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Abstract Two basic algorithms exist for the refinement of tri-
angles: (1) bisection, and (2) regular refinement. The

The efficient .solution of many large-scale scientific bisection algorithm in its simplest form bisects the
calculations depends on adaptive mesh strategses. In longest edge of a triangle to form two new triangles
this paper we present new parallel algomthms to solve with equal area [10]. The regular refinement algo-
two significant problems that arose tn this context: the rithm divides a triangle into four similar triangles or,
generation of the adaptive mesh and the mesh patti, during a cleanup phase, into two triangles [1]. Both
tioning. The crux of our" refinement algorithm is the algorithms must finish with a conforming mesh; in a
tdentzfication of independent sets of elements that can conforming mesh the edge of a triangle cannot contain
be refined 4n parallel. The objective of our partitioning a vertex other than its endpoints.
heuristic zs to construct partitions with 9ood aspect ra- In both methods, the refinement of a single trian-

t_os. We present run-time bounds and computational gle usually causes a propagation of refinement to other
results obtained on the Intel DELTA for these algo- mesh elements. This propagation ensures that the fi-
rzthms. These results demonstrate that the algomthms hal mesh is graded and conforming. The two meth-
exhibit scalable performance and have run-times small ods differ in how they handle this propagation. In

_n comparison _tth other aspects of the computation. Figure l, we show the operation of both of the algo-
rithms as refinement occurs. The shaded triangles are

triangles that have just been refine,J. The sequence
1 Introduction of meshes from left to right shows how the refinement

propagates to neighboring triangles.

Adaptive mesh refinement techniques have been

tion and storage requirements for determining approx-
imate solutions to many partial differential equations

(PDEs) [9]. Rather than using a uniform mesh with

refinement techniques place more grid points in areas
where the solution is changing rapidly. The mesh is

adaptively refined during the computation according to
local error estimates on the domain. This technique is Figure l: The refinement of a mesh using regular re-
much more efficient than the use of structured meshes finement (top row) and bisection of the longest side

when the solution is changing much more rapidly in (bottom row). Follow the mesh sequences from left to
some ar_as than in others, right. The shaded triangles have just been refined in

In this paper, we consider only two-dimensional that step.

simpliciai meshes, i.e., a mesh of triangles. However,
our algorithms are applicable to higher dimensions. Both of these algorithms have been shown to per-

form well on a variety of problems; it is difficult to
°This work was supported in part by the ()lfice of Scientific

fhm_puting, U.S. Department of Energy, under Contract W-31- make a choice between the two [9]. We have chosen
Iu9-Etlg-38. tO discuss and implement the bisection algorithm be-
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cause of its simplicity; however, it is possible to modify
the algorithnls given in this paper for use with regular i = 0
refinenlent. Qi = tile set, of triangles marked for refinement

Implicit in a discussion of parallel Mgorithms for Ri = 0
mesh refinement on distributed memory computers is while (Qi o/gi) _: @do

bisect the longest edge of each triangle in Qithe problem of partitioning the mesh to processors.
Clearly, the performance of the parallel refinement al- bisect the nonconforming edge of each
gorithm depends critically on the partitioning used triangle in Ri
and on how this partitioning is adjusted as the mesh Ri+l = all incompatible triangles

embedded in Qiis refined. We have developed and implemented a new
Qi+l = all other incompatible trianglesparallel partitioning heuristic called unbalanced recur-
i=i+l

sive bisection (UR.B). The goal of this ! euristic is to
t,lai,ltain partitions with good geonwtric aspect ratios: endwhile
this property helps to minimize interprocessor commu-

nication during both refinement and the repartitioning Figure 2: The bisection algorithm
of elements after refinement.

