiment results).

The YIG crystal produces much more noticeable umveg reflections since only

forbidden reflections are used--they show up as prominent peaks rather than small dips (see

Fig. 9-5.6). These umveg reflections are a major problem when searching for the nuclear



(9.5) Energy Calibration Techniques 201

resonance because they contribute to the prompt background (the forbidden reflection is

only nearly forbidden), and the strong umveg reflections easily reach the saturation limit of

5.12 x 106 counts/sec (the frequency of the electron pulses in the SPEAR storage ring). At

high energies, they densely pack _- E space as shown in Fig. 9-5.5 (Only the largest

umveg reflections are shown where FsFu_s > 1O,000 (Fs is the structure factor described in

Section 7.10). Had ali nonzero reflections been drawn, the figure would be nearly black).
Ii

Searching for the resonance then involves finding a good, deep valley in C - E space.

The YIG crystals can also be used for energy calibration by making C-cuts and

E-cuts in C - E space and accurately mapping out the contours of ali the prominent umveg

reflections. An attempt was made to do this, but, because of the dense thicket of umveg

reflections, more confusion resulted than progress. Of ali the ways of making energy

calibrations, using the krypton edge (after it was calibrated once and for ali using the

nuclear resonance line) was the simplest and fastest way of finding the 57Fe resonance

energy.
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Fig. 9-5.3 (a) C-plot if Si [1 1 1]. (b) Phi scan of the 5931 eV glitch of Si [1 1 1]. The
prominent dip at 5931 eV is mainly due to the [2 2 -4] umveg reflection. Since the
monochromator was not precisely oriented to the _ = 0 position, there was extra structure
in the wings due to other nearby umveg reflections.
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Fig. 9-5.4 (a) Phi plot of Si [.11 1]. These plots become more densly populated with
" umveg reflections as the energy increases. However, occasionally there are reasonable

clearings having a vertical umveg reflection surrounded by only a few nearby reflections,
Vertical umveg reflections are desirable because their energy widths are narrow and give
good energy markers. (b) Phi scan of the 11358 eV glitch of Si [1 1 1]. The small central
dip at 11358 eV is mainly due to the [-1 - 1 - 3] umveg reflection--this is the nearly vertical
reflection in Fig. (a).
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Fig. 9-5.5 0-plot for YIG [0 0 2] reflection. There are no longer any convenient
vertical umveg reflections to serve as energy markers (the vertical line in the figure is a
marker for the 14412.5 eV nuclear resonance energy). Only the most intense umveg
reflections are shown (if ali nonzero reflections were shown, they would cover the figure
so densly that it would be nearly black). Trying to navigate across such a terrain to find the
nuclear resonance becomes a difficult task because most of the reflections are nearly
horizontal.
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Fig. 9-5.6 (a) e-plot for the YIG [0 0 2] reflection. (b) Phi scan of the [0 0 2]
reflection. For forbidden primary reflections the umveg reflections show up as peaks

- (sometimes called antiglitches) rather than as dips (or glitches) typical in energy scans of
allowed primary reflections. The markers where the umveg reflections lie are shown as
sharp triangles. The position of these m0rkers indicate that the energy of the incident beam
is 14411_+1 eV (the dotted line). However, phi angles near 45° are not good operating
points because the diffracted nuclear signal goes to zero there (the quadrupole splitting
between the different iron sites in YIG goes to zero).
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|0. KINEMATICAL EFFECTS

" 10.1 Nuclear Hyperfine Structure Quantum Beats

, The kinematical effects described in this chapter can be understood without a

thorough knowledge of dynamical diffraction theory. They can be adequately described by

single particle interactions rather than by the many particle, collective interactions occuring

in the dynamical effects. One such striking kinematical effect is the quantum beat patterns

that show up in the nuclear resonant, time-resolved measurements. These quantum beats

arise from the interference between a coherent superposition of quantum states. For the

case of 57Fe, the coherent states are the set of hyperfine states excited when the nucleus is

bombarded with an intense, broadband x-ray pulse. These excited states then fall back to

the ground state and emit photons that coherently interfere with each other to produce the

quantum beats. The coherence results from the scattering process remaining upon the

energy shell--the nuclear state before and after the photon-nucleus interaction is identical.

Quantum beats were first observed in the early 1960's independently by

Alexandrov and Dodd in the Zeeman beats arising from a superposition of electronic

" quantum states. 13 Here an external magnetic field was applied to split excited states and

produce Zeeman components which could interfere with each other. Hyperfine structure

beats arising from excited states naturally split by an internal magnetic field were observed

in the early 1970's by Haroche. 4' 5 Also in this same time period, fine structure beats were

seen by Haroche and Fabre, 6' 7 and in the late 1970's Hese used an electric field to split

excited states to produce Stark quantum beats. 8 _e first observation of nuclear hyperfine

structure beats resulting from the excitation of nuclear quantum states was made by Gerdau

in the late 1980's. 9 One should Rote that ali of the electronic quantum beats described

above were measured using gas samples while ali measured nuclear quantum beats were

done using solid samples. Thus the dynamical collective effects, such as resonance

• frequency shifts and decay rate speedups, present in nuclear systems have not been

observed in electronic systems.

Nuclear hyperfine structure quantum beats are dramatic features in ali of the time-w

resolved measurements of 57Fe enriched YIG. Recall from Section 8.1 that YIG has a

complicated antiferrimagnetic sublattice structure capable of producing 7 sets of 6-line

hyperfine spectra (42 lines altogether). By using [00(4n-2)] YIG reflections

(n = 1,2,3,...), electronic reflections are forbidden along with nuclear reflections from ali

207
_
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the a-sites and the d3-site. The hyperfine spectra then simplifies to 2 sets of 6-line spectra
from the dl and d2-sites.

=.-)
[00 21

.d2evc

_ [0101

__. _......,_ # 57- 2
di-_, _ __------_ YIGcrystal film

eft ," [10 0] \ 6.7//m thick
GGG substrate
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Fig. 10-1.1. Scattering geometry for nuclear resonance diffraction. The electric field
gradients in the YIG crystal lie in the cubic (1 0 0) symmetry directions. When the applied
magnetic field is perpendicular to the scattering plane formed by k; and Rf, it lies in the
[1 0 0] direction parallel to the electric field gradient of the nuclear dl-slte. When the
applied magnetic field is parallel to the scattering plane, it lies in the [0 1 0] direction
parallel to the electric field gradient of the nuclear d2-site. The incident beam is "
horizontally polarized perpendicular to the scattering plane.

For incident horizontally polarized x-rays and for an applied magnetic field

perpendicular to the scattering plane (para!lel to the polarization direction), each 6-line

spectrum reduces to a 4-line spectrum (Case 1 in Section 5-1). Under such conditions, the

M = +1 transitions are allowed (see Fig. 5-3.1) and the M = 0 transitions are not allowed--

they would be if the incident x-rays were vertically polarized. The scattering geometry is

shown in Fig. 10-1.1, and a simplified hyperfine diagram along with the polarization of

each line is shown in Fig. 10-1.2. Since the emitted x-rays from each line ali have the

same polarization, there will be quantum beats resulting from the interference of x-rays

from ali the resonance lines. The possible combinations of pairing the 8 lines in

Fig. 10-1.2 gives 8 choose 2, or (_)= 28, possible beat frequencies. The corresponding

beat periods are given in Table 10-1.1.

An experimentally measured time-resolved spectrum for such a scattering geometry

is shown in Fig. 10-1.3 (using the YIG [0 0 2] reflection). Since lines 1 and 6 have the

largest Clebsch-Gordan coefficients, the amplitude of their beats dominate the overall

quantum beat pattern--the beating between lines 1 and 6 gives rise to the fast 7 nsec
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(l) (3) (4) (6)
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I

i I I d2 -site

" 1 I
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Energy

Fig. 111-1.2. Hyperfine energy spectrum illustrating the case where the applied magnetic
field is perpendicular to the scattering plane. Each hypeffme line is horizontally, or sigma,
polarized: _.

t, t, t+ t; t;

l 3 18.6

g4 13.4 47.6

g6 7.22 11.8 15.6

g_ 135 16.4 12.2 6.85

t_ 16.4 135 73.3 12.9 14.6 _--_

l'4 12.1 34.4 124 17.9 11.1 46.0 __....

g6 7.66 13.0 17.9 124 7.25 14.4 20.9

Table 10-1.1. Hyperfine structure quantum beat periods (in nsecs) for the case of an
applied magnetic field perpendicular to the scattering plane. Lines g. are from the nuclear
dl-site, and the primed line!+g" are from the d2-site. The internal magnetic field strength
is - 3.69 x 105 Gauss and the electric quadrupole splitting is -0.89 mm/sec. The dominant
q "',turn beats are in bold face. The average fast magnetic quantum beat seen in
Fig. lO-1.3 is 7.2 nsec and the average slow electric quadrupole quantum beat is 130 nsec.

. magnetic beat period seen in Fig. 10-1.3. There is also a quadrupole beat period of 130

nsec due to the electric quadrupole splitting between lines gl and l_ of the dl and d2-sites

(and also between lines g6 and t 6 of the two sites). This gives rise to the overall slow
+

modulation of the beat pattern in Fig. 10-1.3. All of the other quantum beats show up as

small perturbations upon the overall quantum beat pattern. The fit to the data in Fig. 10-1.3

utilizes the full dynamical diffraction theory for resonant scattering, but it relies heavily

upon the energy separation of the hyperfine lines that gives rise to the quantum beat periods

given in Table 10-1.1. The dynamical resonance frequency shifts discussed in Sections

=
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Fig. 111-1.3. Hyperfine structure quantum beat pattern for the case where the applied .
magnetic field is perpendicular to the scattering plane. Full dynamical diffraction theory
has been applied to obtain the fit using the quantum beat periods given in Table 10-1.1.
The operating angle was set at-25/_rads below the Bragg peak. Operating off the Bragg
peak lessens the decay rate speedup and allows the slow electric quadrupole quantum beat °
to be seen.

7.6 and 7.7 slightly change these quantum beat periods--these small changes can lead to

drastic changes in the quantum beat patterns and are further examined in Chapter 11.

When the applied magnetic field is parallel to the scattering plane and parallel to the

crystal surface, ali 12 lines from the d-sites are allowed (Case 3 in Section 5-1). For small

Bragg angles, the M = 0 lines can be neglected, and the 12 lines reduce to 8 (the magnetic

field is then nearly parallel to the incident and scattered photon directions). The simplified

hyperfine diagram for such a case was discussed earlier and is shown in Fig. 8-1.4. The

M = +1 lines emit left circularly polarized photons (polarization _.) while the M =-1 lines
.

emit right circularly polarized photons (polarization __). Since photons of orthogonal

polarizations do not interfere with each other, the total number of beat frequencies is twice

4 choose 2 combinations of pairs of lines, or 12 possible beat frequencies. The beat

periods for such a case are given in Table 10-1.2.

The experimentally measured time-resolved spectrum for such a scattering geometry

is shown in Fig. 10-1.4. There are far fewer different beat periods than in the previous

case where the magnetic field was perpendicular to the scattering plane. However, there is
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14 11.1 __.. _' _"_ _

• 1'4 12.2 124 __ _ _ _

l_ 135 12.1 13.4 __ _ _ _

13 _! _ _ _ 14.4 __

t; 13.0 135

t'6 124 12.9 11.8
Table 10-1.2. H,iperfine structure ¢uantum beat periods (in nsecs) for the :ase of an
applied magnetic field parallel to the scattering plane. Lines l, are .from the nuclear dl-site,
and the primed lines t" are from the d2-site. The internal magnetic field strength is
- 3.69 x 10_ Gauss and the electric quadrupole splitting is -0.89 mm/sec. The upper left-
hand and lower right-hand sections of the table represent quantum beats for right and left
hand circularly polarized x-rays respectively. The average fast magnetic quantum beat in
Fig. 10-1.4 is 12.2 and 13.0 nsec for right and left circularly polarized x-rays respectively.
The slow electric quadrupole quantum beat is 135 and 124 nsec for right and left circularly
polarized x-rays respectively.

g.

the additional complication of two superimposed quantum beat patterns of two different

, polarizations (right and left circular polarizations) having slightly different beat periods

(about 12 nsec for the right and 13 nsec for the left circular polarization). Due to the

slightly different beat periods for the two overlapping beat patterns, they go into and out of

phase as time goes on. In Fig. 10-4.1, the point in which the overlapping beat patterns get

out of phase is around 60 to 70 nsec and gives rise to the anomalous feature present there

where the overall beat pattern is nearly washed out. This null point is one of the most

difficult features of the beat pattern to fit because it is very sensitive to a wide host of

kinematical and dynamical effects.

In the sections to follow, the quantum beat patterns will be examined to investigate

interesting physical properites such as the polarization of the incident beam, the Lamb-

Mfssbauer factor, and the internal hypefine crystalline fields at room and low temperatures.

" In the final section angular interferometry is used to explore the phase shift of a rotated

quantum state. Quantum beats are seen to be a very useful effect that can be used to

" understand and explore many fascinating physical phenomena in resonant scattering

physics.
I
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Fig. 10-1.4. Hyperfine structure quantum beat pattern for the case where the applied
magneticfield is parallel to the scatteringplane. Full dynamical diffraction theory hasbeen
applied to obtain the fit using the quantum beat periods given in Table 10-1.2. The
operatinganglewas setat -20/zrads below the Braggpeak.

J,

10.2 Analysis of Internal Hyperfine Fields

Time and frequency lie in dual spaces that are the reciprocal of each other. The

decision to examine a scattering process in either temporal or frequency space will not

change the underlying physics of that process. A M0ssbauer velocity measurement should

yield the same information as a time-resolved measurement. However, the collected

information may be more difficult or easier to interpret depending upon what type of

measurement is made. For instance, the phase information in a scattering process is more

easily seen in a time-resolved measurement while the hyperfine resonance energies are

more easily seen in a MOssbauer velocity measurement,

In this section, the internal magnetic dipole and electric quadrupole fields are

investigated through time-resolved spectroscopy. The main utility this method has over

M0ssbauer velocity spectroscopy is the length of time needed to take sufficient data for low

count rate experiments. For counting rates of around 100 counts/sec, the time spectra can

be collected in about 1 minute to get enough statistics to determine the hyperfine field
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parameters adequately, while a M6ssbauer velocity spectra would need several hours of

collection time to get the same information. One reason for this is because the velocity

measurement is an absorption measurement collecting information about missing resonant

. photons, and it therefore has a larger background problem. Also, the velocity analyzer

must be a reasonably thin-line absorber in order to scan the hyperfine spectra of the sample

without significantly distorting, or modifying, the sample's spectra--this further increases
" data collection times.

