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Abstract

\Ve show how computer algebra and and compiler-compilers are used for automatic code
generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object-
oriented environment for modeling complex physical systems that can be described by
differential-algebraic equations. After a brief overview of SPARK, we describe the use of com-

puter algebra in SPARK's symbolic interface, which generates solution code for equations that
are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to
achieve important extensions to the SPARK simulation language, including parametrized macro
objects and steady-state resetting of a dynamic simulation. The application of these methods to
solving the partial differential equations for two-dimensional heat flow is illustrated.

1. Introduction

The Simulation Problem Analysis and Research Kernel (SPARK) is a new equation-based,
object-oriented simulation environment for modeling complex physical systems. SPARK takes
algebraic equations as elementary objects and creates simulation programs for virtually any com-

bination of the equations. SPARK is being developed for the U.S. Department of Energy by
Lawrence Berkeley Laboratory and California State University at Fullerton.

This paper describes how SPARK automatically generates code using symbolic manipula-
tion and computer algebra. Section 2 gives a brief overview of the SPARK environment. In Sec-
tion 3 we describe the computer algebra tools that relieve the SPARK user of most of the

tedium of object and module creation, to the point where simply specifying the equations and
their interconnections is enough to generate a flexible simulation program. The use of compiler-

. compilers for code generation is discussed in Section 4. Finally, we show an example application
in Section 5.
$
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2. The SPARK Environment
SPARK generates a solution procedure that is tailored to each particular simulation prob-

lem, then implements that procedure in a program that it automatically generates in the C
language. The overall organization of SPARK is shown in Fig. 1 [Buhl 1990].
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Figure 1: Configuration of the Simulation Problem Analysis and Research Kernel (SPARK).
Shaded boxes are programs; unshaded boxes are files. Ovals show user actions.



The user interacts with SPARK in four basic ways: (1) defining objects (which represent
the equations of a physical system), (2) linking objects together to define the simulation problem
to be solved, (3) specifying run-time data (parameters and time-varying input data); and (4)
specifying desired output. The objects are defined in text files, either as mathematical equations
or as component models in Neutral Model Format [Sowell 1989]. These files are processed sym-

' bolically with programs written in MACSYMA [MIT 1983], producing C language functions and
objects that are stored in libraries..Problems are defined by interconnecting objects using the
graphical user interface, producing a problem specification file in the Network Specification
Language (NSL)[Anderson 1986]. From the NSL description, SPARK generates internal data
structures based on graphs. Matching and reduction algorithms are used with these graphs to
automatically devise an efficient solution algorithm, producing an executable program for each
particular problem. This program reads constant and time-varying input data from files, produc-
ing the problem solution. The output processor reads the results file and generates graphical
displays according to interactive user requests.

The initial version of SPARK (called SPANK -- Simulation Problem Analysis Kernel
[Anderson 19861) handled only steady state problems, i.e., those involving nonlinear equation
systems without time derivatives. SPARK was extended to dynamic systems in 1989, and can
now handle problems involving nonlinear equations with time derivatives on any of the vari-
ables.

SPARK has been successfully used for solving problems encountered in building energy
simulation, including air conditioning systems [Buhl 1990],. desiccant dehumidification [Nataf
1991], lighting systems [Sowell 1990], and coupled natural convection and conduction [Buhl
1990].

3. The Symbolic Interface to SPARK

The objects in SPARK are equations whose interfaces with the outside (and with other
equations) are the equation variables (see Fig. 2). Linking two objects means that one or more
variables are shared by the equations, as illustrated in Fig. 3. Thus, SPARK needs to be told
what the interfaces of each equation are, how they are linked with the interfaces of the other

equations, and under what name. This information is supplied in "object files" that encapsulate
all information about each equation. Object files can be linked together to make macro object
files (which are equivalent to systems of equations).

The SPARK solution method requires that the user provide functions, in the C language,
that solve each equation in terms of each of its variables. For an equation of the form

f (x,y,z, . . . )=O,

this means that the inverse functions g, h, etc., have to be specified, such that

x=g(y,z, . . . ), y=h(x,z, . . . ), etc.

