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Parallel Algorithms for the Adaptive Refinement and Partitioning
of Unstructured Meshes *

Mark T. Jones
Computer Science Department
University of Tennessee
Knoxville, TN 37996

Abstract

The efficient solution of many large-scale scientific
calculations depends on adaptive mesh strategies. [n
this paper we present new parallel algorithms to solve
two significant problems that arise in this contezt: the
generation of the adaptive mesh and the mesh parti-
tioning. The cruz of our refinement algorithm s the
tdenlification of independent sets of elements that can
be refined in parallel. The objective of our partitioning
heuristic is Lo construct partitions with good aspect ra-
tros. We presenl run-time bounds and computational
results oblained on the Intel DELTA for these algo-
rithms. These results demonstrate that the algorithms
erhibit scalable performance and have run-limes small
tn comparison with other aspects of the computation.

1 Introduction

Adaptive mesh refinement techniques have been
shown to be very successful in reducing the computa-
tion and storage requirements for determining approx-
imate solutions to many partial differential equations
(PDEs) [9]. Rather than using a uniform mesh with
grid points evenly spaced on a domain, adaptive mesh
refinernent techniques place more grid points in areas
where the solution is changing rapidly. The mesh is
adaplively refined during the computation according to
local error estimates on the domain. This technique is
much more efficient than the use of structured meshes
when the solution is changing much more rapidly in
some areas than in others.

In this paper, we consider only two-dimensional
simplicial meshes, i.e., a mesh of triangles. However,
our algorithms are applicable to higher dimensions.

*This work was supported in part by the Office of Scientific
Computing, U.S. Departiment of Energy, under Contract W-31-
109-Eng-38.
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Two basic algorithms exist for the refinement of tri-
angles: (1) bisection, and (2) regular refinement. The
bisection algorithm in its simplest form bisects the
longest edge of a triangle to form two new triangles
with equal area [10]. The regular refinement algo-
rithm divides a triangle into four similar triangles or,
during a cleanup phase, into two triangles [1]. Both
algorithms must finish with a conforming mesh; in a
conforming mesh the edge of a triangle cannot contain
a vertex other than its endpoints.

In both methods, the refinement of a single trian-
gle usually causes a propegation of refinement to other
mesh elements. This propagation ensures that the fi-
nal mesh is graded and conforming. The two meth-
ods differ in how they handle this propagation. In
Figure |, we show the operation of both of the algo-
rithms as refinement occurs. The shaded triangles are
triangles that have just been refined. The sequence
of meshes from left to right shows how the refinement
propagates to neighboring triangles.

et ) o P
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\ N\ _— N N

A@W > ’V I~ ’%’ I )ﬂb

Figure 1. The refinement of a mesh using regular re-
finement (top row) and bisection of the longest side
(bottom row). Follow the mesh sequences from left to
right. The shaded triangles have just been refined in
that step.

N/

Both of these algorithms have been shown to per-
form well on a variety of problems; it is difficult to
make a choice between the two [9]. We have chosen
to discuss and implernent the bisection algorithm be-
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by & contractor of the U.S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, rayalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Gavernment purposes.




cause of its simplicity; however, it is possible to modify
the algorithms given in this paper for use with regular
refinement.

Implicit in a discussion of parallel algorithms for
mesh refinement on distributed memory computers is
the problem of partitioning the mesh to processors.
Clearly, the performance of the parallel refinement al-
gorithm depends critically on the partitioning used
and on how this partitioning is adjusted as the mesh
is refined. We have developed and implemented a new
parallel partitioning heuristic called unbalanced recur-
sive bisection (URB). The goal of this | euristic is to
maintain partitions with good geometric aspect ratios:
this property helps to minimize interprocessor cormmu-
nication during both refinement and the repartitioning
of elements after refinement.