To acquire an intuitive grasp of how the time spectra vary with changing hyperfine

field parameters, multiple graphs are given in Figs. 10-2.1, 10-2.2, and 10-2.3. Each plot

is normalized to unity and covers the first 250 nsec after the prompt excitation. The YIG

[0 0 2] spectra were calculated at an angle -40/zrad below the Bragg peak in order to

clearly show the electric quadrupole quantum beat. The higher order YIG [0 0 10] spectra

were calculated at an angle right at the Bragg peak. The difference in operating angles

gives rise to the difference in intensities between the [0 0 2] and [0 0 10] reflections--

operating far off the Bragg peak significantly reduces the reflected intensity. The spectra

were calculated for an internal magnetic field, Bi,., perpendicular and parallel to the

. scattering plane. When the internal magnetic field stren_h was vari,._din steps of 2 kGauss

from 364 to 374 kGauss, the electric quadrupole splitting, e2qQ/2, remained fixed at

0.89 mm/sec. When the electric quadrupole splitting was varied in steps of 0.02 mm/sec

(or 1 neV) from 0.84 to 0.94 mm/sec (or 40 to 45 neV), the internal magnetic field strength

remained fixed at 369 kGauss. The incident x-rays were fixed to be 100% horizontally

polarized, and the full dynamical diffraction theory was used to perform the calculations.

(The curve in bold-face in the figures is pointed to by the graphic arrow li. )

Increasing the internal magnetic field strength increases the magnetic energy level

splitting thus forcing the hyperfine lines to be spaced further apart in energy. Increasing

the energy spacing between the hyperfine lines decreases the beat period and causes the

beat pattern to be compressed in time. This accordion effect is clearly shown in

Fig. i0-2.1 where increasing the internal magnetic field strength compresses the beat

pattern and decreasing the field strength expands the pattern. The accordion effect is most

- dramatic during the second peak of the electric quadrupole beat occurring after 130 nsec.

When operating far off the Bragg peak, changes in the internal magnetic field strength of

, 2 kGauss can be unambiguously seen in the time spectra (this is even more revealing in the

fast beat spectra where the internal magnetic field is perpendicular to the scattering plane).
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Fig. 10-2.1. YIG [0 0 2] time spectra for various internal magnetic field strengths.
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Fig. 10-2.2. YIG [0 0 2] time spectra for various electric quadrupole energy level
shifts.
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Changes in the internal magnetic field strength dramatically affects the fast magnetic

beat pattern. Changes in the electric quadrupole splitting factor, e2qQ/2, dramatically

affects the slow electric quadrupole beat pattern. Increasing the quadrupole splitting

. increases the energy spacing between lines 11and t_ of the dl and d2 iron sites (and also

between lines 16 and l_ of the two d-sites). This leads to a decrease in the quadrupole beat

period, and this shows up in Fig. 10-2.2 as a compression of the modulation envelope over

the fast magnetic beats. Again, when operating far off the Bragg peak, small changes in

e2qQ/2 lead to striking changes in the overall beat pattern. Changes in the beat pattern due

to changes in e2qQ/2 of 1 neV are quite evident.

Many other factors can play a role in modifying the quantum beat patterns: variation

of the magnitude of the internal hyperfine fields throughout the crystal film, nonuniformity

of the applied magnetic field, depolarization of the magnetic dipoles, nonuniformity of the

electric field gradient directions at each nuclear site, nonuniformity of the lattice spacing

within the crystal film, the mosaic crystal spread, and the polarization of the incident field

to name a few. One could probably fit any set of experimental data by varying an unlimited

number of parameters. So, only a few factors that were known to have a significant effect

were considered.

The polarization of the incident beam had to be considered in certain cases. Since

the experiments were done on wiggler or undulator beam lines, elliptically polarized beams

were not a problem (Furthermore, there was no strong evidence for elliptically polarized

beams in the data. The result may have been different if a bending magnetic beam line was

used since elliptically and even circularly polarized x-rays exist when operating above or

below the plane of the electron orbit°). A partially unpolarized mix of horizontally

polarized x-rays with a small amount of uncorrelated vertically polarized x-rays was

considered in the hyperfine field analysis. A few examples of such a mixture containing 70

to 100% horizontally polarized x-rays is shown in Fig. 10-2.4. When the internal magnetic

field is parallel to the scattering plane, an admixture containing up to 30% vertically

polarized x-rays barely changed the beat pattern--only the sensitive null region near 70 nsec

is affected. The beat pattern is significantly affected when the magnetic field is

" perpendicular to the scattering plane. This is not an unexpected result. When B_., is

parallel to the scattering plane, both horizontally and vertically polarized x-rays can excite

• lines 1,3,4, and 6 which in turn radiate circularly polarized x-rays--horizontally and

vertically polarized x-rays do about the same thing. When B,,,, is perpendicular to the

scattering plane, horizontally polarized x-rays can excite lines 1,3,4, and 6, but vertically

polarized x-rays can excite only lines 2 and 5. The beat period between lines 2 and 5
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The other major factors considered were the mosaic spread of the crystal film and

the angular distribution of the incident beam. Both of these factors were treated in a simple
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Fig. 10-2.4. Time spectra tor various amounts of horizontally and vertically polarized
x-rays.
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The other major factors considered were the mosaic spread of the crystal film and

the angular distribution of the incident beam. Both of these factors were treated in a simple

fashion by performing a Gaussian angular average centered over the incident angle.

. Multiple time spectra were calculated at various incident angles, and the final fit was a

Gaussian weighted average of each spectrum. This method takes into account both the

angular divergence of the incident beam and the mosaic crystal spread of the YIG thin film.

The time resolution of the detector apparatus was handled by convolving a

Gaussian pulse with the beat patterns. This is simply a Gaussian weighted time average,

and its main effect is to partially wash out the oscillations in the beat pattern.

7 i--i i I j i i i I i i i i i i i i i i i i i t i-

electronic prompt6

• 5 -
delayed nuclear

" 4 _ signalo

/-= 3
O

. r..)
2

O

" __l_.

-10 30 70 110 150 190 230

Time (ns)

Fig. 10-2.5. Time spectrum along with the background. The background measurement
was taken 5 eV above the 14412.5 eV nuclear resonance energy. The YIG [0 0 2] time
spectrum was taken about 10/arad above the Bragg peak with Biǹ parallel to the scattering
plant_. This is the second time spectrum ever to be taken at the PBF1 beamline at PEP (the
very first was a rough demonstration measurement and was not used in the hyperfine field
analysis).I

No background subtraction was done to the data. The data was analyzed at a time

" long enough after the prompt excitation that the fluorescent signal from the photodetector's

plastic scintillator was negligible--this was ensured by analyzing the data 25 nsec from the

prompt pulse. Fig. 10-2.5 shows a typical beat pattern together with the FroJ_pt pulse.

The width of the prompt pulse is quite wide (FWHM -- 4.3 nsec), but this was later found
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out co be due to the TAC being overworked trying to process data at a prompt rate of

12,000 counts/sec. When the prompt rate fell to around 5,000 counts/sec, the prompt

pulse width fell to a more respectable 2.5 nsec. The background run was done by tuning

the monochromator energ'3'5 _"v above the nuclear resonance energy. The background rate

beyond 25 nsec was about 0.23 counts/sec. Compared to the delayed nuclear signal rat,_of

roughly 190 counts/sec, the background car be safely ignored.
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Fig. 10-2.6. Dramatic improvement in the time resolution of the measurements.
Fig. (a) is a measurement without the veto signal in Fig. 9-3.3 to the coincidence logic unit;
Fig. (b) is a measurement with the veto signal. By not overworking the TAC the time
resolution was improved by a factor of two from 5 nsec to 2.5 nsec.

The data shown in Fig. _0-2.5 was taken without the veto signal to the coincidence

logic unit shown in Fig. 9-3.3. This resulted in the TAC being overworked at high
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counting rates and contributed towards broadening the time resolution of the

measurements. By using the veto signal which allowed the TAC to be triggered only at

times 10 nsec after the prompt pulse, the TAC could be used at high prompt rates without

° worsening the inherent time resolution of the photomultipliers. In such an arrangement,

data as far back as 10 nsec after the prompt pulse can be measured with very low

background rates, and the time resolution improves to around 2.5 nsec. This is shown in
P

Fig. 10-2-6. The improvement in time resolution by a factor of two, however, did not

change the values of the hyperfine field parameters used to fit the data. The improvement

enabled small subtle effects to be seen in the time distribution. For instance, for data

having a 7 nsec beat pattern blurred with a 5 nsec time resolution (see Fig. 10-2.6), the

polarization content of the incident beam could not be determined when the crystal was

positi-med at the Bragg peak. However, he incident polarization content could be measured
when the time resolution was reduced to 2.5 nsec.

For the hyperfine field parameters given in Tables 10-2.1 and 10-2.2 (Bi,_,is the

internal magnetic field strength and e2qQ/2 is the electric quadrupole splitting factor), Z 2

fits were performed. Using a Fortran subroutine, VA02A, acquired from the Argonne

. National Labs computer center, a grid-gradient search algorithm for minimizing Z 2 was

employed by varying 5 to 7 parameters: Bi,, , e2qQ/2, the incident polarization distribution,

the Gaussian angular and time resolution, the deviation angle from Bragg, and the startingQ

time.

An analysis of 25 time spectra (from the Run #1 set in Table 10-2.1) where the

deviation angle from the Bragg peak was less than +-20/a rad and where 6 parameters were

varied (the incident polarization was fixed to be 100% horizontally polarized) resulted in a

Gaussian angular width (FWHM) of 21+_3 _ rad --about 17% greater that the perfect Si

crystal Darwin width. The fitting routine had a difficult time determining the angular

resolution for time spectra taken at deviation angles greater that 20 _ rad beyond the Bragg

peak giving angular widths of up to 50 #rad, thus these spectra were omitted. The net

angular resolution appears to be largely limited by the Darwin width of the Si

monochromator (which is 18/.trad for perfect crystals) rather than by the mosaic spread of

" the YIG crystal.

For fits to all of the data in the tables below, the Gaussian angular resolution was

• fixed at 20 _rad, and only 6 parameters were varied (Except for the case where B,_ was

parallel to the scattering plane. The incident polarization was simply fixed to be 100%

horizontally polarized since, as shown in Fig 10-2.4, such time spectra are insensitive to

the polarization distribution). There was little coupling between the parameters--the
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variation of one parameter to minimize Z 2 had little effect upon the value of the other

parameters that minimized Z 2.

For data taken without the coincidence logic veto signal blocking out the prompt

signal from the TAC, the time resolution was 4.1+_0.8 nsec (This was compiled from the

Run #1 data in Table 10-2.1 and from some of the Run #2 data in the same table. The Run

#2 data was taken during a beamline run were the improvement in time resolution was
q

tested and implemented). When the coincidence logic veto signal was used, the time

resolution improved to 2.4+0.1 nsec (This was compiled from the data in Tables 10-2.1

and 10-2.2).

The polarization of the incident radiation differed at the PEP and CESR synchrotron

ring beamlines. The polarization of the incident beam at the PBF1 undulator beamline at

PEP was found to consist of 93+-3% horizontally polarized radiation (the data in

Table 10-2.1 taken during the two different runs gave the same result). At the F2 wiggler

beamline at CESR the incident beam consisted of 84+-2% horizontally polarized radiation.

This decrease in polarization of the source beam may be due to the use of a wiggler rather

than an undulator, and because the electron beam energy was lower at CESR than at PEP

(5.5 GeV versus 14 GEV).

The hyperfine field parameters for the crystals labeled 57-2 and 57-6 are given in

the Tables 10-2.1 and 10-2.2. An extensive investigation of the combined hyperfine

interactions in YIG was made by Winkler through M6ssbauer transmission spectroscopy

measurements. 1° He found that for YIG single crystals 60/.tm thick:

Bi,,,=-399.9+- 1.5 kGauss and e2qQ/2 = -0.89+0.01 mm / sec.

The YIG thin crystal films exhibit somewhat different hyperfine properties. For crystal

#57-2, Bi., is roughly 6% to 8% less than Bi., for a pure single crystal, and, for crystal

#57-6, Bi., is smaller by 4%. The reduction in Bi., is primarily due to the films being

impregnated with a small amount of lead occupying the yttrium lattice sites. This has

changed the local electrostatic and magnetostatic environment around the iron atoms and

has resulted in a decrease in the internal magnetic field at the iron nuclei.

There is an interesting problem with crystal #57-2. For two different beamline runs
qp

different hyperfine fields were measured. Bi,, has increased by 2% and e2qQ/2 has

increased by 6% between Runs #1 and #2. Recall from Section 9.1 (see Fig. 9-1.2) that

crystal #57-2 is a 6.7/_m thick crystal consisting primarily of 2 layers of YIG films having

different lattice spacings. However, the data indicates that this crystal nonuniformity is not

the reason for the difference in hyperfine fields between the two runs. The [0 0 2]

reflection has a primary extinction length of 1.1/_m, thus these reflections probe only the
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first micron of the crystal film. The Z 2 fits to the higher order reflections in both runs

found that these reflections were probing a crystal film sublayer roughly 2.6/.zm thick (see

Section 11.4). Crystal #57-2 is then composed of two films 2.6 and 4.1/.tru thick. Since

. the first micron of the crystal is uniform, the difference in B,,, between Runs #1 and #2 for

the [0 0 2] reflections is not due to thickness nonuniformity.

There is also reason to believe that a nonuniformity in the local hyperfine field

environments across the surface area of the crystal is not responsible for the differences.

As a result of the focusing properties of the upstream cylindrical mirror and the small Bragg

angle, the incident beam lit up a stripe across the crystal 3 mm wide by 3 cm long for the

[0 0 2] reflection. For the higher order reflections the area of this stripe substantially

decreases--the [0 0 14] reflection lights up a stripe 3 mm wide by 1 mm long (the incident

beam area was roughly 3×0.5 mm). However, the higher order reflections scanning ever

smaller sections of the crystal area gave the same hyperfine parameters as the [0 0 2]

reflection (as shown in Run #2). Nonuniformity of hyperfine fields across the crystal

surface area is not evident in the data.

What may have occurred between the runs (which occurred 1½years apart) is that

, the crystal deteriorated to some degree. Some of the iron may have oxidized to become

Fe203. The change in B,,, is in the right direction (Bi,, for pure Fe203 is -515 kGauss) but

• the change in e2qQ/2 is in the wrong direction (e2qQ/2 for pure Fe203 is -0.12 mm/sec).

