

RECEIVED
JUN 24 1993
SOUTH ATLANTIC BIGHT: PHYTOPLANKTON RESPONSE

OSTI

FINAL PROGRESS REPORT

A Final Report Submitted to U. S. Department of Energy

by

Peter G. Verity
James A. Yoder
Principal Investigators

Skidaway Institute of Oceanography
Post Office Box 13687
Savannah, Georgia 31416

March 10, 1992

PREPARED FOR THE
U.S. DEPARTMENT OF ENERGY
UNDER GRANT DE-FG09-85ER60353

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

**BIOLOGICAL PROCESSES IN THE WATER COLUMN OF THE
SOUTH ATLANTIC BIGHT: PHYTOPLANKTON RESPONSE**

**A Final Report Submitted to
U.S. Department of Energy**

^{T1}
Report No. DOE ER/60353-●

Grant DE-FG09-85ER60353

by

Skidaway Institute of Oceanography
Post Office Box 13687
Savannah, Georgia 31416

Peter G. Verity
James A. Yoder
Principal Investigators

March 10, 1992

TABLE OF CONTENTS

Form 538	<i>removed</i>	i
Form 1332.16		iv
Project Summary		1
Publications		6
Manuscripts Pending		11
Presentations		11
Students and Postdoctoral Scholars		17
Recently Accepted Papers		18

Reprints/preprints removed

Project Summary

For logistical and organizational reasons, DOE-sponsored studies of the southeastern U.S. continental shelf were divided into 2 components: (1) shelf-wide processes and (2) nearshore (coastal boundary zone) processes. Coastal boundary zone (CBZ) dynamics involve studies of circulation and of biological and chemical transformations. Continental shelf processes affect the removal of material from the coastal boundary zone into areas where the material no longer interacts with or influences concentrations in the CBZ. The two arbitrarily separate components are, in fact, unified. The CBZ typically extends about 300 km alongshore and about 20 km offshore from its center off Savannah, Georgia, where most runoff occurs. The rates of biological and chemical transformations are controlled by proximity to the bottom and the amounts of fine suspended organic matter originating from rivers and salt marshes. Once material is removed from this zone, either by alongshelf or cross-shelf advection to regions where the materials are no longer in contact with the bottom, the suite of factors governing the rates of chemical and biological transformations changes. The determination of contrasting rates in these two environments was one of the central focuses of the South Atlantic Bight program.

Our research addressed the basic question of how water circulation patterns and related physical processes affect phytoplankton productivity and other biological processes in the water column of the southeastern U.S. continental shelf. Past research emphasized the effects of the Gulf Stream on shelfwide plankton processes. Unlike the situation at more temperate latitudes, pulses in biological production on the S.E.

Continental Shelf are not seasonally dependent but are driven by specific, short term physical events. For example, meanders or eddies of the Gulf Stream often induce the upwelling of sub-surface waters at the shelf break. When these waters are advected onto the shelf proper (intrusions), usually at frequencies of about 2 weeks, primary and secondary production may increase markedly.

During the summer, cold subsurface intrusions are displaced onto the middle and sometimes the inner shelf, when the following conditions occur simultaneously: (1) the Gulf Stream is in an onshore position; (2) there is a frontal eddy at the shelf break; and (3) wind stress is northward. Such intrusions can cover an area of 10,000 km², and pronounced patches of phytoplankton and zooplankton may develop within them. Primary production may exceed 2 g/m²/day in upwelled waters resident on the shelf. Nutrients are usually exhausted within one week. Rapidly growing and reproducing zooplankton increase in abundance at rates of 10-50%/day and remove the phytoplankton within 3 weeks. At the shelf break, where the stability of the water column is weak, zooplankton do not appear to control the standing crops of phytoplankton. Their fate depends on the length of time the intruded waters remain on the shelf. When residence times are short (< 5 days) primary production is stimulated but the time is too short to allow significant response by grazing organisms. In these cases there may be a large export of particles off the shelf. With longer residence times, on the other hand, grazing organisms may consume most of the phytoplankton produced. In these instances much of the material consumed is recycled on the shelf or is deposited to the sediments (e.g., fecal pellets). Long residence times, thus, result in a relatively small

loss of particles from the shelf.

