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ABSTRACT

This document presents the mathematical methodology of the APOLLO
computer code. APOLLO is a computer code that calculates the products of both
equilibrium and kinetic chemical reactions. The current vertion, written in
FORTRAN, is readily adaptable to existing transport programs designed for the
analysis of chemically reacting flow systems. Separate subroutines EQREACT
and KIREACT for equilibrium and kinetic chemistry respectively have been
developed. A full detailed description of the numerical techniques used,
which include both Lagrange multipliers and a third-order integrating scheme
is presented. Sample test problems are presented and the results are in
excellent agreement with those reported in the literature.
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NOMENCLATURE
Symbol representing chemical species
See Equation (3)
Total number of atomic weights of element j
Heat capacity
Concentration of species i
Truncation errors
Functionals defined by Equations (10) and (9)
Rate expression of species i
Total Gibbs free energy of the system

Functional defined by Equation (4)

Enthalpy

Elapsed interval between two time levels t,,, and t,
Rate constants of forward and reverse reactions respectively

Concentration difference between two time levels, see
Equation (41) for definition

Number of chemical elements present in the system

Number of species in phase p
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p,i

NQ

NS

Mole number of species i in phase p

Total mole numbers in phase p

Number of condensed phases

Number of invariant condensed phases

Total pressure of the system

Universal gas constant

Entropy

Time

Temperature of the system

Coefficients of heat capacity, see Equation (29)

Integrating constant of enthalpy

Integrating constant of entropy

Pre-exponential factor of rate constant
Empirical parameter of rate constant
Activity coefficient

Accelerating parameter, see Equation (27)
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Superscripts

Lagrangian multiplier

Stoichiometric coerficient of species i associated with

reaction j

Time rate of net change of species i in reaction j

Temperature at which the property is evaluated
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APOLLO: A COMPUTER PROGRAM FOR THE CALCULATION OF CHEMICAL
EQUIL1BRIUM AND REACTION KINETICS OF CHEMICAL SYSTEMS

1. INTRODUCTION

Several of the technologies being evaluated for the treatment of waste
material involve chemical reactions. One example is the in situ vitrification
(ISV) process where electrical energy is used to melt soil and waste into a
"glass like" material that immobilizes and encapsulates any residual waste.
During the ISV process, various chemical reactions may occur that produce
significant amounts of gaseous products which must be contained and treated.
The APOLLO program was developed to assist in predicting the composition of
the gases that are formed. Although the ievelopment of this program was
directed toward ISV applications, it should be applicable to other
technologies where chemical reactions are of interest.

Predicting the composition and volume of the off-gas, necessitates a
chemistry model which is capable of addressing the behavior of an extremely
complex mixture consisting of soil and buried wastes whose components are
likely to react or pyrolyze to elemental forms. Such capability provides a
way to obtain required information for the design of an effective gas
containment and treatment system. Since processes associated with ISV are
operated at high temperatures, the assumption of equilibrium chemistry may be
adequate. To date, the use of an equilibrium constant and the vree energy
minimization method are the two most common approaches1 for calculating the
equilibrium composition of a mixture of chemicals, with the latter method
being more readily extendable to general problems. In the free energy
minimization approach, the Gibbs function is minimized; via lLagrange
undetermined coefficients, subject to the conservation of mass constraints
imposed by the elements from which chemical compounds are made. Utilizing
this technique, a computer program SOLGAS? and its later extensions®* have
been developed and in use since the early 1970's. Although SOLGAS is adequate
for many applications, its computation time is too long for inclusion as a
subroutine in the ISV suite of codes. To correct this shortcoming, it would
require a major revision. In a reacting flow study, though somewhat different
in context, Pratt and Wormeck® demonstrated that it is possible to reduce the

1



size of the system of equations as formulated in SOLGAS by orders of
magnitude, hence, suggesting a significant saving in computational time. This
report describes the equilibrium chemistry computer program called APOLLO,
that utilizes this size reduction. Additionally, a subroutine for the
integration of chemical kinetic equations based on a third-order scheme is
also provided for calculations involving nonequilibrium applications.
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2. THERMODYNAMIC APPROACH T0 REACTION EQUILIBRIUM