The reason for the change remains unclear, but what is impressive is that 2% changes in the

hyperfine field parameters is easily detectable through examining the quantum beat patterns.

Unl;.ke crystal 57-2, crystal 57-6 is composed of a single layer of YIG (see

Fig. 9-1.2). The Z 2 fit to the data yielded a thickness of 4.3+0.4/.zm which is reasonably

close to the expected value of 4.7/lm. The difference in hyperfine parameters between

crystal 57-2 and 57-6 should be mainly due to the difference in lead concentrations in the

two crystals. As a result of the odd behavior displayed by the other crystal, the effect of

the lead upon the local electric quadrupole field is not readily determinable, e2qQ/2 is 4%

greater than Winkler's value for YIG, but there are large variations in this value stated

throughout the literature (measured values varied from 0.78 to 1.03 mm/sec). 11-14
it.

Time-resolved spectroscopy is just as sensitive as M6ssbauer velocity spectroscopy

towards measuring hyperfine field parameters. They both can measure the hyperfine field

• values to within 1-2%. As a result, time-resolved spectroscopy was able to reveal subtle

differences in the hyperfine properties of YIG between various thin film samples, and that

these properties may slightly change over time for each thin film. Time-resolved

spectroscopy using synchrotron x-rays may become more useful than Mtissbauer

spectroscopy whe_l trying to measure the hyperfine fields of extremely small or very thin
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Reflection Bi,,, B,,, e2qQ/2 # of time spectra

direction (kGauss) (mm/sec)

PEP Beamline Run #1

[0 0 2] II -369+_2 -0.88+_0.02 27 "

[0 0 2] Z -369+_1 -0.88+0.02 9

[o06] II -373+_3 -0.87_+0.02 l

[0 0 10] [I -373+2 -0.88+0.02 1 ,,,

[0 0 10] _1_ -370+-2 -0.87+0.02 1

Ali reflections -369+2 -0.88+0.02 39

PEP Beamline Run #2

[0 0 2] II -377+-4 -0.93+-0.04 1

[0 0 2] _1_ -377+2 -0.94+-0.01 7

[oo6] II -374+-3 -0.93+0.03 1,,,

[0 0 6] _1_ -376+2 -0.91+-0.03 1

[0 0 10] li -377+-2 -0.92+0.01 2
w

[0 0 10] _1_ -376+-1 -0.93+0.02 1

[o014] II -376+2 -0.92+0.02 1

[0 0 14} _1_ -376+1 -0.94+0.02 1

Ali reflections -376+-1 -0.93+-0.01 15

Table 10-2.1. Hyperfine field parameters for crystal # 57-2. The uncertainties for each
set of data represent the square root of the variance in the data using a weighted average for
the mean. For each individual time spectrum the uncertainty in the parameters represents
what it takes to produce a 10% change in the Z 2 minima. Bi, , is either parallel or
perpendicular to tile scattering plane.

Reflection B_,,, Bin` e2qQ/2 # of time spectra

direction (kGauss) (mm/sec)

[o0xi II -384+-2 -0.95+0.01 2

[0 0 2] _1_ -384+-4 -0.96+-0.04 1

[0 0 10] _1_ -383+-1 -0.96+-0.01 2

Ali reflections -383 + 1 -0.95 +0.01 5

Table 10-2.2. Hyperfine field parameters for crystal # 57-6. The data was taken at the
CESR F2 wiggler beamline.
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materials consisting of just a few nuclei or a few layers of nuclei. Such materials would

produce signals that are too weak to be measurable by M6ssbauer spectroscopy techniques.

However, time-resolved spectroscopy performed at future third generation synchrotrons

. having high powered undulator or wiggler insertion devices will provide way of probing

such exotic materials.

10.3 Low Temperature Measurements

A low temperature experiment was performed to examine the scattering and

hyperfine properties of YIG. 15 The crystal was mounted in a cryostat centered on a four

circle diffractometer as explained in Section 9.2. Measurements were made at room

temperature and at 150° K. A temperature controller was used to stabilize the temperature

during the course of the measurements. The results are shown in Fig. 10-3.1.

One unexpected result can be quickly noticed in the two measurements shown in

Fig. 10-3.1. Both measurements were taken for the same length of time, but the low

temperature measurement has a much lower count rate than the room temperature

measurement (17 counts/sec versus 110 counts/sec, or a factor of 6½ times less). What

, was expected was an increase in counting rate as the temperature decreases because the

Lamb-M6ssbauer factor, or recoilless fraction of resonant nuclei, increases to the limit of

unity as the number of phonon modes goes to zero. A cause for this discrepancy may be

because the YIG crystal is a thin film epitaxially grown on a GGG substrate. There is

naturally some strain in the film since YIG and GGG have different lattice constants.

Going to low temperatures may have magnified these strains and caused the film to distort,

or warp, resulting in the much lower counting rates. The measurement was done with

crystal #57-2 before having any accurate knowledge of its structure. During or after the

fabrication process, the crystal bifurcated due to lattice mismatching problems. What these

results suggest is that YIG films thinner than 2.5 /.Lm grown on GGG are not good

samples to do low temperature perfect crystal diffraction experiments.

" Though the crystal diffracts poorly at low temperature, the hyperfine parameters

could still be me_,sured and were found to be very different than the room temperature

- values. The internal magnetic field strength increased by 15% to 429 + 4kGauss when the

temperature was lowered to 150°K. The value of B,n, at low temperatures does not

significantly depart from measurements made by others--M6ssbauer transmission

measurements at 85°K yielded values of B_, ranging from 460 to 467 kGauss, and a

nuclear magnetic resonance measurement at 77°K yielded 468 kGauss (these were ali done
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on pure YIG polycrystalline samples). 16-18 Extrapolating to 150°K using the careful

NMR measurements of Ogawa gives a value of 452 kGauss. 18 This is about 5% greater

than the thin film measurement, and, since the room temperature measurements are about

7% greater than the thin film measurements, this difference is not unreasonable.
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Fig. 10-3.1. Time spectra for [0 0 10] reflection at (a) room temperature and at (b)
150°K. Bi,,, is parallel to the scattering plane and the crystal surface. At room temperature
B,,, =-373+2kGauss and e2qa/2=-O.88+O.O2mm/sec_At 150oKIB,.Iincreased
15% to 429+ 4 kGauss and le_qa/2idecreased 61% to 0.54 +0.04 mm/sec.
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The electric quadrupole splitting factor decreased almost by half (61%) to

0.54+_0.04 mm/sec when the temperature was lowered to 150°K. The temperature

dependence of e2qQ/2 has apparently not been explored in detail experimentally since there

. is little information about it in the literature. Most early temperature dependence

experiments have been done with polycrystals since they were easier to obtain, and these

experiments examined the behavior of only the internal magnetic field. Since the direction

between the electric field gradient and the magnetic field is completely random for a

polycrystal, the electric quadrupole splitting should average to zero, thus no reliable value

of e2qQ/2 can be measured. This problem can be overcome by applying a sufficiently

strong external magnetic field to remagnetize the polycrystal--in this case the angle between

B_ and the electric field gradients is random and can be averaged over to obtain fits to the

data. This was done to YIG polycrystals at room temperature (the external magnetic field

strength was 20 kGauss), and quite accurate values of e2qQ/2 were extractable from the

data. 13 However, there is no account in the literature of using this procedure to find the

temperature dependence of e2qQ/2.

. 10.4 Angular Interferometry: Observation of the Phase
Shift of a Rotated Quantum State

Scattering angle dependent quantum beat interference has been used to examine the

phase shift of a quantum state that has undergone a rotation. A physical interpretation of

this effect using the scattering theory formalism developed in Chapter 4 is given in Section

5.5. From a different perspective, the angular phase shift can be understood from basic

rotational and mirror symmetry properties of free space 19(see Appendix A.1 ).

The YIG [0 0 10] reflection was chosen to get the maximum effect. In the

experiment at the CESR beamline, the internal magnetic field was oriented, by using an

external guide field, in the two antiparallel directions perpendicular to the scattering plane,

and the net phase difference between the time beat patterns for the two orientations of the

magnetic field was measured. Changing the direction of the magnetic field was equivalent

" to performing a [0 0 +10] and a [0 0-10] reflection. This was observed during

experiments at the PEP beamline where upward and downward reflecting experiments

(without changing the direction of the magnetic field) gave phase shifts equivalent to

orienting an internal magnetic field in the two antiparallel directions perpendicular to the

scattering plane (without changing the orientation of the crystal).
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Fig. 10-4.1. Quantum beat patterns of YIG [0 0 10] reflections for (a) right-handed
scattering and (b) left-handed scattering. (b) Calculated fits to the data are shown
superimposed and expanded. The nearly 180° phase shift is clearly evident.
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The results of the CESR beamline experiment is shown in Fig. 10-4.1. Note that in

the diagram in Fig. 10-4.1 (a) the incident photon is rotated in a right-handed sense in

going from k_ to kl--this will be called fight-handed scattering. Left-handed scattering is

. illustrated in the diagram in Fig. (b) where the incident photon is rotated in a left-handed

sense in going from k_ to k I. The Bragg angle for the YIG [0 0 10] reflection is about

20°. Diffraction from this reflection results in a net phase difference, Aq_= 80a, of 160°

between the quantum beat patterns of left and right-handed scattering. As can be seen in

Fig. 10-4.1 (c), the peaks of one beat pattern lie almost in the valleys of the other beat

pattern. This dramatically illustrates the angular phase a photon acquires upon undergoing

an angular momentum conserving rotation. 19

As can be seen in Fig. 10-4.1, more is going on than the phase shifts discussed

above, for the overall shapes of the beat patterns for left and right-handed scattering are not

the same. The reason for this can be understood by examining Table 10-1.2. The quantum

beats with the largest amplitudes comes from the interference between lines 1 and 6 having

a beat period of 7 nsec (averaging over the two iron d-sites in the crystal). Since these

lines have a total angular momentum component of M = +1, they contribute to the 40 B

- phase shift of the right or left-handed scattered photons that is observed in the experiment.

However, there are 24 other beats affecting the net quantum beat pattern. Of these, 12

. occur from pairs of lines having the same value of M. There is no phase shift for pairs of

lines having identical M values, thus the phase shifted, dominant 7 nsec beat pattern is

modulated by unshifted, though less dominant, beat patterns (having an average beat period

of 130 nsec and 11 nsec). This additional unshifted amplitude modulation causes the

difference in the shape of the beat patterns for right and left-handed scattering. For the

[0 0 2] reflection where the net phase shift is negligible (80B = 32° corresponds to a shift

in time of ½ nsec which is unobservable for detectors having a resolution of 2.5 nsec),

these amplitude variations are the only predominant differences between left and right-

handed scattering (see Fig. 10-4.2).

In addition to the perturbations upon the 7 nsec beat pattern, there are dynamical

effects, such as resonance frequency shifts and decay rate speedups, that modify the beat

pattern. Thus, to get good fits to the data, the full nuclear dynamical diffraction theory was

applied. However, as can be noticed in Section 5.5, the angular phase shifts can be

" calculated using kinematical, or single particle, scattering theory.

Note that the scattering diagram in Fig. 10-4.1 (a) shows a scattering interaction

that appears to be time reversed from that shown in the scattering diagram in

Fig. 10-4.1 (b). A physical process and its time reversed process should give identical

experimental results unless time reversal symmetry is broken. Since the time beat patterns
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for the two scattering processes are different, time reversal symmetry appears to be

violated. This perplexing problem is resolved by noting that the magnetic field behaves as

a pseudovector that is odd under time reversal. Thus, the actual time reversed process of

the diagram in Fig. (a) is the diagram in Fig. (b) with the magnetic field changed in sign to

point in the opposite direction (into the page instead of out of it)--this gives back the

scattering diagram in Fig. (a), and time reversal invariance is upheld.
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Fig. 10-4.2. Quantum beat patterns of YIG [0 0 2] reflections for right-handed
scattering and left-handed scattering. The phase shift is imperceptible, but the amplitude
variations between the patternsare noticeable.

This characteristic of magnetic fields makes them a common source of problems when

trying to investigate the breaking of time reversal symmetry in physical interactions.

One interesting result from these angular interferometry experiments is that the sign

of the internal magnetic field can be uniquely determined. Right-handed rotations of the

photon quantum state about the quantization axis (which is the internal magnetic field

direction) gives rise to quantum interference patterns that are phase retarded by 40 B. Left-

handed rotations lead to quantum interference patterns that are phase advanced by 40 a.

Finding which pattern is advanced or retarded in phase immediately gives the sign of the

internal magnetic field. Upon careful examination of the [0 0 10] data in Fig. 10-4.1, the

internal magnetic field at the iron d-sites was verified to be oriented antiparallel to the
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externally applied magnetic field (this would have been more easily seen by going to a

reflection that did not give nearly 180° net phase shifts).
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11. DYNAMICALEFFECTS

11.1 Radiative Speedup

The nuclear hyperfine quantum beats are one of the most striking kinematical effects

seen in the nuclear resonance time spectra. Similarly, one of the most dramatic dynamical

effects seen in the nuclear resonance time spectra is the nuclear decay rate speedup. Rather

than decaying with the lifetime of an isolated excited-state 57Fe nucleus (which is

141 nsec), a"group of 57Fe nuclei, for a single photon interaction, behaves as an excited

collective state that decays much faster than an isolated nucleus. This single photon

quantum effect has been discussed in Sections 7.6 and 7.7.

As shown in Figs. 7-6.6 to 7-6.8, the collective total nuclear decay rate varies as a

function of time. This is due to the non-Lorentzian nature of the collective nuclear

resonance frequency response. Actually, there are two decay rate speedup factors: F,

resulting from forward scattering in the crystal and is important at early times, f_,,,

resulting from Bragg diffraction and is important at intermediate times, and bo'h speedup

factors are important at later times. Also, the definition of short, intermediate, and long

times varies as a function of the deviation from the Bragg diffraction peak. An additional

complication arises from hyperfine split nuclei. As shown in Fig. 7-7.1, the speedup

factors are different for lines possessing different Clebsch-Gordan coefficients (see

Eqs. 7-7.1 and 7-7.2). Thus, in the frequency domain, different lines can be

homogeneously broadened in a non-Lorentzian fashion by different amounts at different

deviation angles from Bragg.

The YIG crystal increases the complexity one notch further. Even for the simplest

scattering geometries described in Section 10.1, there are up to 8 different resonance lines.