In short, we will discuss two algorithms in this pa-
per: (1) a parallel algorithm for adaptively refining
meshes, and (2) an algorithm for partitioning these
perturbed meshes. Our underlying goal for these algo-
rithms and implementations is that their run-time for
p processors be small relative to the solution time for
the PDE on p processors, independent of p.

2 Parallel Adaptive Refinement

There are several variants of the serial bisection re-
finerment algorithm. We consider the version given
by Rivara [10]. This bisection algorithm bisects trian-
gles across the largest edge (dividing the largest angle)
with division of noncetpatible edges after the trian-
This algorithm
has been shown to yield triangulations whose smallest
angle is boauded by at worst one-half the smallest an-
gle in the inital mesh [11]. The bisection refinement
algorithm is given in Figure 2.

Obvionsly, the refinement could propagate through
many initially unmarked triangles before finishing. Ri-
vara, however, hias shown that this loop will terminate
in a finite nmber of iterations. say Lp iterations [10].

gle has adready been bisected onee,

Our parallel refinement algorithi is formulated
mainly within the context of the dual graph to the
mesh, which we define as follows. Let V' = {v; |
i = 1,..., n} be the set of vertices in the mesh and
T = {4, | @« = L.....m} be the set of triangles.
Let (v = (V. E) be the graph associated with the
mesh, where £ = {¢;; = (v, 05) | v,.0; € Ly}, Let
[ = (T, F) he the dual graph associated with the
mesh where Fo= {(t,.4y) | v € ta, Ly}

We assume that the vertices are partitioned into
"

disjoint subsets, Vo= |,

Vi, such that processor i

i=0
Q; = the set of triangles marked for refinement
Ri=1

]
while (Q; U R;) # 0 do
bisect the longest edge of each triangle in Q;
bisect the nonconforming edge of each
triangle in R;
R, 41 = all incompatible triangles
embedded in Q;
Qi+1 = all other incompatible triangles
t=1+41
endwhile

Figure 2: The bisection algorithm

owns V;. We choose to partition the vertices rather
than the triangles because we have found that it
makes the finite element evaluation, mesh refinement.
and sparse matrix assembly and solution (if neces-
sary) more straightforward and efficient. Based on
the partitioning of V', we determine a partitioning of
T = ., T0 into disjoint subsets. Each processor, i.
stores the set of triangles Ty = TyUadj(T;)UT(V;) and
the set of vertices V; = V(T;).

Figure 3: An illustration of (V;, T;) on processor i

Given (Vi Ty), processor i has all the information
necessary to evaluate all finite elements that have
vertices in V;, assemble complete rows/columns of a
sparse tatrix associated with each vertex in Vi, and
perform the parallel refinement algorithm (yet to be
specified) on the triangles in T;. We give an illustra-
tion of these sets for pracessor ¢ in Figure 3 where
the subpartition of the domain for processor i is de-
fined by the orthogonal dashed lines. V; is the set of
filled vertices, Vi is the set of unfilled and filled ver-
tices, T; is the set of shaded triangles, and T, is the
set. of unshaded and shaded triangles. Note that T;
can contain a triangle with no vertices in V; (for ex-
ample, the triangle in the far upper right of Figure 3).



Also note that Vi can contain a vertex not contained
in T; U adj(T;) (for example, the vertex in the far left
lower corner of Figure 3).

The serial bisection algorithm can run into two syn-
chronization problems. First, if processor i refines tri-
angle t; and processor J refines an adjacent triangle
ty, it is possible that each processor could create a ver-
tex at the same position. An example of such a colli-
sion is shown in Figure 4, where processors P, and Ps
are trying to refine adjacent triangles by bisecting the
satne edge. Second, to correctly perform operations
such as sparse matrix assembly, vertices and triangles
in (Vi = Vi, T; = Ti) must be properly updated when
they are changed by their owners on other processors.
An example of a situation where neighbor informa-
tion may not be updated properly is given in Figure 5.
Here processors P, and P, are trying to refine adja-
cent triangles simultaneously. Triangle {/; may believe
that W rather WV, is its neighbor, and triangle W, may
believe that [/ rather [7) is its neighbor.