2.1 Minimization of Gibbs Free Enerqy

From the thermodynamic point of view, equilibrium is a unique state at
which Gibbs free energy of a system attains its minimum. Using the
fundamentals of thermochemistry as a guide, we shall formulate the protiem on
the underlying foundation. To make the derivation general, consider a system
composed of a gas phase, NQ liquid and solid mixtures, and NS pure condensed
phases without any limit on the number of components allowed in any particular
phase, and that each constituent is made up from a set of L :hemical elements.
For this multiphase system, the total free energy, g, at a given temperature
and pressure is the sum of the products of partial molar free onergies and
mole numbers over all species and phases. That is,

1+Ng*Ns Mp
)
g = L Z By, i Bp, s (1)
p=1 1=1
where N, and By, ; are mote number and chemical potential of component i

associated with phase p respectively, and Mp is the number of species in

phase p. In writing Equation (1) we have replaced the molar Gibbs free energy
of specie i by the corresponding chemical potential whose functional
dependence on temperature, pressuie, and mole numbers is given as

Wpi * RT[InP + In(m, /N))]  p=1

Mps = {Bpi* RT[Iny,; + 1n(n, /N)| p=2,...,NQ+1 (2)
Wh i, D=NQ+2,...,1+NO+NS
where
p = total pressure of the system, (atm, due to the standard

state taken to be 1 atm)

e L R R T T R R (T TR T T IR g
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R = universal gas constant

T = absolute temperatwre
Np = total mole number in phase p
Yoo o= activity coefficient (takes a value of one for perfect

mixture, and a value either greater or lower than one as the
system departs from .deality)

i

standard state.

A simplifying assumption has been made in the expression of the chemical
potential in that the gas phase is assumed to obey the ideal gas equation of
state, and that the effects due to pressure are negligible in condensed
solutions.

Equation (1) will serve as the starting point of our development. The

minimization of g is performed, subject to the following constraint arising
from mass conservation

1+NQ+NS My

vy sn _ ..
B—Jl %A‘prij‘nﬁ',l = 'b] ]"'-lf-vu,.[.l (3)

Equation (3) simply says that the total mass of any individual chemical
element comprising the substances present in the system, b, for example, is
constant regardless of the nature of the reactions. In order to minimize
Equation (1), and to satisfy Equation (3) at the same time we shall apply
Lagrange’s method of undetermined multipliers, which hypothesizes that the
optimum solution of Equation (1) is the same as the optimization of the
following:

L 1+NQ+NS M,

G = g L ‘ )\.J z/ Z Ap’jjnp'l - b:' (4)

v
J=1 p=1 i=1



where {A , j e [1,L]) is a set of unknown multipliers to be determined. From
e]ementary calculus, it is known that the derivatives of a well-behaved
function of several variables vanish at every critical point that lie within
the domain of interest. However, the determination of absolute
minimum/maximum values requires additional tests on the sign of the second
derivatives. Due to the unique property of the Gibbs free energy whereby G is
a monotonically increasing function, it could be concluded that there exists
only one set of mole numbers which yields a minimum value of G.

Proceeding as outlined above, we differentiate the functional G, and
upon incorporation of the Gibbs-Duhem equation, the resulting expression can
be rearranged in the following form

1+NQ+NS  Mp L
dG = E Z {p'p:i * E )"JAP 11} np.i

p=1 i=1 j=1

(5)
>

F=1

1+NQ+NS Mp
p,ij p.d J J

E Z:A.,n,~b‘ dh .

i=1

Equating the differential of G to zero and utilizing the fact that both dnp‘
and dAj are independent, Equation (5) may be broken down to

L p=1l,...,1+NO+NS
\ ) .
Wy * j}j_{ AyA, ;; = 0 i1, (6)

and

e o R CEE TR L T T T T F R (TR UK ST (O C T T TR TN IR TV
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1+NQ+NS Mp

2: 2:'%munni = by j=1,....L (7)
p=1 i=1
Equations (6) and (7) constitute a system of M, + M, + ... + M oo+ L _

equations with an identical number of unknowns, hence equilibrium mole numbers
can, at least in theory, be obtained. There are two difficulties that prevent
direct solution to the mole numbers, (1) even for a simple system, the number
of possible species are sufficiently lTarge that it is inconvenient for hand
calculation, and (2) chemical potential is a nonlinear function of mole
numbers. In the subsequent section we shall describe an iterative technique
for obtaining the solution of a lTarge system of nonlinear equations.