Although SPARK users can generate object files and function files by hand, the process is
tedious, error prone and time consuming. For example, for an equation with N explicit variables,

, there are, in general, N C functions to supply, plus one SPARK object file that tells which func-

tions are associated with which variables. An object corresponding to a physical process or com-
ponent is usually described by several equations, each of them having an associated object file

° and retinue of function files.
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q= h (t2"tl) I

Figure 2: An elementary SPARK object, which represents a single equation. The interfaces
of the object are the equation variables.
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Xl=l°g x2 + l/x3 . Yl = Xl2 + cos x2

El E2

x3 I x2 yl

E3 x3=zt(x2- Yt)
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Figure 3: Linking of elementary SPARK objects to represent a system of equations. In this
example, elementary objects E1 and EP are linked to form a macro object, Ml,
which is then linked to ES, another elementary object. The links are the vari-
ables that are shared among the equations.
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Due to the equivalence between equations and objects in SPARK, a system of equations can
be described as elementary objects hooked together, as shown in Fig. 3. Describing such an
object requires creating all of the elementary objects and their associated C functions and link-
ing the elementary objects into a "macro" object.

. To simplify this process, we have developed a MACSYMA-based symbolic interface to
SPARK [Sowell 1990]. With this interface, you need only type in the equations for the system
that you w_nt to model. The interface consists of a set of commands that invoke MACSYMA

, functions to create the appropriate SPARK flies. The arguments of these commands are equa-
tions in symbolic form, names (character strings), lists of names, etc.

In the following, we describe how you use the interface to easily create an elementary object
(which corresponds to a single equation), a macro object (which corresponds to a system of equa-

tions), a dynamic object (which invokes un integrator), a dynamic macro object (which
represents a system of ordinary differential equations), and a complete simulation (which
includes objects, associated functions, simulation file, and input file).

3.1 Generation of elementary objects

The simplest object handled by SPARK is a single algebraic or transcendental equation,
with no time derivative, but which can be piecewise defined on the variables' space.

The following command creates an elementary object:

makespark (eq, "name", badlist);

where eq is the equation in symbolic form (with a bracketing syntax in case it is piecewise
defined), and name is a string that names the created object. The last argument, badlist, is a list
of bad inverses, i.e., a list of variables that the user does not want the equation to be solved for.
This list can be quite useful in speeding up the generation of object functions and in taking into
account previous knowledge that some variables are bad iteration variables.

As an example of rnakespark, consider the equation for infrared radiation exchange between
two surfaces of temperature T and To:

q12=c(O,¢)(r4-To4)

where c(0,¢) is the emissivity of the surface as a function of the direction that the radiation

leaves the surface. The following command will make this into a SPARK object called
my_rad.obj (see Fig. 4), treating the variables 0 and ¢ us input parameters, but retaining the
ability to calculate the temperatures or the flux:

makespark (ql e--eps(th, phi) *(t^d.tO^ 4) , "my_raY', lth, phil);

Here, eps is an external function invoked by the generated C code. It is assumed to be present
in the function library or embedded by the user as an internal function in the generated C code.

As an additional example of makespark _ for the ease of a piecewise defined equation -- we
' consider the above equation for radiation exchange with a linear simplification for small tem-

perature differences:

' q12=_(O,¢)(T4-To 4) if [T-To[>AT

qle=h_q(O,¢)( r-ro) if IT-To I<_Ar
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where heq(O,¢) is the equivalent heat transfer coefficient in case of radiative linearization. Tile
command for the creating the new object is:

makespark ([[q12:eps(th,phi) *(t^_-tO ^4),(T- TO)^2> delta ^2],
/q12--h_ eq(th, phi) *(t-tO),( T- TO)^P_ --delta ^2/,"my_rad2",/rh, phi, delta/),"

q

Here, h_eq and eps are external C functions present in the function library. Note that delta is a
bad inverse since it would an input to any problem using this equation.

f- -

my_rad conv

q_2= e(e,_)(r_-_) c N = h,2(r2_r_)

[....9 ] o I q12 I TO I T2 I T1 (Ihl2 dtlT]co:lq ,' hist....t....[....t.....1....! tit F....