Figure 4: An example of a collision of neighbor infor-
mation: processors P; and P simultaneously create
the vertex V7,

Figure 5: An example of incorrect updating of neigh-
bor information: situultaneous creation of triangles {7
and W) leads to incorrect neighbor information.

We solve these syuchronization problemns by refin-
ing independent sets of triangles on different proces-
sors.  Independent sets are chosen according to the
Monte Carlo rule: t, € [ if for each of its neighbors,
by, in D, if (a) £, not € ;U Ky, (b) ty,ty € T;, or
(c) plt,) > p(ty), The cowplete algorithm is given in
Figure 6.

Based on local error estimates. a set of triangles. (.
is marked for refinement.

Each triangle, t,, in @ is assigned a random
number p(t,)

R=10

While (QU R) # 8 do

Choose an independent set in D, [ = J_, [;
from triangles in (Q U R), where [; = I NT;

Each processor, j, bisects vhe triangles in [;
embedded in @ across its longest edge

Each processor, j, bisects the triangles in [;
embedded in R across a nonconforming edge

For each new triangle, {;, a new random number.
p(ty), is chosen

Each new triangle, ¢3, created on processor j
is added to Tj

Each new vertex, vg, created on processor j
is added to V;

For each triangle, ¢, in [; on processor j,
notification of bisection is sent to each
processor | for which
((adj(ts) NT1) # @) or (V(t) N V1) #0)

Each processor receives notification and
updates its (V;, 7'}) accordingly

R = (R - (I N R))U Any triangles embedded in
(@ made incompatible

Q=(Q —(INQ))U All other triangles
made incompatible

Endwhile

Figure 6: A practical parallel algorithin for refinement

We also have algoriths for mesh de-refinernent (re-
moval of wnnecessary triangles and vertices), but we
omit these because of space constraints.

We now show that this algorithm has a fast ex-
pected run-timne under the P-RAM computational
model. For this analysis we assume that we have as
many processors as we have triangles.

Theorem: The P-RAM version of this algorithm ter-
minales in a fintle number of steps and has an expected

run-ltime on a P-RAM of E()(F)‘S%J%é—"m:—.—) X Lp where

Qinar = maxg |Qr] and Lp is the number of levels of
propagalion.

Proof: We sketch the proof of this theorem as follows,
a complete version is given in [8]. From [10], we have
that Lp is finite. We know that the graph Dy is a
bounded degree graph; in fact, any node (triangle) has
al most three neighbors. Given that this is a bounded



degree graph, we use the algorithms and theorems in
[T] to find E’(:)(ﬁ—%) independent §ets in a graph in
tire proport.lonaﬁ to the number of independent sets,
where n is the number of vertices in the graph. O

3 Mesh (Re-)Partitioning

In this section we present a new partitioning heuris-
tic that uses geometric information to partition the
vertex set into equal sets. The goal of this heuristic
1s to obtain partitions with good aspect ratios. First,
we treview the goals of a partitioning heuristic.

Let II he a partitioning of the vertex set V =
P2, Vi. Recall that there exists an edge (Vi,V;) in
the yuotient graph @ = (/I if and only if there ex-
ists an edge (u,v) in (¢ with u € V|, and v € V5. We
would like to determine a partition, [I, with the fol-
lowing properties:

l. for load balancing. each partition should be nearly
equal 1n size;

2. the cardinality of the set of cross edges, CF =
{eij | vi € Viory € Vi, k # 1}, is minimized to
reduce the amount of data that must be commu-
nicated; and

3. the number of edges in @ is minimized to reduce
the number of messages that must be sent, where
Q = (Vy. Eg). Vi is the set of processors, and
Ev=A{(i.J) | Jerr v € Viowr € V3

Typically, we expect to have an initial partitioning
problets to solve and then many repartitioning prob-
lems that arise as the mesh is adaptively (de-)refined.
Both problems have been studied, and many interest-
ing methods have been proposed. The partitioning
problem in our context has four important features:
(1) the geometrie loeation of every vertex is available,
(2) the perturbations to the meshes caused by refine-
ment are often stnall and localized, (3) vertices should
be moved from processor to processor as little as pos-
sible, and (4) large amounts of time cannot be spent
partitioning the meshes because we do not wish to
dominate the execution time with mesh algorithms.