Unambiguously clear dynamical speedup effects are therefore unobtainable from the YIG

quantum beat spectra (to date, no single line crystals have been fabricated--such crystals

would enormously simplify the task of observing clear dynamical effects).

Rather than trying to extract dynamical speedup factors such as f_,, or F., from the

data, an effective average speedup rate is determined. To do this, the time spectra for YIG

[0 () 2] reflections at different deviation angles were fitted with a simple function

/(t)= 10e-(''r)'/' sin2 (At.o_._jt/2) (1 1-1.1)

232



( 1 I. I) Radiative Speedup 2 3 3

where s/h is the effective average speedup rate, and AogeQis the average electric

quadrupole beat frequency due to the electric quadrupole splitting between the dl and d2-

sites (scattering geometries, descri0ed in Section 10.1, were chosen to make these the only

. sites contributing to a diffracted field). In this simple approximation to the time spectra, the

magnetic hyperfine quantum beats are averaged away.

Typical fits for deviation angles below, at, and above the Bragg diffraction peak are

shown in Fig. 11-1.1 where the internal magnetic field was oriented perpendicular to the

scattering plane. The full nuclear dynamical diffraction theory was used to get the best fit

to the data, and the fit is shown by the solid curve that closely follows the fast magnetic

beats in the data. The modulation envelope that is characterized by a slow electric

quadrupole beat is the fit of Eq. 11-1.1 to the data. The third curve presented in each figure

characterizes what would happen if the_ were no magnetic dipole or electric quadrupole

beats and no speedup. This curve is essentially the resonance exponential decay curve for

an isolated nucleus:

l(t)= Ioe-r'/_. (11-1.2)

When there is no speedup, the single nucleus decay curve is tangent to the peaks of the

" electric quadrupole beat curve, Eq. 11-1.1. This can be almost seen in Fig. 11-1.1 (a)

where the speedup is only about a third of the single nucleus total decay rate.

• Ali of the curves have been normalized to the data closest to the Bragg peak

(Fig. 11-1.1 (b) where 60= +2_rad). At the Bragg peak, the diffracted intensity and the

speedup maximizes. This is where the spatial phases of the electric fields scattered from

the lattice of nuclei are ali the same, and thus the collective, cooperative effect becomes

prominent. As the crystal is rotated off the Bragg peak, spatial dephasing among the

scattered fields occurs, and this results in diminishing the collective, cooperative effect

among the nuclei--the speedup is therefore reduced.

The variation of speedup with angle is shown in Fig. 11-1.2 for the scattering

geometries where the internal magnetic field is parallel and perpendicular to the scattering

plane. The decay rate speedup tends to be greater when Bi,,, is parallel to the scattering

. plane rather than perpendicular to the scattering plane. This occurs because the polarization

matrices for the two orientations are different and give a larger nuclear structure factor

when Bi,,, is parallel to the scattering plane (see Eqs. 7-2.1, 5-1.22, and 5-1.28).

Since, in theory, the dynamical speedup factor follows a Lorentzian distribution as

a function of deviation angle from Bragg, the data was fitted with a Lorentzian function.

For the perpendicular (parallel) case the fit yielded a Bragg peak at 68_+8,urad

(67 + 3_rad) which, within the uncertainty, agrees with the predicted value of 68/arad--
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Fig. 11-1.1. YIG [0 0 2] quantum beat Fatterns for various angles near the Bragg
peak: (a) -26/arad (b) +2prad, and (c) +20#rad from the angle corresponding to the
Bragg peak. The exponential decay curve is Eq. 11-1.2, the curve with slow beats is Eq.
11-1.1, and the data is fit using the full nuclear dynamical diffraction theory. The average
electric quadrupole quantum beat period is ATeo", and s is the average decay rate speedup.
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. At the Bragg peak, when Bi., is parallel to the scattering plane, the average total decay rate
is roughly 4 times as fast, and it becomes 3 times as fast when Bi, , is perpendicular to the
scattering plane. Ali data was fitted with a Lorentzian function.

this is the position of the nonresonant Bragg peak. The angular linewidth was measured to

be 32 + 20_rad (36 + 11/trad). The large uncertainties for the perpendicular case result

from collecting too few data points on the low angle side of the peak. On the basis of the

fits, one can assume that s follows a Lorentzian angular distribution centered at the Bragg

peak.

The average speedup, s, is not to be confused with the dynamical speedup factors.

Even when factoring in the 20/arad angular resolution in the data, the dynamical speedup

factors are much greater than the average speedup. This can be seen by examining

Fig. 7-1.7 (c) (one can neglect lines 3 and 4 since they have small scattering amplitudes

compared to lines 1 and 6). Thus, near the Bragg peak, the dynamical speedup factors f_,o

and F, do not describe the effective speedup of the quantum beat spectra (one could have

inferred this from examining the collapse in the resonance width near the Bragg peak as
$

shown in Fig. 7-6.4). At the Bragg peak the effective speedup is considerably smaller than

the dynamical speedup factors. Also, the effective speedup may only increase marginally if

the angular divergence of the incident beam is decreased significantly from the 20/./rad that

existed for these measurements.
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11.2 Resonance Frequency Shifts

The other remarkable feature that stands out in the nuclear hyperfine quantum beat

patterns are resonance frequency shifts. As discussed in Section 3.7, a single nucleus

interacting with its own self-fields gives rise to frequency shifts. In a similar manner, the

collective state of a distribution of nuclei interacts with its own self-fields which, in this

case, are the multiply scattered fields in the medium. This cooperative interaction among

the nuclei gives rise to a collective resonance frequency shift. This effect has been

observed in the frequency domain through careful M6ssbauer experiments by van Btirck. 1

In the time domain, this effect is much more dramatic and significantly modifies the time

spectra.

The same problems encountered in trying to examine the dynamical speedup factors

f_s,, and Fs discussed in Section 11.1 are present when trying to extract the characteristics

of the dynamical frequency shift factor, tos, from the quantum beat data (except,

fortunately, that the collective resonance frequency shift does not vary with time)--the non-

Lorentzian resonance behavior, the variation of tos with the deviation angle from Bragg and

for lines with different scattering amplitudes, and the plethora of hyperfine lines from YIG.

Determining the precise behavior of the collective resonance frequency shift

becomes even more intractable because there are a myriad of other effects that can cause the o

resonance lines to shift about. For instance, the theory that gave rise to to. in Section 7-6

and 7-7 had some approximations made: that the crystal was infinitely thick and had a

single resonance line. Neither of these cases hold for the YIG crystals used in the

experiments. The effects of crystal thickness are discussed in Section 11-4. When there

are two or more resonances, coupling can occur between them and produce phase shifts in

the time spectrum 2,3(see Appendix B.2), and, when the resonances are close together, the

resonant lines can interfere with each other enough to shift the peak intensities of each
resonance line.

The spectator iron atoms occupying the a and d3-sites also modify the frequency

and time spectra. The a-sites have little effect upon the time spectra since, because their

internal magnetic field strengths are. much larger that those for the d-sites, their resonance

lines interact little with the d-site resonance lines. However, the resonance lines of the d3-

site lie at the same energies as the lines of the d2-site because they have the same

quadrupole energy shifts. Because the geometrical structure factor for the d3-site is zero,

this site does not reflect any fields and only transmission can occur. This transmission

channel opens up another avenue for an incident photon to escape through rather than
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traveling in the reflection channel of the d2-site. The interaction between the d2 and d3-

sites in the frequency domain is shown in Fig. 11-2.1. In the figure the reflected fields

from the dl and d2-sites are shown--their hyperfine resonance lines are shifted from each

other because they have different electric quadrupole energy shifts. However, the

amplitude of each pair of lines should be identical. Yet the figure shows that for each pair

of closely spaced lines the d2-1ine typically has a smaller amplitude. The reduction in

" amplitude of the d2-1ine is the result of photons being diverted into the transmission

channel opened up by the d3-site. This interaction between the d2 and d3-sites

significantly alters the shape and slightly shifts the position of the d2-resonance lines.
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Fig. 11-2.1. YIG [0 0 2] energy spectrum for fields reflected from the dl and d2-
sites. The incident an_le is +201trad from the Bragg peak. The incident field is
polarized and the internal magnetic field is parallel to the scattering plane and crystal surface
(that is, nearly in the photon direction). The d2-1ines suffer a diminution in amplitude
because of additional absorption from the nonreflecting d3-site that has resonance lines
coincident with the d2-1ines.

The d2-d3 interaction is not the only effect that can cause frequency shifts.

. Nuclear level mixing resulting from two competing quantization axes (the magnetic field

and electric field gradient directions) changes the scattering amplitudes of each hyperfine

line. Since the resonance frequency shifts are proportional to the scattering amplitude, they

will vary depending upon the amount of nuclear level mixing. When the electric field

gradient axis is parallel to the internal magnetic field direction, there is no nuclear level
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mixing since there is only one clearly defined quantization axis. When the two axes are

perpendicular, the amount of nuclear level mixing maximizes. However, since the electric

quadrupole interaction is small compared to the magnetic dipole interaction, this effect is

small. Fig. 11-2.2 shows that shifts of up to 1.5 neV (or 0.3F) can occur when nuclear

level mixing is included (for the case in which the internal magnetic field is parallel to the

dl-electric field gradient and perpendicular to the d2-electric field gradient).

------Fulltheory

0"10 _/1d1-l_0.08 _!, ..... lstordertheory

0.06

:_ 0.04

0.02

0.00

-0.32 -0.3 -0.28 -0.28 -0.24

Energy (/.teV)
Fig. 11-2.2. Lines l_ and l_ for the dl and d2-sites. Same scattering geometry as that
used in Fig. 11-2.1 except that the incident angle is + 401zrad from the Bragg peak. The
solid curve is calculated using the full dynamical diffraction theory including nuclear level
mixing while the dotted curve excludes nuclear level mixing. Nuclear level mixing causes a
shift in the d2-1ine of 1.5 neV (or 0.3F).

Ali the additional effects that cause apparent shifts in the resonant frequency

increases the difficulty of conclusively stating anything about the dynamical resonance

frequency shifts discussed in Chapter 7. And the multiplicity of hyperfine lines for

complicated systems such as YIG can make life even harder. For instance, one would be

hard pressed to say anything about dynamical resonance frequency shifts for the quantum

beat data exhibited in Fig. 11-1.1 (the magnetic field, in this case, is perpendicular to the

scattering plane). The asymmetry in the beat patterns for reflections on both sides of the

Bragg peak is due to resonance frequency shifts and a host of other dynamical factors in a

way that is not clearly apparent. This is because all of the hyperfine lines beat with each



(11.2) Resonance Frequency Shifts 239

other with the beating between the strongest lines, lines 1 and 6, dominating the pattern.

Since lines 1 and 6 have the same scattering amplitude, these lines are frequency shifted by

the same amount. Thus, to first order, the beat pattern will look the same between two

. angular positions symmetric about the Bragg diffraction peak even though the resonance

frequency shift is antisymmetric about the Bragg diffraction peak (see Fig. 7-2.7). The

differences in the beat patterns comes about because of the beating between lines 1 and 6

with the weaker lines 3 and 4, and due to the dynamical effects described earlier in this

section.

Going to the scattering geometry where the magnetic field is parallel to the

scattering plane simplifies matters. For this geometry the pair of line 1&4 and 3&6 beat

with each other (see Fig. 8-1.4), and, most importantly, each pair of lines beats with the

same amplitude. If lines 1 and 6 are frequency shifted by _ and lines 3 and 4 are

frequency shifted by A, then the two possible beat frequencies are shifted by the difference

between these individual frequency shifts:

(o,, + A)-(o,, + _) = (o,4 - o,,)- (_- A) = A_,,, - f

(o,0 + 8)- (_,_ + a)- (o,0- _0_)+ {_- a)- ao,_, + I
q0

where Ao_ is the beat frequency shifted by f = (_5- A). Going from one side of the Bragg

peak to the other side causes f to change sign, and each beat frequency shifts in the

" opposite direction. For large enough f this results in clearly visible effects that can

dominate other effects caused by ali other possible sources of frequency shifts.

An illustration of how resonance frequency shifts modify quantum beat patterns is

given in Figs. 11-2.3 and 11-2.4. They were calculated at symmetric positions about the

Bragg peak for a horizontally polarized field incident at 40/zrad from the Bragg peak.

Since the incident and scattered field directions are nearly parallel to the magnetic field, the

scattered fields can be approximated as both left ([+) and right (__) circularly polarized for

the pair of lines l&4 and 3&6 respectively. The _+ fields interfere producing the shifted

beat frequency A6014 - f, and the __ fields interfere producing the shifted beat frequency

A0)36 + f. The quantum beat patterns of each polarized field is shown in (a) of Figs. 11-

2.3 and 11-2.4. The sum of these beat patterns is shown in (b) of each figure. Because f

changes sign on opposite sides of the Bragg peak, the total field intensity differs on

" symmetrical sides of the Bragg peak. These patterns were calculated only for reflections

from the dl and d2 sites. The effect of adding absorption from the d3 is shown in (c) of

each figure--small additional frequency shifts results.
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Fig. 11-2.3. YIG [00 2] beat patterns for a _ fieldincident-40_rad from the Bragg
peak. B;,, is parallel to scattering plane and crystal surface (nominally in the incident and
scattered photon directions). The _+ and __ field intensities in (a) are summed to produce
the net field intensity in (b) when only scattering from the dl and d2-sites. The effect of
including the d3-site is shown in (c).
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To get a handle on understanding the resonant frequency shifts, a simple semi-

kinematical theory based on average beat frequencies and frequency shifts can be applied.

This is justified because the 4 magnetic beat periods are ali nearly equivalent (the same goes

for the 2 electric quadrupole beats) as illustrated in Table 10-1.2. The net intensity of the

diffracted fields can be approximated as

I(t) = l°e-(*+rl'/'{sin2I(A°o_4- f)t 12+sin2 I(A°93 + f)tl} " 2(Aa'_:fat)26-sin [,. _" (11-2.1, "

where At.g4, A0)36, and AtoEe are average magnetic and electric quadrupole beat

frequencies, s is the average speedup discussed in Section 11.1, and f is an average beat

frequency shift.
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Fig, 11-2.5. As a demonstration, the semi-kinematical formula, Eq. 11-2.3, was fit to
the dynamical diffraction calculation (shown in Fig. 11-2.3 (c)). The best kinematic fit
gavean averagebeatfrequency shift of f = 3.4+.5 neV, or 0.7 + 0.1F.