In short, we will discuss two algorithms in this pa-
per: (1) a parallel algorithm for adaptively refining owns Pi. We choose to partition the vertices rather
meshes, and (2) an algorithm for partitioning these than the triangles because we have found that it
perturbed meshes. Our underlying goal for these algo- makes the finite element evMuation, mesh refinement.
rithms and implementations is that their run-time for and sparse matrix assembly and solution (if neces-
p processors be small relative to the solution time for sary) more straightforward and efficient. Based on
tile PDE on p processors, tndependenl ofp. the partitioning of I,', we determine a partitioning of

T = I..JP=ITi into _tisjoint subsets. Each processor, i.
stores the sot of triangles T/ = Ti Oadj(7})OT(k}) anti

2 Parallel Adaptive Refinement the set of vertices Vi = V(7:'i).

"Fher_ ar*"several variants of the serial bisection re- i

finement algorithzll. We consider the version given
by Rivara [10]. This bisection algorithm bisects trian-
gles across the largest edge (dividing the largest angle)
with division of ucJllcc, ll|palillle edges after tile trian-
gl,' has :tlremly heen I_isect,,-,d _,nc,.. This algorithm

has b,,en shown to viel_t Iriang_llations wh,,se smallest
angle is In)4zn_[edby at worst one-half the smallest an-
gle in the inital nwsh [11]. The bisection refinenlent
algorithm is given in Figure 2. Figure 3: An ilillst, ration of (12/,Ti) on processor i

()bviously, the relinolllent could propag;tte through

III;'t/ly initially utltllark,',l triatlgles I,,,fc)re tiuishillg. Ri- (;ivml (_i, "/_i), I_r"cessor i ha.s all the information
vara, howew.r, has shown that this loop will terminate necessa.ry to ev;du;tte all finite elements that have
ill a tinite nttt,tber of iterations, say Lp iterations [10]. vertices in Vi, ;tssernble complete rows/columns of a

()ttr I)arallel reliueI,_,nt ;tlgc_ril,htll is t',_rt,l_tlated sparse lzlatrix associated with each vertex in l,'i, and
tllainly within the context _f the dual graph to tile perform the parMlel refinement algorithm (yet to be
ltLesh, which we _iefine ;us follows. Lot I,' = {vi [ specified) on the triangles in T/. We give an illustra-
i = 1..... n} Iw the se l, of vertices ill the llmsh and lion of these sets for processor i in Figure 3 where
T = {t,, [ a = 1..... m} be the set of triangles, the subpartition of the _lol_Jain for processor i is de-
Let (; = (V, E) be the graph a.ssociate_i with the fine_i by the orthogonal dashed lines. 14 is the set, of
11tesh, where 15' = {ci.j = (vi, Vj) ]l,i, t.,j _ /,,}. Let filled v,rtices, k;. is the set of unlilled and filled ver-
D = (7', F) 1,¢"the d,{;t{ graph ;tss,,cial,,,d with tile rices, 7_ is the set, ,_f shmled triangles, and 7_' is the
_wsh wh,'r,' F = {(t,,,t_) ] ,.,.j _ t,,,l_,}, set, of unsha, le_l ;tl_,] shade,I triangles. Note that T'/

We ;tss_t_l,' that lira vertices are partitione_l into can conl.ail_ ;t triangle with no vortices in 1/}(for ex-

_tisjoint sul,s,,ts, V = U_'=, vi, such l,i_;tt,processor i atJ_i}le, t,h,' t,riai_gl,' in the far Ul_P,'rright of Figure 3).



t_lso note that _i can contain a vertex not contained

in Ti t3 adj(T,.) (for example, tile vertex in the far left. Based on local error estimates, a set of triangles, (¢_.
lower corner of Figure 3). is marked for refinement.

Each triangle, t,,, in Q is a.ssigned a randonlThe serial bisection algorithm can run into two syn-
chronization problems. First, if processor i refines tri- number p(t,,)
angle ta and processor j refines an adjacent triangle R = q}

While (Q t.3R) ¢: _1dotb, it is possible that each processor could create a ver-
tex at the same position. An example of such a colli- C,hoose an independent set in D, I = I.._j=l lj,
sion is shown in Figure 4, where processors Pt and P.-, from triangles in (Q t.3R), where 1j = I I-I
are trying to refine adjacent triangles by bisecting the Each processor, j, bisects _he triangles in lj
same edge. Second, to correctly perform operations embedded in Q across its longest edge
such as sparse matrix assembly, vertices and triangles Each processor, j, bisects the triangles in Ij
in (tYi - _'], 7;i - Ti) must be properly updated when embedded in R across a nonconforming edge

