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Abstract

The response of an f.c.c, lattice with Lennard-Jones interaction under
symmetric lattice extens’~on has been studied by Monte Carlo simulation at
several temperatures. The critical strain at which the crystal undergoes a
structural change is found to be well predicted by the mechanical stability
limit expressed in terms of either the elastic constants or the bulk
modulus. At lov temperature (reduced temperature T = 0.125), lattice
decohesion is observed in the form of cleavage fracture, whereas at higher
temperature (T = 0.3) the strained system deforms by cavitation with some
degree of local plasticity. At still higher temperature (T = 0.5) tkhe
lattice undergoes homogeneous disordering with all the attendant

characteristics of melting.

Invited paper ptesented at the Symposium on Solid State Amorphizing
Transformations, TMS Fall Meeting, Cincinnati, OH, October 22-23, 1991, for
publication in a special issue of the Journal of Alloys and Compounds

devoted to solid-state amorphization.
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I. Introduction

It is by nov well established that solid-state amorphization (SSA), the
process of crystal-to-glass transition, can be induced in intermetallic
compounds by various perturbations ranging from particle beam irradiationms,
chemical reactions, to mechanical deformations.[1-3] A fundamental
question which still remains concerns the underlying nature of the
transition and the relative importance of the effects of point defects,
chemical disorder, and other possible driving forces for lattice
destabilization. Following the observation that structural disordering in
all cases is accompanied by a volume expansion [2], it has been suggested
that role of local density variations in SSA may be analogous to that in
the melting transition.[4] The implication is that at temperatures below
the triple point, essentially the melting point at zero pressure Tm’ a
sudden volume expansion (on the time scale short compared to that required
for equilibrium sublimation) may bring about structural disordering.

In this paper we report the results of Monte Carlo simulation of the
structural response of an f.c.c. crystal to pure dilatation imposed at
constant temperatures. The purpose of the study is to test the prediction
of lattice instability based on elastic—constant criteria and to determine
by direct observation whether crystal disordering can be induced by
symmetric lattice extemsion. Using the Lennard-Jones potential to model
the interatomic interaction, we find that the critical strain at which
structural change occurs is well predicted by the mechanical stability
limits. At low temperature (reduced temperature T = 0.125) anisotropic
lattice decohesion occurs at the critical strain and overall the system

remains crystalline. At higher temperature (T = 0.3) cavitation-like local



deformation occurs with indications of anisotropic disordering. At still
higher temperature (T = 0.5) the lattice disorders uniformly with all the

characteristics of melting.

II. Simuilation Model and Procedure

The simulation system is a cubic cell of N particles arranged on an
f.c.c. lattice. The particles interact with each other through a
Lennard-Jones (6-12) potential which is truncated at a distance R. and
shifted to zero at the cutoff. The cell is periodic in all three
directions. In each simlation run at a certain temperature, the lattice
parameter a is held fixed while the particles are allowed to move by Monte
Carlo.[5] The process is then repeated at an incrementally larger a.
Typically the first 10,000 moves per particle are discarded as
nsquilibration, and another 30,000 moves per particle are made to accumlate
the configurations for property calculations. All quantities reported
below will be expressed in reduced units where length and energy are scaled
by the parameters o and ¢ of the potential.

Simulation of strain-induced response has been carried out at the
temperatures T = 0.125, 0.3, 0.5, and 0.8. (As a reference, for the
Lennard-Jones potential T, can be taken to be 0.61.(6]) Most of the rums
were made with a cell of 500 particles, but runs using N = 108 and 864 were
2lso performed to give some indications of system size effects. In all the

runs the value of RC is 2.3273.



I1I. Pressure and Potential Energy Responses

Fig. 1 shows the variation at T = 0.3 of the hydrostatic pressure,
calculated using the virial expression [7], as the lattice parameter a of
the f.c.c. cell is increased incrementally. Starting at a value of the
lattice parameter which gives zero pressure, the system is seen to go into
negative pressure as isotropic strain is imposed. This negative pressure
increases monotonically and appears to level off at a maximim value, With
further lattice dilatation the pressure first decreases somewhat and then
jumps abruptly to a considerably reduced though still finite value. The
N=800 data show this characteristic behavior quite clearly. The data for
N=864 are quite consistent with these results, whereas the onset of the
abrupt change in the small system, N = 108, occurs at a somewvhat larger
value of strain.

Fig. 2 shows the potential energy of the system in response to
isotropic strain. As the lattice goes into negative pressure, more and
more strain energy is stored in the system. This continues until the
pressure changes suddenly (cf. Fig. 1), at which point the potential energy
drops correspondingly. Again, the N=864 data are consistent with the N=500
results, whereas for N=108 the decrease in potential energy occurs at
higher strain and is barely discernible.

