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Abstract

The response of an f.c.c, lattice with Lennard-Jones interaction under

symmetric lattice extens!,)nhas been studied by Monte Carlo simulation at

several temperatures. The critical strain at which the crystal undergoes a

structural change is found to be well predicted by the mechanical stability

limit expressed in terms of either the elastic constants or the bulk

modulus. At low temperattu-e (reduced temperature 'F= 0.125), lattice

decohesion is observed in the form of cleavage fracture, whereas at higher

temperature (T = 0.3) the strained system deforms by cavitation with some

degree of local plasticity. At still higher temperature (T = 0.5) the

lattice undergoes homogeneous disordering with all the attendant

characteristics of melting.

Invited paper presented at the Symposium on Solid State Amorphizing

Transformations, TMS Fall Meeting, Cincinnati, 0H, October 22-23, 1991, for

publication in a special issue of the Journal of Alloys and Compounds

devoted to solid-state amorphization.
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I. In___ttroduct ion

lt is by now well established that solid-state amorphization (SSA), the

process of crystal-to-glass transition, can be induced in intermetallic

compounds by various perturbations ranging from particle beam irradiations,

chemical reactions, to mechanical deformations. [1-3] A fundamental

question which still remains concerns the underlying nature of the

transition and the relative importance of the effects of point defects,

chemical disorder, and other possible driving forces for lattice

destabilization. Following the observation that structural disordering in

all cases is accompanied by a volume expansion [2], it has been suggested

that role of local density variations in SSA may be analogous to that in

the melting transition. [4] The implication is that at temperatures below

the triple point, essentially the melting point at zero pressure Tm, a

sudden volume expansion (on the time scale short compared to that required

for equilibrium sublimation) may bring about structural disordering.

In this paper we report the results of Monte Carlo simulation of the

structural response of an f.c.c, crystal to pure dilatation imposed at

constant temperatures. The plurposeof the study is to test the prediction

of lattice instability based on elastic-constant criteria and to determine

by direct observation whether crystal disordering can be induced by

symmetric lattice extension. Using the Lennard-Jones potential to model

the interatomic interaction, _e find that the critical strain at which

structural change occurs is well predicted by the mechanical stability

limits. At low temperature (reduced temperature T = 0.125) anisotropic

lattice decohesion occurs at the critical strain and overall the system

remains crystalline. At higher temperature (T = 0.3) cavitation-like local



deformation occurs with indications of anisotropic disordering. At still

higher temperature (T = 0.5.)the lattice disorders uniformly with all the

characteristics of melting.

II. Simnlation Model and Procedure

The simulation system is a cubic cell of N particles arranged on an

f_c.c, lattice. The particles interact with each other through a

Lennard-Jones (6-12) potential which is truncated at a distance Kc and

shifted to zero at the cutoff. The cell is periodic in all three

directions. In each si_mlation run at a certain temperature, the lattice

parameter a is held fixed while the particles are allowed to move by Monte

Carlo. [5] The process is then repeated at an incrementally larger a.

Typically the first 10,000 moves per particle are discarded as

,_,quilibration,and another 30,000 moves per particle are made to accumulate

the configurations for property calculations. All quantities reported

below will be expressed in reduced units where length and energy are scaled

by the parameters _ and _.of the potential.

Simulation of strain-induced response has been carried out at the

temperatures T = 0.125, 0.3, 0.5, and 0.8. (As a reference, for the

Lennard-Jones potential Tm can be taken to be 0.61. [6]) Host of the runs

were made with a cell of 500 particles, but runs using N = 108 and 864 were

also perTormed to give some indications of system size effects. In all the

runs the value of R is 2.3273.
c
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III. Pressure and Potential Ener_K7 Kesponses

Fig. I shows the variation at T = 0.3 of the hydrostatic pressure,

calculated using the virial expression [7], as the lattice parameter a of

the f.c.c, cell is increased incrementally. Starting at a value of the

lattice parameter which gives zero pressure, the system is seen to go into

negative pressure as isotropic strain is i_osed. This negative pressure

increases monotonically and appears to level off at a maximlun value. With

further lattice dilatation the pressure first decreases somewhat and then

ju_s abruptly to a considerably reduced though still finite value. The

N=500 data show 'this characteristic behavior quite clearly. The data for

N=864 are quite consistent with these results, whereas the onset of the

abrupt change in the small system, N = 108, occurs at a somewhat larger

value of strain.

Fig. 2 shows the potential energy of the system in response to

isotropic strain. As the lattice goes into negative pressure, more and

more strain energy is stored in the system. This continues until the

pressure changes suddenly (cf. Fig. I), at which point the potential energy

drops correspondingly. Again, the N=864 data are consistent with the N=500

results, whereas for N=I08 the decrease in potential energy occllrs at

higher strain and is barely discernible.