For each new triangle, tb, a new random number.they are changed by their owners on other processors.
An example of a situation where neighbor informa- p(tb), is chosen
tion may not be updated properly is given in Figure 5. Each new triangle, tb, created on processor j
Here processors Pt anti P,_ are trying to refine adja- is added to
cent triangles simultaneously. Triangle Ui rnay believe Each new vertex, v_:, created on processor j
that W rather kVI is its neighbor, and triangle W, may is added to Vj
believe that l,; rather/.'1 is its neighbor. For each triangle, tb, in I./ on processor j,

notification of bisection is sent to each

,...." ((,.tJj(tb)n Tt) ¢ 0) or ((V(tb) n _) # _)
.. ""P, Each processor receives notification and

updates its (f'j, _) accordingly

R = (R - (l ¢3R))t3 A.ny triangles embedded in

Q tnade incompatible
Q = (Q - (I N Q))u All other triangles

made incompatible
Endwhile

Figure 4" An example of a collision of neighbor infor-
ttlation" processors PI an_i P., silmtlt.aneously create
the vertex 1,'. Figure (j: A practical parallel algorithln for refinement

\Ve also have algorithnls for mesh de-refinement (re-

_,. nlov;d _f utlm,cessary triangles and vertices), but we
"_" " omit these because of space constraints.

. We n_w show that this algorithm has a fast ex-

_._ "x,_._ I)ected run-tiH_e under the P-RAM computational
Itlodel. Fc,r this analysis wp assume that we have as
trtatty prc_cessors as we have triangles.

Figure 5: An ,'x;ultple ,_f incorrect Ul)_lating c,f neigh- Theorem: 7'hi' P-RAM _,er.szon of this algorithm ter-
bc, r inforlttation' siitluli;tlteous treat icm _f triangles _"I nt_nales in a Jintlc number of.steps and has an ezpectcd

log _ .... x whereand I/VI leads t,:, incorrect neighbor information, run-lime on a P-RAM of E'O(IoglogQm.. )× Lp
¢?,.,,_= ,.ax_ I¢.)kl.,,d Lp is the number of let, els of

We solve these synchronization probletns by refin-
propayalton.

ing independent sets of triangles on different proces-
sors. Independent sets are chosen according to the Proof: We sketch the proof of this theorem as foliows,
Monte (ratio r01o' t,, E 1 iff,)r each of its neighbors, aco,nple_eversion is given in [8]. Frottt [10], we have
tt,. in I), if (a) t/, not m Qi U Ri, (b) t,,, lb C:.Ti, or that Le is tinite. We know that the graph Dk is a
(c) p(t,_) > p(tb), The co_nplete algorithm is given in b,)_tnded degree graph; in fact, a_y no,le (triangle) has
Figure 8. at tttt,st three neighbors. (;iw,n that this is a bounde_i



degree graph, we use the algorithms and theorems in made recursiw_ly in tile new subdornains until tile ver-
It] " ,o nto find EO(_ ) mdependent sets in a graph in tices are equMly distributed anmng the processors. AI-IOK log; tl

tinle proportional to the number of independent sets, though this algorithm obtains good load balancing.
where n is the number of vertices in the graph. [] it can result in less than optimal communication re-

quirements. Long, thin partitions may be created that
have a large number of edges crossing the partition

3 Mesh (Re-)Partitioning boundaries. In addition, these long, thin partitions
may cause Q to be very dense.

In this section we present a new partitioning heuris-
tic that uses geometric information to partition the To address this problem, we have developed a rood-
vertex set into equal sets. The goal of this heuristic ification of ORB which we call unbalanced recursive
is to obtain partitions with good aspect ratios. First, bisection (URB). Instead of dividing the vertices into
we review the goals of a partitioning heuristic, equal sets, we choose the cut that minimizes patti-

Let [-I I_e a partitioning of the vertex set V = lion aspect ratio and divides the vertices into -q_ and
P , r_t_LP_-k I