This formula was fitted to the quantum beat pattern shown in Fig. 11-2.3 (c). The

average magnetic beat periods used were AT_4= 12.2nsec and AT._6= 13.0nsec. The

values s, Aoge_, and f were allowed to vary to get the best Z 2 fit. The results of the fit,

shown in Fig. 11-2.5, gave s = 0.3 + 0.1F, AT_.:o" = 138 + 2 nsec, and f = 3.4+.5 neV, or

0.7+0.1F where F is the natural linewidth (F=4.67x10 -geV). What this fit
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demonstrates is how closely semi-kinematical diffraction theory parallels dynamical

diffraction theory when a few dynamical quantities are inserted into kinematical

expressions. When using Eqs. 7-6.30 and 7-7.1, the collective dynamical frequency shift

. 40prad below the Bragg peak (taking the difference in ¢o, between lines l&4 or 3&6) is

1.1neV (0.23F) which is the same order of magnitude as the average beat frequency shift.

The discrepancy between the two values shows that there are other frequency shifts that

must be taken into account.

For f = 3.4neV (at 80 = -40/_ rad ), the beat period between lines 1 and 4

decreases by 0.1 nsec and the beat period between lines 3 and 6 increases by 0.1 nsec--the

beat periods then diverge by an extra 0.2 nsec forcing the beat pattern of the _. fields to be

more out of phase with the pattern of the __ fields. This causes the beat pattern to become

washed out as shown by the diminished peak to valley contrast in Fig. 11-2.3 (b).

Symmetrically on the other side of the Bragg peak (at SO = +40_rad), the beat period

between the two circularly polarized fields should converge by 0.2 nsec making the beat

patterns more in phase and increasing the peak to valley contrast as shown in Fig. 11-2.4

(b). The effect of the d3-site causes additional frequency shifts that are not symmetrical on

- both sides of the Bragg peak--they appear to cause more drastic effects on the positive side

of the Bragg peak (as shown in (c) in Figs. 11-2.3 and 11-2.4).

• The striking changes in the quantum beat patterns as a function of the deviation

angle from the Bragg peak are presented in Fig. 11-2.6. Full nuclear dynamical diffraction

theory was used to obtain the fits (Eq. 11-2.1 was not used). As can be clearly noticed, in

going from the low angle side of the Bragg peak to the high angle side, the _. and __ time

beat patterns progress from nearly out of phase to nearly in phase. In other words, the

contrast improves as the deviation from Bragg increases over the angular range given in the

figure.

The data in Fig. 11-2.6 was also fit using the simple semi-kinematical formula

described by Eq. 11-2.1. The average beat frequency shift as a function of angle is shown

in Fig. 11-2.7. On the low side of the Bragg peak, the parameters Ao9_4and A0)36 were

fixed (their periods were set at AT_4= 12.2nsec and AT36= 13.0nsec). However, on the

high angle side of the Bragg peak, because of the drastic effects by the d3-site which

played havoc with the fits, these parameters were varied. An attempt was made to fit the

data with a Lorentzian dispersion curve noting that, since the angular divergence in the data

was 20prad, semi-kinematic fits near the Bragg peak become difficult to interpret since

both positive and negative frequency shifts can exist simultaneously. The fit shows that,

like the dynamical resonance frequency shift, the average beat frequency shift follows a
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dispersive relationship. The data also reveals that it is possible to easily measure average

frequency shifts smaller than a linewidth.
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Fig. 11-2.6. Nucle_ hyperfine quantum beat patterns as a function of the deviation
. from the Bragg peak. Measurements for (a), (b), and (c) were taken on the low angle side

of the Bragg peak at -34, -20, and 0/zrad respectively. Measurements for (d) and (e) were
taken on the high angle side of the Bragg peak at 21 and 40 _rad. Note that the contrast
improves when going from the low angle side to the high angle side of the Bragg peak.
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Fig. 11-2.7. The average beat frequency shift versus the deviation angle from Bragg
appears to follow a Lorentzian dispersive curve. Average beat frequency shifts of up to 1½
linewidths occurred near the Bragg peak. The dispersion curve is centered at 67 + 5_ rad
and has a 17 + 7 _rad linewidth.

t

11.3 The Lamb-M6ssbauer Factor

The change in the quantum beat patterns as a function of the deviation angle from

Bragg provides a unique opportunity to measure the Lamb-Mt3ssbauer factor. This

opportunity comes about because the angular independent part of the structure factor,

7-2.10, is directly proportional to the Lamb-M6ssbauer factor, LM(k_)Lu(k!), andEq.

three well known experimentally measured quantities: F(L, ;l,) is the radiative decay rate

F,,,d = F/(I+ a) where h/F = 140.95nsec and a=8.23 for _TFe, and C is the isotopic

concentration which has been accurately measured to be 0.8097 for the YIG crystal

samples. Since changes in the quantum beat patterns are directly correlated with the

strength of the scattering amplitude, information can be extracted from these changes to

determine the Lamb-M6ssbauer factor.
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Fitting the data in Fig. 11-2.6 by allowing the Lamb-M6ssbauer factor to vary

produces new fits that are precisely the same as the old fits except that the value of 60

giving the best fit is different. This results because increases in the Lamb-M6ssbauer factor

. only serves to increase the nuclear Darwin width (see Fig. 11-3.1). If the Lamb-

M6ssbauer factor is increased to a new value, the new beat pattern can be made identical to

the old pattern by simply going to a point further from the Bragg peak (a horizontal line

" drawn in Fig. 11-3.1 intercepts the curves having a larger Lamb-M6ssbauer factor further

out from the peak). Thus, by precisely measuring the difference in angle between two

reflections, the Lamb-MOssbauer factor that most closely results in describing these

differences can be found.
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Fig. 11-3.1. Darwin curves for a 2.6/am thick YIG crystal for the [00 2] reflection
and for a magnetic field parallel to the scattering plane. The Lamb-M6ssbauer factor for the
top curve was set at unity, and the lower curves illustrate what happens when this factor is
decreased to 0.6 in steps of 0.1--the peak intensity decreases and the Darwin width
narrows. The Bragg peak is centered at 65_rad, and the Darwin width is 41/arad for a
Lamb-M6ssbauer factor of 0.82 (this is the value used in ali the previous fits in this and the
preceding chapter).

Two experimental runs were made in which the YIG crystal was rotated in steps of

1 millidegree (17.4/_rad). The crystal was centered on a Huber 4-circle diffractometer

having a 0-circle consisting of a Huber 430 goniometer connected with a 20:1 gear

reducer. As a result, the 0-circle was able to make step sizes of ¼ millidegrees.



248 Dynamical Effects (11.3)

Unfortunately, because these measurements were made without the intention of measuring

the Lamb-M/3ssbauer factor (the possibility of doing this was discovered only after the

measurements), the experiment was not carefully tailored for this application. Any

backlash problems in the 0-circle would show up as large 4.4/zrad discrepancies because

of the large r,tepping size. For each run 4 measurements were taken at one and two

millidegrees above and below the Bragg peak, and one measurement was taken at the

Bragg peak. Before each off-Bragg measurement was made, a rocking curve measurement

was performed to re-determine the position of the Bragg peak. This additional check was

done because the synchrotron beam direction stability and the backlash problems of the

Huber goniometers caused real or apparent shifts in the position of the Bragg peak.

The results are shown in Fig. 11-3.2. Plotted is the standard deviation, GN,

between the actual and measured angle (obtained by the best fit to the data) versus the

Lamb-M/3ssbauer factor

: -  11-3
The quantity AO_, is either + 1 or + 2 millidegrees, and AO,,,,,, is the difference hJ angle

between the angle measured at the Bragg peak and the angle measured off-Bragg. The

minimum standard deviation for two sets of runs lie at different Lamb-M/Sssbaucr factors--a

parabolic fit to the data yielded Lamb-M/3ssbauer factors of 0.78 and 0.86 at tb: "ainima.
Q

Thus, the Lamb-M_3ssbauer factor could be determined to only with 5%:

LM(ki)LM(k/) = 0.82 + 0.04.

On the agenda were improvements to the experimental apparatus in order to perform

more sensitive measurements about the YIG Bragg peak. A Si [10 6 4] channel cut

monochromator having a Darwin width of 2prad was built and attached to an Ish_kawa

sine-bar rotation stage capable of making 0.05 ,urad steps. This system would have greatly

improved the angle measurements, but, unfortu: ately due to lack of time, this system was

never used (the Si [10 6 4] reflection reduces the nuclear counting rate by a factor of 10

forcing one to count 10 times longer to get the same statistics as before).

Also, of major interest would be to perform these measurements at other reflections

than the YIG [0 0 2] reflection. Little is known about how the Lamb-M6ssbauer factor

varies with the _;der of reflection (or the scattering angle).
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Fig. 11-3.2. Two trial runs to determine the Lamb-MSssbauer factor for the YIG
. [0 0 2] reflection. The minimum standard deviation gives an average Lamb-Mtissbauer

factor between the two trial runs of 0.82 + 0.04.

11.4 Crystal Thickness Effects

The time evolution of radiation scattered by a collection of resonant particles can be

significantly influenced by the total number of resonant scatterers. This property provides

the opportunity to infer the thickness of a medium of scatterers directly from the time

distribution of the scattered radiation.

The fields reflected from a thin crystal have characteristics that are similar to the

fields transmitted through a thin isotropic slab (that is, a thin absorber) except that there are

- small resonance frequency shifts and small increases in the decay rate (see Section 7-6).

For a thick crystal, because many more scatterers contribute to the scattered fields, there

can be substantial frequency shifts and increases in the decay rate (as seen in Sections 11-1

and 11-2). Simply due to speedup effects, as the thickness of a crystal increases, the time

distribution of the scattered radiation is squeezed into earlier times.

Care must be taken when trying to determine the thickness of crystals when Bragg

scattering is used. This is because primary extinction can severely limit the depth that fields
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can penetrate into the crystal. If the crystal is thicker that the extinction length for a

particular order of reflection, then information about the crystal thickness cannot be

extracted because changes in the time distribution saturate at the extinction length.

A YIG thickness greater than 1/zm cannot be measured using the [0 0 2] reflection

because the penetration depth for 14.413 keV radiation is about 1.1/zm. However, the

penetration depth for the [0 0 10] reflection is roughly six times greater giving the

possibility of measuring crystal thicknesses up to 6.4/zm.

Calculations of YIG [0 0 10] quantum beat patterns for various crystal thickness are

shown in Fig. 11-4.1. The area of each curve is normalized to the area of the data

presented in (a) in Figs. 10-3.1 and 10-4.1 for the case in which the internal magnetic field

is parallel and perpendicular to the scattering plane (the intensity variation with thickness

was normalized away because this information is absent in the data). From the figures, one

can see that the second peak (past 150 nsec) of the electric quadrupole beat is much more

prominent for thin crystals than for thick crystals. For the thicker crystals, the beat pattern

is squeezed towards earlier time giving prominent peaks below 50 nsec.

Using the result that the quantum beat patterns were sensitive to thickness variations

produced surprising results. One of the crystals grown by Gualtieri, crystal #57-2, was

stated to have a thickness of 6.7/zm .4 The YIG [0 0 2] quantum beat patterns were not

sensitive to crystals this thick since the penetration depth is only 1.1 /.zm, thus the

calculations showed no discrepancy. However, a significant discrepancy existed for the

YIG [0 0 10] quantum beat patterns. The YIG [0 0 10] data (together with lower order

YIG [0 0 6] and higher order [0 0 14] data) yielded a thickness for crystal #57-2 of

2.6+0.2/zm rather than the expected 6.7 /zm. This unexpected result precipitated a

second set of rocking curve measurements to understand more about the structure of this

particular crystal. These precision rocking curve measurements are discussed in Section

9.1, and the results are shown in Fig. 9-1.2. The rocking curve for crystal #57-2 showed

that the YIG film had bifurcated into two separate layers having slightly different lattice

spacings. The YIG reflections were probing only one of these layers--the one 2.6/zm

thick.

No attempt was made in further experiments to investigate the second 4.1/Z m thick

layer of crystal #57-2. Instead, the crystal having the best crystal perfection, crystal #57-6,

was used in further experiments. This determination was made using the data in

Fig. 9-1.2. The YIG [0 0 10] quantum beat data for crystal #57-6 was consistent for a
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crystal having a thickness of 4.3 + 0.4/zm. Within the uncertainty, this value agrees with

Gaultieri's measured value of 4.7/zm.
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Fig. 11-4.1. YIG [0 0 10]quantum beat patternsfor various crystal thicknesses(from
0.5 to 8.5 /lm in steps of 2.0/zm). The bold-faced curve represents the 8.5 pm thick
crystal and is pointedto by the ][arrow.
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11.5 M6ssbauer Filter Experiment

Quantum beat patterns can be drastically modified by inserting x-ray optical

elements in the beam path. For instance, consider the case when the magnetic field applied

across a YIG crystal is parallel to the scattering plane. The net reflected field will then have

a four line spectrum (see Fig. 8-1.4) composed of right and left circularly polarized fields.

The lines having the same polarization interfere with each other to produce the typical

quantum beat pattem having a 12 to 13 nsec beat period. However, this magnetic beating

can be completely eliminated by inserting in the beam path a "black" M6ssbauer absorber

that completely absorbs ali resonant photons of the inner lines (lines 3 and 4). With the

inner two lines blocked out, the only beating that can occur is the electric quadrupole

beating between the two d-site lines.

An experiment was performed to eliminate the magnetic hyperfine beats present in a

quantum beat pattern. The experimental setup is described in Section 9.4. The "black"

M6ssbauer absorbers used in the push-pull arrangement shown in Fig. 9-4.4 were 91.2%

enriched ammonium lithium ferrofluoride absorbers having a single line resonance energy

spectrum. The push-pull arrangement ensures that both inner lines of YIG are filtered out

simultaneously.

Figure 11-5.1 shows the YIG [0 0 2] quantum beat pattern without the "black"

absorbers in the beam path. This figure requires some explaining. This experiment was

the first time-resolved M6ssbauer measurement made by the Stanford nuclear resonance

group (in collaboration with Ercan Alp and Gopal Shenoy from Argonne National Labs).

In this first successful search for the nuclear resonance signal, many problems were

encountered that were unanticipated.