The existance of a critical value of imposed strain, as indicated in

Figs. I and 2, suggests the onset of a structural transition which we will

investigate in the following by examining directly the atomic

configurations produced at each incremental strain. As for the nature of

the transition, one can ask what is the connection between the behavior

observed in Fig. I and the mechanical stability limit which one can derive



for a uniform lattice. We have already noted that the tension appears to

reach a n_aximtunvalue at a lattice parameter which we will denote as ac,

and that ac is distincly smaller than the critical value at which the

pressure jumps suddenly which we will denote by a . Since we have results
P

for tkree system sizes, we can perfonn a I/N extrapolation on the value of

a as directly observed, in the simulation data. This gives a critical
P

= (ap--a o) =strain of cp /ao 0.0687. To determine Ec, we fit for each N the

several data points for the pressure in the vicinity of ac to a polynomial,

and calculate dp/da = 0 from the fit. After a similar I/N extrapolation we

obtain c = 0.0628. The apparent discrepancy between _ and E is believed
c p c

not to be significant given the large fluctuations in the system pressure

in the region of the critical behavior, and the fact that system size

effects may not have been fully eliminated in our I/N-extrapolation based

on linLited data.

IV. Elastic Constants

Returning to the question of intrinsic mechanical stability limit, we

have deterntined the elastic constants of a cubic lattice by applying the

fluctuation formula derived by Ray, Moody, and Ralunan [8] for a stressed

solid. In the case of uniform strain, the adiabatic elastic constant Cijkl

is given by

2NkB T_ V 6(PijPk? + (6i_ j +CijkZ - (_o/_) kBT V k 6ik6j?

+ V < _ f(rab)XabiXabjXabkXab_ (I)
b>a

where

f(r) = r-2[d2u(r)/dr 2 - x(rL'] (2)

I
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Pij = V [ _ PaiPaj/m- _ X(rab)XabiXabj] (3)
a b>a

and x(r) = [du (r) /dr] /r , with u(r) being the interatom/c potential

function. In Eq. (I) Io and L are the lengths of the simulation cell before

and after the imposed strain respectively, V is the volume of the stz'ained

cell which contains N particles, and < > denotes an ensemble average. In

addition, tab is the separation distance between particles a and b, and

Xab i is the lth Cartesian component of the vector rab . In Eq. (3) Pai is a

momentum component and m the particle mass, thus P.. is the stress tensor.
13

Applying Eq. (I) to the atomic configurations generated by the Monte

Carlo runs, we have computed the three elastic constants CII , C12 , and C44.

For a lattice to be mechanically stable one can show that the inequalities,

Cli > O, C11 - C12 > O, C44 > 0 (4)

must hold [9], along with C12 > 0 ,arising from the physical condition that

the Poisson ratio must be greater than zero [10]. These criteria may be

compared to the requirement of positive isothermal bulk modulus BT = -

V(eP/_V) T, a thermodynamic condition. Our elastic constant results at T =

0.3 and different system sizes are shown in Fig. 3. It can be seen that all

three elastic constants have decreased to quite small values in the region

of the critical strain. The elastic constants behave normally while they

are still positive, but once an elastic constant has reached zero value,

subsequent behavior at still larger strain shows unphysical oscillations.

The first term in Eq.(1) represents the effects of stress tensor



fluctuations. In the critical-strain region it is large and fluctuates

strongly, thus giving rise to appreciable uncertainties in the calculated

elastic constants. As a result we can only say that as C11 approaches C12 ,

both appear to be approaching zero. At the same time, the data suggest

that C44 remains finite at the critical strain. Within the estimated

statistical error the mechanical stability limit seems to be consistent

with c .
C

V. Structural Responses

The onset of a sudden change in the pressure and potential change is an

indication that an accompanying structural change must have also occurred.

The above consideration of mechanical stability, while useful for

determining the critical strain at which ths change takes place, tells us

nothing about the state into which the system evolves. For this

information it is necessary to examine the atomic configurations at various

stages of strain.

We will characterize the atomic configurations in terms of the radial

distribution function g(r) [7] which provides a meas_Lreof local spatial

correlation, without specification of direction, and the corresponding

quantity the static structure factor S(k), with _kbeing a wave vector. By

computing S(_k)for a large number of suitably chosen k: one can generate a

diffraction pattern which provides a measure of direction-dependent

structural order in the system.