Ui=l $i. Recall that there exists an edge (rV} rV)) in -- sized groups, where n = ]V], p is the totalP

the quotient graph Q = (;/It if and only if there ex- number of processors, and k E {1,2, ...,p- 1}. This
ists an edge (u, v) in (; with u E l/t and v E V2. We algorithm leads to an equal distribution of grid points
would like to determine a partition, 11, with the fol- with better partition aspect ratios than the OR, B algo-
lowing properties: rithm. In fact, we conjecture that the aspect ratio of

the partition generated by the URB heuristic is largely
I. for load balancing, each partition should be nearly independent of p, the number of processors, for the

o(iual in size: meshes arising from refinement algorithms that yield

2. the cardinality of the set of cross edges, C£ ? = graded meshes. It has been shown that for the ORB
heuristic, partitions can be adjacent to O(v/_) other{c/4 I vi E l,_:,t,j E l'),k # 1}, is minimized to
partitions [2].reduce the amount of data that znust l)e commu-

nicated" an(t

To repartition a perturbed mesh without massive
3. the ntll,lber of o(lges in Q is minilzJized to reduce movement of vertices, we simply perturb the cuts in

the number of messages that must be sent, where the existing partition to rebalance the sizes of V/. If no
(._) = (VQ, EQ). VQ is the set. of processors, and such perturbation f_xists or if the perturbation would
E,, = {(i,j) [ =l,'k.t, _'k E i'}, t,'t E t) }. reslllt in poor a_sl)ect ratios, then the mesh is repar-

titione(t froth scratch. As we will show in the results

Typically, wf*,'Xl)eCt to haw' an initial l)artitioning section, if the partition can be perturbed, the numl)er
l)rol)lezxt to solw • and then Illally repart, itioning prob- of vertices that IfltlSt move from one partition to an-
lel_lS that arise as the nmsh is adaptively (de-)refined. other is small" otherwise most vertices will be moved

Both l)rol)le_ns have been studied, and tnany interest- (as in most partitioning algorithms).
ing tn('tllods have I),_en i)roposed. The partitioning
I)rol)lex,_ in _ur cont._,xt Itas f¢Jllr it[tl)ortant fi_at,ures:
(1) tll,. g,,,,tzl,,t, ric local i,m of every vertex is available, ()he pOilnt worth noting is that; methods, such a.s
(2) the p,,rturbations to the niosh,:,s caused I)y refine- ORB and irRB, that yield convex polygonal l)arti-
tlwnl, are _ften slnall an_l localizml, (3) vertices should tions n_ake tl_e scalable mapping of vertices to par-

titi_,ns trivial givel, th,, go,m_etric locatiot_ of a w_rtex.I)e t_o,,',,,I fro_l I)rc_('essor t,_ processor ;t.s litth, as l)OS-
For t_tet,hods titat (l_) t_,_l,yield convex polygons, thesil)le, anti (el) larg,, a_ounl,s ,)t"ti_e cannot be spent

partitioning the n_eshes because We (Io riot wish to mapping of w_rticos to l_artitions in a scalable manner
dot'[_inate the execution tirtte with nmsh algorithtns, becomes problen_atic.

We prc_pose an inexpensive method that utilizes ge-
ot_aetric infi)rr_ation an(I allows for existing partitions Finally, we note that currently we do not handle
tol)el)ert_rl)e_! when ;ts_nall perturbation to the. mesh the assignment problem in a Sol)histicatod manner.
occurs. This _ml.ho_i is a variation of the orthogonal We n_ainly rely on our target architectures to have
rec,_rsiw, I)isecl,ion (()RB) algorithm [2]. The ORB wor_,_hole routing that reduces the _,trect of distance
algorith_ t_akes an initial c,_t to divide the vertices between communicating nodes. We plan to utilize a
into tw,) sets of e(lual size'. ()rthogonal clots are then r_oro sophisticate_l techrHque such ;us that given in [5].



4 Experimental Results gives tile tnaxirllunl sized area ratio betw_,en two tri-
angles in the tnesh.

We [lave implemented these algorithms in a [ihrary

of routines that is called by an application program.