Figure 4: SPARK macro object representing coupled radiative and convective heat transfer.

Conv is a dynamic object, which, in SPARK, corresponds to a single ordinary
differential equation.

It is worth noting that the notion of "bad inverse" is taken into account in modern generic

engineering component description languages such as the Neutral Model Format [Sowell 1989].
It is based on the knowledge that a variable to which the overall system behavior is almost
insensitive will be a bad variable to iterate on. Of course, the choosability of a bud variable is

made possible by the fact that the SPARK environment does not force any variable to be input
or output until specifically told so by the user. Therefore the objects available in the library
after generation are essentially undirected. Specifying bad inverses is a way to limit this lack of

directionality. Maximum limitation would occur by making all the equation variables bad except
for one, which variable would then become the privileged output of the object. This would

reduce the SPARK object to a classical subroutine with several inputs and one output. g

The C function code that is generated when the elementary SPARK objects are created has
several noteworthy features:

Along with the equation resolution code of tb.e piecewise defined equation, satisfaction of

the constraints is verified. This is implemented by adding to the domain condition the require-
ment that the obtained solution is within the domain.

- 6 -



When the domain supplied by the user does not entirely cover the variable domain, the
remainder domain is handled by supplying as a default the solution found on the last portion of
the variables' domain that was treated.

In case no solution is found, a default value is returned along with a warning message. This

is sometimes useful to prevent the global Newton-Raphson iteration from failing in a region from
which it cannot recover. Returning default values is acceptable ms long as that happens only dur-
ing the intermediate iterations and does not take place at final iteration time, when the final
result is actually computed.

There is un additional safeguard option, that automatically generates code within the body

of the generated C function, ensuring that no division by 0 occurs. In practice, this amounts to
solving for ali denominators in the expression and determining the conditions on the variables
for which the denominators arc zero. Then code is generated that flags these conditions and
returns default values should they occur. The main purpose of these checks is to avoid a simula-
tion that would be lost in numerical exceptions without chance of recovery. They amount essen-

tially to resetting a break variable during iteration.

We have also implemented related safeguards, such as checking that the arguments of spe-

cial functions (like log, asin, tan) are within range. An out-of-range argument is localized at run
time precisely in the object in which it occurs.

We are considering extending these safeguards to automatic returning of limits or flagging

of discontinuities in the functions. The first would be helpful when mathematical singularities
correspond to no physical singularity. The second would be a useful warning for solutions tech-

niques that rely on the continuity of functions or their derivatives (for example the Newton-
Raphson method).

3.2 Generation of macro objects

A macro object is a system of equations, each of which may be piecewise defined. Macro
objects are useful for representing comple:: physical components. In building science, for exam-
ple, a typical HVAC component, such as a heat exchanger, will have several conservation laws to
satisfy plus some constitutive behavioral equations. The number of equations depends on how
detailed the model is. Describing an entity as a macro object allows the user to treat the entity
as a whole -- to instantiate it and link it to other objects -- without having to worry about its
internal details.

The following command creates a SPARK ma-ro object along with its subobjects (the ele-
mentary objects corresponding to the individual equations) and associated C-language functions:

writemacro (sys, name, listofbadlist);

Here, sys is the equation system in symbolic form and name is either a string that names the

macro object, or a list of names (if the user wants to choose the names of the subobjects), and
listofbadlist is a list of bad inverses for each equation in the system.