2.2 Modified Newton-Raphson Method

Due to the difficulties imposed by nonlinearity, we shall employ an
iterative scheme to refine the solution, which begins with a rough estimate,
until it converges to desired accuracy. For the standard Newton-Raphson
method, the general recursive formula for successive corrections is

0

- Ax7t = - Ff (8)
J

N
)
J=1

where F." = F.(x,", %", ..., %), Axi”*1 = xﬁ”l - x,", and the superscript n
represents the iteration index. Instead of using Equation (8) as normally
done in practice, the algorithm was modified. This modification is discussed
in the remainder of this subsection. As a first step, we define the following

functionals

TR SA p=l,...,1+NO+NS

RT b 17 i=1, ..., M,
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1+NQ+NS Mp
- "\ - f
£, 02 Y, 3 A, ym,; - by J

p=1 i=1

(10)

H
[
)l

where for the sake of convenience, we have normalized the chemical potentials
and the Lagrangian multipliers by RT. Unless otherwise stated, the
normalizing factor is herein omitted instead of being written.

Next, the partial derivatives of Equations (9) and (10) are calculated.
The results are:

of, ;

R <L S = L

S In] 5,56, (11)
of,
p.1 = -

3(InN,) Opa (12)
of, -

Inn, gy | e e (13)

where 8 is the usual Kronecker Delta that has a value of one if the indices
i and j are equal, and of zero when such a condition is false. It should be
noted that 1n(npd) has been treated as an independent variable instead of n,,
with the reason to be clear shortly. Substitution of these quantities into
Equation (8) leads to the following correction equations

Al n+L o Al ntl o —f” L):l,---,l+NQ+N,S’ 14)
(Alnn, ;) (& InN,)™ = o i (

i=1,....M,
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1+NQ+NS Mp
Y ; .
Y, Y Anunei(Alnn, )yt o= - £ g=1,...,L (15)
p=1 i=1

H

In counting the number of unknowns and equations, it is found that
Equations (14) and (15) constitute an il1l-posed linear system urless
1 + NQ + NS equations are provided. However, this difficulty is easily
eliminated by utilizing the definition of the total mole number of a phase.

MP
N, = E Qp, i pP=l,...,1+NO+NS . (16)

For a typical and relatively simple chemical process, L may be on the
order of 5. But the number of different compounds formed may be much higher
and is on the order of the number of all combinations of the elements that are
in the system. Such a number is usually large, because as long as a
combination satisfies the octet rule, it is (at least in principle) a possible
compound. Furthermore, since the final composition of the system is rarely
known prior to the course of reaction, it is prudent not to omit any potential
compounds without careful justification. This implies that for many systems,
a sizable system of equations must be solved. However, the inspection of
Equation (14) indicates that the number of equations may be reduced
significantly by using simple algebraic manipulations. This reduction in size
will improve the computational time. To demonstrate this point, we need to
rewrite Equation (16) in a functional form as

- N p=1l,...,L1+NQ+NS (17)



whose associated partial derivatives may be evaluated to give

of, a
- = ; 18
d(lnn, ;) a1 8pq ‘ )
of,
- - 19

d(1nN,) Na®rq (19)

and the corresponding correction equation is
(20)

MP
Z ng (A lnn, )\ - NJ(A1InNy™t = -£5"  p=1,...,1+NQ+NS

=1

...

Solving for A(In np")”+l from Equation (14), and substituting it into

Equations (15) and (20) yields

1+NQ+NS Mp L
+ +1
¥ }:Ap i3 0p iy (AN )™ - 3 A AK
=] =1 k=1
e (21)
1+NQ+NS M,
n Y n n .
= - £+ ) Enp,iAp’ijpp,i j=1,...,L
prl 1=1
and

M, L
1}-:1 npnl{(AlnN n4l JZ: A, 4 ]} - Ny (A In N, )»*
h ‘ (22)
MP
= - 1-11 + Z npnlup i p=1...,1+NQ+NS

i=1

It is now clear that we have reduced our original system to the one with
For example, suppose we have a single

Mo+ M+ oo+ M 18SS equations.




phase mixture containing 3 elements and 100 possible comyounds. If the
reduction had not been made, one would have to invert a matrix of 104 x 104 in
contrast to 4 x 4 as would be the case when Equations (21) and (22) are used.
Once A(ln Np) and ), are obtained, Equation (14) can be applied to compute
the change of 1n(an) for all species. Updating the results may be
accomplished by using the relations

nf't = nfiexp(n(Alnn, ;)"*) (23)
NZt o= Njexp{m(AlnN,)™t} . (24)