"File software uses C.harneleon [4] to achieve porta- Table 1" 'File problem set

i, ility across several architectures, including the In- Problem /I Triangle ....
tel DELTA which is our focus here. We have tested Name II [Vlmax [T[ma× Ratio
our algorithms using three different PDEs (Poisson's ,,

equation, linear elasticity equations, and the nonlinear POISSON 1 2,673 5,268 256
PoissoN2 51176 10,260 512(;inzburg-Landau equations) on a variety of geome-

tries. In this paper, we consider results obtained for POISSON3 10,238 20,330 512

the first two problems: results for the latter problem POISSON4 20'1'296 40,412 1,024

are presented in [3]. POISSON5 40.292 80,294 1,024

The first problem is giwm by PO[SS()N6 + 80','i 16 159,872 2,048
POISSON7 159,758 318,948 2,048

• O ,_ q
O'u c - t, P()ISSO N8 318,796 636,882 4,0§6"
.) ,, = f(a', !/) on ._,' ( 1 )( x- Oy 2 " POISS()N9 6361738 1.272,344 4,096

u = 0 on boundar_.l (2)

on asquare domain where f(x, y) isa(;aussian charge Problem I1-
angle

(tist.ril)ution t.hau forces refinement around a t)oint Name _,, IV'I,,,,_.: _lTIm_:' Ratio

(,S'+..N,j). To test the irnplementation we move the ELASTI('I 1,,160 2,767 ::': '156

point (,S'_,S,j) several times and find a new solu- ELASTI('2 2",798 5'1'382 ' ,119
ELASTI(;3 5,5:_4 10,'766 512

tion/Hwsh front the old solutiotl/mesh. This move-

nlent requires rnesh refinenmnt around the new posi- ELASTIC4 10,736 2ii043 1,677
tion and de-refinement around the old position while ELASTIC5 21,329 421'049 2,048

tim rest of t,tle nlesh retnains ne_trly constant. To solve ELASTIC6 41.9:_6 82,997 4109B

the linear systeltls arising front this problem, we use ELASTi(!7- 83,349 165,468 61443

the parallel conjugate gradient metho,I preconditioned ELASTIC8 ! 165,253 [ 328,736 16,384
by an incomplete factorization [6I. ELASTI(',9 i 329,201 I 6551.9.19 12,886

The second prol)letil, planar lin,':tr elasticity, is

given by t,he e(iuatiolls (forces ;tr,, IIOt ittcl_l,le,l in these 111Table 2 we show the numl)er of times each rnesh

e(itlations ) was retino, l <luring the solution process; the nurnber of
processors used is given in the column labeled P. In

i)'-'u i)"u l + u i)'-'u i)2t, additiotl, we show the tltlznber of iterations through
Oa._ + .-z-v, - ( + ) (3)()y" 2 _ _ the loop in the ;.dgoritlit,i in Figure 6. We observe

i)"t, i)"t; 1 + u i)",, i)2u that, as expected, it takes more ntesh refinement steps

i)x"--7-' + i)t/-' = 2 (i)x"---_-' + _) to constrll('t the larg,,r rtmshes. We also see th;xt the
tmtill)+'r ,)f lo,q) it,erati(.,tts needed is a slowly growing

"i'll,,s,. +,_llt:tt,ic,ns are s,,lv,.,I ,m an a,nnltlus with ;t cot> ('tltlcti+_ll ,,f the nttzlll)er ot" processors. This result in-

Stallt I+mtl ,+n one side an<l the opposite siLie fixed. We tlicales that we c_-ttl, ill general, expect scalable per-
tts<, linear I,asis functions iti,Jur finiteeletlu,nt formu- forttianc,,. Sitch a r,+sult is not mtrprising given the

lal, i()tl. We seh+ctiv('ly reline th(-' ttt('sh ac('(:)r(ling to the r_,n-tilt,, r,.s_lts <,1't,he(Jret_) in the I)rece(ling section.

el(q_mnt energy llorllt until t,lte local error esl, irttate at Not<' that a goo(I p;trtitioning of the vertices for

each triangle is _.w(,ei_tahle. The linear syster, ts arising each of these prol)ieH_s is necessary for our refinement

frot_t the probh_m are solved with the same co(le we algorithm to, l)erfornt efficiently, in Table 3 we give
t_se(l for the [%iss<)n I)rol)let_t. the average nut_l)_,r +_fsul)l)arl, itions that are adjacent

