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FOREWORD

This research program, initiated during summer 1990, was an outgrowtk of
previous developments detailed in the paper, "Characteristic Time Coicept
Associated with Hydraulic Fracture Configuration Evolution and Optimization,"
presented as SPE Paper No. 19000 and subsequently published in SPE Production
Engineering (pp. 323-330, 1991). The multi—task effort was sponsored primarily
by the Morgantown Energy Technology Center (USDOE), Chevron, Comoco Inc.,
and Mobil. Supplemental funding was also received from Cray Research Inc. and
Amoco through their doctoral fellowship award program. In addition ¢to
acknowledging feedback from the sponsors, the authors wish to express their
appreciation to Dr. Norman Warpinski (Sandia National Laboratory) and Dr. Rick
H. Dean (Arco Oil and Gas) for their techmical input. Computational facilities

were generously provided by the Ohio Supercomputer Center and Lehigh University
Computer Center.
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1.0 EXECUTIVE SUMMARY

The analysis of pertinent energy components or affiliated characteristic times
for hydraulic stimulation processes serves as an effective tool for fracture
configuration design, optimization, and control (Appendix A). This evaluation, in
conjunction with parametric sensitivity studies, provides a rational base for
quantifying dominant process mechanisms and the roles of specified reservoir
properties relative to controllable hydraulic fracture variables for a wide spectrum
of treatment scenarios.

Results are detailed for the following multi—task effort:

(a)  Application of characteristic time concept and parametric sensitivity studies
for specialized fracture geometries (rectangular, penny—shaped, elliptical) and
three—layered elliptic crack models (in situ stress, elastic moduli, and
fracture toughness contrasts).

(b)  Incorporation of leak—off effects for models investigated in (a).

()  Simulation of generalized hydraulic fracture models and investigation of the
role of controllable variables and uncontrollable system properties.

(d)  Development of guidelines for hydraulic fracture design and optimization.
Detailed evaluations of the roles of fracturing fluid rheology, flow rate,

reservoir elastic properties, fracture toughness and in situ stress contrasts for
rectangular, penny shaped and three—layered elliptic fracture models are presented
in Appendix B (SPE Paper No. 21296). No leak—off solutions for constant height,
circular, and elliptic fracture modele in the dissipation and fracture dominant time
regimes are presented in Tables 1 and 2 of Appendix B. The fracture fluid
rheology and. injection flow rate effects primarily control the fracture geometry and
responses in the dissipation dominant domain while, the reservoir fracture toughness
and flow rate are important in the fracture dominant domain. The characteristic
times defining the dissipation, fracture, and transition influence domains, for simple
fracture geometries, are presented in Table 3 of Appendix B. In lieu of
employing the characteristic time concept, the pertinent energy-rate (power) ratios
and measures can be used to identify the governing domain(s).

Rectangular, penny—shaped, and elliptical hydraulic fracture configurations are
revealed in Fig. 1 along with a listing of uncontrollable reservoir parameters and
controllable process variables. Practical discussions of various uncontrollable

1
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Fig. 1 Various Hydraulic Fracturing Planar Configurations with
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parameters and their interactive role in fracture treatment design are presented by
Nierode [1] and Brown and Economides [2]. Theoretical considerations, numerical
results and conclusions presented here are based on the unsymmetric three—layered
elliptic model presented in Fig. 2. This semi—general model accommodates
reservoir characteristics exemplified by in situ stress, modulus, leak—off and fracture
toughness contrasts with the penny—shaped, rectangular, and symmetric layered
elliptical crack models representing special cases. Associated numerical experiments
and results are presented in section 2.0. :

The major conclusions of this project, using the ELLIP2D and ERATE2D
model simulators {3], are presented below:

(i) The delineation of the governing energy domain(s) (dissipation, fracture
surface, and/or leak—off dominant energy domains) using the uncontrollable reservoir
properties and controllable fracture fluid variables, and the methodology in
Appendix A is an important design tool Asymptotic time—explicit solutions with
small and large leak—offs for PKN, GDK or penny—shaped models can be utilized
in the preliminary assessments.

(ii) Three-layered models smearing the reservoir mechanical properties,
layering conditions, and in situ stress contrasts are gemerally adequate as well as
computationally efficient for a majority of the field simulations. The unsymmetric
elliptic crack models developed here facilitate parametric sensitivity, response
simulations as well as vertical fracture penetration evaluations.

(iii) - In situ stress contrasts along with layer interface conditions play a
significant role in governing fracture penetration with fracture fluid viscosity and
injection rate having a secondary influence. The effects of elastic moduli contrast
also have a secondarly role in the vertical fracture evolution and are primarily
reflected in the fracture width—effective pressure relation and resulting dissipation
energy rate variations.

(iv) Perforation placement in relation to the prevailing in situ stress field
can be effectively utilized to govern fracture evolution and symmetry.  The
payzone fracture effective area and volume efficiencies are more realistic measures

3
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for optimum fracture design than the traditional fracture efficiency definition in the
case of multi-layered media and are sigmficantly influenced by perforation
placement.  Parametric sensitivity configuration studies highlighting the role of
fracture fluid rheology, injection rate, and leak—off are wuseful for optimal
stimulation treatment design. @A higher injection rate, for the same treatinent
volume size, reduces leak—off but decreases fracture containment in the payzone.
Similarly, a higher fluid viscosity increases fracture width and vertical penetration.

(v) The energy efficiency of the hydraulic fracture process, evaluated using
effective bottom hole pressure (BHTP) or wellhead treatment pressure (WHTP)
values, is an important diagnostic measure. The available hydraulic horsepower
(i,P,) at the wellhead or bottomhole is converted into the time dependent,
dissipative, strain, leak—off, and fracture surface energy rates during the fracture
evolution. The conversion of the fracture fluid leak—off energy loss to reservoir
strain energy recovery, for example, should be optimized during the dissipation
dominant fracture evolution.



2.0 NUMERICAL EXPERIMENTS AND DISCUSSION

2.1 Elastic Modulus Contrasts

The effects of reservoir strata elastic modulus contrasts for a three-layered
symmetric elliptic crack model with major semi—axis (a), minor semi—axis (b), and
payzone height (h) are illustrated in Fig. 3. Fractures are uncontained for a/b >
3, even with a barrier to payzone elastic modulus of 10. Complete containment is
evident when the modulus ratio is equal to 100. These results are a
generalization of the empirical results reported by Van Eekelen [4].

2.2 In Situ Stress Contrasts

The effects of reservoir symmetrically imposed in situ stress contrasts, in
conformance with the presentation in Fig. 3, are revealed in Fig. 4.
Corresponding trends for unsymmetric in situ stress differentials are shown in Fig.
5. These results quantitatively demonstrate the significant elliptic fracture
configuration evolution bias in terms of in situ stress contrasts and they provide a
sound reference base for fracture geometry characterization and design in
three—layered reservoirs.