During winter, Gulf Stream intrusions are primarily restricted to the outer shelf because shelf waters are relatively dense. Density fronts maintained by convergence delineate the boundary between these water masses. Model results and combined shipboard and moored instrument observations indicate that cold air outbreaks displace the front shoreward, transporting nutrient-rich Gulf Stream water onto the outer shelf. After winds diminish, the excess potential energy shoreward of the front induces offshore advection of water and particles along the bottom. Light and temperature conditions are such that significant primary production is expected if the residence time of the upwelled water is sufficiently long. Our sampling suggests that (1) substantial biogenic production does occur during these events, and (2) much of this production may cascade off the shelf before zooplankton can respond and utilize it. The role of rapidly growing protozoan and gelatinous zooplankton appears critical to the fate of this primary production.

On the inner and middle shelf, studies were conducted to ascertain the effects of wind events on phytoplankton dynamics during the season of maximum river discharge. Other field projects focused on the relation between the nearshore frontal system and the spatial distribution of plankton biomass and production. Yet another major interdisciplinary project studied the fate of the low salinity water (and entrained particles) in the coastal boundary zone which advects south towards the Florida coast during the fall, a principal mechanism removing biotic and abiotic particles from coastal waters of the southeastern continental shelf. A three-year study was also con-

ducted of rates of biological and chemical processes important to the carbon and nitrogen cycle of the inner shelf. These measurements of temporal and spatial variability of phytoplankton biomass and productivity were extended using chlorophyll data derived from satellite (CZCS) imagery.

These investigations show that elevated concentrations of suspended organic and inorganic particles occur in nearshore waters due to the presence of a coastal salinity front which inhibits cross-shelf exchange. Within the front rates of primary production are very high ($600\text{-}700 \text{ gC} \cdot \text{m}^{-2} \cdot \text{y}^{-1}$), and relatively aseasonal compared to more temperate latitudes. However, interannual variability may be considerable, influenced in part by meteorological effects on nutrient availability. Phytoplankton *growth rate* is limited primarily by irradiance due to high turbidity of inner shelf waters. Dissolved inorganic nitrogen (DIN), which appears to regulate phytoplankton *biomass*, does not vary seasonally, suggesting that (DIN) utilization is proportional to supply rates. The abundance and productivity of protozoan zooplankton imply an important role in regeneration of nutrients to support the high primary production.

The salt marshes and nearshore sediments filter, store, and process materials derived from both river and middle/outer shelf sources. Both import (e.g., heavy radionuclides, inorganic elements) and export (particulate and dissolved organic nitrogen) may occur and rates may vary on seasonal time scales. Intense mixing associated with large tidal amplitudes may be important in flushing nutrients and other materials from salt marsh and nearshore sediments. The organic nitrogen supplied from these sources must be mineralized by heterotrophs to make it available for phytoplankton.

The coastal salinity front increases the residence time of suspended material, thus favoring recycling of nutrients and enhanced primary production. In areas with less extensive marsh development and lesser riverine inputs, such as off Florida, inner shelf production may be influenced more by shelf break upwelling or alongshelf transport of materials derived from adjacent marsh-dominated systems.

All of these projects required an interdisciplinary approach, and they were implemented in collaboration with other investigators in the DOE Southeastern Program. Lists of publications, submitted manuscripts, and presentations which acknowledged this award are attached.

Publications and Presentations Crediting Grant DE-FG09-85ER60353

Publications:

Bishop, S.S., J.A. Yoder, and G.-A. Paffenhöfer. (1980) Phytoplankton and nutrient variability along a cross-shelf transect off Savannah, Georgia, U.S.A. *Est. Coast. Mar. Sci.* 11: 359-368.

Kim, H.H., C.R. McClain, L.R. Blaine, W.D. Hart, L.P. Atkinson, and J.A. Yoder. (1980) Ocean chlorophyll studies from a U-2 aircraft platform. *J. Geophys. Res.* 85: 3982-3990.

Yoder, J.A., L.P. Atkinson, J.O. Blanton, D.R. Deibel, D.W. Menzel and G.-A. Paffenhöfer. (1981) Plankton productivity and the distribution of fishes on the southeastern U.S. continental shelf. *Science* 214: 351-354.