We propose an inexpensive method that utilizes ge-
ometric information and allows for existing partitions
to be perturbed when asimall perturbation to the mesh
oceurs. This method is a variation of the orthogonal
recursive bisection (ORB) algorithi [2]. The ORB
algorithm makes an initial cut to divide the vertices
into two sets of equal size. Orthogonal cuts are then

made recursively in the new subdomains until the ver-
tices are equally distributed among the processors. Al-
though this algorithm obtains good load balancing,
it can result in less than optimal communication re-
quirements. Long, thin partitions may be created that
have a large number of edges crossing the partition
boundaries. In addition, these long, thin partitions
may cause @ to be very dense.

To address this problem, we have developed a mod-
ification of ORB which we call unbalanced recursive
bisection (URB). Instead of dividing the vertices into
equal sets, we choose the cut that minimizes parti-
tion aspect ratio and divides the vertices into *";" and

3—(-257—"—’ sized groups, where n = |V|, p is the total
number of processors, and £ € {1,2,....p— 1}. This
algorithm leads to an equal distribution of grid points
with better partition aspect ratios than the ORB algo-
rithm. In fact, we conjecture that the aspect ratio of
the partition generated by the URB heuristic is largely
independent of p. the number of processors, for the
meshes arising from refinement algorithms that yield
graded meshes. It has been shown that for the ORB
heuristic, partitions can be adjacent to O(,/p) other
partitions [2].

To repartition a perturbed mesh without massive
movement of vertices, we simply perturb the cuts in
the existing partition to rebalance the sizes of V;. If no
stich perturbation exists or if the perturbation would
result in poor aspect ratios, then the mesh is repar-
titioned from scratch. As we will show in the results
section. if the partition can be perturbed, the number
of vertices that must move from one partition to an-
other is small: otherwise most vertices will be moved
(as in most partitioning algorithms).

One point. worth noting is that methods, such as
ORB and URB, that yield convex polygonal parti-
tions make the scalable mapping of vertices to par-
titions trivial given the geometric location of a vertex.
For methods that do uot yield convex polygons, the
mapping of vertices to partitions in a scalable manner
becomes problematic.

Finally, we note that currently we do not handle
the assignment problem in a sophisticated manner.
We mainly rely on our target architectures to have
worttnhole routing that reduces the effect of distance
between communicating nodes. We plan to utilize a
more sophisticated technigue such as that given in [3].



4 Experimental Results

We have implemented these algorithms in a library
of routines that is called by an application program.
The software uses (‘hameleon [4] to achieve porta-
bility across several architectures, including the In-
tel DELTA which is our focus here. We have tested
our algorithms using three different PDEs (Poisson’s
equation, linear elasticity equations, and the nonlinear
Giinzburg-Landau equations) on a variety of geome-
tries. In this paper. we consider results obtained for
the first two problems: results for the latter problem
are presented in [3].

The first problem is given by

Pu d*u

—— — = = f(r.y) on S (1)
de?  Oy?

u =0 on boundary (2)

on a square domain where f(r,y) is a GGaussian charge
distribution tha. forces refinement around a point
(Sr.Sy). To test the implementation we move the
point (Sg,9,) several times and find a new solu-
tion/mesh from the old solution/mesh. This move-
ment requires mesh refinement around the new posi-
tion and de-refinement around the old position while
the rest of the mesh remains nearly constant. To solve
the linear systems arising from this problem, we use
the parallel conjugate gradient method preconditioned
by an incomplete factorization [6,.