Alternatively, to reuse objects that already exist in the SPARK library, name can be a list
of the form

t=y,../,...1
o

The symbolic interface will then generate the macro object by instantiating existing objects
instead of creating new objects. In this case, the first argument of the list is the name of the

macro object to be generated, und name1, name2, etc., are the names of the existing objects.
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The list of equalities after each namei is a substitution that maps the names of the global vari-
ables in the macro object to the names of the local variables in the existing objects. In the exam-
ple above, existing object name1 has local variables called y and y2 and the corresponding vari-
ables in the macro object are called x and x2. Thus, the macro object that is generated will con-
tain statements of the form:

¢

link x(namel_inst, y)

link x2(namel_inst, y2)

where namel_inst is the name of the instantiation of object name1.

The effect of writemacro is to put an equation system in network form. It scans the equa-
tions for common variables, states the links between equations with common variables, and gen-

erates all the elementary objects associated with the individual equations, along with the C func-
tions that solve the equations for particular variables.

For example, consider the equation system

q12--_(0,¢)( T 4- To 4)

q12+q =0

where the first equation is not already in the object library, but the second equation is (under
the name minus.obj, with equation in+out=O). Then the following command will generate a
macro object named big_rad.ohi that corresponds to this system, plus new elementary object
my_rad.obj and old elementary object minus.obj:

writemacro ([[[q12---eps(th,phi) *(t^ 4.tO ^4)]],Hq12 +q--O]]],

f'big_raae',"my_raa_',f'minus",/q12----in, q-out]]], [lth,phil, II/);

Here we have specified that 0 and ¢ are bad inverses in my_rad; we have specified no bad
inverses for minus.

3.3 Generation of elementary dynamic objects

An elementary dynamic object corresponds to a single ordinary differential equation (ODE),
possibly piecewise defined. The corresponding SPARK representation actually consists of two

(or more) equations: the ODE itself (with the derivative given a variable name, for example xdot)
, and the integrator equations, which state that xdot is the derivative of x, ydot is the derivative of

y, and so on. Thus the SPARK object will actually be a macro object with two (or more) subob-
jects and associated C functions. The command for creating an elementary dynamic object is:

makedynspark (eq, name, badlist, dynlist)

where the first three arguments are the same as those in makespark and the last argument, dyn-
list, is a list of pairs [[x,xdot],[y, ydot],...] indicating that xdot is t_hederivative of x, etc.

Typically, a dynamic object would be a first-order nonlinear differential equation. For ¢
example, the following command will create a dynamic object, conv.obj (see Fig. 4), for the heat
transfer equation

$

dT1 .

c-W-=" 12(t2-t 1)
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for the case that the heat capacity, C, is always an input parameter (i.e., is never calculated):

makedynspark (c'T1dot--h12*(T2- T1), "conv", /c], /T1, Tldot/)

Here Tldot is the time derivative of T1.

' The time integrator used in this implementation is the backward difference integrator of
order 4. It is an object. Thus makedynspark is nothing more than a writemacro involving un
existing integrator object. Thus, it is very easy to change the integrator, provided its interfaces
remain the same. For more complex integrators, it might be advisable to write the object by
hand. However, code has been written that allows automatic implementation of the Runge-
Kutta method of order 4 on a dynamic object. The command is:

makerungespark (eq, name, var, vardot)

or

makerungespark (eq, name, [var, vardot], dynvarlist)

where dynvarlist is the list of dynamic variables in the equation.

3.4 Generation of dynamic macro objects

A dynamic macro object represents a system of differential-algebraic equations. The com-
mand for creating this kind of object is:

writedynmacro (sys, name, listofbadlist, dynlist);

where the first three arguments are the same as for writemacro, and the fourth argument is a list

of lists of the same type as dynlist in makedynspark.

Most components encountered in building thern_al modeling are of this kind; an example is
transient heat conduction through a wall discretized into several nodes.

3.5 Generating a simulation

If the user does not intend to link any objects together himself in the overall simulation
file, and wants everything to be created for him, then the following syntax can be used:

writesimul (eq, name);

where eq is the overall equation system, including the equations that give the values of the
inputs, and name is the name assigned to the overall simulation file. The writesimul command

creates everything that is needed for a SPARK simulation to be ready to run, including the

simulation and input files. This utility allows SPARK to be used simply as an equation solver,
with no attention given to the crafting of objects or their reusability. This approach is con-
venient but inefficient, since the overhead for code generation is not exploited by reusing the
code.