2.3 Model Respons ibrations omparigon

Selected - ELLIP2D model validations, comparisons with reported results, and
parametric sensitivity studies are presented in Appendix B and Reference [3].
Additional ELLIP2D and ERATE2D model penny shaped comparisons, incorporating
the SFE3 benchmark input data [5] in Table I with uniform in situ stresses, are
shown in Fig. 6 (Newtonian frac fluid) and Fig. 7 (non—Newtonian frac fluid).
Also, comparisons of the principal fracture dimensions and effective bottom hole
treatment pressure using the in situ stress contrasts in Table I, for the ELLIP2D,
HYFRAC3D, and ERATE2D simulators, are given in Tables II and IIL
Considering the width profile assumptions inherent in these models, the relatively
large deviations in the fracture length responses are reasonable.  The ELLIP2D
and ERATE2D models, for simplicity, assume an elliptical width profile with a
uniform pressure (Appendix B) and two term width as well as pressure
approximation (Appendix C), respectively. On the other hand, the HYFRAC3D
finite element model response representation is general [6].

6
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Table I Input data for SFE No.3 Cases 5 and 6

Case 5 and Case 6

Formation Properties
Shear modulus (GPa)
Poisson's ratio

In situ Stress (MPa)
Energy release rate (Pa-m)
Payzone height (m)

Upper/Payzone/Lower
24.218/24.218/24.21
0.21/0.21/0.21
49.299/39.302/50.67
78.78/78.78/78.78
51.51 (170ft)

8

8

Fluid Properties

Consistency index (Pa-minm)
Behavior index,m

Leak-off coefficient (m/{min)
Spurt loss (m)

Case 5 Case 6
3.333x10°° 0.37089
1.0 . 0.5
-4 -4
0.76x10 0.76x10
0.0 0.0

Injection Scheme
Injection rate (m3/min)
Total time (min)

7.9494 (50BPM)
200

Benchmark tests for a penny shaped model also use the
same -input data of the payzone for Case 5 (Newtonian)
and Case 6 (Non-Newtonian fluid case).
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Table II Fracture Response Comparisons
(SFE No. 3 Case 5: Newtonian Fluid)

Half Frac. Frac. Average| Effect.
Time| 1 Length | Height | Height width | Pressure
(min) (a:ft) (bu:ft) (be:ft) (W:in) (AP:psi)
A 865.1 143.9 136.9 0.176 889.2

2 B 654.2 124.2 115.8 0.218 884.7
A 1304.1 155.8 146.5 - 0.209 990.1

> B 1068.5 143.3 130.6 0.220 971.6
A 1661.3 163.8 152.7 0.230 1046.8

7 B 1303.0 158.0 140.5 0.245 1039.6
A 1961.1 170.n 157.4 0.245 1089.2

100 B 1501.4 168.8 147.0 0.248 1047.7
A 2225.4 175.4 161.4 0.259 1123.9

122 B 1635.1 176.7 151.0 0.265 1077.2
A 2462.8 180.1 165.0 0.271 1152.7

190 B 1777.7 185.2 154.6 0.265 1089.9
A 2677.8 184.3 168.2 0.281 1176.2

17e B 1982.5 192.7 159.4 0.238 1112.0
A 2879.0 188.3 171.2 0.290 1197.0

200 B 2088.9 194.9 161.7 0.250 | 1112.6

t A : ELLIP2D
B : HYFRAC3D
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Table II

Fracture Response Comparisons (continued)
(SFE No. 3 Case 5: Newtonian Fluid)

Half Frac. Frac. Average| Effect.
Length Height Height width Pressure
(a: ft) (bu:ft) (by:ft) (W:in) (AP:psi)
Tinme
(min) Pressure| Press. Press. Max. Max.
Response |Response|Response| Width width
Var. ap Var. a, vVar. a, (leln) (w2:1n)
1039.9 145.0 138.9 0.146 626.9
25
1.602 3.1E-2 2.9E-2 0.017 0.335
1689.0 152.2 143.9 0.164 685.2
50
1.600 1.3E-2 1.2E-2 0.015 0.386
2232.2 155.1 147.0 0.176 722.7
75
1.595 7.7E~3 6.9E-3 0.013 0.417
2714.2 158.0 149.4 0.184 750.4
100
1.590 5.4E-3 4.8E-3 0.013 0.440
3155.1 160.4 151.2 0.191 772.5
125 :
1.586 4.1E-3 3.6E~3 0.012 0.458
3563.8 162.3 152.8 0.197 790.7
150 -
1.582 3.3E-3 2.9E-3 0.011 0.473
3948.4 164.1 154.2 0.202 806.3
175
1.578 2.7E-3 2.4E-3 0.011 0.487
4312.4 165.6 155.3 0.206 819.8
200
1.574 2.3E-3 2.0E-3 0.010 0.498
*x C : ERATE2D

14




Table III Fracture Response Comparisons
(SFE No. 3 Case 6: non—Newtonian Fluid)

Half Frac. Frac. Average| Effect.
Time| t Length | Height | Height Width | Pressure
(min) (a: ft) (b,:ft) (blzft) (W:in) (AP:psi)
A 831.5 152.1 143.8 0.174 901.5

25 B 904.8 131.4 117.1 0.165 864.8
A 1306.4 162.5 151.8 0.199 970.4

>° B 1322.8 157.1 138.7 0.191 995.1
A 1708.9 169.1 156.8 0.213 1005.4

7° B 1615.9 169.0 146.3 0.198 1017.4
A 2058.7 173.7 160.3 0.225 1032.8

+00 B 1789.9 178.5 150.7 0.218 1048.2
A 2373.7 177.5 163.1 0.234 1055.7

12e B 2017.8 196.5 164.8 0.206 1105.6
A 2662.4 180.8 165.6 0.242 1074.2

120 B 2188 2 201.6 170.5 0.213 1104.3
A 2929.6 183.7 167 .7 0.250 1090.3

S B 2380.9 225.7 180.4 0.216 1142.3
A 3181.0 186.3 169.7 0.256 1104.0

200 B 2424.2 244.0 190.5 0.211 1170.9

t A : ELLIP2D

B : HYFRAC3D

15




Table III

Fracture Response Comparisons (continued)
(SFE No. 3 Case 6: non—Newtonian Fluid)

Half Frac. Frac. Average| Effect.
Length | Height | Height width Pressure
(a:ft) (bu:ft) (bl:ft) (W:in) (AP:psi)

Time| %

(min) Pressure; Press. Press. Max. Max.
Response |Response |Response| Width width
var. qp var. a, Var. a, (Wl:ln) (w2:1n)