One problem is clearly shown in Fig. 11-5.1 (a) and (b). The nuclear resonance

signal sat on top of a large undulating background that was later found out to be due to

afterpulses in the phototubes of the detector. They had a large 1 in 10 afterpulse rate with

the afterpulses occurring 460 and 540 nsec after a prompt pulse. The experiment was done

on the 10-2 beamline at SSRL. This storage ring operated in a timing mode where electron
!,

pulses were separated by 195 nsec (unlike CESR and PEP where pulses were separated by

400 nsec and 2 p sec respectively). Thus, the oscillations seen in the background time data

were due to afterpulses initiated by prompt pulses occurring well before the prompt pulse

giving rise to the nuclear resonance signal. Fortunately, by using background runs, the

background could be adequately subtracted from the nuclear resonance time data. The

results of such a background subtraction is shown in Fig. 11-5.1 (c).
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Fig. 11-5.1. Nuclear resonance signal for a scattering geometry that produces
significant nuclear level mixing. Total signal plus background is in (a), background due to
phototube afterpulses is in (b), and (c) is the result after background subtraction. Nuclear
scattering counting rate was about 3.6 counts/sec. (Lines are drawn though data in (a) and
(b)).
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The other problem resulted from a confusion about the crystallographic directions in

the YIG crystal samples. The YIG crystal #57-2 was aligned so that its flat was

perpendicular to the incident beam. The flat turned out to be the YIG [1 1 0] direction. For

this orientation of the YIG crystal, the internal magnetic field (which was nominally parallel

to the incident beam direction) bisects the electric field gradient [1 0 0] and [010]

directions. When the angle between the magnetic field and both electric field gradients is
lm,

45°, the electric quadrupole splitting between the dl and d2-sites is identical. The lines

from each site then lie at the same energy, and, because of the crystallographic 180° phase

difference between the two sites, the reflection becomes forbidden for nuclear diffraction.

In the experiment, the crystal was set at an azimuthal angle of 44 ° thus making the

reflection nearly forbidden. At this orientation, the nuclear signal is reduced by a factor of

15 over the optimum orientation (that is, for an azimuthal angle of 0°). An extremely

.... painstaking and time consuming effort was undertaken to find the nuclear resonance signal

under such low counting rates (= 3.6 counts/sec).
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Fig. 11-5.2. Comparison between the full nuclear dynamical diffraction theory and
when the theory neglectsnuclear level mixing.

Sometimes accidents, as in this situation, can lead to some interesting physics.

When the angle between the internal magnetic field and the dl and d2-site electric field

gradients is at 45° , the nuclear reflection is forbidden only to first order, and second order
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effects come into prominence. Nuclear level mixing, which is almost negligible for other

angles between the magnetic field and electric field gradients, becomes quite significant at

the 45° angle. As described in Section 5.3, the mixing of nuclear states becomes so strong

• that linear polarization reversal occurs--incident _ polarized fields are scattered into

outgoing x polarized fields. Including nuclear polarization mixing in the nuclear dynamical

diffraction theory was necessary to fit the data. Fig. 11-5.2 shows the effect of nuclear
e

level mixing for the fit in Fig. 11-5.1. This phenomena of strongly mixed nuclear states

where each resonant line amplitude results from superpositions of ali possible nuclear

quantum states was later investigated more carefully by the Hamburg nuclear resonance

scattering group. 5' 6

The result of inserting the "black" Mtissbauer absorbers in push-pull mode is

shown in Fig. 11-5.3. Magnetic hyperfine beats are no longer visible--the "black"

absorbers were successful in significantly filtering out the inner resonant lines. What is left

is the slow electric quadrupole beat between the two d-sites. The data was fitted with the

simple kinematic formula given by Eq. 11-1.1 to illustrate that the time distribution follows

an expected slow beat pattern on top of an exponential decay curve. The data exhibited a

. speedup of s = 2.9 + 0.3 which is consistent for fields reflected at an angle near the Bragg
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Fig. 11-5.3. Time distribution for an experiment where "black" M(issbauer absorbers
filter out hyperfine lines to eliminate magnetic beats. Only the electric quadrupole beat is
evident. The counting rate was about 1.3 counts/sec.
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peak (the data in Fig. 11-5.1 indicates the reflection was about -5/zrad from the Bragg

peak). The precise quadrupole beat period was indeterminable due to the lack of good

statistics in the data, so the theoretical value of 3.7/,t sec was used in the fit.

It,

,,0

11.6 General Dynamical Scattering

Nuclear dynamical diffraction theory has been quite successful in explaining ali the

data obtained by scattering resonant x-rays off 57Fe enriched YIG crystals. The fits have

not been perfect, but this problem may be due to crystal imperfection, nonuniformities in

the hyperfine fields throughout the crystal, or the inability to accurately characterize the

polarization of the field incident upon the crystal. Even certain physical interactions that

one would neglect upon first thought because their effects are small can produce noticeable

perturbations in the quantum beat patterns. For instance, even though the a-sites have

much larger internal magnetic fields that the d-sites, and the a-sites do not reflect any

fields for the scattering orders considered in the experiments, these sites can produce small,

noticeable effects for incident angles near the Bragg peak. This is shown in Fig. 11-6.1 for

5000 iii |ilii iiiii iiiiiiliiiliii iiii',iiii,r _

-------Full dynamical theory

4000 _, ..... No a-sites

E 3000

_ I I2000

° /1000

0 _llil,llilli,, ii t,i,l,llil,i,ili,,k

0 10 20 30 40 50 60 70 80

Time (ns)

Fig. 11-6.1. Small perturbations upon the time beat patterns due to the presence of
57Fe occupying the a-sites in YIG. The dotted curve shows the effect of eliminating the
a-sites. The incident angle is -1/_rad from the Bragg peak.
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a case in which the internal magnetic field is parallel to the scattering plane. The major

effect of the a-sites shows up in the null region where the _, and __ polarized field

intensities are out of phase. Yet, theses effects are too small to yield any meaningful
• information about the a-sites in the data collected.

One interesting problem that was analyzed was whether there was any additional

dephasing in the scattering process that would cause the quantum beats to wash out earliero

than expected. To see this effect required a long count rate experiment that covered a range

of several lifetimes. Two TACs were used to perform this experiment--one measured time

spectra from 0 to 250 nsec, and the other measured spectra from 200 to 450 nsec. The

TACs could be put in synch by using the overlapping measurement (the TACs were

actually found to be in synch making time corrections between TACs unnecessary). The

results are shown in Fig. 11-6.2. Clear, unmistakable beats can be seen up to 2½ lifetimes

(340 nsec), and beyond that time both data and theory start to become washed out--natural

dephasing due to the decay of the nuclear excited state makes it necessary to perform

d

-_--r---r-x_

104 ., -_
t

o 03"= 1

O
r,.) "i.

102 __.2,

0 100 200 300 400 500

- Time (ns)

Fig. 11-6.2. Three hour measurement of YIG [0 0 2] time spectrum covering over 3
natural lifetimes. The incident angle is -9_rad from the Bragg peak, the internal magnetic

. field is parallel to the scattering plane, and a background of 1.5 counts/sec was used in the
fit. Data collected over a long time is typically more difficult to fit than data collected over a
short time. This is probably because there is more time for settings to change during the
experiment (such as the incident beam direction). Ringing can be seen up to 2½ lifetimes
revealing that the crystal operates similar to a set of oscillators having a high Q.
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measurements lasting longer than 3 hours to find out what is happening beyond 2½

lifetimes.

The only difference between the scattering amplitudes for the YIG [0 0 2n] (where

n is odd) reflections is that the angular factors in the polarization matrices change and that

the real part of the photoelectric scattering amplitude decreases as the Bragg angle increases

(that is, f0 _ 0 in Eq. 7-2.2 as the scattering angle approaches 90°). The decrease in the

real part of the photoelectric scattering amplitude only serves to decrease the index of

refraction shift and the Darwin width of the Bragg peak. This makes the peak speedup and

frequency shifts occur at a smaller deviation angle from Bragg, and it causes the reflected

intensity to decrease. What significantly changes the shape of the beat patterns between the

3500 =i i i i | i J i _ i i i i i | , i i ! ! * i i ,_

 oootA I ,YIG 0 0 6

2500 II :
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 4000tll
2000
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0 '
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Fig. 11-6.3. YIG [0 0 6] quantum beat patterns for the cases in which the internal
magnetic field is (a) parallel and (b) perpendicular to the scattering plane. A horizontally
polarized field is incident at an angle(a) -2,urad (b) -lprad from the Bragg peak.
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various YIG reflections are the differences in the polarization matrices (Eqs. 5-1.22 and

5-1.28 for the common scattering geometries used in the experiments).

Time spectra for the YIG [0 0 2] and [0 0 10] reflections have already been shown

• in Figs. 10-1.3, 10-1.4, 10-3.1, and 10-4.1 for the two cases in which the magnetic field

is parallel and perpendicular to the scattering plane (the incoming field was incident at an

,, angle from the Bragg peak of-3#rad for Fig. 10-3.1 (a) and -4/zrad for Fig. 10-4.1

(a)). To complete the set, YIG [0 0 6] and [0 0 14] are shown in Figs. 11-6.3 and 11-6.4.
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Fig. 11-6.4. YIG [0 0 14] quantum beat patterns for the cases in which the internal
magnetic field is (a) parallel and (b) perpendicular to the scattering plane. A horizontally
polarized field is incident at an angle (a) -6/_rad (b) +2/_rad from the Bragg peak.
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Nuclear dynamical diffraction theory should hold equally well for multiple crystal

reflections. The only change comes in the boundary conditions in which the incident field

on the proceeding crystal is the reflected field from the preceding crystal. Double crystal

diffraction experiments were performed by the nuclear resonance scattering group at ,

Hamburg, 7 but only fo: the case in which both YIG crystals were operated identically. In

contrast, double crystal diffraction experiments were performed for various orientations of
I.

the internal magnetic field across the two crystals and for various combinations of

reflections. Fig. 11-6.5 shows the results of a double reflection from two YIG crystals

oriented for the [0 0 2] reflection. In Fig. (a) and (b) both crystals have their internal

magnetic fields parallel and perpendicular, respectively, to the scattering plane. In Fig. (c)

the first crystal has its internal magnetic field oriented parallel to the scattering plane, while

the second crystal has its field oriented perpendicular to the scattering plane. The very

noticeable difference between the single and double reflection measurements is an overall

shift in the quantum beat patterns. This shift results because the double crystal reflection

performs a convolution of two single crystal beat patterns.

Another experiment was performed in which the first crystal was oriented for the

[0 0 2] reflection and the second crystal was oriented for the [0 0 4] reflection (the internal

magnetic field for both crystals was oriented parallel to the scattering plane). The results

are shown in Fig. 11-6.6. The [0 0 4] reflection allows both photoelectric and nuclear

diffraction. The double crystal beat pattern should then, to first order, show a YIG [0 0 2]

beat pattern since the YIG [0 0 2] diffracted field should reflect promptly from the electrons

in the second crystal. To second order, a convolution of single crystal YIG [0 0 2] and

YIG [0 0 4] beat patterns should be present.

Double crystal experiments allows one to probe the hyperfine structure of crystals

for allowed photoelectric reflections. For instance, observing the quantum beat signal from

a YIG [0 0 4] reflection is not possible with the present detector because of the intensity of

the allowed photoelectric reflection (unless one uses a narrow bandpass crystal

monochromator, but these monochromators also drastically reduce the nuclear signal o

intensity). The YIG [0 0 2]-[0 0 4] double crystal reflection allows one to get around this

problem and to extract information about the photoelectrically allowed [0 0 4] reflection. ,i

Using the first crystal as a monochromator produces extremely monochromatic

x-rays to be used in further experiments involving not only crystals but other types of

samples. Unfortunately, YIG is a hyperfine split crystal, and its complicated time response

must be deconvolved from any experimental results--its time response must, therefore, be
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Fig. 11-6.5. Double crystal YIG quantum beat patterns. Both crystals are oriented in
the [0 0 2] direction. The internal magnetic field is oriented parallel or perpendicular to the
scattering for each crystal separately. In (c), the magnetic field is parallel to the first crystal
and perpendicular to the second crystal.
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Fig. 11-6.6. Double crystal YIG quantum beat pattern. Both crystals have their
internal magnetic fields oriented paralle_ to the scattering plane, but the first crystal is
oriented in the [0 0 2] direction and the second crystal is oriented in the [0 0 4] direction.

well known. However, there is a possibility of constructing single line YIG crystals by

impregnating them with certain elements. Even so, the linewidth would not be broad

enough to eliminate the necessity of performing deconvolutions to erase the effects of the

monochromator when it is used for experiments involving 57Fe enriched samples (even

using the properties of the decay rate speedup does not help because speedups, or, in

frequency space, an increase in the linewidth, of only as great as 3 have been observed for

YIG).
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12. CONCLUSION

The theory of the scattering of x-rays by resonant nuclei is, in principle, much

simpler that the theory describing the scattering of x-rays fi'om electrons. This is because

electronic dynamical diffraction theory requires relativistic Hartree-Fock calculations to

determine the resonant or nonresonant photoelectric scattering amplitude for many

electron atoms. Because nuclei can be approximated as point particles, such calculations

for nuclear systems are unnecessary. A simple nonrelativistic perturbation theory,

treating the nuclei as point particles, can be used to understand the nature of

electromagnetic fields scattered from nuclei.

Once the spherical multipole scattering amplitude, whether for nuclear or

electronic interactions, has been formulated, the differences between nuclear and

electronic scattering theory disappear. The electromagnetic fields scattered from particles

can then be expressed in terms of spherical multipole fields. In this thesis, a dynamical

scattering theory has been developed where spherical multipole fields interact with a

system of particles and undergo multiple scattering. When elastic scattering is assumed,

there is no way to determine which photon scattered off which particle since the state of

the particle before and after the scattering process is the same. Thus, to describe the

scattering interaction, one must coherently sum up ali the probability amplitudes of

scattering from ali of the particles in the system. This sum forms a collective state of

many particles--the system c,f particles acts collectively as an entirely different particle.

Dynamical scattering theory reveals that a collective state has properties similar to

a single particle. A single particle interacting with a photon undergoes frequency shifts

and has a resonance linewidth due to its interaction with the generated self-fields.

Similarly, when the collective state interacts with a photon, it interacts with its generated

self-fields which, in this case, are the multiply scattered fields in the medium. These

interactions are shown to also lead to resonance frequency shifts and linewidth

broadening (or radiative speedup).

The connection between quantum mechanics and classical mechanics was bridged

by performing a sum over ali of the multiply scattered fields in a medium. What was

found was interesting but not surprising. The net electric field multiply scattered from a

phased collection of particles was found to be identical to the solution of the Maxwell

equations for a medium when the quantum mechanical form of the scattering amplitude is
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used in the inhomogeneous wave equation. This semi-classical result confirms that

dynamical diffraction theory rests on solid ground.