For the purpose of enhancing the rate of convergence, we have introduced an
accelerating parameter n. As suggested by Gordon and McBride®, the numerical
value of n is determined from the following rules

2
max (|AIn N[, A 1nn, ) (25)
p.1

LEY

for the species with relative concentration, an/Np, greater than 10°%, and

. .
- P2 -
i ln( Np) 9.2103404 (26)
N2 = T Alnn, ; - A InN,

for those satisfying npi/Np equal to or less than 10%,  Finally, the factor n
is chosen in such a way that controls the oscillations as the estimates
appreach the equilibrium solution.

n = min (1,N;,M;) . (27)

10
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Past numevrical experiments show that n has a value of less than one (as
estimates are far from the exact solution), and increases to one as the true
solution is reached. For a more complete discussion, readers are referred to
the document of Gordon and McBride®. The sequence of the steps described
above may be repeated until the difference between the two consecutive
estimate- converges to a prescribed tolerance.

2.3 Evaluation of Thermodynamic Properties

In order to begin the iteration, the chemical potential of every single
species must be determined. Several ways have been suggested in the published
literature for assigning the chemical potential of a compound. For example,
setting u/RT = g%/RT, Ag°/RT, (g° - h%ge)/RT + AR®; Lo \s/RT would all lead to
the same solution. The calculatory methods for these thermodynamic variables
differ widely and can be cumbersome. However, the third alternative is
adopted because of its relative straightforwardness.

Hence
0
1
b = (9% - he) + 2=AB o (28)
where
AR® heat of formation at 298 K.

f,298

Perhaps, one of the most extensive sources of thermochemical data is the
JANAF’ Tables which contain information for more than 1000 compounds, at
temperatures ranging from as low as zero to a few thousand degrees Kelvin.
Since the Table is designed for hand calculations, the tabular data is of
limited usefulness due to the enormous amount of computer memory necessary for
data storage. To make the data more amenable for computers, the heat capacity
has been fitted to a fourth-order polynomial of temperature,

11
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C
=2 =z, 4 5T Z,T? + Z,T3 + Z.T* (29)

and by integrating appropriate expressions, equations similar to
Equation (29) can be derived for enthalpy and entropy.

h Z, + E_?_T.q. Z3T'Z + _ZiT3 + _Z_'-1T4 + _Z_ﬁ (30)
RT 2 3 4 5 T

S .y Z3 2 Z4 3 Zs 4 ]

S - Zzin(T + Z,T+ =T%+ 2T + =T + Z 31

R A0 (T 2 2 3 4 ’ 3

where Z; and Z, are essentially constants of integration. To obtain numerical
values for those coefficients, reference temperature, enthalpy, and entropy
must be specified. For consistency with earlier works, reference quant1t1es
are chosen as 298.15 K for temperature, heat of formation at 298.15 K for

enthalpy, and lTow temperature entropy (at 0 K) for the remaining thermodynamic
variabie.

To better fit the heat capacity equation to the JANAF data, Tinear
regression has been performed on two temperature ranges. They are from 300 K
to 1000 K and from 1000 K to 5000 K. The two sets of coefficients are
constrained so as to yield the same heat capacity at the common temperature.

12
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3. CHEMICAL REACTION KINETICS

3.1 Rate Fquations

In many engineering problems, equilibrium conditions may not be reached
because the characteristic time for transport is short compared to that for
equilibrium attainment. Therefore, we must utilize a kinetic formulation
which makes use of the detailed reaction mechanisms to construct rate
expressions for reactants and products. To simplify the notations, we shall
represent chemical reactions of a system in a compact form as,

Y via = 0 (32)
i=1 kj
where
Vi = stoichiometric number of species i in reaction j
k,k' = rate constants of the forward and backward reactions,

respectively.

In representing chemical reactions by Equation (32), the coefficients uij’s
are negative for reactants, positive for products, and zero for species that
do not take part in the reaction.