The tnaxi_[mm sizes ,if the adaptive ttwshes gener- to a given subl)artition (average degree of the (lUO-

ate(I fc,r the two prol_letn sets are given in Table 1. The t+ient gral)h, Q). This measure gives some sense of the

colut_t IM)ele¢l [Vl,,m× shows the tnaxintut_t nut_tb,,r of nun_ber of processors each processors uw-,rlaps trian-
w, rtices ol_taine_l in the seqtten('e of a(l;tl)tiw, ttteshes; gles with ;_ut(Jtttust exchang," inf<_rt[tation with. Also

t,lw coltlltlll labele(I IZ[,,,..,, giw+sth+' lllaXitlllllll n_lllll)er given is the i)er('+'ntag+ ' of the t+Jl.al l.riallgle e(Iges that
_1"tri;u_gl_,s. The tinal ('ol_n_t, lal)ele(I Triangle R.atio haw+ +,n(ll)<)ints on two (litferent pr+,cessors. This gives



TM)Ie '2' The number of refinement StaKes and average 'FM)Ie 3: Experin-lental results showing the quality of
nutnber of loop iteration per stage the final partition obt:dned with the IIRB heuristic

l:'roblern [1 ] Num. of Avg. Num. Problem II ] Avg. Degree Percent. ofName . .P Ref. Steps Loop Its. Name P of Q C,ross Edges
POISSON 1 1 14 [.64 POISSONI 1 0.00 0.00

,,,

POISSON2 2 14 2.14 POISSON2 2 1.00 1.20
......

POISSON3 4 17 2.24 POISSON3 4 2.50 1.77

POISSON4 8 18 2.'i"7 POISSON4 8 3.25" 2.79
I:'OISSON5 16 19 ""2.47 P()ISSON5 16 4.63 2.38
I:'OISSON6 32 20 2.4.0 POISSON6 32 5.06 2.60

['(')ISS()N7 64 I 23 2.57 POISSON7 64 5.5:1 2.70
POISSON_ 128l 2,1 2.46 POISSON8 128 5.64 2.78

POISSON9 256 [ 23 2.:15 POISSON9 256 5.76 2.78

II I A I1Name P Ref. Steps Loop Its. Name P of Q Cross Edges,-- _ ±:

ELASTI(,I 1 6 ,1.00 ELASTI( '1 1 0.00 0.00
ELASTI( '2 2 8 4.13 E LASTI( ,2 2 1.00 0.24

ELASTI( '3 ..... 4 9 4.67 ELASTIC3 4 ...... 2.00 2.02

ELASTI( ',1 ,_ [ !) 4.56 ELASTI('4 8 ...... 11.50 2.52
EL-\STI('5 16 [ 10 5.00 ELASTI(5 16 ....4.00 3.56

, _. .................

ELASTI('6 32 [ 11 .1.91 ELASTI('6 32 '4.38 3.99
ELASTI('7 6,1 ] 12 5.67 ELASTIC7 64 4.75 4.26

ELASTICS 128 ] [5 5.13 ELASTI(:8 128 ...... 5.20 4.27

ELASTI('9 256 I 12 5.00 ELASTI(',9 256 _ 5,34 4.35

some sense of the number of triangles each processor constant. By nature, each of the test problems is re-
has that nllist b,_ cc,orclinat, e¢i with s,),ne ,_tller proces- ti,l,._l in localize¢l regions of the mesh; therefore, we
s,,r. We se,' t llat these values rapi_lly rise, a.s one would expect that sotxle pr,,cessors will have more work than
eXl,,Ct, utltil approxittlate[y 16 pr,_cessors. After this others. This is retlecte¢l in Table 4. where we give the
in,int, tlt,,y very slowly [rl('rp;tse with the ,lIllllber of ;tverage nllttlber of,q)erations per processors per step
pmcess_rs, and the ;tvprage of the rnaxinmm number of operations