The second problem. planar linear elasticity, is
given by the equations (forces are not inchided in these
equations)

*u o Pu L+v *u e

Tt = - + 3
de= oyt 2 Jyt dxdy 3
Fo 0% l+v &% u
ae? Oyt 2 det o drily

These equations are solved on an annulus with a4 con-
stant foad on one side and the opposite side fixed. We
use linear basis functions in our Hnite element formu-
lation. We selectively refine the mesh aceording to the
eletnent energy norm until the local error estimate at
each triangle is acceptable. The linear systems arising
from the problem are solved with the same code we
used for the Poisson problemn.

The maximum sizes of the adaptive meshes gener-
ated for the two problemn sets are given in Table 1. The
colutun labeled [V ax shows the maximum number of
vertices obtained in the sequence of adaptive meshes;
the colummn labeled [T, gives the maximm nunber
of triangles. The final column, labeled Triangle Ratio

gives the maximumn sized area ratio between two tri-
angles in the mesh.

Table 1: The problem set

Problem Triangle
Name IV max IT'|max Ratio
POISSONI1 2,673 5,268 256
POISSON?2 5,176 10,260 512
POISSON3 10,238 20,330 512
POISSON4 20,296 40,412 1,024
POISSONS 40.292 30,294 1,024
POISSONS6 30,116 159,872 2,048
POISSONT || 159,758 318,948 2,048
POISSONS || 318.796 636,882 4,096
POISSONY || 636,738 | 1.272,344 4,096
Problem Triangle
Name Vimax | |Tmax Ratio
ELASTIC'I 1,460 2,767 156
ELASTI(2 2,798 5,382 419
ELASTIC3 5,534 10,766 512
ELASTIC4 10,736 21,043 1,677
ELASTICSH 21,329 42,049 2,048
ELASTICS 41.936 82,997 4,096
ELASTICT 83,349 | 165,468 6,443
ELASTICS || 165,253 | 328,736 16,384
ELASTICY || 329,201 | 655,919 12,886

In Table 2 we show the number of times each mesh
was refined during the solution process; the number of
processors used is given in the column labeled P. In
addition, we show the number of iterations through
the loop in the algorithm in Figure 6. We observe
that, as expected. it takes more mesh refinement steps
to construct the larger meshes. We also see that the
numnber of loop iterations needed is a slowly growing
function of the nunber of processors. This result in-
dicates that we can, in general, expect scalable per-
fortmance. Such & result is not surprising given the
run-titne results of theorem in the preceding section.

Note that a good partitioning of the vertices for
each of these problems is necessary for our refinement,
algorithm to perform efficiently. In Table 3 we give
the average number of subpartitions that are adjacent
to a given subpartition (average degree of the quo-
tient graph, ()). This measure gives some sense of the
number of processors each processors vverlaps trian-
gles with and must exchange information with. Also
given is the percentage of the total triangle edges that
have endpoints on two different. processors. This gives



Table 2: The number of refinement stages and average
nuinber of loop iteration per stage

Problem Num. of | Avg. Num.
Name P | Ref. Steps Loop lts.
POISSON|1 1 14 1.64
POISSON2 2 14 2.14
POISSON3 4 17 2.24
POISSON4 b 18 2.17
POISSONS 16 19 2.47
POISSONGS 32 20 2.40
POISSONT 64 23 2.57
POISSONS || 128 24 2.46
POISSONY || 256 23 2.35
Problem Num. of | Avg. Num.
Narme P | Ref. Steps Loop Its.
ELASTIC'L || I 6 4.00
ELASTIC2 || 2 3 4.13
ELASTICS 4 Y 4.67
ELASTICH N 9 4.56
ELASTICS 6 10 5.00
ELASTICS 32 L 4.91
ELASTICT 64 12 5.67
ELASTICR || 128 15 5.13
ELASTICY || 256 12 5.00

sorme sense of the number of triangles each processor
has that must be coordinated with some other proces-
sor. We see that these values rapidly rise, as one would
expect, until approximately 16 processors. After this
point, they very slowly increase with the nutnber of
Processors.