Yoder, J.A., L.P. Atkinson, T.N. Lee, H.H. Kim and C.R. McClain. (1981) Role of Gulf Stream frontal eddies in forming phytoplankton patches on the outer southeastern shelf. *Limnol. Oceanogr.* 26: 1103-1110.

Singer, J.J., L.P. Atkinson, J.O. Blanton and J.A. Yoder. (1983) Cape Romain and the Charleston Bump: Historical and recent hydrographic observations. *J. Geophys. Res.* 88: 4685-4697.

Yoder, J.A., L.P. Atkinson, S.S. Bishop, E.E. Hofmann and T.N. Lee. (1983) Effect of upwelling on primary productivity of the outer southeastern U.S. continental shelf. *Cont. Shelf Res.* 1 : 385-404.

Yoder, J.A. (1983) Statistical analysis of the distribution of fish eggs and larvae on the southeastern U.S. continental shelf with comments on oceanographic processes that may affect larval survival. *Est. Coastal Shelf Sci.* 17: 637-650.

Atkinson, L.P., P.G. O'Malley, J.A. Yoder and G.-A. Paffenbörger. (1984) Effect of summertime shelf break upwelling on nutrient flux in southeastern United States continental shelf waters. *J. Mar. Res.* 42: 969-993.

Atkinson, L.P., J.A. Yoder and T.N. Lee. (1984) Review on upwelling off the southeastern United States and its effect on continental shelf nutrient concentrations and primary productivity. *Rapp. P.-V. Reun. Cons. int. Explor. Mer* 183: 70-78.

Bishop, S.S., K.A. Emmanuele and J.A. Yoder. (1984) Nutrient limitation of phytoplankton growth in Georgia nearshore waters. *Estuaries* 7: 506-512.

Blanton, J.O., J.A. Yoder and others. (1984) A multidisciplinary oceanography program on the southeastern U.S. continental shelf. *EOS-The Oceanography Report*, December 12: 1203-1203.

McClain, C.R., L.J. Pietrafesa and J.A. Yoder. (1984) Observations of Gulf Stream-induced and wind-driven upwelling in the Georgia Bight using ocean color and infrared imagery. *J. Geophys. Res.* 89: 3705-3723.

McClain, C.R., L.J. Pietrafesa and J.A. Yoder. (1985) Correction to "Observations of Gulf Stream Induced and Wind-Driven Upwelling in the Georgia Bight Using Ocean Color and Infrared Imagery." *J. Geophys. Res.* 90: 12015-12018.

Yoder, J.A. (1985) Environmental control of phytoplankton production on the southeastern U.S. continental shelf. In: *Oceanography of the Southeastern U.S. Continental Shelf*, Eds. Menzel, D.W., L.P. Atkinson and K.A. Bush, AGU Press, Washington, D.C. Chapter 7.

Yoder, J.A., L.P. Atkinson, S.S. Bishop, J.O. Blanton, T.N. Lee and L.J. Pietrafesa. (1985) Phytoplankton dynamics within Gulf Stream intrusions on the southeastern U.S. continental shelf during summer 1981. *Cont. Shelf Res.* 4: 611-635.

Yoder, J.A. and S.S. Bishop. (1985) Effects of mixing-induced irradiance fluctuations on photosynthesis of natural assemblages of coastal phytoplankton. *Mar. Biol.* 90: 87-94.

Paffenhöfer, G.-A. and others. (1987) Summer upwelling on the southeastern continental shelf of the U.S.A. during 1981. Introduction. *Prog. Oceanog.* 19: 221-230.

Paffenhöfer, G.-A., L.P. Atkinson, J.O. Blanton, T.N. Lee, L.R. Pomeroy and J.A. Yoder. (1987) Summer upwelling on the southeastern continental shelf of the U.S.A. during 1981: Summary and Conclusions. *Prog. Oceanog.* 19: 437-441.

Pomeroy, L.R., G.-A. Paffenhöfer and J.A. Yoder. (1987) Summer upwelling on the southeastern shelf of the U.S.A. during 1981. Interactions of phytoplankton, zooplankton and microorganisms. *Prog. Oceanog.* 19: 353-372.