_



3.6 Component merging utility

It is sometimes numerically useful to eliminate variables from an equation system before
making it into a SPARK object. That is especially true in the simulation of nonlinear controls,
where numerical difficulties can occur.

Also, some internal variables of a macro object may of no interest, and are just calculation
intermediaries. To eliminate such variables, a graph theoretic method applied to symbolic equa-

tions is used [Natal 1987]. The command is:
t

reducer (sys, varlist);

where sys is the equation system and varlist the list of variables to be eliminated. The goal is
the same as that of the MACSYMA command eliminate, but reducer is more versatile:

MACSYMA's eliminate uses resultants, and is therefore suitable only for polynomial systems,
whereas reducer can handle any type of equation.

In reducer, the ability of the equations to be solved in terms of their variables with inverse
functions is used in order to perform heuristically chosen substitutions. The algorithm
transforms the equation system into a graph in which the equations are arcs and the variables
are nodes. Two nodes are connected by un arc if a variable is shared by two equations. In gen-
eral, there are several arcs associated with each node, since most equations will have more than
two variables.

At this point, the variables that are present in many equations are saved for later substitu-
tion, since substituting them might make implicit many equations where they are used. The rea-
son for this is that a pessimistic heuristic approach is taken, and it is assumed that substitutions

into equations make these equations more complicated, and probably implicit in the variables
that were injected. Although this is not always the case, it provides a rough guideline on how to
choose variables to substitute.

The criteria for choosing the order of the variables to substitute and the equations to use

for the substitution are described in more detail in [Nataf 1987]. These criteria have been imple-
mented in both FORTRAN and MACSYMA. The MACSYMA implementation is slower but
more efficient since the substitutions are actually performed and advantage is taken of the
resulting simplifications, whereas the FORTRAN implementation can only take the pessimistic
hypothesis that substituting a variable in an equation will make it implicit in the new variables

that are injected. For example, substituting y=x 5 into z--x+y+l (explicit in x) yields
z=xS+x +1 (implicit in x).

3.7 Generation of macro object networks

Some equation systems have a particularly simple and repetitive form. In heat transfer, for
example, the electrical analogy for conductive, convective and radiative transfer leads to equa-
tion systems of a simple form:

N

Ck=Y]aikbi
i=l

where b is any expression with index i (a vector) and a is any expression with two indices (a
matrix). This approach can be used, for example, for conveniently expressing the equations for
the radiative interaction between plane surfaces for which the shape factors have two indices and
the flux has one index.
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The SPARK command for generating macro object networks is:

wrilegcnericnelmacro{n, name, objname, exprl, expr2, badinvli.sl);

where n is the number of equations, name is the macro name, and objnarne is the name of the

' elementary object describing the equations. These equations have the form

n

expr l'- _ expr 2
jml

where exprl depends on index k and exprP depends on indices k and j.

The last argument, badinvlisl, is the list of bad inverses for the equation associated with
k--1. It is assumed that this list is also valid -- by "symmetry"-- for the other instantiations of

n

the equation expr 1--_ expr2. It must be remembered that only one elementary object is created
]--1

for that equation, and that that object is then instantiated n times. But since bad inverses can
only be excluded in elementary objects, the ist of bad inverses is supplied only for the equation
associated with k----1.

There is a noteworthy problem associated with network objects: they are unphysical in the
sense they can only be used when connected to other objects. For example, if we create a radia-
tive exchange network object for a room with Nwalls, we will have to connect it to the wall sur-

faces between which the radiative exchange takes place. If we now add a new wall, then the ori-

ginal /V-wall radiative network object is no longer valid, and haz to be replaced with an (N±I)-
wall radiative network object.