1030.1 144.7 138.6 0.147 633.5

25 c
1.600 5.5E-2 5.0E-2 0.017 0.338
1608.9 153.1 145.5 0.171 711.2

50 c
1.596 2.6E-2 2.4E-2 0.014 0.403
2079.2 158.5 149.8 0.186 761.3

75 C
1.588 1.7E-2 1.5E-2 0.012 0.446
2487.9 162.6 153.1 0.198 798.5

100 C
1.580 1.3E-2 1.1E-2 0.011 0.477
2855.5 166.0 155.7 0.208 1 828.2

125 |-C
1.573 1.0E-2 9.0E-3 '0.011 0.502
3193.5 169.0 158.0 0.216 852.9

150 (o
1.566 8.4E-3 7.4E-3 0.010 0.524
3507.2 171.6 i60.0 0.223 874.1

175 c
1.560 7.2E-3 6.3E-3 0.010 0.542
3802.2 173.9 161.7 0.230 892.6

200 c
1.554 6.3E-3 5.4E-3 0.009 0.559

+« C : ERATE2D

16




2.4 Fracture Design Diagnostic Measures
The energy—rate formulations, detailed in Appendix C, provide the

underpinnings for deriving applicable energy—rate (power) balance laws. The
instantaneous individual energy rate components derived from the input hydraulic
power are useful fracture design diagnostic measures. = The fracture fluid and
reservoir control volumes are considered separately in the energy balance and the
overall process energy rate conservation law is derived by eliminating the crack
pressure reservoir wall velocity coupling term. :

The energy—rate components from the fracture fluid control volume energy
rate principle can be rewritten, after neglecting the body force contribution in the
form:

DI=Df+DL+D,,7 (1)
where

J pq, ds
0A q

A
DL = JA pqLdA, and

D =-JA g-(p — f) dA
The total power input (DI) derived from the pressurized injection of the treatment
fluid is the sum of the energy rate components associated with the formation
opening due to the fluid pressure distribution (Df), power loss due to fluid
leak—off into the formations (DL), and fracturing fluid dissipation (D 77)'

The power component due to the fluid pressure induced fracture opening
(Df), transmitted by the crack surface, is further transformed into the

*
instantaneous change of strain energy component (a%US) and the fracture surface

energy rate (Uf) expended for the crack propagation.  Therefore the reservoir
energy rate conservation principle governing the formation structural responses is
given by
-4y
D = qv Uy + U; (2)
where the fracture energy rate is

d
Ug = HTJ G, dA
A 17



and the total strain energy rate can be rewritten as
* d 1
H% U =1 {JA 5 WK,[w] dA + J-A o (x)w dA}
= v'vadA+J ax\'vdA-J
J, ¥l %o

*
=U,+U0p+70,
The work rate term due to the in—situ stress can be decomposed into the payzone

in—situ stress and its contrasts i.e.
*

U_ = JA g (x)w dA = g

- o

G a_ ds
6A n

\'vdA+EJ Ao (x)w dA
jA N (%)

P
= UU + UAU
We note that U o and U Ag 2Te the energy rate components associated with the
payzone minimum in situ stress and stress differentials in the barriers, respectively.
The total input power balance equation, obtained by combining Eqs. (1) and
(2), is
D1=Us+UP+Ua+UAa+Uf+Dr,+DL (3)
The energy rate due to the leak—off term can be divided into two components,

comprising of the borehole effective pressure and the minimum in situ stress terms
as follows:

Dy = JA p(x)qp(x) dA = JAAp(x)qL(x) dA + %op JA qp(x) dA

Similarly, the total input power can be also expressed in the form

DI = JBA Pq, ds = P\oio + 0, i0

)Y
—.q ‘
where DI off = P 0i o represents the power available for transformation into other
forms of enmergy rate during the fracturing stimulation and Dy = aopio denotes

the base line power required to negate payzone in situ stress effects.
Therefore the total input power can be expressed in terms of six power
components in the form
_rd d
where H('ti' U, = U, + Up + Uy, and a—% Uy, = U,
18



Normalization of Eq. (6) with respect to D; provides a useful basis for
assessing pertinent energy rate components

d d
U, + U U D D D
dt sl dt “s2 { L1 L2 _
D +_ITI+D_;Z+—D?+D_I——1 ™)

Eq. 7 expresses the relative energy—rate expenditures associated with the hydraulic
fracture process mechanisms at a particular time instant. This equation includes
the power components associated with the reservoir in situ stress which can be
considered as a baseline term and can be isolated through the equation

aopio = %p JA w dA + %p JA qp(x) dA
or alternatively

_d
Dpy = gt Ugo + Dy (8)
Eq. 8 is equivalent to the fracture fluid mass conservation equation multiplied by
the payzone in situ stress.
The available effective power relation can be simplified in the form

_d
Dregy = gt Usy + Ug + Dy + Dy (9)

Eq. 9 can now be normalized with respect to the available effective power, DIeff’
to give

d
U 0 D D
dt Vsl + f + A L1

Drott © Drett * Drett ' Diett
Eq. 10 expresses the available effective energy-rate expenditures for fracture
propagation, opening, as well as fracture fluid related losses at a time instant.
Since each component in eq. 10 is directly related to the fracture process
parameters and variables, the time history of each component demonstrates the
efficacy of energy rate transfer from the bottom hole treatment effective pressure
cum injection flow rate source.

=1 (10)

In addition to the energy-rate conmsiderations and related transfer—efficiencies,
the optimum generation of fracture surface areas and/or volumes in the payzone
layer for multi—layered reservoirs is a vital design consideration. Accordingly, we

*
define the normalized effective fracture area (Aeff) and normalized effective fracture

volume (V:ﬁ) within the payzone as follows [3]:

19



*
Aeif = (A)payzone/ B
=2 F by — aby sin {1 = (¢)%1/% + myo; {1 - (&)™

for j = u)l (11)
and
*
Veff = (VF)payzone/ VI
=3l g aby Wy {1 = Ry(§)} + F aby Wy {1 = Ry(E/Ggt)
for j = u)l (12)
where f = h, /b R, and R, represent the ratios of integrals for barrier area to

the integrals for the payzone area with the integrands given by (1—p )1/ 2 and

(1-p )2/ 3, respectively. The evaluation of pertinent energy-rate, effective fracture
area, and fracture volume efficiencies from an integrated systems viewpoint are
essential elements in the hydraulic fracturing design process. Numerical
experiments on the role of the fracture fluid controllable variables and perforation
placement on these design metrics are essential steps towards the optimization and
control of fracture configuration evolution.

2.5 Evaluation of Energy—Rate Components: Penny—Shaped Fracture Benchmarking

The asymptotic responses for a penny-shaped fracture, in the absence of
leak—off, can be obtained from the closed form time explicit solutions presented in
Appendix C. -The dissipation energy dominant regime solution (Gm-—-o) yields the
ratio ‘

7
Dn/ H_Usl Q}E (13)
where m is the flow behavior index. The ratio in [13] is maximum when the

fluid is Newtonian (m=1), with a value of 4.25. Therefore the percentages of D

and EgUsl with respect to the effective input power (DI ﬁ) for this case are
81% and 19%, respectively. :

When the dissipation energy is negligible (no—o), the solutions yield the
energy ratio

U/, = 32 (14)

20



This result reveals the percentages of H%Uf and H'%Usl with respect to the effective
input power (DIeff) for this case are approximately 60% and 40%, respectively.