By defining w; to be the net rate of formation/destruction of species i
in reaction j, the time rate of change of component i concentration is given
by

dc, il
= w;
Z A (33)

F,(state of the system)

13
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Since the rate expression is a function of state of the system only, the
variables temperature, pressure, and composition are not entirely independent.
Therefore, specifying temperature and concentration allows the pressure to be
calculated from an equation of state. 1In effect, Equation (33) may be
rewritten without loss of generality as

ac,
S = RATGL G 34)

In elementary reactions, the results of the transition-state theory
(occasionally referred to as theory of absolute reaction rates) indicates that
the functional dependencies in Equation (34) can be separated into two
distinct functions. One is dependent on temperature, and the other on
composition. Thus,

il

Fj(TIC) ki(T) Fi(C]'ICZI"'ICN) J (35)

The coefficient k, may be identified as a rate constant. Although several
theoretical models have been developed to characterize the temperature
dependency in the rate constant, they are all based on the form

Y
k(1) = P, e FT

where

i

a preexponential factor

B

Uj [z] dimension of energy.

The exponent @, can have any value. However, it normally ranges between zero
and one. In theory, the value may be derived to be either 0, 0.5, or 1.0
depending on the model used. These numbers are in correspondence with the
Arrhenius, collision dynamics, and activated complex theories respective]ya.

14

O g ey T T I TP R TR TR R R TR T |

LRI



Even though such theoretical pred’ctions are useful in the absence of actual
data and are of great value in correlating experimental observations, they are
only rough estimates and correlated values are normally required and used in
practice.

3.2 Numerical Integration

The discussion above convinces that at a given temperature, the
concentrations of reactants and products in time domain are governed by a
system of ordinary differential equations,

dc,
dt

= F(Cy, CyrennrCy i=1,2,...,N . (37)

In developing an algorithm for integrating Equation (37), we expand Cf
and C."! about the time level n+l in the form of Taylor series as

n+1 el i .
C'n = C'.]‘l - dcl ( tn*l - tn) + dz("i ! ( Ln+1 - tn) 2
! ! dt 1! dt? 21 8)
) d’c, n+1 (tm1"tn)3 .
dt? 3! '
A" (b =) . A2C™ (Epa= Epy)
C',?‘”l = c(nl _ i n+l n-1 " i n+l ne1
! * dt 1! dtz 21 (39)
+1 )
_ dBCin (tml-‘t,n_l):’ + .
de? 3! '

15
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%y eliminating the second derivative terms, it follows that

Zhn 1t hy, n+l
+ K-_' - . cn+1, Ce e 13'1
h,,.,l (hn41 +hn) 1 Fl ( 1 Ch )

(40)
= _._.._m...}l{l:_l«.»_....__ Kn -+ E
hyChyy - hn) ! e
where we have utilized the definitions
Kﬁ”l & Cf"l - CJn ’ hnwl = tn*l tll (4 1 )

The truncation error term in Equation (40) is, for a uniform time
increment, on the order of h’. To be exact, E.., (due to the aiternation in
signs), may be given by the leading term of the truncation as

dic,
dt?

i hnu (hnd + hn)
3!

| Easal

Equation {42) i. very useful in that one can control the propagation of
error by appropriate adjustment of step size. For a user-supplied tolerance,
the time increment is first determined from Equation (42), then Equation (40)
is solved for composition., Often, rate expressions are nonlinear, hence,
Equation (40) and an iterative solution scheme, such as the Newton-Raphson
technique discussed in the preceding section must be used. However, that
method usually results in a Jacobian matrix which must be inverted many times

|
j ([

ST

—c

(w3

]U4£ai
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at each time level. And because matrix inversion oftentimes accounts for a
large fraction of execution time in a practical problem, the function F, is
linearized a3 follows:
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in which we have assumed that all kinetic parameters are not time-dependent,
otherwise a time derivative term must be included in the right hand side of
Equation (43). Combining Equations (40) and (43) yields

2hn,1+h n* zv: aFi n n'l
hn,x(hn,1+12) £ 9C;
(44)
n h + /
= F. (¢, , CN) " S— 4 LA i

which is now a Tinear system of equations, and a matrix inversion needs to be
computed once for each time step. The system can be solved by any existing
well-tested solver. Equation (42) is, as a consequence of the linearization
of the rate expressions, now modified to the following:

d3c¥ n h,.,(2h,,,~h,) (45)

de? 3!

/
IEml

It should be noted that the error expressions derived thus far are due
@ to the truncations of the corresponding equations. Errors associated with the
concentrations are one order higher for all species. It is also beneficial at
this point to ~mphasize that the scheme is not self-generating, therefore, an
alternative must be chosen for the first two time levels. As an example, the
following equation may be used for the first two time levels.
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The previous equation was deduced from general Equation (44). Other choices
are possible. Huwever, if a low order scheme is used, the time increment must
be kept small so that inaccuracy introduced by the time differencing is not
excessive.
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4. PROGRAM VALIDATION

Before APOLLO is used for applications, it is necessary to ensure that
the computer code is free of errors, as well as any unexpected behavior due to
inappropriate coding. For the purpose of providing confidence, APOLLO is now
tested with problems, for which existing solutions are available. Both
equilibrium and nonequilibrium applications are presented.