One could argue that this problem is due to the matrix representation method chosen, and
that one does not need to represent the interaction as an object, but can put the radiative
behavior in the walls themselves. But then each wall will have a radiative influx interface that

will have to be the sum of the exchanges with the other walls, the number of which is not

known a priori. So the problem remains. Therefore, when adding a wall, one has to change the
global radiation object, or one has to change the wall objects. The first alternative shows that
there can be no general radiation object in SPARK. The second alternative shows that there
can be no general radiative wall object in SPARK.

This type of difficulty arises because a variable environment cannot be parametrized a
priori and put into an interface. An interface is scalar, and the number of scalar variables
through which a SPARK object communicates with the outside is fixed.

In practice, it is usually possible to deal with these problems, since the number of walls

(continuing with the above example) always ends up being instantiated to a fixed value.
Difficulties might arise, however, when new objects appear during a simulation and cause the
number of equations to change. In principle, SPARK cannot handle this. But it may be possible
to write the equation system so that at certain times certain equations, although present, are
irrelevant, and only take on a physical meaning when the system reaches a certain state. In this

case, the "extra" equations are fired during the iteration process even if the current state is inap-
propriate for them, but their effect does not influence other results. This approach has been pro-

' yen to be feasible (for example, for a coil that switches from heating, with no condensation, to
cooling, with condensation and therefore with additional equations) but requires extreme care in
designing a system of equations that will, under certain conditions, behave as a smaller system,

' with the complementary subsystem not influencing the part that remains of physical
significance.
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3.8 Generation of a simulation containing two-dimensional PDE's

SPARK handles systems of algebraic and ordinary differential equations, but has no built-
in way to treat partial differential equations (PDE's). Two approaches to handling PDE's in
SPARK are illustrated in Fig. 5. One approach is to resort to approximate closed-form solutions

of the PDE, us determined, for example, by a variational method. The resulting equation is then
used to create a SPARK object using the symbolic interface, as described above.

A second approach is to observe that a finite difference representation of a problem yie]_ds a
system of differential-algebraic equatioi_s that is well suited to treatment with the SPARK
object-oriented methods. In the 2-D finite difference discretization, each elementary bulk domain

rectangle can be described by the same object (see Fig. 6). Furthermore, there are only a few
possible configurations for the boundary elements (primarily corners and flat bou,.daries), which
means that only a few types of objects are needed to represent all possible boundary conditions
(see Fig. 6).

The finite-difference approach has been implemented in SPARK. It handles second-order
PDE's with first-order boundary conditions on 2-D domains of any shape that is regular enough.
However, no provision is made for the error due to approximating a smooth boundary with rec-
tangles, although a wider variety of boundary objects could be implemented automatically*.

For steady state, the command is:

writefindiff2Dsimul [name, objname, bcname, diffeq, domain, constraint, dx, dy, badlist);

where name is the name of the overall simulation file, objname is the bulk cell object name,
bcname is the suffix for the boundary condition object name (prefixed with z_, y_ or xy_ depend-
ing on whether it is a left/right, top/down or corner boundary), diffeq is the PDE, constraint
specifies the boundary conditions, and domain is a 2-D function that is negative inside of the

domain and zero at the boundary. The quantities dz and cly are the spatial discretization steps
in the x and y dimension, and badlist is the list of variables that we do not want to solve for

(either because they will be parameters and we will always input them, or because solving for
them is very time consuming for MACSYMA, or because they exhibit bad numerical properties
us iteration variables).

The syntax for dynamic or dynamic vectorial PDE's is the same but a slightly different
package is invoked.

SPARK can therefore handle problems us complex a_snatural convection in two dimensional

enclosures, for example. You need only enter the PDE in symbolic form, together with the boun-
dary conditions and domain geometry. The C code needed to simulate the problem is then
automatically generated. However, only fairly coarse grids can be handled, otherwise the solver
that is generated may be very slow to compile or may exceed the capabilities of the compiler.

The user has the option to specify alternative algorithms for discretization. In the code the

discretization is described by rules. The user can change these rules, and not further modify the
code, provided that the value at each point in the domain is influenced only by its immediate
neighbors.