Nuclear dynamical diffraction effects were strongly evident in the time-resolved

, M6ssbauer spectra measured in synchrotron x-ray diffraction experiments involving 57Fe

enriched YIG films. In the time domain, resonant frequency shifts and decay rate

speedups were observed, and they were seen to vary as a function of the deviation from
P

the Bragg angle of a YIG crystal. The average decay rate speedup varied in a Lorentzian

fashion with the deviation angle, and the peak was centered at the nonresonant Bragg

peak. The average resonant frequency shift was seen to vary in a Lorentzian dispersive

fashion. Both effects were predicted by nuclear dynamical diffraction theory. A peak

speedup of 3F and a peak frequency shift of 1.5F (where F =4.67neV is the natural

linewidth) was measured for YIG. The incident beam from a monochromator had an

angular divergence of about 20/zrad, and should this divergence be reduced in future

experiments, larger peak speedups and frequency shifts should be obtainable.

By measuring the variations in the quantum beat patterns as a function of the

deviation angle from the Bragg peak, the Lamb-M6ssbauer factor was deduced. A Lamb-

. M6ssbauer factor of 0.82 with a 5% uncertainty was measured for the YIG [0 0 2]

reflection. Of interest would be to repeat these measurements for other orders of

. reflection. How this factor depends with scattering angle or upon the order of reflection

is not well known.

Another nuclear dynamical effect observed was the variation in the quantum beat

patterns due to the thickness of the crystal film. In one measurement using the YIG

[0 0 10] reflection, the nuclear dynamical theory gave a thickness (2.6pm) that was

inconsistent with a measurement made during the fabrication of the crystal film (6.7pm).

With more careful diffraction experiments to measure the rocking curve of the crystal, the

dynamical theory was vindicated--the rocking curve measurements showed that the

crystal had bifurcated into two layers having different lattice constants. Thus, dynamical

effects were shown to be sensitive to thickness variations in a crystal.

Nuclear dynamical diffraction theory was also tested in a double crystal reflection

experiment. In this case, the idea of a collective state must be extended to two crystals

separated in space. However, since diffraction is essentially a phased scattering

phenomena, the separation of two crystals poses no problem as long as ali of the

diffracting particles have the same spatial phases (modulo 27r). The two crystal YIG

[0 0 2]-[0 0 2] reflection data was well explained by dynamical diffraction theory for

different orientations of the internal magnetic field across each crystal. A double crystal
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YIG [0 0 2]-[0 0 4] refection experiment was also done. This experiment showed that,

using the first [0 0 2] crystal as a monochromator source, an electronically allowed

[0 0 4] reflection could be probed. Without the YIG [0 0 2] crystal, the photoelectric

prompt reflection would have overwhelmed the detector (a scintillator coincidence

photodetector where the scintillator is a plastic material possessing a short fluorescent

lifetime).

Nuclear dynamical scattering theory is necessary to describe the results of time-

resolved M6ssbauer spectroscopy principally because multiple scattering is no longer

insignificant. However, there remains a whole host of physical phenomena that have

nothing to do with multiple scattering (such as nuclear hyperfine structure quantum beats,

the orientation and strength of the various hyperfine fields, nuclear level mixing,

polarization and angular scattering characteristics, and angular interferometry) which

were also investigated in this thesis.

One such kinematic effect investigated involved a dual time and frequency

experiment that utilized information from both frequency and time space. A "black"

M6ssbauer absorber was used to completely filter out the inner two lines of a hyperfine

split YIG spectrum. The inner magnetic field was oriented nominally parallel to the

incident and outgoing photon directions. For such a case, filtering out the inner two lines

prevents any magnetic beating. The time-resolved experiment showed no fast magnetic

hyperfine beats--only a slow electric quadrupole beat remained (due to the beating

between lines from iron nuclei lying in different crystallographic sites).

Another kinematic scattering phenomena investigated involved a situation in

which time domain measurements have advantages over frequency domain

measurements. This advantage lies in the ability to easily detect relative phase

differences between resonant amplitudes. Since resonant lines are usually spaced far

apart, very little phase information can be extracted from the interference between the

lines. However, since the interference between resonant lines shows up as a beat pattern

in the time domain, phase shifts in the amplitudes show up as clearly observable shifts in

the beat patterns. ,

An angular interferometry experiment took full advantage of the ability to observe

purely geometrical phase changes in the time domain. In this experiment, the phase shift

of the quantum state of a photon that has undergone _ rotation was measured--these phase

shifts are purely geometrical effects independent of dynamical, or multiple, scattering or

the number of scatterers. By using nuclear transitions, photons could be prepared having

a definite component of angular momentum along a quantization axis (the internal

-
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magnetic field direction). These photons underwent phase shifts depending upon the

amount of azimuthal (angular momentum-conserving) rotation about the quantization

axis. These phase shifts were observed to be different between right-handed rotations and

, left-handed rotations about the quantization axis. For scattering angles near 45°, the

phase difference was large enough to shift the quantum beat patterns for right and left-

handed rotations almost 180° out of phase. Such striking phase effects would be
w.

extremely difficult, if not impossible, to observe through traditional MOssbauer velocity

experiments.

One interesting question that may be posed by Mtissbauer experimentalists is

whether measurements made in the time domain reveal any information that cannot be

obtained by traditional measurements in the frequency domain. For the samples used in

this thesis, both time-resolved and conventional Mtissbauer spectroscopy would most

likely yield the same results when analyzing the internal hyperfine fields. The hyperfine

field values for the internal magnetic field and the electric quadrupole splitting could be

measured to within 1-2% through the analysis of quantum beat patterns. This is about as

well as traditional MOssbauer velocity measurements. Where time-resolved

measurements using synchrotron x-ray sources become more useful is in hyperfine field

measurements of samples that are not amenable to conventional MiSssbauer spectroscopy.

. For example, when using radioactive sources, the scattering intensity from extremely

small samples is generally too small to extract information about the hyperfine fields.

Such samples may include materials in highly pressurized diamond anvil cells where

magnetic phase transitions can be explored, or nanostructures and micro-crystals where

one, two, or three dimensional magnetism can be explored. For instance, one

dimensional magnetism can be investigated in small magnetic fibers, and two

dimensional magnetism can be explored in the surface layer of materials or in thin

magnetic crystal or multilayer films composed of only a few monolayers of resonant

nuclei. When the third generation synchrotron sources are constructed, undulator

beamlines should be able to provide the necessary high brilliance to make such

measurements not only possible but straightforward.
J,



APPENDIX A

A.1 Angular Interferometry (Physical Review Letter)

,w

The discussion in Chapter 5 explored the properties of angular phase shifts from the

perspective of the S and T-matrix scattering formalism presented in the previous chapters.

To complement the discussion, the angular phase shifts are understood in this appendix by

using the fundalnental rotational and mirror symmetry properties of free space which leads

to the realization that bosons, such as photons, essentially behave as three dimensional

irreducible representations of the group O .(3). (In a ,similar fashion, these symmetry

properties reveal that fermions, such as electrons or neutrons, can be realized as two

dimensional irreducible representations of the group SU(2).) The following is a recently

published journal article: D. E. Brown, J. Arthur, A. Q. R. Baron, G. S. Brown, and S.

Shastri, Phys. Rev. Lett. 69, 699 (1992).

268_
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Phase Shift of a Rotated Quantum State Observed in an X-ray
Scattering Experiment

¥

D. E. Brown, J. Arthur, A. Q. R. Baron
Stanford Synchrotron Radiation Laboratory, P. O. Box 4349, Bin 69, Stanford,

. California 94309

G. S. Brown

Dept. of Physics, University of California at Santa Cruz, Santa Cruz, California 95064

S. Shastri

Cornell High Energy Synchrotron Source and the School of Applied and Engineering
Physics, Cornell Univ., Ithaca NY 14853

Abstract

• The rotation of the reference frame of a particle is known to lead to a phase change of its
wavefunction proportional to its angular momentum. This can manifest itself as an angle-
dependent phase shift of a photon scattered by a fixed target, when the photon state is an
eigenstate of the component of total angular momentum perpendicular to the scattering
plane. This phase shift has been observed in the quantum beat pattern resulting from the
transient excitation of 57Fenuclei by synchrotron radiation.

PACS number: 03.65.-w,78.70.Ck,42.10.Jd,76.80.+y
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Quantum wavefunctions and classical wave fields reflect the symmetries of space

and time that result in conservation laws and phase factors involving the conserved

quantities. For example, the homogeneity of time leads to the conservation of energy and

the uniformity of space leads to the conservation of total linear momentum for an isolated
"4

system. Such systems are invariant under translations in time or space, and the translated

wavefunctions acquire phase shifts depending on the conserved values. 1,2 For simple

eigenstates of energy and linear momentum

Ilt(t + At)= e-_'^q_V(t ) (1)

w(r- Ar)= e-_"P/'V(t ) . (2)

Of particular interest in this Letter are the effects of rotations on the properties of a system.

Rotational symmetry results in the conservation of total angular momentum, J, and a

rotated eigenstate acquires an angular phase shift:

_(_ - A_)= e-"_'"J/_Ig(_). (3)

A vivid consequence of this angular phase is the 4Jr rotational symmetry of fermions that

has been demonstrated in neutron interferometer experiments. 3-5 The angular phases for

photons are dramatically illustrated in this Letter in an elastic scattering experiment

involving resonant scattering of x-rays from nuclei.

Considering only basic symmetry properties of free space (such as rotational and

mirror symmetry) angular momentum wavefunctions of a general particle can be

constructed. The rotational symmetry properties lead to the formation of irreducible

DOl(i( --->z), describing rotations of a system with quantization axis k intorepresentations,

a system with quantizatio_: axis _', and having rotation-angle-dependent matrix elements

that depend only upon the geometry of space and not upon the dynamics, or interactions, in

the system. When j (the total angular momentum quantum number) is integral, these

irreducible representations are naturally present in classical electrodynamics in the multipole

field solutions of the Maxwell equations.

Consider a process that changes the direction of propagation of a photon without

changing its total angular momentum. According to Eq.(3), a phase shift should arise

depending on the projection of the total angular momentum along the axis of rotation. The

angular momentum of a photon perpendicular to its direction of propagation is often not

well-defined, but a photon state of well-defined propagation direction can be expanded in

terms of basis states (spherical helicity states) having well-defined angular momenta about

an axis that is not necessarily the propagation direction. Superpositions of these basis states

form the multipole vector spherical harmonics. 6 In this case the total angular momentum
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includes orbital angular momentum, and need not be limited to the photon spin value of 1.

The rotated photon state has a phase factor e -a¢^_,and the transition amplitude for forming

such a rotated state has the conjugate phase factor e.a4^¢. The quantity AC, is the change in

the photon's direction expressed as an azimuthal angle in a spherical coordinate system

aligned along the axis of rotation, and M is the projection of the photon's total angular

momentum along that axis. (If expressed in a spherical coordinate system that is not

" aligned along the rotation axis, the rotated wavefunction will in general also depend on the

values of the polar angles of the photon propagation vectors.) The phase factor ea^* is

independent of the polarization of the incident or rotated photon, and it is also independent

of the dynamical details of the interaction that causes the photon direction to change.

To measure the angular phase change of a photon, it is sufficient to prepare a

photon state with definite angular momentum about an axis perpendicular to its propagation

direction, cause the state to rotate about this axis through a known angle without changing

its total angular momentum, and observe the interference between the rotated state and

another coherent reference photon state. We realized such an experiment using elastic

scattering of synchrotron x-rays by nuclear resonances. The photon-nuclear interaction

served to select photon states with definite values of M. Bragg scattering served to define

the rotation angle, and the coherent, pulsed nature of the synchrotron excitation provided

reference photons for the interference measurement.4'

For the experiment a yttrium iron garnet (YIG) crystal enriched with 57Fe was used

in Bragg geometry to diffract an incident beam of 14.4 keV photons through a scattering

angle, 20 B,equal to twice the Bragg angle. The YIG magnetic crystal structure allowed us

to observe pure nuclear resonant scattering from a ferromagnetically aligned subset of 57Fe

nuclei. 7 A small external magnetic field was used to orient the internal ferromagnetic field

perpendicular to the scattering plane, so that the rotation angle of the scattered photons

around the nuclear quantization axis was equal to 208.

In a magnetic field, the 14.4 keV 57Fe nuclear resonance is generally split into a

hyperfine six line spectrum (see Fig. 1). In our experiment the incident photons, due to the

nature of the synchrotron source, were linearly polarized parallel to the nuclear quantization

" axis. Under these conditions the transitions labeled 2 and 5 in Fig. 1 are not allowed by

polarization selection rules. The remaining four transitions are allowed, and the sca,tering

. process does not change the polarization state of the light. The two strongest transitions are

those labeled 1 and 6 in Fig. 1. They are separated by about 6 xl 0 -_ eV, and the energy

width of each resonance is approximately 5 xl 0-9 eV. When excited coherently by an

abrupt pulse of synchrotron light, the resonant states decay with a lifetime of about 141 ns.

Because states with different frequencies are excited coherently, the decay curve exhibits
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interference beats, principally the 7 ns beat period due to the interference of transitions 1
and 6.

Transitions 1 and 6 select photon states having total angular momentum projections

along the nuclear quantization axis of M = -1 and M = +1. Thus, for the line with M = +1

the angular phase shift in the scattering amplitude is 20 Bwhile for the line with M = -1 it is

-20 B. The time beat pattern resulting from the interference of the two lines is phase
q

retarded by 40n:

I(/) ~ (1+ cos[Aco/- 40n] ) (4)

where Aco is the beat frequency. If the direction of scattering is reversed (see Fig. 2), the

angular phase shifts change sign, resulting in a phase advanced time beat pattern

l(t) ~ (1+ cos[Acot + 40_]). (5)

The time beat pattern contains a phase factor that is twice the scattering angle; the

phase factor is negative for fight handed rotations around the quantization axis and positive

for left handed rotations. The net phase difference between time beat patterns with opposite

rotation angles is four times the scattering angle: 80B. This is a very noticeable effect for

scattering angles near 4 5 ° .

The YIG time beat pattern involves more than two resonant lines (the four lines

mentioned above are further split by an electric quadrupole interaction giving a total of 8

lines), so the patterns are more complicated than those described by Eqs.(4) and (5). Yet,

since ali the lines have M = +1, the 80B phase difference is the dominant effect.