4.1 Equilibrium Tests

In this section, we wish to calculate the equilibrium composition for
three sample problems. First, we shall consider a mixture initially composed
of 2 g mol of methane and 3 g mol of water in the unreacted state and would
like to know the final composition at 1000 K with the pressure held constant
at 1 atm. Input data for this problem include the total mass of each element,
and the Gibbs free energy of formation of all compounds under consideration.
For the sake of convenience, this information is documented in Tables 1 and 2.

Table 1. Input elemental mass for pyrolysis example
(units in atomic weight)

Element o LI
Carbon 1 2.0
Hydrogen 2 14.0
Oxygen 3 3.0

Table 2. Input free energy of formation of pyrolysis example
(units in K cal/g mol)

EE__ Eﬂi _ﬁzo COMW o,
i 1 2 3 4 5
Ag; 0.0 4.61 -46.03 -47.94 -94.61
19
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Upon entering these data to APOLLO and setting the convergence criteria
at 10, five iterations were required for the equilibrium composition to be
numerically accurate to four decimal places. These results are given in
Table 3 in which the mole fractions compare favorably well with those of Smith
and Van Ness®. As indicated from the table, the predicted composition is in
agreement with the published results of up to four digits, except hydrogen,
which differs by 0.0001.

Table 3. Equilibrium composition of pyrolysis problem
(units in g mol)

[teration H, ' CH, _ﬂé{_m _‘39__ o,
1 14.7781 0.6942 1.5766 3.4597 0.5055

2 8.1498 0.2801 0.9696 2.0230 0.3322

3 6.1132 0.1872 0.8652 1.5814 0.3089

4 5.8037 0.1724 0.8609 1.5186 0.3109

5 5.7951 0.1720 0.8610 1.5170 0.3110

6 5.7951 0.1720 0.8610 1.5170 0.3110
Mole fract. 0.6695 0.0199 0.0995 0.1753 0.0359
Reference 9 0.6694 0.0199 0.0995 0.1753 0.0359

Next, we will look at a Claus oxidation process, which has been proposed
to burn hydrogen sulfide (a noxious pollutant) released from refineries to
less hazardous chemicals. Here, the process is carried out at 2200°F and
1 atm, in which hydrogen sulfide residing in the inlet stream is removed by
the partial oxidation of sulfides to SO,, followed by a catalytic reaction
between SO, and the remaining H,S. The feed gas consists of 12 species with
specific flow rates given in Tabie 4, and the air (assuming a mole proportion
of 79% for nitrogen and 21% for oxygen) is supplied at the rate of 275 1b
mol/h.
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Table 4. Inlet gas composition for claus oxidation

(units are in 1b mol/h)

Components Flow Rate
H,S 31.60
€0, 8.29
CH, 0.50
C,H, 0.33
C,H, 0.38
C,Hg 3.58
C.Hyg 0.13
CH,, 0.70
CH,SH 5.17
C,H,SH ~0.69
H,0 12.97
NH, 8.68

From Table 4, the total number of atomic weight for each element
comprising the compounds can be computed, and those values are listed in
Table 5.

Taking advantage of the perfect behavior established for ideal gas,
along with the properties of ideal mixture, and the fact that the standard
chemical potential can be replaced by the free energy of formation,
computation begins with initial guess arbitrary taken as 2 1b mol/h. For a
tolerance of 0.01, 0.001, and 0.0001, the number of iterations necessary for
convergence are observed to be seven, eight, and 10, respectively. For the
purpose of illustration, the convergence process corresponding to tolerance of
0.01 is presented in Table 6.
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Table 5. Constraints on mass of elements
(air supply included)

Element N No.bF A

Nitrogen 1 443.18 ,
Oxygen 2 145.05

Sulfur 3 37.46 )
Carbon 4 31.90

Hydrogen 5 178.40

Table 6. Computer output showing convergence of equilibrium composition
of claus oxidation process
(units in 1b mol/h)