()llr eXl-'rit,tents we're run on up to 256 nodes of on a siltgh' processor per step. The average number of
Ill,, lntel I)ELTA. The DELTA is a ,tlesh-contwcted, (-Jl)eratl,.))ls falls as the nltrnl>(.r of processors increases:
l_i .< 32 array of Intel i*(:;(},llicrol.)rocessors. Because this is J)P(';tllSeWe are taking nmre refinement steps
q_fc_Jthst,raitlts _,,l t,tte alttt,tlttt of ti,tt¢' available to tlS to achieve the' sattte ,ltmtl)er of w,rt.ices per processor
,,it tl,, DELTA, we ,lid not rl,n tl,e 512-processor case. in the final mesh. "['he average nlaximum nun lber of
W_. believe, however, that tim results presented con- operations incre;mes because, as we increase the mesh
,,'i,_ci,_gly d,-,zn,,nstrat,, th,' elfectiveness of ol_r Mgo- size, ,tt¢,r¢' retine_:_ent is concentrate¢l in the sante size
ritl_,_s. All of _r expprin_ent_tl rates and tinges giwm area in which a lin_ited llunll)er of i_rocessors are work-
ill '['aJ)Jes 7) ;tlltl (J are co_npttted in seconds. ()pera- [rig.

t.ions rat,.s i,ttlicate the ntt_nber of I_isections and ver- Even giw'n these handicaps, wp shc,w that the algo-
tex :leleti,ms (note that vertex deletions cc,rreslmud to rithm performs quite well. In Table .5 we concentrate
_le-reline_t_ent and constitute a sn,MI percentage of tile on two _lifferent rates of refinement per processor. The
total) per secon¢i, first rate is tile average number of relinetlmnt oper-

To _le,tto,lst, rate the scalability of o_r algorithm ;ttions I_er second per processor, if refil_pltlent were

ariel il_l_let_,.,ll.ation, we tall I)ot,h proble_,_ sets on the occurring t_niformly over all the processors we could
i)Ei:I'A i,t such a way that the n_tml_er c_fw.rtices in expect this to be nearly constant; however, in our test
the tinal t,tesh assigne¢l to an individual processor was I)roblet_ts, ;ks in t_tost practical problp,_s, this is not



Table ,i: The average number of operations per pro- Table 5: The total time (sec) required for the sequence
cessor per step and the average maximum number of of adaptive meshes, the average rates of element refine-
operations on a single processor per step ment per processor, and the maximum rates of refine-

ment
Problem [I Avg. Num. Avg. Max.

Name II P of Ops. Num. Ops. _
..... .......... Total Avg. Rate Max. RatePOISSONI 1 201 201

POISSON2 2 193 214 Problem Ref. Ref. per Ref. per

POISSON3 4 160 205 Name P Time Processo r Processor

POISSON4 8 150 284 POISSON1 I I 8.2 342 - 342
POISSON5 16 ....... 142 416 POISSON2 2 8.8 306 339
POISSON6 :32 " 134 :335 POISSON3 4 it.6 233 300

P()ISSON7 64 ..... 116 500 POISS'0N4 8 15.3 176 ...... 334
POISSON8 128 111 573 POISSON5 16 22.8 118 346

POiSSON9 256 ....... 116 691 POISSON6 ..... 3,2 31.2 ..... 86 .... 344
POISSON7 64 33.8 79 340

................

POISSON8 128 41 .:3 65 333

 r°U'mLI ....Name ,,, P of Ops. Num. Ops.
ELASTICI 1 214 214
ELASTIC2 2 164 166 Total Avg. Rate Max. Rate

Problem Ref. Ref. per Ref. perELASTIC3 4 149 108
Name P Time Processor Processor

ELASTIC4 8 147 273 ........ ,, ,:,.,,:, ,
ELASTIC'5 16 132 276 ELASTIC1 I 2.4 553 553,,, , ....