The experiment was performed at the 24 pole wiggler beamline F2 at the Cornell

High Energy Synchrotron Source (CHESS). A double crystal Si [111] monochromator

provided a source beam having a 2 eV bandwidth at the nuclear resonance energy of

14.413 keV. A gold-coated flat mirror was used in grazing incidence geometry to filter out

the higher order harmonics coming through the silicon monochromator. The diffracted

light from the YIG crystal was detected by a fast plastic scintillator coincidence detector,

and the photon arrival time was recorded by fast timing electronics. Similar experimental

techniques have been used in a number of previous resonant naclear scattering

experiments. 8 The angular phase shift was not explicitly noted in these earlier experiments

since they either involved small Bragg angles, or they involved antiferromagnetic samples

from which all reflections involve both right and left handed scattering rotations.

However, it should be pointed out that the angular phase factor is implicitly present in the

polarization matrices for nuclear scattering described by various authors. 9-13 We found it

experimentally convenient to change the sense of the scattering m_gle by reversing the



(A. 1 ) Angular Interferometry 2 7 3

magnetic field direction, but it is conceptually simpler to think of the scattering angle being

reversed, as shown in Fig. 2.

YIG [0 0 5:10] reflections have Bragg angles of :!:.20°, giving a net phase

' difference of 160° between their line l--line 6 time beat patterns. The peaks of the

[0 0 10] pattern lie nearly in the valleys of the [0 0 - 10] pattern. This is shown in Fig. 3

•- where, despite complications due to the multiplicity of hyperfine levels, the advance or

retardation of the 7 ns beat period is clearly visible. To get good fits to the data, we used

the full Ewald-Laue dynamical d,.'ffraction theory for resonant scatterers, 11.14,15including

small contributions from the electronic and nuclear index of refraction. However, the

angular phase shift which advances or retards the observed beat pattern is a purely

kinematical, geometrical effect.

Recently, two resonant nuclear scattering experiments have demonstrated shifts in

the time beat patterns due to passage of the radiation through the scattering material. 16.17

These shifts are caused by dynamical, index of refraction effects in the material, and they

are not related to the angular phase shifts.

The fundamental symmetry properties of wave mechanics predict that an angular
,!

momentum-conserving rotation of a wavefunction is accompanied by an angular phase

shift. A dramatic way to demonstrate this phase effect involves elastic resonant nuclear

" scattering of photons. The nuclear scatterer serves as a filter, allowing only photon states

with well-defined angular momentum components to pass. Coherent generation of more

than one angular momentum state using synchrotron light permits the angular phase shifts

to be clearly observed in an interference measurement. A measurement of this type may

have practical applications: for a given scattering angle, the time beat pattern can be used to

uniquely determine the sign of the magnetic field at the scattering nuclei. In our

experiment, the time beat patterns indicate that for the selected 57Fe nuclei (the nuclei

occupying the sites in YIG with local tetrahedral symmetryT), the internal magnetic field

direction is opposite to the external guide field.

Support for this research was provided by the U. S. Department of Energy, Office

, of Basic Energy Science, Division of Materials Sciences. CHESS is supported by the

National Science Foundation under Award No. 90-21700.
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Fig. 1. Hyperfine nuclear resonance of 5TFe. Tile magnetic quantum numbers are given
with respect to a quantum axis oriented parallel to the internal magnetic field. When the
magnetic field is perpendicular to the scattering plane, lines 2 and 5 are excitable by and
radiate linearly polarized light perpendicular to the magnetic field. The other four lines are
excitable by and radiate linearly polarized light parallel to the magnetic field. Radiated
photons from lines 1,3,4,6 have the same polarization but different phases depending upon
their scattering angles and angular momentum components, M. 8
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_int 20 B
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Fig. 2. Complementary scattering geometries. Incident photons k, can be scattered by
equivalent Bragg reflections in either a right-handed sense k_ or a left-handed sense k}
about the nuclear quantization axis, i,, parallel to the internal magnetic field B,,,.
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Fig. 3. (a) Time beat patterns for left and right handed scattering. Solid curves are
dynamical diffraction theory calculations, including the angular phase. Because some of
the interfering transitions share identical M values, the shifted beat patterns are modulated
with an unshifted beat pattern of longer period, giving different heights to corresponding
intensity peaks in the [0 0 10] and [0 0 - 10] patterns. (b) Expanded, superimposed view
of the fits to the data. The nearly 180 ° phase difference is clearly evident.



APPENDIX B

" B,I Time Domain Calculation for a Plane Parallel Slab of

Resonant Scatterers Excited by a SrCoSource
ar

In this example, a plane parallel slab of single line resonant scatterers is excited by a

STCosource. The field emanating from this source will be approximated as a decaying

exponential wave Doppler shifted by Aco to take into account the relative motion between
the source and the scatterers:

ao(t,z,z o)= Eoei_oe-i(¢oo+^_o),-r,/2a. (B. 1-1)

Let the scatterers have the same natural frequency, 090,and linewidth, F, as the source.

The impulse response of the scatterers is then

H(t,z',z)= -(F_/ahL)e-i°_°'-r'/2'O(t) (B. 1-2)

where Fs is given by Eq. 6-5.16

" Using the multiple scattering equations, Eqs. 6-5.11 and 6-5.12, first order

scattering gives

" ' _,_o.-'(_,o ][_(F,/4hL)e-,O_o(,-,')-r(,-,')/Z,]dt,dz

where A(t) = -(F,/4t_)eoe_°e -"°°'-r'12_. (B. 1-4)

Second order scattering gives

,',",-t,_{ 1 _l i^o_,"
a_(t,Z, Zo)dz = I I dz a(. ,I u,e- -1)[-(F,/4_)e-'_°I'-")-rC'-"l/2']dt'dzaoao \ -iAco )_

. =a(/) (e-i^¢°'-l)-tjL \4hLJ_]

Similarly, third and fourth order scattering gives

ab

A 1 1 1 i^o,, _
dz (t)( e t] t2 [(F'zl 2

(B. 1-6)
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1 1 1 -.mo,,o./,....o>,.: Iii)Eiip)le
4

L t4_,s
Adding up ali the scattering terms, and ordering them in powers of -l/iA¢o results in a

comprehensible series expansion:

(a1 + a 2 + a3 + a, +...)dz =

=A(t)______I_41iL(_iAoj)+! F,z ]214M,_At.o)) _.. - [ 4M_,(-iAco) _ + ""

(1)[1- [',zt + (l-',zt_2 1 (l-',zt_3 1 ]4/iL \ 4/iL ) (2!) 2 k 4hL ) (3!) 2

- + --t - 4....
4M, \4hL) 2! \4hL) 3!2!

.... l +"-
t,4hL) 2! t,4hL) 3!

rfe-'_' _ -1 _(___)jo(_/T. zt//iL)_(_)2__tJo )=A(t)tl_iAoJ_ r'',4_(-_°)l _ (_

}- _--_. -_ Jo(41", zt/k)-. \ _) o3t-----_ Jo(_/-r, zt/td_,) . (B, 1-8)
,li

Using the expression for the scattering channel field, Eq. 6-5.13, and using the
relations

,. J,(r,_5_)
Io J°(4F'zt/td_) dz= 2L (B 1-9).,/-:,tlh
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0" Jl(F_ftttttt_) _(-F_y J.+l(_F_ttttt_) (B.I-IO)and

rSO-,,/h:h, "+'
• gives

, . r _,r v, +Ao,,] -ii-': _" J.(_)}" le L4= J ]_( ,. (B.I-ll)
E,c/(t,L, zo) = Eoei_oe-i<,,o-r,lz - 2--_-_J

This expression can be simplified by using the generating function for Bessel functions:

e7 t-ii= _u,_jm(x). (B.l-12)

Then

_ ( -iF, )"J.(_)_ "_o{-i2hAoJ)"and =_:: 2hA0J (_/-_1_)" - _ )(F,__)"J,(_).

Finally, after collecting ali terms, the scattering channel field can be expressed as

Esci(t,L, zo)= Eoei_°e-i°_°'-r'lZ'_o(-i21iAc°l"=t E ) ( (B.l-13)

This result agrees precisely with Lynch, Holland, and Hamermesh's Fourier

transform solution using contour integral methods. 1 The obvious drawback to this time

- domain multipole scattering approach is that one must have a deft faculty towards

massaging complicated infinite series expansions into familiar analytical functions. The

beauty of this time domain formalism is that one may completely work out problems6

entirely in the time domain and observe how the physics evolves at each step of the

calculation--performing Fourier transforms can obscure the actual physics behind the

scattering process (for instance, the entire issue of multiple scattering appears to be

completely absent in the Fourier transform method).
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B.2 Investigation of the Dynamical Phase between Two
Resonant Lines Excited by a Synchrotron Source

In this example the dynamical phase between two widely spaced resonant lines is

calculated using the time domain multiple scattering formalism. For a plane parallel slab of

scatterers, this phase is shown to be proportional to the thickness of the slab and inversely

" proportional to the frequency separation between the resonant lines. The source field

incident upon the slab is a synchrotron pulse

ao(t,Z, Zo) = Eoe'_°S(t), (B.2-1)

and the impulse response of the system of scatterers is the sum of two resonant amplitudes

H(t,z',z) =--(F_/4hL){e -i°''' + e-i°_2'}e-r'/2_O(t) (B.2-2)

where F, is given by Eq. 6-5.16, and o91and o92are the two resonant frequencies.

Using the multiple scattering equations, Eqs. 6-5.11 and 6-5.12, the first order

scattered field amplitude is

a_(t,Z, Zo)dz = Si[Eoeie°s(t')][-(F_/4hL){e-i°_'('-") + e-'_'2('-")}e-r('-")/2']dt" dz

=a(t){l+e-'A='}dz (B.2-3)

. where A(t) = -(F,/4hL)Eoe'_°e -i°'''-w2_, (B.2-4)

and Ao9= o92- o91. (B.2-5)

The second order scattered field amplitude is

a2(t,Z, Zo)dz = 5£[._dz'a(t'){1 + e-'^°_"}[(A(t - t')e-i_°/Eo){1 + e-iA°_('-")}]dt' dz

=A(t) - t(1 + e-_^°_')+_(1- e -_^_' dz. (B.2-6)

Crunching out the convolution integrals for the third and fourth order scattered field

ampli'udes give

I(4_12 3t (1 _ e__^o,,}
171/(I+ e-iA'°')+ ) dz (B.2-7)

" a3(t,Z, Zo)dz = a(t) 2!JL 2!
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and a,(t,z, zo)dz : A(t) - _ -3-_.(1 + + (iAo9)2! )

2t (1+ e-_' 4 (1- e -m°'' t+ (iAr_o)2 ) (/Aco)3 )dz. (B.2-8)

The sum of the scattering terms up to fourth order can be expressed in a series "

expansion in 1/iAw"

al + a2 + a3 + a4 + ... =

{ _(F, zt_ (l",zt_Z 1 (I-',zt)3 1 +...} (1)=a(t)(l+e-_°")l \--4-_J +\4hLJ (2!) 2 \4hLJ (3!)2

+a(t)(1-e-_'){ 2( F_z "/ (4_/2 1 4t2( F_z _3 1 }
- +3t --+-.. (2)

(/Aco) \ 4hL J 2! 2! \ 4hL ) 3!

+a(t) (l+e-a_') - 2t(4-4-4_)31 }(iAog)2 3--_.+ "'" (3)

+a(t)(l-e-_") l (4-4-4_)31 } "(/AO)) 3 4 --+3!"'" +.... (B-2.9)

Whether this series expansion can be expressed in a compact analytical form is unknown,

but, for widely separated lines, summing ali the scattering terms is unnecessary. To first

order in 1/iAo9 only the first two separate series expansions labeled (1) and (2) in the

expression above need be evaluated.

Using the Bessel function identity in Eq. 6-5.20, the series expansion (1) reduces
to

(1) _ a(/)(1 +e-_'°')Jo(_F_zt/hL),

and (2) reduces to the simpler form

(2) _ a(t) (1-e -_'') 0 2
(/Aro) OHoO-------_t[rl°J°(2 H__°zt)]

where n 0 = F,/4hL. (B-2.10)

Using the relations expressed in Eqs. B.1-9 and B.I-10 and the following Bessel function

relationships
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at 44HoLt

• _ 1 j
d J.(x)= -_[ ._,(x)- J.+,(x)] (B-2.12)dx

" J._,(x)= 2nJ.(x)- J.+,(x). (B-2.13)
X

and after a little algebra, the scattering channel field (Eq. 6-5.13) reduces, to first order in

lilAc.o, to

(B-2.14)

Ignoring the prompt delta function pulse, the resonant intensity is then

l,,,(t) = ]E,4(t ) - Eoei_=°&(t)[2

=2E02(2_)2[1+( F, )2 Jl(_-_) {l+cos(Acot+_)}e_r,/, (B-2.15)" 4tiAo) ._-_,t/tt

=4e_, 1+( r_ +4h-Aa_J cos/ - e -r'/" (B-2.16)

{ 2(r,/4hAco) }
where _0= tan -_ . (B-2.17)

1- (r,/ahzxc0)_

The expression above is similar to the field intensity from a plane parallel slab (described in

Section 6-5) multiplied by a sinusoidal beating term due to the beating between lines having

different resonant frequencies. The interesting phenomenon is the dynamical phase shift,m

_, of the quantum beat pattern. This dynamical phase shift is related to the thickness-rate,

lr',= no'0LF, and the splitting between the two resonance lines, Aco. Thus, when the

" splitting is large compared to the thickness-rate, Aco>> F,/41_, _ is directly proportional

to the thickness of the slab and inversely proportional to the frequency separation of the

resonance lines:

= r,/2hAco = r ntToL/21iAo3 (B-2.18)
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This dynamical phase shift has been seen by van Btirck et. al., l and, in the

comparison of their data with Eq. B.2-15, the time domain multiple scattering formalism

accurately describes the phase shift phenomenon for ali thicknesses of the sample. The

calculations van Btirck et. al. performed to fit their data relied upon the frequency domain

Fourier transform method. Unfortunately, analytically performing the Fourier transform is

difficult, so the fits were done by numerically Fourier transforming the frequency

response, and this prevented any insight into the physics behind the dynamical phase shift.

(One can integrate the Fourier transform using the method of contour integration, but the

result is a complicated series expansion requiring a laborious amount of algebra to extricate

the results expressed by Eq. B.2-15). The beauty of the multiple scattering formalism is

that the physics behind the scattering process can be investigated at each order of scattering.
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