Fig. 8 illustrates the asymptotic no-leak off power conservation responses
depicted by Eqs. 13 (m=1) and 14. The baseline and available effective
energy-rate responses for the benchmark SFE3 case in Table I, in the absence of
in situ stress contrasts, are plotted in Fig. 9a with the available effective power
responses highlighted in Fig. 9b. These responses are obviously dissipation
dominant since the fracture energy component is negligible and the relatively small
leak—off component leads to a large fracture volume efficiency. Figs. 10 and 11
reveal the trade—offs in the energy-rate components due to different fracture fluid
viscosities and leak—off coefficients, respectively. Minimization of leak—off and
pressure gradient energy rate dissipation can be controlled by the judicious
selection of the fracture fluid slurry.

2.6 Hydraulic Fracture Design Evaluations in Three—Layered Reservoirs

Numerical experiments detailing the fracture design diagnostic measures are
presented here for variations in the controllable variables (frac fluid rheological
properties, injection flow rate, fluid leak—off coefficients, and perforation placement)
specified in the three—layered SFE3 model data (Table I).  These evaluations
facilitate the development of hydraulic fracture design guidelines.

Table IV lists the input data for 13 cases (cases a-m), using the
three-layered SFE3 model data in Table I. The hydraulic fracture dimensions,
effective pressure, fracture efficiency, effective area efficiency, and effective volume
efﬁciency responses are summarized in Table V. Figs. 12, 13, and 14 illustrate
plots of the fracture efficiency, effective area efficiency, and effective volume
efficiency, respéctivei}‘;\ for cases (a—g). Although the perforation placement has a
negligible effect on \:t‘he fracture efficiency (Fig. 12, cases a—c), the effective fracture
area and volume efficiencies are significantly influenced by the perforation source.
An increased injectionvf‘\rate for case d (i = 2, with i, = 50 BPM) apparently
yields a better fracture efficiency than case e (i = iO/Z) with a higher borehole
effective pressure. ~However, this increased injection rate in case d yields a lower
normalized effective area and higher normal e}ffectiﬁe;éi; volume than in case e. This
is an obvious result of less containment in the payzone and a higher fracture

width for the increased injection flow rate case. The fluid leak—off coefficient is
21
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an important variable, as evidenced by its non-linear impact on efficiencies in
Table V. Since the cases in Table IV all fall in the dissipation dominant regime,
the advantages derived from reduced fluid leak—off should be carefully examined
relative to the disadvantages stemming from changes in the rheological and
proppant transport characteristics ~of the fracture fluid. For illustrative
comparisons, the fracture and effective volume efficiencies for the Newtonian fluid
cases '}l-m are shown in Figs. 15 and 16 respectively.

To demonstrate the importance of the energy-rate measures (Section 2.4),
Fig. 17 portrays the effective available energy components (plots q, s, 1, f) using
bold (three-layered) and dashed (penny—shaped) lines.  Clearly, dissipation apd
leak—off effects are dominant. This indicates that injection flow rate, fracture fluid
rheology, and leak—off coefficients have a significant effect on the fracture responses
while the role of reservoir fracture toughness can be ignored. The base line in
situ stress component trends designated by S (strain energy-rate) and L (leak—off
energy—rtate) reveal the relatively large uncontrollable energy-rate expenditures
during the fracturing process. Comparison of the energy-rate components for case
6 (Table I) and case a (Table IV) are shown in Fig. 18. Due to the reduced in
situ stress contrast in case a, the fracture length (height) is decreased (increased)
by 26.4% (28.3%), as listed in Tables I and IV.  Therefore, the dissipation
energy—rate component for case a is lower than in case 6. This difference in the
dissipation energy—rate causes a commensurate change in the leak—off energy rate
component, with small changes in the stored strain energy rate components.

Figs. 19 and 20 illustrate the emergy-rate component trend sensitivities due
to leak—off coefficient and injection rate variations. The higher leak—off coefficient
case (case f in Fig. 19) illustrates a large drain in the amount of available power
primarily at the expemse of strain cnergy rate.  This indicates that, in the
dissipation dominant regime, an increase in the leak—off component directly yields
an unfavorable fracture configuration response assuming that the maximum reservoir
strain energy transfer is desirable. Similarly, halving the injection rate increases
the relative leak—off energy-rate component due to the reduced exposure time
primarily at the expense of strain energy rate (Fig. 20). Favorable, but minor,
changes are also evidenced in the dissipation energy rate component. These
injection rate sensitivity trends have to be evaluated in conjunction with the
effective area and volume efficiency changes discussed earlier.
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3.0 FRACTURE DESIGN, CONTROL, AND OPTIMIZATION GUIDELINES

Although numerical simulations specifically tailored for the SFE3 field data
are presented in Section 2.0, the following generic guidelines for hydraulic fracture
configuration design, control, and optimization are proposed:

1. The characterization of the operative influence domain(s) (dissipation, fracture
surface and/or leak—off energy dominant regimes) using the uncontrollable reservoir
properties and range of controllable fracture fluid variables is an essential design
tool (Appendix A).  Asymptotic time—explicit solutions with small and large
leak—off for PKN, GDK or penny—shaped models can be utilized in preliminary
assessments (Appendix B).

2.  Three—layered models smearing the reservoir mechanical properties, layering
conditions and in situ stress contrasts are generally sufficient and computationally
efficient. The unsymmetric elliptic crack models facilitate parametric sensitivity
and vertical fracture peretration evaluations (Tables IV and V).

3. In situ stress contrasts (as well as layer interface conditions) play a significant
role in governing fracture vertical penetration (Figs. 4 and 5) with fracture fluid
viscosity and injection flow rate having a secondary influence.  The effects of
elastic moduli contrast are also secondary (Fig. 3) and are primarily reflected in
the fracture width—effective pressure relation and resulting dissipation energy rate
variations.

4. Perforation placement in relation to the prevalent in situ stress field can be
an effective design tool in governing fracture evolution (Tables IV and V). The
payzone fracture effective area and volume efficiencies are more realistic measures
for optimum fracture design than the traditional fracture efficiency definition in the
case of multi-layered media (Figs. 12, 13, and 14). Parametric sensitivity
configuration studies delineating the role of fracture fluid rheology injection rate,
and leak—off are useful for the optimal stimulation treatment design (Tables IV
and V). A higher injection rate, for the same treatment volume size, reduces
leak—off but decreases fracture containment in the payzone. Similarly, a higher
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fluid viscosity increases fracture width and fracture vertical penetration.

5. The energy rate efficiency of the hydraulic fracture process evaluated using
effective bottom hole treatment pressure (BHTP) or wellhead treatment pressure
(WHTP) values is an important diagnostic measure (Figs. 17 and 18). The
available hydraulic horsepower (ioPo) at the wellhead or bottom hole is converted
into dissipative, strain energy storage, leak—off, and fracture surface energy rates
during the fracture evolution. Transfer of fracture fluid leak—off energy to
reservoir strain energy, for example, should be optimized during the dissipation
dominant fracture evolution (Figs. 19 and 20).
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ABSTRACT - A new application of an energy-rate variational principle for
hydraulic fracturing processes is introduced. The formation structural, fracture
mechanics, and fracture fluid flow responses are integrally coupled in this
treatment. This unified principle, with various specialized forms, provides a formal
framework for the study of continuum as well as discrete models. The applicability
of the developed formulations is demonstrated by deriving time—explicit solutions
for a penny—shaped model and comparing numerical results with corresponding

responses from Lagrangian and finite element methods.
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INTRODUCTION

Hydraulic fracture processes involve the initiation and extension of crack\s in
target formations through the pressurized injection of proppant—laden viscous fluids
at controlled rates (Veatch et al., 1989). Various methodologies have been
employed for the evaluation of hydraulically induced fracture responses, including
both energy as well as variational approaches. Perkins and Krech (1968), based on
the pioneering work of Sack (1946) and Barenblatt (1956), introduced the concept
of a damage zone using a modified energy balance equation for the case of a
nonpenetrating fracture fluid. The computed fracture extension pressures employing
laboratory determined Griffith surface energies are consistent with corresponding
pressures measured in experimental models.