Yoder, J.A., C.R. McClain, J.O. Blanton and L.Y. Oey. (1987) Spatial scales in CZCS-chlorophyll imagery of the southeastern U.S. continental shelf. *Limnol.*

Oceanogr. 32: 929-941.

Hanson, R.B. and others. (1988) Climatological and hydrographic influences on nearshore food webs off the southeastern United States: bacterioplankton dynamics. *Cont. Shelf Res.* 8: 1321-1344.

McClain, C.R., J.A. Yoder and others. (1988) Variability of surface phytoplankton concentrations in the South Atlantic Bight. *J. Geophys. Res.* 93: 10675-10697.

Verity, P. G. (1988) Chemosensory behavior in marine planktonic ciliates. *Bull. Mar. Sci.* 43: 772-782.

Yoder, J.A. and T. Ishimaru. (1989) Phytoplankton advection off the southeastern U.S. continental shelf. *Cont. Shelf Res.* 9: 547-553.

Hanson, R. B., Verity, P. G., and others (1990) Nitrogen recycling in coastal waters of southeastern U.S. during summer 1986. *J. Mar. Res.* 48: 641-660.

Lee, T.N., J. A. Yoder and L.P. Atkinson. (1991) Gulf Stream frontal eddy influence on productivity of the southeast U.S. continental shelf. *J. Geophys. Res.*, 96: 22191-22206.

Verity, P. G. (1991) Aggregation patterns of ciliates from natural assemblages in response to different prey. *Mar. Microb. Food Webs* 5: 115-128.

Yoder, James A. (1991) Warm-temperate food chains of the southeast shelf ecosystem. Chapter 3. *In*: K. Sherman, L. Alexander and B. Gold, eds., *Food Chains, Yields, Models, and Management of Large Marine Ecosystems*. Westview Press. 320 pp.

Pomeroy, L. R., J.O. Blanton, G.-A. Paffenbörger, K.L. Von Damm, P. G. Verity, and H.L. Windom. Chapter 2: Inner Shelf Processes. *In: Menzel, D.W., ed., "Ocean Processes: U.S. Southeast Continental Shelf."* Washington, D.C., U.S. Department of Energy (in press).

Verity, P. G., T.N. Lee, J.A. Yoder, G.-A. Paffenbörger, J.O. Blanton and C.R. Alexander. Chapter 3: Outer Shelf Processes. *In: Menzel, D.W., ed., "Ocean Processes: U.S. Southeast Continental Shelf."* Washington, D.C., U.S. Department of Energy (in press).

Verity, P.G., J.A. Yoder and others. Composition, productivity, and nutrient chemistry of a coastal ocean planktonic food web. *Cont. Shelf Res.* In press.

Windom, H. L., J.O. Blanton, P. G. Verity, and R.A. Jahnke. Chapter 4 : Oceanographic responses to environmental change, etc. *In: Menzel, D.W., ed., "Ocean Processes: U.S. Southeast Continental Shelf."* Washington, D.C., U.S. Department of Energy (in press).

Yoder, J.A. and G. Garcia-Moliner. Application of satellite remote sensing and optical buoys/moorings to Large Marine Ecosystem studies. In, The large marine ecosystem (LME) concept and its application to regional marine resource management (K. Sherman and L. Alexander, eds.). AAAS. In press.

Yoder, J. A., P. G. Verity, S. S. Bishop, and F. E. Hoge. Phytoplankton chl *a*, primary production, and nutrient distributions across a coastal frontal zone off Georgia, USA. *Cont. Shelf Res.*, accepted.

Manuscripts Pending:

Griffith, P. C., L. R. Pomeroy, S. C. Wainwright and P. G. Verity. Community respiration and the fate of organic matter in the waters of the South Atlantic Bight. (subm.)

Paffenhöfer, G.-A., L. P. Atkinson, and P. G. Verity. Control of crustacean zooplankton by gelatinous zooplankton in a stable water column. (under revision)

Presented Papers:

1979 Yoder, J.A. and S.S. Bishop. Upwelling events in the South Atlantic Bight: Phytoplankton response to an intrusion of nutrient-rich water onto the continental shelf. ASLO, June 1979.