An example of using writefindiff2Dsimul for generating the simulation of 2-D heat conduc-
tion in a disk in shown in Section 5.

*This is to take into account the fact that the rectangular cells overlap the real domain. One reason is simplicity: the smaller the
number of boundary objects the better (here we need only side and cozner objects), even though one might have to resort_ to a finer
grid to reduce the discretization errors. Another reason is that body-fitted coordinates can be used to transform the domain into a

collection of rectangular domains, as described !n [Thompson 1985], thus eliminating entirely the need to deal with the irregular
boundary case in the computational cells themselves.
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4. Use of Compiler-Compilers
In this section we describe the use of compiler-compilers for code generation in SPARK.

4.1 Multilinks

Originally, the links connecting SPARK objects were restricted to be scalar quantities. To
link objects with vector quantities required specifying separate links for each component of the
vector. For example, the exchange of. a fluid characterized by a (temperature, mass-flow-rate)
vector required separate temperature and mass-flow-rate links. To get around this problem, the
"multiiink" concept was introduced.

A multilink is an array of scalars (or other multilinks, to any depth). Multilinks were
implemented by extending the SPARK Network Simulation Language syntax and writing a lexi-

cal analyzer and syntactical parser, using Lex [Lesk 1986] and Yacc [Schreiner 1985 and Johnson
1978], to translate the new syntax into the old, SPARK-compatible syntax. The Lex and Yacc
utilities take as input formalized descriptions of atoms and grammar, and generate C programs
that do the parsing of any file for these language specifications. The SPARK language, being
very simple, is suitable for treatment by these utilities, which can be used for writing compilers
or translators (the latter being the case here). The Lex and Yacc generated parser just has to be
modified slightly, since it is not recursive, while the SPARK purser is (since it has to deal with
embedded macros). This treatment (which involves adding and maintaining a "depth of recur-
sion" dimension to the internal arrays of the generated parser) is all automated.

In the extended syntax, an mport statement defines a multilink. For example, the statement

mport air,h, db, w)

will have the parser understand that linking two air-flow interfaces called air together means
actually linking three separate interfaces m specific enthalpy h, dry bulb temperature db, and
humidity ratio w. Thus, a statement of the form

link air,45 (tubel.air_out, coil$.air_in)

will be expanded into:

link air,_5- > h (tube1. air_out- > h, coilP, air_in- > h)

link air45-> db (tubel.air_out-> db, coil2.air_in-> db)

link air45-> w (tube1. air_out-> w, coil2.air_in-> w)

The nesting feature allows the elements of an mport to be other reports, to any depth.

4.2 Parametrized macro objects

Another limitation of the SPARK approach is that each object has a fixed number oi" inter-

faces. This is bothersome when dealing with "parametrized objects," an example of which is a
wall with Nlayers, where Nis not known a priori.

To overcome this limitation a preprocessor was built, using Lex and Yacc, that allows the
user to create parametrized objects and simulations using an indexed syntax, with N as a vari-
able. Upon instantiation of that variable, the preprocessor creates a C program that asks the

user to specify the value of N, and then generates a MACSYMA program that in turn generates
the associated SPARK simulation or macro object file.
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4.3 Steady-state resetting of a dynamic simulation

A dynamic simulation may fail to converge at a particular time step. There are various
possible reasons for this, including bad problem conditioning, too large a time step, or sudden
change of a parameter. To deal with this, a method has been devised for SPARK using Lex and
Yacc that -- upon non-convergence -- automatically creates a "ghost" steady-state simulation
by removing ali time derivatives from the dynamic simulation and assigning input parameters to
be those at the time of failure. The dynamic simulation is then restarted at this time step using

as new starting values the results of solving the steady-state problem. This approach can often
save simulations that can otherwise be made to converge only by resorting to unreasonably

small time steps.