A variational formulation coupling the formation structural stiffness and
ﬁacttiri\xlg fluid response via the crack fluid pressure was first advanced by Clifton
and Abou-Sayed (1982). They employed separate variational principles for the
formation structural responses and viscous fracture fluid flow, with the linear
elastic fracture mechanics (LEFM) criterion expressed as an auxiliary equation. The -
subsequent discretizations for the crack width and pressure provide the
underpinnings' for the numerical solutions (Abou—Sayed et al., 1984; Clifton, 1989).
A related variational technique for simulating fracture propagation has also been
reported by Toubul et al. (1986).

The use of generalized coordinates, in a Lagrangian formulation, for deriving
solutions associated with constant height hydraulic fracture models was motivated
by Biot et al. (1986). The time dependent generalized coordinates for this discrete

model are defined from the admissible functions for the assumed crack dimensions
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and pressure profile. This technique is similar to the Rayleigh—Ritz type solution
procedures which have traditionally se;:ved as precursors to advanced wuumerical
techniques. Its applicability to elliptical (Advani et al., 1986) and penny—shaped
(Advani et al., 1987) fractures has also been demonstrated. In the latter context,
fundamental studies on the propagation of a penny-shaped crack have been
conducted by Abe et al. (1976).

The significance of different energy contributions for examining {fracture
response phenomena has received considerable attention. Thiercelin et al. (1987)
studied the influence of fracturev toughness for penny—shaped cracks. They
contrasted their results with those of Wong and Cleary (1985) who studied the
limiting case of zero fracture toughmess value in their previously developed model.
Conversely, substantially enhanced fracture toughness scaling laws have been
hypothesized by Shlyapobersky et al. (1988). The relative contributions of Griffith
surface and viscous dissipation energy components have been systematically
investigated by Lee et al. (1989). The ensuing characteristic time measures
developed in Tthese studies serve as diagnostic indicators for parameteric sensitivity
evaluation, fracture fluid selection, bottom-hole treatment pressure—~flow analysis
and eventual fracture configuration control in multi-layered reservoirs.

In this paper, application of a rigorous and integrated energy rate
variational formulation governing the coupled structural, fluid flow and fracture
mechanics responses is detailed. This unified treatment not only provides a formal
framework for investigating discrete Lagrangian models (Biot et al., 1986) with
pre—selected configuraticns and lumped generalized forces but it also facilitates the
formulation and computational work associated with advanced finite element
hydraulic fracture simulators. Applications stemming from the theoretical

development are detailed for a penny—shaped fracture.
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FORMULATION OF A GENERAL ENERGY RATE FUNCTIONAL

Consider a hydraulically induced fracture rei)resented by a planar vertical
cr@cik in a multi-layered formation, as shown in Fig. 1. We denote the volumes of
the reservoir (excluding the fracture) and the fluid (occupying the entire fracture)
by Q.(t) and Qgt), respectively. The fracture surface area and the crack front are
designated by A(t) and 0A, respectively.

A general form of an energy rate functional, coupling the elastic reservoir
structural, linear elastic fracture mechanics and viscous incompressible fracturing
fluid, is motivated from Appendix A. This functional, obtained from the principle
of virtunl work, is

F(z, ¥ppidg) = oo J e dV + J ¥ dV + J vg(py = fg) 4V
g 0, 0

d
—2j DV dA—zj'pv.n.dA+a-jG dA—J pve dA (1
A L A 811 tAcr aA ﬁl )

where e is the specific strain energy for the reservoir and ¢ is the fracture fluid
dissipation energy rate. For the crack, we note that the boundary areas for tpe
crack surfaces are represented by |00 = [ = 2|A|. These integrals over
the area A in eq. (1) are calculated for ome face of the fracture only; the factor
of two accounts for the opposite face. Also, the energy release rate G, =2
with T' defined as the surface energy. In eq. (1), Yo Yp and vL, denote the solid,
fluid, and leak—off velocities, respectively, p designates the fracture fluid pressure,
n is the unit vector normal to A and pointing outward from Qf, fg is the fluid
gravitational body force, and vg s the fracture fluid injection velocity at the
boundary 6Aq.

One can readily identify the origin of the various terms in eq. (1) and
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pertinent mechanisms. The first term in eq. (1) represents the rate of increase in
strain energy in the solid and the second term is directly related to the rate of
energy loss through fluid dissipation. The vgpy term includes the rate at which
the fracture fluid does work at the boundaries A and 6A Q and enforces the
incompressibility constraint. The _vﬁfgi term represents the rate of increase in the
gravitational potential. The terms 2va and 2pv8ini account for the rate at which
energy is lost through fluid leak—off, and the rate at which work is done on the
solid. The term containing G, in eq. (1) represents the rate at which energy goes
into creating new surface area. Since v, is defined to be negative for injection,
—pvy, represents the rate at which energy is supplied to the fracture at the
injection boundary aAq.

We introduce, in eq. (1), the expressions

_ 1 0
for the linear elastic formation subjected to initial stresses U(i)j’ and
Mo (14+m)/2
¥ = m7m (O Ly (3)

for the power law type non—Newtonian fracturing fluid (Tij = ﬂolle—lLij)» with
Mo and m denoting the fluid consistency ard behavior indices, respectively, and L, f
designating the components of the fluid velocity gradient temsor (defined in
Appendix 'A). Also, we note that the fracture energy rate term in eq. (1) can be
equifa.lently written as

, dJ G j G_ i dS (4)
| dt A(t) cr gA & 'm

with in representing the normal crack propagation velocity on OA. Eq. (1) can

dA =

now be rewritten in the form



F(!s’!f’p’a ) = J {? ljklekl + 013 IJ} v + T__J (Lu 13)(1+m)/2 v
Q

+ Janﬁ(p,i - fgi) dv - 2 JAp Vil dA - 2JAp L, dA

+ JaAG“ i dS - Jaqu vy, dA (5)

We take variations with respect to the variables ¥ , ¥, p, and én only. The solid
displacement 1 and all spatial regions (ﬂs, ﬂf, A, 0A and aAq) are not varied,
and the first integral (strain energy term) in eq. (5) must be expressed in térms
of Y, and u, only. We also assume that Vin and vy are prescribed with Vin
defined to be negative for injection.