Our experiments were run on up to 256 nodes of
the Intel DELTA. The DELTA is a mesh-connected,
16 < 32 array of Intel 1860 microprocessors. Because
of constraints on the amount of time available to us
on the DELTA, we did not run the 312-processor case.
We believe, however, that the results presented con-
vineingly demonstrate the effectiveness of our algo-
rithins. All of our experimental rates and times given
in Tables 5 and 6 are computed in seconds. Opera-
tions rates indicate the numuber of bisections and ver-
tex deletions (note that vertex deletions correspond to
de-refinernent and constitute a small percentage of the
total) per second.

To detmonstrate the scalability of our algorithm
and implementation, we ran both problem sets on the
DELTA in such a way that the number of vertices in
the final mesh assigned to an individual processor was

6

Table 3: Experimental results showing the quality of
the final partition obtained with the URB heuristic

Problem Avg. Degree | Percent. of
Name P of @ C'ross Edges
POISSON1 1 0.00 0.00
POISSON2 2 1.00 1.20
POISSON3 4 2.50 1.77
POISSON4 3 3.25 2.79
POISSONS || 16 4.63 2.38
POISSONG6 || 32 5.06 2.60
POISSONT || 64 5.53 2.70
POISSONS || 128 5.64 2.78
POISSONS | 256 5.76 2.78
Problem Avg. Degree | Percent. of
Name P of @ | Cross Edges
ELASTIC'] 1 0.00 0.00
ELASTIC2 2 1.00 0.24
ELASTICS 4 2.00 2.02
ELASTICY 3 3.50 2.52
ELASTICS 16 4.00 3.56
ELASTIC6 32 4.38 3.99
ELASTICT 64 4.75 4.26
ELASTICS |} 128 5.20 4.27
ELASTICY || 256 5.34 4.35

constant. By nature, each of the test problems is re-
fined in localized regions of the mesh; therefore, we
expect that some processors will have more work than
others. This is retlected in Table 4, where we give the
average niber of operations per processors per step
and the average of the maximum nurnber of operations
on a single processor per step. The average number of
operations falls as the number of processors increases:
this is because we are taking more refinement steps
to achieve the same number of vertices per processor
in the tinal mesh. The average maximum number of
operations increases because, as we increase the mesh
size, more refinement is concentrated in the same size
area in which a limited number of processors are work-
ing.

Even given these handicaps, we show that the algo-
rithmm performs quite well. In Table 5 we concentrate
on two different rates of refinement per processor. The
first rate is the average number of refinement oper-
ations per second per processor. I refinement were
occurring unifortnly over all the processors we could
expect this to be nearly constant; however, in our test
problemns, as in most practical problemns, this is not



Table 4. The average number of operations per pro-
cessor per step and the average maximum number of
operations on a single processor per step

Problem Avg. Num. | Avg. Max.
Name P of Ops. | Num. Ops.
POISSON1 1 201 201
POISSON2 2 193 214
POISSON3 4 160 205
POISSON4 8 150 284
POISSONS 16 142 416
POISSONG6 32 134 535
POISSONT 64 116 500
POISSONS || 128 111 573
POISSON9Y || 256 116 691
Problem Avg. Num. | Avg. Max.
Name P of Ops. | Num. Ops.
ELASTICI I 214 214
ELASTIC?2 2 164 166
ELASTIC3 4 149 108
ELASTIC4 8 147 273
ELASTICSH 16 132 276
ELASTICS6 32 118 297
ELASTICT 64 108 284
ELASTICS || 128 36 263
ELASTIC9 || 256 107 304