5. Example of the Symbolic Interface: 2-D Conduction
We consider the SP _RK simulation of heat cor.duction in a disk. We take the disk to be a

section through an infin;tely long rod, so that the heat conduction is in the two dimensions per-
pendicular to the axis of the rod. The disk has a heat production term in the bulk domain and
a Newtonian convection boundary condition. The conduction equation to be solved is

u OT

AT +-_/=p% Ot

where T is the temperature,u is the bulk heat generation rate, k is the thermal conductivity, p

is the density, and cp is the specific heat capacity.

The boundary condition on the perimeter of the disk is

-k_n =h( T-To)

dT

where h is the heat transfer coefficient, T O is the ambient temperature, and _ is the normal
derivative of the temperature at the boundary.

The SPARK commands for generating the simulation for this problem are as follows:

/ *pZdyn simulation*/

*Disk with uniform heat generation, Newtonian convection loss*/
hatch,' ul / natal/ vaxima/ mysolve, mac");
hatch,' ul/ natal/ vaxima/FINDIFFgD/findiffgPdyn, mev");
rO:l. O;

circlel(x,y):--x ^ 2+y ^2-rO^ 2;

ctt://-k_avg/ rO*('diff('temp, 'x) * 'x('z, 'y)+ 'diff('temp, 'y)* 'y('x, 'y))--h_avg*('temp('z, 'y)-tempO)]];
eqdif .'//k_ avg *('diff('temp, 'x,2) + 'diff('temp, '_1,2)) + 'u_avg=rho *cp * 'diff( 'temp, 't)]];
writefindiff2Dsimul _'p2dyn", "p2dynelt", "bcp2dynelt", eqdif, circle1,

ctt, 0.1, 0.1, /tempO, rho, cp, k_avg, u_avg]);
closefileO;

!

The SPARK solution for the disk temperature distribution at 0, 1, 2, and 10 sec is shown

in Fi_. 7 for the following parameters: disk radius (ro) -- 0.1 m, k--0.032 W/(mK), u--10000

, W/m °, h--400 W/(m2K), p--1020 kg/m 3, cp --0.24 J/(kg-K), initial disk temperature-- 24 C,
and ambient temperature -- 20 C.
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Figure 7: SPARK solution for disk temperature distribution.
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For this problem, the reduction factor is 1 (i.e., no reduction, which means there are us
many iteration variables as there are dynamic variables) or infinity (which means there are no
iteration variables), depending on whether all of the dynamic variables are in the cut set by con-
struction, as in un initial implementation of SPARK, or not, as in a new version where this con-
straint has been eliminated.

The MACSYMA input needed is fairly short, but generates a lot of reusable SPARK and C
code. The simulation that is automatically generated has 1741 objects or links, and 285 break

, variables. Thus, the number of iteration variables is quite large. An alternative implementation,
which does not force the dynamic variables to be break variables, leads to zero iteration vari-
ables! The reason for this is that the integrator used is explicit. Hence, initial conditions are
enough to explicitly calculate all unknowns at each time step using only the unknown values at
the previous time step. However, in this case the simulation is sensitive to the usual stability
criteria between time step and grid size, while the previous code is not and converges to the
right values even outside the usual stability domain. This is to be expected: iteration on all
dynamic variables leads to a resolution process immune to the stability problems occasioned by
forward time and center space differencing.

Conclusion

The SPARK environment provides a convenient basis for quick prototyping of simulation
programs. Its object-oriented interface makes it suitable for component-based simulations of the
kind encountered in heat transfer and thermal engineering. SPARK's symbolic preprocessors
reduce model-building time, generate component libraries automatically, and permit automatic
generation of solutions to complex PDE problems. The implementation of these problems is not
necessarily the most efficient, since the SPARK idea of efficiency is only based on equation sys-
tem size reduction. It is not necessarily the most accurate either, since a general purpose discreti-
zatiol] is used that does not consider the physical characteristics of the problem.

Introducing physical insight in the choice of numerical schemes by integrating an expert
system into SPARK is under consideration. Under development are symbolic graph theoretical

tools for reducing equation subsystems and for generating customized simulations (discretizing
PDE's with arbitrary boundary conditions, for example).
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