[teration Number

Species 1 2 3 4 5 6 7
N, 14.778 109.196 281.258 227.495 221.666 221.590  221.590
H, 2.537  10.159  19.026  10.793 9.162 9.025 9.024
S, 2.110 3.126  20.630  13.538  11.499  11.329  11.327
co, 2.427 8.421  48.043  29.273  24.420  23.971  23.967
S0, 2.344 6.419  16.650 9.391 7.970 7.851 7.850
co 2.281 5.303  16.090 9.419 7.824 7.673 7.671
cos 2.083 2.506 0.648 0.317 0.266 0.262 0.261 ]
H,0 2.746  18.776 138.735  87.431  74.539  73.490  73.483
H,S 2.450 7.822  13.521 7.915 6.782 6.693 6.693 ,
CS 1.725 0.545 0.001 0.000 0.000 0.000 0.000
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To compare the results of this calculation with those reported in
Reference 10, the converged mole numbers (last column) are converted to mole
percent, and those values are compared in Table 7. As seen from this table,
the Apollo calculations agree well for the equilibrium condition. The
agreement is consistently good for all species, and the discrepancy between
the two results is considered negligible.

Table 7. Comparison of exit gas composition
(mole percent)

Species Ky]ef Present
N2 61.2 61.24
H2 2.5 2.49
S2 3.1 . 3.13
CO2 6.6 6.62
SO, 2.2 2.17
co 2.1 2.12
cosS 0.1 0.07
H,0 20.3 20.31
HZS 1.9 1.85
cS << 0.1 0.0001

A11 of the species included in both examples conducted so far are either
simple molecules or compounds commonly encountered in engineering practice,
and therefore the free energy of formation exists. In other applications of
interest (such as the oxidation of metals in thermal plasma processing) the
molecules are so complex, that the needed thermodynamic data is not readily
available. For these cases the JANAF data base is often very useful. To
demonstrate the usefulness of the data bank, we predict how the composition of
a mixture containing 1 mol of lead, 1 mol of silicon, and 2.5 mol of oxygen
shift as the temperature changes. The input data on elemental mass is listed
in Table 8.

23



Table 8. Input elemental mass for metal oxidation
(units in mol)

Elements i N_m~b§£_£\ﬂ
Pb 1 1.0
Si 2 1.0
0 3 5.0

The results of this problem at 3500 K, 4000 K, 4500 K, and 5000 K are
summarized in Table 9 along with the values obtained from SOLGAS-MIX. Only
converged solutions from APOLLO are shown.

A1l the calculations presented in Table 9 are initialized with an
initial mole number of 0.1 for all compounds, and a total of 1.0 mol for each
phase. Despite the encouragement associated with the results, APOLLO could
not handle the cases when the temperature is set at a value lower than or
equal to 3000 K. At these temperatures, condensed phases co-exist. The
problem in the code has been investigated by arbitrarily changing the initial
guess. It was Tearned that APOLLO was able to give a good solution if a
reasonable first estimate was given. This behavior can possibly be attributed
to the use of 1n(an) as the dependent variables. This conclusion comes from
the fact that the 1n(npA)’s are very sensitive to even small perturbation.
This difficulty needs further study and as a consequence, numerical results as
well as discussion on multiphase systems are not included in this report.
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4.2 Nonequilibrium Tests

To test the integrator routine, consider a simple model which resembles
the situation that may be encountered in the system, where consecutive

reactions take place, such as the pathway symbolized by the following:
kl kz

A, - a, - A (47)
k{

Where the first reaction is‘keversib1e followed by irreversible transformation

from A, to A;. For this system, the concentration of the species at any
instant of time is governed by a system of ordinary differential equations

d =
-z (&} [A]{C} (48)
where
¢y = concentration vector
[A] = matrix containing kinetic information.
To be complete, the matrix [A] is given as
-k, k] 0
[A] = | k, ~(ki+k,) © (49)
0 k, 0