The resulting Euler equations, obtained from setting the first variation of
eq. (5) to zero, are :

Equilibrium equations for the reservoir

(J+01J), = 0 in Qg (6)
Traction boundary conditions for the reservoir
0 =
(aij + aij) n; + Py = 0Oon A (M
Fluid linear momentum equations for the fracturing fluid
- Pyt 'rl“-{- fgl 0 in Qf (8)

Fracturing fluid incompressibility equation

Fracturing fluid and reservoir velocity relations on the crack surface

Vg, = veno + vpoon A (10)
Injection flow condition for the fracturing fluid

Vgl = Vg on 6Aq and (11)
Reservoir fracture propagation criterion

G = G, on JA (12)
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We assume that the values of TRy are negligible along the surface A and at the
injection boundary, ﬁAq. For hydraulic fracturing studies, one can show that the
deviatoric stress Tij are much smaller than the pressure p. The stationary value of
the functional given by eq. (5) yields the necessary field equations and boundary

conditions for investigating the overall hydraulic fracture responses.

SIMPLIFIED ENERGY-RATE FUNCTIONALS

We simplify the general functional (5), for application to hydraulic
fracturing, by using the boundary integral form for the crack opening mode and
invoking the lubrication flow approximation. Although the functional and associated
analysis are applicable to a general state of in—situ stress "(i)j

sequel that the crack is planar and that it propagates perpendicular to the

, we assume in the

minimum in-situ stress, o, = — aga, in the X3 = 0 plane (Fig. 1).

First, the boundary integral representation of the strain emergy term for the

crack opening mode (u ;=u.=0, u,=Ww/2) can be written as (Bui, 1977)

Jﬂs % eijcijkl‘kl v = % B(w,w), (13)
with the symmetric bilinear term B(w,w) A defined in terms of the crack opening
width, w, by

B(w,w), = -[A w K,[w] dA

_ 9, 1 \ dw(£p)

where K ,[w] represents the boundary integral for the crack surface A and u and
v respectively are the reservoir shear modulus and Poisson’s ratio. The appropriate

forms for a planar fracture in a multi—layered formation, reported by Lee et al.
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(1988), have been obtained by extending the basic work of Lee and Keer (1986).
We note that the integral expression (14) is defined in terms of the fracture
opening width, w, and the fracture area, A, instead of the displacement, u,, and
- volume, Qs. This representation, therefore, significantly reduces the computational
effort. The corresponding terms in eq. (5), obtained by using egs. (13), (14), and
Appendix B, for an opening mode planar crack, can be derived as
0
j {?Eljcuklekl + %; 11} dv
s .
= x'v{K[w]+a}dA+J i o wiw-n dS 15)
'[A A 0 aA n Vv (
where the gradient, Vw, is defined with respect to the coordinates X; and X.

Next, from the lubrication flow approximation, we express the dissipation

energy integral in the form

2
1_3.1% IQ( i 13)(1+m)/2dv _1% J J'Wv/v/z(LlJLlJ)(1+m)/2dx dA (16)

We now evaluate the volume iniegral for laminar Hele—-Shaw flow behavior in a
channel with width w(xl,xz,t) and fluid pressure p(xl,x2,t) using the relations
(Clifton and Abou—Sayed, 1982)

| x 3| 1 ,
= 2B 11 - Gy )T qyw (11)
| x5
- R S PN (18)
w/2
Voo dx, = 0 (19)
(I
where qi/w is the average velocity defined by
W/ dx (20
q. = J v .
The dissipation term can now be shown to have the form
7, (1+m)/2 7 1+m
T Jgf( iflij) v = s | , TmFT dA (1)
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where 7 = 170(2+1/m)m olt™m  Algo. for a vertical planar crack, we have
= 1) dV = J (Vp£
Jnfvﬁ(pl o) d L9 (Vp-f;) dA (22)
and
Jw/z dx, = Q on 9A
\{ = on 23
—w/2 fn 3 L q (23)

On the crack surface, A, the velocities are represented by
w/2 = x-n and qp = 2vp : (24)
Using egs. (15), (21), (22), (23), and (24), the functional (5) can be rewritten in
the following simplified form :

C D : ' 7 lq| 1™
F(w,apa ) = JA w {KA[W] -p+ 0} dA + ¢ JA ImT1 dA

. m
+ JAg (Vp fg) dA JAP q, dA + JaAan {B'dt:ﬁ)w Vw-n + G } dS

- [, »Q, as (25)
aAq

The resulting Euler equations, obtained from the first variation of only the

velocity—dependent and pressure terms in (25), are

w: Ky[w] = p — o, in A (26)
bp: V-.@ + W + q =0 inA (27)
gn=Q along aAq (28)
_ m-1 .
Jg:nwm+g+Vp—fg=Qm»A (29)
fa: — EJ(E%:F)W Vw-n = G, along 0A (30)

Another simplified form of the functional, using relation (29) and eliminating

the flux, g, from the generalized coordinates, can be derived as
F(W,pay) = JA WKW - p + o5} dA - jA pay, dA

R PG U S ARUS S S (3m)ga
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. T .
+ L}A iy { glty” Twa + Gg} oS — JaA p Q dS (31)
q
The Euler equations, resulting from (31) after applying the variational procedure

and divergence theorem, are

ﬁwK[w]—p—a in A (32)
- (@ Ymy. {w(2+1/m)|Vp—f |(-m)/ Dy g9} + % 4+ qp = 0in A (33)

Q, = - @™ ™) gpg B (wpf))n  along 04, (34)

D - E-rlf——)w Vw-n = G, along JA (35)

In summary, the functionals representing the mechanics of hydraulic
fracturing are given by egs. (5), (25), or (31), depending on the inherent
assumptions. Theoretically, the functional given by eq. (31) can be expressed in
terms of two variables, by eliminating the pressure variable using eq. (32).
However, this additional reduction requires the derivation of a computationally

tractable expression for K A[w], associated with pre—selected fracture geometries.

APPLICATIONS: DISCRETE PENNY-SHAPED MODEL

We consider the hydraulically induced growth of a penny—shaped fracture in
an isotropic formation. The fracture geometry at any time instant is approximated
by the fracture radius (R(t)) and fracture opening width profile assumed as

wet) = Wyt =DM + Wyt =D (36)
where p = r/R is the normalized radial coordinate. The first term in eq. (36)
represents the crack singular behavior while the second term corresponds to the
equilibrium crack growth condition (Barenblatt, 1956), satisfying a zero slope at

the crack front (p=1). The compatible polynomial expression for the effective
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pressure profile derived from the crack opening width profile (36) is

p(rt) — o, = P(t) {1~ a(t)e’) (37)
where 7, is the reservoir minimum in—situ stress. The approximate distribution in
eq. (37) assumes that the fracturing fluid occupies the tip of the advancing
fracture and ignores the pressure singularity at the front, arising from the
lubrication approximation (Bui and Parnes, 1982).