the case. The second, and maore interesting rate, is
the maximum number of refinernent operations per
second per processor. We would expect this rate to
remain constant, or nearly so, if the algorithm were
perfectly scalable. In the POISSON problem set, we
see very little degradation. In fact, we should expect
some degradation as a result of the increasing number
of neighbors each processor must exchange informa-
tion with as the number of processors increases. This
degradation is otfset, however, by the rapidly increas-
ing maximum number of operations per processor we
see in Table 5. In the ELASTIC problem set we see
the reasonable degradation that we expect because we
don’t have the rapidly increasing maximum number
of operations per processor. After reaching 16 pro-
cessors, the number of processor neighbors and the
percentage of cross-edges stop this rapid increase and
we see approximately a 20% degradation in the rate
of refinement from 16 to 256 processors.

In the final table of results, Table 6, we demonstrate
that for a reasonably complex set of problems, the
time to solve the linear systerns dominates the time to

Table 5: The total time (sec) required for the sequence
of adaptive meshes, the average rates of element refine-
ment per processor. and the maximun rates of refine-
ment

Total | Avg. Rate | Max. Rate
Problem Ref. Ref. per Ref. per
Name P | Time | Processor Processor
POISSON1 1 8.2 342 342
POISSON2 2 8.8 306 339
POISSON3 4 11.6 233 300
POISSON4 8 15.3 176 334
POISSON5 16 | 22.8 118 346
POISSONG6 320 31.2 36 344
POISSONT 64| 33.8 79 340
POISSONS || 128 | 41.3 65 333
POISSON9 || 256 | 47.9 55 332

Total | Avg. Rate | Max. Rate
Problem Ref. Ref. per Ref. per
Name P | Time | Processor Processor
ELASTIC1 1 2.4 553 553
ELASTIC2 2 2.9 449 453
ELASTIC3 4 4.5 298 417
ELASTICA4 3 5.4 246 458
ELASTICS 16 6.9 192 400
ELASTICS 32 8.2 160 399
ELASTICT 64 9.4 138 362
ELASTICS || 128 11.9 108 331
ELASTIC'Y || 256 11.8 109 310

refine the mesh for any number of processors. In fact,
we can see that the total refinement time is always less
than one percent of the total execution time.

5 Conclusions

We have presented two new parallel algorithms: an
algorithm for the adaptive refinement of meshes, and
a partitioning heuristic. We have reviewed a result
showing that the refinernent algorithm has a provably
fast running time under a P-RAM model of compu-
tation. In addition, we described an efficient method
of implementation for this algorithm on a practical,
distributed-memory parallel computer. We have given
results for two problems that demonstrate the scalable
nature of the refinement algorithm and the good geo-
metric properties of the URB partitioning heuristic.



Table 6: Timing results (sec) for the entire sequence of
adaptive meshes for the planar linear elasticity prob-

lern

Problem Total Ref. | Total Matrix | Total
Name P Time Solve Time | Time
ELASTICI 1 2.4 275 278
ELASTIC2 2 2.9 433 437
ELASTIC3 4 4.5 604 612
ELASTIC4 8 5.4 677 688
ELASTICH 16 6.9 971 989
ELASTIC6 32 3.2 1434 1461
ELASTICT 64 9.4 2054 | 2090
ELASTICS || 128 11.9 4391 | 4458
ELASTICO || 256 11.8 5120 | 5196

The results given in this paper are for two-
dimensional triangular meshes. However, the use of
independent sets for parallel synchronization general-
izes to the three-dimensional case and can be used to
implement other refinement algorithms. The next log-
ical step in this work is to develop theoretical results
for three-dimensional tetrahedralizations as well as
a practical, parallel implementation for three dimen-
sions. In addition, we note that the use of higher-order
basis functions is straightforward in this methodology;
we expect to include this functionality in the current
parallel implementation.
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