1979 Atkinson, L.P., J.A. Yoder and T.N. Lee. Upwelling events in the South Atlantic Bight: Gulf Stream induced nutrient flux compared to other sources. ASLO, June 1979.

1980 Atkinson, L.P., J.A. Yoder and others. Upwelling along the Gulf Stream front off the southeastern coast of the United States. IDOE Symposium on Coastal Upwelling, February, 1980

1980 Atkinson, L.P. and others. Upwelling off the southeastern coast of the United States: An overview. IDOE Symposium.

1980 McClain, C.R. and others. High altitude remote sensing of the oceanic chlorophyll in frontal zones. IDOE Symposium.

1980 Bishop, S.S. and others. Effect of eddy-forced upwelling on nutrient and phytoplankton distribution near the shelf break in the South Atlantic Bight. ASLO, June 1980

1980 O'Malley, P.G., L.P. Atkinson and J.A. Yoder. The nitrogen pool of a mid-shelf intrusion. ASLO, June 1980

1980 Singer, J.J. and others. Hydrographic observations of the Charleston Bump. ASLO, June 1980

1980 Kim, H.H. and others. Thermal and visible color expressions of an upwelling off the Gulf Stream. AGU, December 1980

1980 Yoder, J.A. and others. Effect of upwelling on primary productivity of the outer southeastern shelf. ASLO, December 1980

1980 Atkinson, L.P., J.A. Yoder and L.R. Pomeroy. Nutrient sources to the southeastern United States shelf waters: rivers, recycling, and the Gulf Stream. ASLO, December 1980

1982 McClain, C.R. and others. On upwelling dynamics along the northern Florida-Georgia shelf. ASLO/AGU, February 1982

1982 Yoder, J.A. Distribution of fish eggs and larvae and their relation to upwelling regions on the southeastern U.S. continental shelf. ASLO/AGU, February 1982

1982 Atkinson, L.P., J.A. Yoder and T.N. Lee. Gulf Stream associated upwelling off the southeastern United States and its effect on continental shelf nutrient concentrations and primary productivity. Symposium on Biological Productivity of Continental Shelves. Kiel, March 1982

1982 Yoder, J.A. and L.P. Atkinson. Phytoplankton production in the South Atlantic Bight. ASLO, June 1982

1982 McClain, C.R., J.A. Yoder and L.J. Pietrafesa. Remote sensing studies of coastal circulation in the South Atlantic Bight. ASLO, June 1982

1982 Lee, T.N., L.P. Atkinson and J.A. Yoder. Upwelling in Gulf Stream frontal eddies along the southeast U.S. outer continental shelf and the effect on primary production. ASLO, June 1982

1982 Bishop, S.S. and J.A. Yoder. Phytoplankton productivity within a subsurface intrusion of Gulf Stream water on the U.S. southeastern continental shelf. ASLO, June 1982

1982 McClain, C.R., L.J. Pietrafesa and J.A. Yoder. Observations of Gulf Stream induced and wind driven upwelling in the Georgia Bight using ocean color and infrared imagery. AGU, December 1982

1982 Ishimaru, T. and J.A. Yoder. Phytoplankton populations and their photosynthetic characteristics off Georgia in winter. Oceanographic Society of Japan, Fall 1982

1983 Takahashi, M. and others. Photosynthetic characteristics of the subsurface

phytoplankton in thermally stratified ocean water. Oceanographic Society of Japan, Spring 1983

1983 Blanton, J.O., J.A. Yoder and F.B. Schwing. Scales of chlorophyll-*a* variations in a frontal zone off the Georgia coast. Chemical Variability in Ocean Frontal Areas (NORDA Symposium), September 1983

1983 Yoder, J.A., L.P. Atkinson and T. Palusziewicz. Variability in primary production in response to disturbance of the Loop Current and Gulf Stream fronts. Chemical Variability in Ocean Frontal Areas (NORDA Symposium), September 1983

1984 Yoder, J.A., S.S. Bishop and K.A. Emmanuele. Effect of irradiance fluctuations on photosynthesis of coastal phytoplankton. AGU/ASLO, January 1984