For ease of numerical assessment we assign the values 1.0, 0.3, and 0.5
to rate constants kl, k,”, and kz respectively along with the initial
condition specified as C;(0) = 1.0, C,(0) = 0.0, and C;(0) = 0.0. Based on
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these values, the results of the simulation are shown in Figure 1 where
species concentration are normalized by C,(0). Throughout the process,
species 1 is continually diminished without interruption since the combined
forward and reverse rates of the first reaction resulted in a net loss of the
reactant. During the early period, the concentration of specie 1 is high
enough to sustain the production of both intermeldiate and final products. At
a time of approximately 1.5, the concentration of specie 2 starts to fall
because the reactant cannot maintain its dominant intensity any longer due to
its Tow concentration. Figure 2 is a plot of the error in our numerical
prediction. The agreement is generally excellent in that the error in the
solution never exceeds 2 x 107°. Most accurate results are seen to be
associated with early times at which small time increments are used. However,
the accuracy deteriorates quickly to a prescribed level (1 x 10"5), in an
exponential manner. The error tends to die out at a later stage after t = 5.
Although it is not very clear why the errors behave as they do in Figure 2, it
is speculated that such behavior may be linked to the curvature of the
concentration curves and the step-size strategy implemented in the computer
program.

To further establish the confidence, a more complex system is simulated,
which arises from an auto catalytic reaction'’. Since the detailed kinetics
of this reaction is beyond the scope of the present context, we shall omit the
derivation Teading to a differential system of equations and use only their
result, This may be given in the form of Equation (48) with the matrix [A]

modified to

-0.04 0 104C,
[A] = | 0.04 -3 x10°C, -104C, {(50)
0 3 x 107C, 0

There are two apparent difficulties in this problem. First, the matrix
[A] is not constant; implying the presence of nonlinearities. Second, the
rate constants vary by nine orders of magnitude signifying the existence of a
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Figure 1. Temporal evolution of chemical species.
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thin region where concentration of at least one component changes drastically.
These two features have been used as key aspects in examining the capability
of various software packages. Equations (48) and (50) were subjected to the
initial condition C,(0) = 1, C,(0) = 0, and C,(0) = 0. They have been solved
using different solvers with the outcomes summarized in Reference 11. We now
solve this problem using the APOLLO integrating scheme. The results are
presented in Figure 3. Qualitatively, the scheme performed exceptionally well
with a peak concentration of species 2 of .36 x 107" which is very favorable
with the valve of .35 x 107" obtained by other methods. To illustrate the
magnitude of the numerical error, we prepared Table 10 for comparison with
other proven computer codes at three different times (i.e., t = 1.0, 4.0,
10.0. at a specified tolerance of lOﬁ).

From the tabular data above, one may conclude that APOLLO is capable cf
giving reasonable, if not superior, answers as other software packages
predicted. One striking thing is the success of APOLLO in producing a stable
solution at a tolerance of 10™* at which, as mentioned in Reference 11, some
codes such as DVERK, ODE, DGEAR, LSODE, and EPISODE fail because of the growth
of the error due to large tolerances.
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Table 10.

Comparison of normalized concentration of stiff example®’

Codes

EXACT

APOLLO

STIFF3

DGEAR

EPSIODE

ODE

Concentrations

Tine L - =

1.0 0.966 0.307(-4) 0.335(-1) ‘
4.0 0.906 0.224(-4) 0.944(-1)
10.0 0.841 0.162(-4) 0.159

1.0 0.966 0.307(-4) 0.335(-1)
4.0 0.906 0.224(-4) 0.945(-1)
10.0 n.841 0.162(-4) 0.159

1.0 0.966 0.307(-4) 0.335(-1)
4.0 0.905 0.224(-4) 0.945(-1)
10.0 0.841 0.162(-4) 0.159

1.0 0.966 0.309(-4) 0.335(-1)
4.0 0.905 0.224(-4) 0.944(-1)
10.0 0.841 0.162(-4) 0.159

1.0 0.966 0.307(-4) 0.335(-1)
4.0 0.905 0.224(-4) 0.945(-1)
10.0 0.841 0.162(-4) 0.159

1.0 0.966 0.307(-4) 0.335(-1)
4.0 0.905 0.222(-4) 0.945(-1)
10.0 0.841 0.159(-4) 0.159

il

ik 1
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5. SUMMARY AND FUTURE DIRECTION

The APOLLO computer code has been developed for the analysis of complex
chemical systems that involve multiple reactions, which can either be at
equilibrium or nonequilibrium. Test cases conducted in this study indicated
that the code can be used successfully for a wide variety of chemical systems.
However, there are two areas that need attention. One of them is the
extension of the equilibrium calculation so that it can be usable in condensed
multiphase systems, and the other is the modification of the iterative
algorithm to make it less susceptible to initial guesses, as well as an
ability to self-readjust these values. Such incorporation would make APOLLO
adaptable to an even larger variety of applications in chemically reacting
flow systems.
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