The existance of a critical value of imposed strain, as indicated in
Figs. 1 and 2, suggests the onset of a structural transition which we will
investigate in the following by examining directly the atomic
configurations produced at each incremental strain. As for the nature of
the transition, one can ask what is the connection between the behavior

observed in Fig. 1 and the mechanical stability limit which one can derive



for a uniform lattice. We have already noted that the tension appears to
reach a maximum value at a lattice parameter which we will denote as a.,
and that a. is distincly smaller than the critical value at which the
pressure jumps suddenly which we will denote by ap. Since we have results
for three system sizes, we can perform a 1/N extrapclation on the value of
ap as directly observed in the simulation data. This gives a critical
strain of " (ap-ao)/a0 = 0.0687. To determine ¢, ve fit for each N the
several data points for the pressure in the vicinity of a. toa polynomial,
and calculate dp/da = O from the fit. After a similar 1/N extrapolation we
obtain € = 0.0628. The apparent discrepancy between fp and €, is believed
not to be significant given the large fluctuations in the system pressure
in the region of the critical behavior, and the fact that system size
effects may not have been fully eliminated in our 1/N-extrapolation based

on limited data.

IV. Elastic Constants

Returning to the question of intrinsic mechanical stability limit, we
have determined the elastic constants of a cubic lattice by applying the
fluctuation formula derived by Ray, Moody, and Rahman [8] for a stressed
solid. In the case of uniform strain, the adiabatic elastic constant Ci'

jk!
is given by

v 2NkBT
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and x(r) = [du(r)/dr]/r, with u(r) being the interatomic potential
function. In Eq.(1) lo and { are the lengths of the simulation cell before
and after the imposed strain respectively, V is the volume of the strained
cell which contains N particles, and < > denotes an ensemble average. In
addition, T.b is the separation distance between particles a and b, and
X,pj 1S the ith Cartesian component of the vector L. In Eq.(3) P,; is a
momentum component and m the particle mass, thus Pij is the stress tensor.
Applying Eq.(1) to the atomic configurations generated by the Monte
Carlo runs, we have computed the three elastic constants Cll’ 012, and 044.
For a lattice to be mechanically stable one can show that the inequalities,

€420, Cy~Cp>0, Cyy >0 (4)
must hold [9], along with 012 > 0 ,azrising from the physical condition that
the Poisson ratio must be greater than zero [10]. These criteria may be
compared to the requirement of positive isothermal bulk modulus Bp = -
V(P/&V)y, a thermodynamic condition. Our elastic constant results at T =
0.3 and different system sizes are shown in Fig, 3. It can be seen that all
three elastic constants have decreased to quite small values in the region
of the critical strain. The elastic constants behave normally while they
are still positive, but once an elastic constant has reached zero value,

subsequent behavior at still larger strain shows unphysical oscillations.

The first term in Eq. (1) represents the effects of stress tensor



fluctuations. In the critical-strain region it is large and fluctuates
strongly, thus giving rise to appreciable uncertainties in the calculated
elastic constants. As a result we can only say that as 011 approaches C12,
both appear to be approaching zero. At the same time, the data suggest
that 044 remains finite at the critical strain. Within the estimated

statistical error the mechanical stability limit seems to be consistent

wvith ec.

V. Structural Responses

The onset of a sudden change in the pressure and potential change is an
indication that an accompanying structural change must have also occurred.
The above consideration of mechanical stability, while useful for
determining the critical strain at which ths change takes place, tells us
nothing about the state into which the system evolves. For this
information it is necessary to examine the atomic configurations at various
stages of strain.

We will characterize the atomic configurations in terms of the radial
distribution function g(r) ([7] which provides a measure of local spatial
correlation, without specification of direction, and the corresponding
quantity the static structure factor S(k), with k being a wave vector. By
computing S(k) for a large number of suitably chosen k. one can generate a
diffraction pattern which provides a measure of direction-dependent
structural order in the system.

Fig. 4 shows the g(r) and S(k) results for the T = 0.3 runs with N =
B00 at three values of the lattice parameter a, a = a, = 1.707 specifies

the system strain just before the pressure jump (cf. Fig. 1), a =

2



1.723 is the value after two strain increments, and a = ag = 1.747 is the
last dilatation imposed in this series. First we notice that in all three
cases the g(r) results are quite similar, in particular a distinct peak can
be seen at r ~ 1.7, the characteristic second-neighbor shell of the f.c.c.
lattice. The corresponding diffraction patterms all display high intensity
in the region around kx ~ ky ~ 1, as one would expect for the Z.c.c.
lattice. However, whereas the diffraction pattern at a, is quite
symmetric, an assymetry along kx and ky about the Bragg position kx = ky =
1 can be noticed at aé and ag.