Fig. 4 shows the g(r) _nd S(k) results for the '[= 0.3 runs with N =

500 at three values of the lattice parameter a_ a = aI = !.707 specifies

the system strain just before the pressure jun_ (cf. Fig. I), a = a2 =



1.723 is the value after two strain increments, and a = aS = 1.747 is the

last dilatation imposed in this series. First we notice that in all three

cases thr g(r) results are quite similar_ in particular a distinct peak can

be seen at r ~ 1.7, the characteristic second-neighbor shell of the f.c.c.

lattice. The corresponding diffraction patterns all display high intensity

~ ky ~ I, as one would expect for the '",c.cin the region around kx _ .

lattice. However_ whereas the diffraction pattern at aI is quite

sy_netric, an assy_netry along kx and ky about the Bragg position kx = ky =

I can be noticed at a2 and aS .

More detailed information on the structural change in going from aI to

a2 and a3 is provided by the density profiles given in Figs. 5 - 7. One

sees that at a I the atomic planes along each direction of cubic sy_xnetry

are well ordered as in a perfect (undefolqned) lattice. At a2, after the

pressure jump, syuunetry is clearly broken in the y-direction; there appears

an extra atomic plane along this direction, and moreover the system is no

longer uniform along this direction. Another feature that can be seen in

Fig. 6 is the distincly nonzero value of the rainima in the density profiles

which implies signific_t atomic displacements from the original lattice

positions. In going from a2 to a8 (Fig. 7) the density I _file along the

y-direction shows two extra planes relative to the x- and z-directions. We

interpret this as a tendency to change from cubic to tetragonal, stz_cture.

Also the nommiform density profiles along the x- and y-directions suggest

the nucleation of cavitation, first seen in Fig. 6 along the y-direction.

One n_y ask whether further structural changes will take place if the

dilatation were increased fttrther. In the series of sinmlation at T = 0.3

using the N = 864 system, we have taken the system out to larger values of

the lattice paurameter as shown in Fig. 8. Up to approxinmtely the same



value of a = a3, the observed behavior is similar to the N = 500 data shown

in Figs. 4- 7. When the imposed strain is increased to a4 = 1.750 and a5 =

1.757, the density profiles, given in Figs. 9 and 10, show (i) pronounced

cavitiation along the direction of broken symmetry (x-direction in this N =

864 series in contrast to y-direction in N = 500 series), and (ii)

increasing loss of well-ordered planar structure along the cubic directions

of the original lattice. It is interesting that the structural

deformations which are clearly indicated by the density profiles do not

give rise to any characteristic features in the g(r) and S(_k)results in

Fig. 8, aside from an indication of assymetry in the latter.

The structural response at T = 0.125 generally are similar to those

just presented at T = 0.3. The pressure and potential energy responses

show the same jump behavior as in Figs. I and 2. The onset of cavitation is

quite clearly seen, and as the system is further dilated, decohesion of the

lattice planes occurs along a broken-symmetry direction.

The structural response at T = 0.5, on the other hand, is quite

different from that at T = 0.3. Fig. 11 shows a pressure jump at the

critical strain, but now the corresponding potential energy change is an

increase instead of a decrease as in Fig. 2. Examination of g(r), S(k) and

density profiles at the strain after the pressure jump shows clearly the

system has become completely disordered. It is also noteworthy that 'the

mean-squared-displacement function evaluated at the strain before and after

the pressure jump, given in Fig. 12, shows dramatically different mobility

behavior over the same number of Monte Carlo sweeps. The essentially

linear variation of the mean-squared-displacement and the increased

magnitude of this quantity observed after the jump are strong indications

of a liquid-like environment.

!
m
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VI. Discussion

In this work we have determined by Monte Carlo simulation and elastic

constant calculations the structural stability limit of an f.c.c.

Lennard-Jones lattice under symmetric isothermal extension along the three

directions of initial cubic symmetry. We have shown that at several

temperatures the critical strain is determined by the Bolm criteria

involving the elastic constants. The values of these strains define a

stability curve in the temperature-density phase diagram as shown in Fig.

13. It has been suggested that the freezing cu/'ve which, like the melting

curve, is defined only for temperatures above the triple point Tt, is

effectively also the mechanical stability curve in the sense of heating a

crystal rapidly up to the limit of superheating. [4] It can be seen in Fig.

13 that the critical strains observed in the present work delineate the

extension of the mechanical stability curve to temperatures below Tt. It

has been coz.jectured that in crossing this stability curve the lattice will

become disordered, thus providing a simple thermodynamic connection between

melting and solid-state amorphization. [4] What we have found is that in

crossing such a curve the lattice does become mechanically unstable as

manifested by sudden jumps in the hydrostatic pressure and the potential

energy; however, the atomic configuration into which it evolves depends on

the temperature. The instability is accompanied by symmetry breaking as

shown clearly by the density profiles along the three cubic directions. At

the same time, the system becomes nonuniform by the formation of a local

region of relatively low density. We interpret this crystal response as

cavitation which at T = 0.125 (0.18 Tt) leads to cleavage fracture upon

further lattice dilatation. At T = 0.3 (0.44 Tr), in addition to

cavitation-like behavior_ significant local disordering occurs as the
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system is strained beyond the instability. At T = 0.5 (0.74 Tt) the system

response at the instability is homogeneous and complete disordering as in a

melting transition.