1984 Yoder, J.A. Overview of the effects of two frontal systems on phytoplankton production on the southeastern U.S. continental shelf. European Marine Biological Symposium, September 1984

1985 Wallace, G.T., J.A. Yoder and T. Ishimaru. Advective off-shelf transport from the southeastern U.S. continental shelf. AGU, May 1985

1985 Saino, T. and others. Local upwelling and nitrogen isotopic abundances of particulate organic matter off Georgia, North Atlantic Ocean. Oceanographic Society of Japan, Spring 1985

1986 Yoder, J.A., C.R. McClain and W. Murray. Statistical analyses of satellite

imagery reveal the spatial structure of continental shelf chlorophyll distributions. ASLO/AGU, January 1986

1986 Yoder, J.A. and others. Effects of a coastal front on phytoplankton dynamics in nearshore waters off Georgia, USA. ASLO, June 1986

1986 Hanson, R.B. and others. Plankton coupling in an upwelling system off northwest Spain. ASLO, June 1986

1986 Verity, P.G., J.A. Yoder and S.S. Bishop. Abundance, distribution, and productivity of phytoplankton and phagotrophic Protozoa in nearshore Georgia waters. AGU, San Francisco, CA, December 1986.

1986 McClain, C.R., J.A. Yoder and others. Temporal and spatial variability in surface pigment concentrations in the South Atlantic Bight. AGU, December 1986

1987 Verity, P.G. Chemosensory behavior in marine planktonic ciliates. Zoo-plankton Behavior Symposium, Savannah, GA, April 1987.

1988 Verity, P.G. Chemosensory behavior of cultured and natural ciliate populations. AGU, New Orleans, LA, January 1988.

1988 Verity, P.G. How do protozoans recognize and select food particles? NATO Advanced Study Institute, Plymouth, England, August 1988.

1988 Verity, P.G. Food preferences, grazing, and growth rates of planktonic ciliates. NATO Advanced Study Institute, Plymouth, England, August 1988.

1988 Verity, P.G., D.B. Craven, J.R. Nelson and S.S. Bishop. Seasonal studies

of production and mortality of planktonic protists in the coastal waters of Georgia. AGU, San Francisco, December 1988.

1989 Verity, P.G. The impact of meteorological variability and a coastal salinity front on planktonic productivity in Georgia waters. University of Copenhagen, June 1989

1989 Outer continental shelf: plankton dynamics and food webs. Minerals Management Service, Informational Transfer Meeting, Reston, VA, September 1989

1990 Yoder, J.A. Warm-Temperate Food Chains of the Southeast Shelf Ecosystem. AAAS Symposium on Food Chains, Yields, Models, and Management of Large Marine Ecosystems, New Orleans, February 1990 (invited talk).

1990 Verity, P.G. Feeding in planktonic protozoa: evidence for non-random food acquisition. Society of Protozoologists meeting, College Park, MD, June 1990

1990 Stegmann, P.M. and J.A. Yoder. Phytoplankton production and optical characterization of the continental shelf waters in the South Atlantic Bight during winter, 1990. AGU, December 1990.

1990 Garcia-Moliner, G. and J.A. Yoder. "Winter bursts" in CZCS-Chl imagery of the mid-Atlantic bight. AGU, December 1990.

1991 Verity, P.G., P.R. Jonsson and P. Tisellius. A model evaluation of simple foraging strategies. Zooplankton Ecology Symposium, Appleton, WI,

August 1991.

1991 Verity, P.G., P.R. Jonsson and P. Tisellius. A model evaluation of foraging strategy and predation risk in zooplankton. *Zooplankton Ecology Symposium*, Appleton, WI, August 1991.

1992 Stegmann, P. and J.A. Yoder. Optical variability in shelf waters of the South Atlantic Bight. *ASLO Meeting, Santa Fe 1992*

Students

Garcia-Moliner, Graciela. Ph.D. Thesis: "Phytoplankton dynamics in the Mid-Atlantic Bight as determined from CZCS (ocean color) satellite imagery (1978-1986)."

Postdoctoral Scholars

Stegmann, Petra. Dr. Stegmann investigated coupling between physical circulation patterns, bio-optics, and primary production in the South Atlantic Bight.

END

DATE
FILMED

8/12/93