More detailed information on the structural change in going from 2, to
a, and ag is provided by the density profiles given in Figs. 5 - 7. One
sees that at a, the atomic planes along each direction of cubic symmetry
are vell ordered as in a perfect (undeformed) lattice. At a,, after the
pressure jump, symmetry is clearly broken in the y-direction; there appears
an extra atomic plane along this direction, and moreover the system is no
longer uniform along this direction. Another feature that can be seen in
Fig. € is the distincly nonzero value of the minima in the density profiles
which implies significant atomic displacements from the origimal lattice
positions. In going from a, to a, (Fig. 7) the density , ~~file along the
y-direction shows two extra planes relative to the x~ and z-directions. We
interpret this as a tendency to change from cubic to tetragonal structure.
Also the nonuniform density profiles along the x- and y-directions suggest
the nucleation of cavitatiom, first seen in Fig. 6 along the y—direction.

One may ask whether further structural changes will take place if the
dilatation were increased further. In the series of simulation at T = 0.3

usirg the N = 864 system, we have taken the system out to larger values of

the lattice parameter as shown in Fig. 8. Up to approximately the same
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value of a = g, the observed behavior is similar to the N = 500 data shown

in Figs. 4 — 7. When the imposed strain is increased to a, = 1.750 and a, =

4 5
1.757, the density profiles, given in Figs. 9 and 10, show (i) pronounced
cavitiation along the direction of broken symmetry (x-direction in this N =
864 series in contrast to y-direction in N = 500 series), and (ii)
increasing loss of well-ordered planar structure along the cubic directionms
of the original lattice. It is interesting that the structural
deformations which are clearly indicated by the density profiles do not
give rise to any characteristic features in the g(r) and S(k) results in
Fig. 8, aside from an indication of assymetry in the latter.

The structural response at T = 0.125 generally are similar to those
just presented at T = 0.3. The pressure and potential energy responses
show the same jump behavior as in Figs. 1 and 2. The onset of cavitation is
quite clearly seen, and as the system is further dilated, decohesion of the
lattice planes occurs along a broken-symmetry direction.

The structural response at T = 0.5, on the other hand, is quite
different from that at T = 0.3. Fig. 11 shows a pressure jump at the
critical strain, but nov the corresponding potential energy change is an
increase instead of a decrease as in Fig. 2. Examination of g(r), S(k) and
density profiles at the strain after the pressure jump shows clearly the
system has become completely disordered. It is also noteworthy that the
mean-squared-displacement function evaluated at the strain before and after
the pressure jump, given in Fig. 12, shows dramatically different mobility
behavior over the saﬁe number of Monte Carlo sweeps. The essentially
linear variation of the mean-squared—displacement and the increased
magnitude of this quantity observed after the jump are strong indications

of a liquid-like environment.
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VI. Discussion

In this work we have determined by Monte Carlo simulation and elastic
constant calculations the structural stability limit of an f.c.c.
Lennard-Jones lattice under symmetric isothermal extension along the three
directions of initial cubic symmetry. We have shown that at several
temperatures the critical étrain is determined by the Born criteria
involving the elastic constants. The values of these strains define a
stability curve in the temperature—density phase diagram as shown in Fig.
13. It has been suggested that the freezing curve which, like the melting
curve, is defined only for temperatures above the triple point Tt’ is
effectively also the mechanical stability curve in the sense of heating a
crystal rapidly up to the limit of superheating.[4] It can be seen in Fig.
13 that the critical strains observed in the present work delineate the
extension of the mechanical stability curve to temperatures below Tt‘ It
has been corjectured that in crossing this stability curve the lattice will
become disordered, thus providing a simple thermodynamic connection between
melting and solid-state amorphization.[4] What we have found is that in
crossing such a curve the lattice does become mechanically unstable as
manifested by sudden jumps in the hydrostatic pressure and the potential
energy; however, the atomic configuration into which it evolves depends on
the temperature. The instability is accompanied by symmetfy breaking as
shown clearly by the density profiles along the three cubic directions. At
the same time, the system becomes nonuniform by the formation of a local
region of relatively low density. We interpret this crystal response as
cavitation which at T = 0.125 (0.18 Tt) leads to cleavage fracture upon
further lattice dilatation. At T = 0.3 (0.44 Tt)’ in addition to

cavitation-like behavior, significant local disordering occurs as the

e
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system is strained beyond the instability. At T = 0.5 (0.74 T,) the system
response at the instability is homogeneous and complete disordering as in a
melting transition.