The energy rate components and governing equations of motion corresponding

to the five generalized coordinates, Wl, Wz, f{, P and a, are derived in Appendix
C. The governing elasticity egs. (C.11) and (C.12) can be re—expressed as

W, = 4—7("1‘—"11 PR (1 — 20) (38)
W, = ﬂ}r—;’ﬂ PR § a (39)

along with the crack propagation condition from egs. (38), (39) and (C.13)

M 2
sU=r V1 = S (40)

The mass conservation equation, deduced from egs. (C.14) and (C.15), is
1
. d 2 2 2 2 2 -
i = @& wr? + I WR) + 4nCiR IO {t-r(p)} Yodp (41)
where the last term represents the fluid leak—off volume rate. The additional

equation reflecting the variation in a (eq. (C.15)) is

2RYEW, + 5gW,) + 2rRR({SW, + zgW,)
2 “1/mp(m-1)/m 1/m pl 2
_ 2T, yol/mpm-l)/m g [m pl/m 1w Wym) + 41C;R2I= 0 (42)

where
1 3
= Jo -{_’:;%Z dp (43)
and (W}, Wym) = J;[p(l—f)”?{wl + Wy g (44)

The procedures for solving egs. (38) through (42), utilizing an incremental time

marching scheme, are detailed in Appendix C.
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Asymptotic Solutions
In the absence of leak—off (C; = 0), the solutions to egs. (38)—(42) are

identical to the time—explicit forms derived from Lagrange’s method (Lee et al.,
1989). For the limiting case of negligible fracture energy (Gcr= 0), we obtain the
following relations from egs. (38) through (41):

W, =0, a=32 W, =" }r;” PR, i, = g5 (2F W,R%) " ()
Substituting these values into eq (42), we have
‘ =m+1;
R(t) = C,(m) [——u—713‘ ) s (462)
(1— V)2 m+2n2 2—m
W(t) = Wlt) = Cylm) F—y®@—0 ¥ 7 Jw) (46b)
u
m+1 :
n "'—7 __2'
P(t) = Cy(m) [(1 I (46c)

The numerical constants C;(m m) are detailed in Table 1. The difference in the
constant values using a previous Lagrangian formulation (Lee et al., 1989) can be
attributed to the assumed comstant crack pressure and corresp;mding elliptical crack
opening wid'th profile.

The other limiting threshold is characterized by zero dissipation energy rate
(no =0). This case correctly yields a constant pressure profile and, from egs. (38)

through (42), we obtain

a=0W,=0 W = ‘%%’12 RP, i) = & (2§ WR?) (47)
poi
R(t) = 0.617 [(1-_-;‘)’-(;“]1/5 12/5 (482)
G2 (1-v)?
W) = Wy(t) = 1254 [0 — 1/5 41/5 (48b)
28
P(t) = 1.595 [——c-’-g- A BA (48¢)
(1—»)%,
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Numerical nlt

For the cases wherein the effects of dissipation and fracture energy rate are
both prevalent, the governing equations (38) through (42) do not yield closed ‘form
time—explicit solutions. Therefore, the nonlinear coupled differential equations are
solved using a numerical procedure (Appendix C). To illustrate the transition of
the solution behavior from the dissipation dominant regime to the fracture surface
energy dominant regime, we select an example (Table 2) wherein the effects of
dissipation and fracture energy are clearly " evident. Figure 2 illustrates the
numerical results and the transition of the bore—hole crack opening width response
from the dissipation dominant regime solution (eq.(46b)) to the fracture energy
dominant regime solution (eq.(48b)). The results from a previously developed
"3—dimensional finite element simulator (Advani et al., 1990) are also included for
comparison. The corresponding fracture radius and bottom-hole effective pressure
responses are also presented in Figs. 3 and 4, respectively. The domain transition,
for the fracture radius growth, is not discerned readily in Fig. 3 since the slope
changes from a value of 044 (eq. 46a with m=1) to 0.40 (eq. 48a). Another
interpretation of this transition behavior can be found by examining the value of
the pressure—width response variable o(t). The extreme values of a are 1.50 and 0
associated with the dissipation (eq. 46) and fracture energy dominant (eq. 48)
regimes, respéctively. The computed values of «, for this numerical example,

decrease monotonically from 1.22 ('c=5x10_3 min) to 0.10 (t=1000 min).

58



CONCLUDING REMARKS

An application of variational principles integrating the elastic reservoir
structural and fracture mechanics as well as fracture fluid flow béhavior are
presented. The formulations yield a comprehensive set of field equations for
characterizing the overall hydraulic fracture responses. They also facilitate the
computation of pertinent energy rates during fracture evolution. Application of the
developed methodology for a penny—shaped fracture is readily demonstrated by
using a Rayleigh—Ritz type solution technique. This procedure can also be
implemented for the case wherein the lag in the fracturing fluid front relative to
the crack tip front is represented by an additional generalized coordinate. It is
believed, however, that in—situ stress effects in the presence of the fluid lag are
less significant for penny—shaped rather than rectangular fractures. Investigations on
the evolution of an elliptical fracture in a three layered formation with stress

contrasts and leak—off effects, using the presented variational formalism, are in

progress.
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APPENDIX A
Rate Form of Principle of Virtual Work

To demonstrate the physical relevance of the energy-rate functional (eq.(1))
and its relationship with the traditional principle of virtual work (PVW), we
express the PVW for the hydraulic fracturing process in the form

. L. dV -J .
Jn 7y Bes; AV + Jn ry oy d foglévﬁ dv

ij
+ 2IA(p ~ mmn) Gy dA + IM(Gcr - G) &_ ds
- bv, dA J X bve . dV = .
- jaAq(p i A+ [ g 4V = 0 (A1)
where ;"ij = 0 + ”(i)j is the total formation stress temsor component and Tij is

the deviatoric stress tensor components for the fluid. The variations &ij in eq.
(A.1) are restricted to those values of &ij which are compatible with the current
fracture configuration. Energy contributions due to a moving fracture front are
contained io the energy release rate G. The strain rate and velocity gradient

tensor components above are defined by

—2( +-a,-(-J)andL é(%+§§) (A.2)
The Lagrange multxpher associated with the last integral in eq. (A.l), for the
incompressible fracturing fluid, can be shown to be equal to the fluid pressure, i.e.
A=-p (A.3)
In converting eq. (A.1) to a functional, we retain variations in the variables ¥,

Y, P and én only. We do not take variations with respect to u  or the physical
boundaries.
We now convert eq. (A.l1) to a functional form, useful for applications.