Regarding the question of whether pure voltune expansion is sufficient

to give rise to a crystal-to-amorphous transition., it appears that the

present results on the Lennard-Jones system do not give a definitive

answer. We feel that part of the problem stems from the relatively shallow

well-depth of the potential as compared to an EAM-type potential [12] for

metals. Thus the Lennard-Jones potential gives considerably lower values

for the elastic constants which makes it difficult to distinguish between

the criteria given by Eq. (4) and C12 > 0 A study is underway using an EAM

potential for f.c.c, metal to see the influence of potential function

details on the structural response to imposed strain.

As far as equation of state behavior is concerned, we can compare the

Lennard--Jones system with the universal binding energy model [IS], a simple

two-parameter empirical description of the variation of the cohesive energy

(the potential energy at zero temperature) with lattice parameter.

According to this mode]., E(a) = _E E*(a*), with

-a
E*(a*) =- (I + a + 0.05 a.3) e (5)

where AE is the minimum value of "the cohesive energy and a = (a - aE)/_ ,

aE being the lattice parameter at which the cohesive energy is a minimum

and _ is a length scale which can be determined from the bulk modulus. [13]

are the scaled energy and lattice parameter. Fig. 14(a) shows the
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comparison between the Lennard-Jones result and Eq. (5). Given E(a) one can

find the pressure at zero temperature from P = - dE/dV,

P(V) = 3B[(VlVo)113-1](VlVo)-2/3(l ,-0.15a* + 0.05a .2) e-a (6)

where B is the bulk modulus and V° = 4ra_El3. The comparison of theJ

pressure calculated directly for the Lennard-Jones lattice with Eq. (6) is

shown in Fig. 14(b). Taken together with Fig. 14(a) they show how well the

Lennard-Jones system can be described by the simple analytic expressions

given by the universal binding energy model_ a description which has been

fouJ1d useful for metals. To see the effects of te_0erature we show in Fig.

15 the pressure variation in the vicinity of the critical strain obtained

from the Monte Carlo siu_/lationat T = 0.125 and the zero-temperature

variation given by Eq.(6). The absence of a pressure jump in the latter

clearly underscores the role of thermal fluctuations in symmetry breaking

and initiation of structural deformation.
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Figure Captions

e

Fig. I.. Variation of hydrostatic pressure with lattice parameter a at T =

O.S, N = 108 (triangles), 500 (circles), 864 (squares).

Fig. 2. Same as Fig. I except variation is that of the potential energy.

Fig. 3. Variations of the elastic constants, Cll (a), C12 (bl, C44 (c),

with lattice parameter a at T = 0.3, N = 108 (triangles), 500

(circles), 864 (squares).

Fig. 4. System responses, g(r) and diffraction pattern S(_k)at T = 0.3, N

= 500, and three values of lattice paramter, a = 1.707 (al, a =

1.723 (b), and a = 1.747 (c). S(_k)is shown in the inset as

projections on kx (horizontal auxisland ky(vertical axis).

Fig. 5. Density profiles corresponding to Fig. 4(al.

Fig. 6. Density profiles corresponding to Fig. 4(bl.

Fig. 7. Density profiles corresponding to Fig. 4(c).

Fig. 8. Same as Fig. 4 except N = 864 and the two lattice parameter values

are a = 1.750 (a), and a = 1.757 (bl.

Fig. 9. Desnity profiles corresponding to Fig. 8(al.

Fig. I0. Desnity profiles corresponding to Fig. 8(bl.

Fig. II. System responses at T = 0.5 and N = 500, pressure (al and

" potential energy (bl. Note similarity with Fig. I in the pressure

and difference from Fig. 2 in the potential energy.

Fig. 12. Variation of mean-squared-displacement function with Monte Carlo

sweeps at two system strain states, just before (al and just after

(b) the pressure jump Shown in Fig. II. Note difference in scale

of the ordinate axis.

i
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Fig. 13. Temperature-volilme phase diagram of an atomic system in which the

particles interact via the Lennard-Jones potential function [11].

Critical strains, converted to densities, observed Jn the present

simulation are added as circles at the various temperatures.

Fig. 14. Comparison of the cohesive energy (a) and pressure-volume relation

(b) of the Lennard-Jones crystal at zero temperature (solid curve)

with the universal binding energy model (dashed curve). Procedure

used in scaling the lattice parameter and energy is discussed in

the text.

Fig. 15. Pressure-volume relation of the Le_nard-Jones crystal at T = 0.125

(solid curve) showing a jump which is absent in the universal

binding energy model (dashed curve, same result as in Fig. 14 but

on a different scale).
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