Regarding the question of whether pure volume expansion is sufficient
to give rise to a crystal-to—amorphous transition, it appears that the
present results on the Lennard-Jones system do not give a definitive
ansver. We feel that part of the problem stems from the relatively shallow
vell—depth of the potential as compared to an EAM-type potential [12] for
metals. Thus the Lenﬁard—Jones potential gives considerably lower values
for the elastic constants which makes it difficult to distinguish between
the criteria given by Eq.(4) and C,p > 0. A study is undervay using an EAM
potential for f.c.c. metal to see the influence of potential function
details on the structural response to imposed strain.

As far as equation of state behavior is cbncerned, we can compare the
Lennard—-Jones system with the universal binding energy model [13], a simple
twvo—parameter empirical description of the variation of the cohesive energy
(the potential energy at zero temperature) with lattice parameter.

According to this model, E(a) = AE E*(a*), with

*

*(@¥) =~ (1 + " +0.05 2™ &2 (5)

E (a

where AE is the minirum value of the cohesive energy and a¥ = (a - aE)/L
ag being the lattice parameter at which the cohesive energy is a minimum
and £ is a length scale which can be determined from the bulk modulus.[13]

are the scaled energy and lattice parameter. Fig. 14(a) shows the
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comparison between the Lennard-Jones result and Eq.(5). Given E(a) one can

find the pressure at zero temperature from P = — dE/dV,

. |
P(V) = 3B[(V/vo>“3-11 <V/vo)“2/3(1 - 0.15a% + 0.052*%) @ . (6)

?here B is the bulk modﬁlus and Vo = 4#3%/3. The comparison of +the
pressure calculated directly for the Lennard-Jones lattice with Eq.(6) is
shown in Fig. 14(b). Taken together vith Fig. 14(a) they show how well the
Lennard-Jones system can be described by the simple analytic expressions
givén by the universal binding energy model, a description which has been
found useful for metals. To see the effects of temperature we show in Fig.
15 the pressure variation in the vicinity of the critical strain obtained
from the Monte Carlo simulation at T = 0.125 and the zero-temperature
variation given by Eq.(6). The absence of a pressure jump in the latter
clearly underscores the role of thermal fluctuations in symmetry breaking

and initiation of structural deformation.
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Figure Captions

Variation of hydrostatic pressure with lattice parameter a at T =
0.3, N = 108 (triangles), 500 (circles), 864 (squares).

Same as Fig. 1 except variation is that of the potential energy.
Variations of the elastic conmstants, Cyy (a), C;, (b), C4, (c),
with lattice parameter a at T = 0.3, N = 108 (triangles), 500
(circles), 864 (squares).

System responses, g(r) and diffraction pattern S(k) at T = 0.3, N
= 500, and three values of lattice paramter, a = 1.707 (a), a =
1.723 (b), and a = 1.747 (c). S(k) is shown in the inset as
projections on kx (horizontal axis) and k_(vertical axis).

Density profiles corresponding to Fig. 4(a).

Density profiles corresponding to Fig. 4(b).

Density profiles corresponding to Fig. 4(c).

Same as Fig. 4 except N = 864 and the two lattice parameter values
are a = 1.750 (a), and a = 1.757 (b).

Desnity profiles corresponding to Fig. 8(a).

Desnity profiles corresponding to Fig. 8(b).

System responses at T = 0.5 and N = 500, pressure (a) and
potential energy (b). Note similarity with Fig. 1 in the pressure
and difference from Fig. 2 in the potential energy.

Variation of mean-squared—displacement function with Monte Carlo
sweeps at two system strain states, just before (a) and just after
(b) the pressure jump shown in Fig. 11. Note difference in scale

of the ordinate axis.
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Fig. 13.
Fig. 14.
Fig. 15.

Temperature-volume phase diagram of an atomic system in which the
particles interact via the Lennard-Jones potential function [11].
Critical strains, converted to densities, observed in the present
simulation are added as circles at the various temperatures.
Comparison ¢f the cohesive energy (a) and pressure-volume relation
(b) of the Lennard-Jones crystal at zero temperature (solid curve)
with the universal binding energy model (dashed curve). Procedure
used in scaling the lattice parameter and energy is discussed in
the text.

Pressure-volume relation of the Lennard-Jones crystal at T = 0.125
(solid curve) shoving a jump which is absent in the universal
binding energy model (dashed curve, same result as in Fig. 14 but

on a different scale).
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