Since the fluid is incompressible, we require Ve = 0 in Qf and write, after use
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of the divergence theorem and algebraic manipulations, the identity

- p&v,-dV:JI p,.vdv-zajvn.pdA—aj' p ven, dA .
Jﬂf fii Qf’ﬁ A B 8Aq fiti

to obtain

Jnsaij Jeij dV + Jnfrij 6Lij dv + 6JQf(p,i- fgi)vﬁ dv - 2JA6p v, dA

+J G -G 6édS-J v6pdA+26J Vo ven.) p dA
aA(Cr ) n aAfn A(L ﬁl)p

-2 IAnirijnjﬁvL dA - JaA niTijnjév{n dA =0 (A.4)
q
Introducing, without loss of generality of the constitutive laws, the relations
de _ ° oY _
and the energy release rate expression (Budiansky and Rice, 1974)
d J V = J “.. . . - J 2
) It Q ed QSUIJ&U dv oA G Jan ds (A.6)

in eq. (A.4), we obtain the desired functional form

]

-2J v dA+j G éds—j vpdA-zj v.n p dA} = 0 (A7
Ap L aAcr aAfn A 811 } ( )

In eq. (A.6), the energy release rate G is expressed as a function of current
configuration and displacement (Appendix B). Therefore, its variation with respect
to velocity term and loading are neglected. We note here that, in deriving (A.7),

the velocity comstraint expression vgn, = v.n, + vp is used along with explicitly

5
assumed leak—off and fluid injection velocities (fvp = bv, = 0). Also, in
considering the variation of the strain emergy e above, onmly the variations with

respect to the solid velocity v and crack propagation velocity a q € considered.
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APPENDIX B
En Pl I

The principle of virtual work in Appendix A contains the term
G éfa_dS B.1
[0 @ B (B.1)

where G is the energy release rate. Assuming that the crack tip experiences plane
strain, mode I loading conditions, in a neighborhood near the crack tip, we have

w(d) = é%‘_") K, VATZF (B.2)
where w(d) is the fracture opening at a small distance d inside the fracture with
d measured normal to the leading edge of the fracture.

From eq. (B.2), near the edge of the fracture, we obtain

2
w ywp = — 214" k32 (B.3)
m

where n points in the direction of fracture propagation. Since

_ d=v) 2
G = 12,-‘-1 K3 (B.4)

we can write eq. (B.1) in the form

J oA G faydS = - -[ A {ﬁ:ﬁl/) wiw-n} &, dS (B.5)

The energy release rate integral above is now expressed as a function of the

current crack configuration and displacement.
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APPENDIX C

The energy rate components in eq. (31) are derived using the curtailed
two—term crack opening width and fracture fluid profiles given by eqs. (36) and
(37), respectively. The corresponding boundary integral K A[w] has the form (Shah
and Kobayashi, 1971)

3 9 2

The general series form expression for K A[w] for a penny—shaped crack
corresponding to a polynomial series describing the internal pressure can be
obtained from the results of Shah and Kobayashi (1971) by inversion of the
appropriate coefficient matrix. The crack opening width rate from eq. (36) is given
by

. : . 2

W= (1—02)1/ 2+ w o(1-p )32

& RR AW, 4 swa- Y (c2)

The pertinent energy rate components from egs. (C.1) and (C.2) are

. 2 . .
" . 7 uR 1 1 1 6

, 9
T uR (22
- + oTI=v (3W1 ~5'w W2 + 3-5W2) (C3)

0= | L@ o) 4A = 2rR®P (W, (5 - 38) + W5 - 390

+ 2mRRP {31 - yw, + 30 - 1w, (C.4)
D= Hm (ﬁ)‘l/mj R ) {(Fp-y)- (Tp-gp) {1+ M
- B/ RO (@ Wy (C3)
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where I(W,,Wo,m) = JI[p(l—pz)llz{Wl + WAy mtlim g,

fIP = JBA o { Eﬁ‘-——)w Vw.n dS = — %RW? (C.6)

U = IaA = 21G_RR (C.7)

D = j p Q, dA = —i P (C.8)

Dy = I pqL dA = 4C R’P J(a) (C.9)
1 2

here J(a) = | —=2 dp.

where (0) JO -{—;-—T%;)-iz p ap

We note that the normal boundary flux Qn in eq. (31) corresponds to an outward
normal along the boundary BAq, i.e. Qn = - io in eq. (C.8).
We define the functional (eq. (31)), using egs. (C.3) through (C.9), as

F(W;,W,P,aR) = U - t'lp - D, - D - Dy + Up + U (C.10)
and obtain the following governing equations from the first variation :
oW, ,-’(r;l_‘%) (Gw,+iw,) = 2a8% (3 - 2% (C.11)
W ,: 7’('-?-% GW, +gaW,)} = 2% (} - 38) (C.12)
e g QW2+ Jwwy + 3w - aeme - Spw, + J - W)
- Iéa“—)wz + 21G R =0 (C.13)

P: — 27R% {Wl(g 29 | Wy(z - 38)} - 2mRR fa -
+ 5(1 _ 7)W2} _ xiim(%)—l/m g(m-1)/m (m+1)/m Pl/m 1(W,,W,,m)

— 47C R%(0) + ig= 0 (C.14)
o 20R%P (W, + g2W,) + 21RRP (W, + g5W,) - A
pm-1)/m l/m p(m+1)/m yw w,m) + 41C R’P I, = 0 (C.15)
where J, = j --f-’— dp.
0 {t-r(p)’
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Equations (C.10) through (C. 15) can be rewritten in the form
?f('f"_) W, - PR (1~ ga) (C.16)

w‘(’-’f&j W, - PRa = (C.17)

2
f3=8-(11‘-__—07w -G R =0 (C.18)

§, = 2ngd (RZ (W, + gWy)} + 47C(R J {t—r()Y Yodp - i, = 0 (C.19)
£ = (n Rm+‘)‘)1/m( 2w, + 2W,) + (nROY™ REW, + 5W,)

- 1%%- W /™ (W, Wym) + 2C (R REHH)my, = 0 (C20)

The developed numerical solution procedure is devised so that Egs. (C.16)
through (C.20) are simultaneously satisfied i.e. f;'*'At = 0 at time t+At using the
implicit time marching sheme. We note that egs. (C.18), (C.19), and (C.20) can
be solved for Wl’ W2, and R using the standard Newton—Raphson iterative
method. The iteration is terminated when the convergence, expressed in terms of
relative error is achieved within a tolerance of 0.1 %. The pressure, P, and
variable a are obtained from egs. (C.16) and (C.17) using the converged solutions.

The solutions are, then, updated for the subsequent time step.
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Table 1. Constants for Dissipation Dominant Solutions

m C,(m) Cy(m) Cq(m)
0.1 0.797 1.252 1.851"
0.2 0.774 1.327 2.020
0.3 0.758 1.385 2.153
0.4 0.745 1.434 2.267
0.5 0.734 1.476 2.369
0.6 0.725 1.515 2.461
0.7 0.717 1.550 2.548
0.8 0.709 1.582 2.628
0.9 0.702 1.613 2.705
1.0 0.696 1.641 2711
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Table 2. Selected Input Parameters and Characteristic Values (Lee et al., 1989)

Unit Value
INPUT PARAMETERS
Shear modulus (y) GPa 2.0
Poisson’s ratio (v) - 0.2
Consistency index(7,) Pa—min™ 1.6EH4
Behavior index(m) - 1.0
Injection rate(i 0) .ms/mjn 5.0
Critical Energy Pa-m 200
Release Rate %Gct)
CHARACTERISTIC VALUES
Time (7) min . 1.0
Opening Width (Wo) m 2.0E-3
Radius (R) m 50
MPa 0.1

Pressure (P )
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