ELASTIC6 32 ...... 118 297 ELASTIC2 2 2,9 449 ,, 453

ELASTIC7 64 108 284 ELASTIC3 4 4.5 298 417
ELASTIC8 128 86 263 Ei_ASTIC4 8 5.4 2,i6 458

ELASTIC9 256 107 304 ELASTIC5 16 6.9 192 .400
ELASTIC6 :32 8.2 160 :399

ELASTIC'.7 64 9.4 138 :362

tile case. The second, and more interesting rate, is _ E"LASTIf'8 128 11.9 108 :3:31

the ntaxinlum number of refiner,lent operations per _ ELASTI('9 256 11.8 109 310
second per processor. We wouhl expect this rate to

remain constant, or nearly so, if the algorithm were refine the mesh for any number of processors. In fact,
perfectly scalable. In the POISSON problem set, we
see very little degradation. In fact, we shouht expect we can see that the total refinement time is always less
some degradation as a result of the increasing number than one percent of the total execution time.
of neighbors each processor must exchange informa-
tion with a.s the number of processors increases. This

(legradation is offset, however, by the rapidly increas- 5 Conclusions
ing nlaximunl number of operations per processor we

see in Table 5. In the ELASTI(7 problem set we see We have presented two new parallel algorithms: an
the reasonable degradation that we expect, because we algorithm for the adaptive refinement of meshes, and
don't have the rapidly increasing maximum number a partitioning heuristic. We have reviewed a result
of operations per processor. After reaching 16 pro- showing that the refinement algorithm has a provably
cessors, the number of processor neighbors and the fast, running time under a P-RAM model of compu-
percentage of cross-edges stop this rapid increase and tation. In addition, we described an efficient method
we see approximately a 20% degradation in the rate of implementation for this algorithm on a practical,
of r_finernent from 16 to 256 processors, distributed-metnory parallel computer. We have given

In the final table of results, Table 6, we demonstrate results for two problems that (lemonstrate the scalable

that for a rea,sonably cornl)lex set of problems, the na_,ure of the refinement algorithm and the good geo-
time to solve the linear systems dontinates the time to metric properties of the trRB partitioning heuristic.



forma, April 11-15. The Society for Computer
Table 6: Timing results (sec) for the entire sequence of Simulation, 1994 (to appear).
adaptive meshes for the planar linear elasticity prob-

lem [4] William Gropp and Barry Smith. User's Manual
for Chameleon Parallel Programming Tools. AN L

Report ANL-93/23, Mathematics and Computer

II I M't 'x Science Division, Argonne National Laboratory,Name P Time Solve Time Time Argonne, II1., 1993.
ELASTIC I 1........ 2.4 27,5 '278 ....

' I_LA'STI(:.I2 2 2.9 433 '437 [5] Steven Warren Hammond. Mapping Unstructured

ELASTIC3 4 '4.5 604 [ 612 Grid Computations to Massively Parallel Corn-
ELASTIC4 ' 8" 5.4 677 688 puters. PhD thesis, Department of Computer Sci-
ELASTIC5 16 {5.9 971 989 ence, Rensselaer Polytechnic Institute, 1989.

F.LASTIC,6 :32 ..... 812 " i4:34 1'461 [6] Mark T. Jones and Paul E. Plassmann. Block-
ELASTIC7 6,i 9.4 205'4 2090 Solve v 1.0: Scalable library software for the paral-
ELASTIC8 128 1'[.9 4391 4458 lel solution of sparse linear systems. ANL Report
ELASTIC9 256 11.8 5120 5196 ANL-92/46, Mathematics and Computer Science

Division, Argonne National Laboratory, Argonne,
111.,1992.

The results given in this paper are for two- [7] Mark T. Jones and Paul E. Plassmann. A par-
dimensional triangular meshes. However, tile use of allel graph coloring heuristic. SIAM .]ournal on
independent sets for parallel synchronization general- Scientific and Statistical Computing, 14:654-669,
izes to the three-dimensional case and can be used to May 1993.
implement other refinement algorithms. The next log-

ical step in this work is to develop theoretical results [8] Mark T. Jones and Paul E. Plassmann. Par-
for throe-dimensional tetrahedralizations as well as allel algorithms for adaptive mesh refinement.

a practical, parallel implementation for three dimen- Preprint MCS-P421-0394, Mathematics and
sions. [n addition, we note that the use of higher-order Computer Science Division, Argonne National
basis functions is straightforward in this methodology; Laboratory, Argonne, Ill., 1994.

we expect to include this functionality in the current [9] William F. Mitchell. A comparison of adap-
parallel implementation, tire refinement, techniques for elliptic problems.

ACM Transactzons on Mathematical Sof-lware,
15(4)'326-347. December 1989.
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