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ABSTRACT

In this paper, we study some geographic aspects of the In-
ternet. We base our analysis on a large set of geolocated 1P
hop-level session data (including about 300, 000 backbone
routers, 150 million end hosts, and 1 billion sessions) that
we synthesized from a variety of different input sources such
as US census data, computer usage statistics, Internet market
share data, IP geolocation data sets, CAIDA’s Skitter data set
for backbone connectivity, and BGP routing tables. We use
this model to perform a nationwide and statewide geographic
analysis of the Internet. Our main observations are:

(1) There is a dominant coast-to-coast pattern in the US
Internet traffic. In fact, in many instances even if the end-
devices are not near either coast, still the traffic between
them takes a long detour through the coasts.

(2) More than half of the Internet paths are inflated by
100% or more compared to their corresponding geometric
straight-line distance. This circuitousness makes the average
ratio between the routing distance and geometric distance
big (around 10).

(3) The weighted mean hop count is around 5, but the
hop counts are very loosely correlated with the distances.
The weighted mean AS count (number of ASes traversed) is
around 3.

(4) The AS size and the AS location number distributions
are heavy-tailed and strongly correlated. Most of the ASes
are medium sized and there is a wide variability in the ge-
ographic dispersion size (measured in terms of the convex
hull area) of these ASes.

1. INTRODUCTION

Owing to its great importance, the Internet, has been
a subject of a large number of studies. Much of the
previous work has focused on studying topology of the
Internet at the network level, without any regard to
geography. In this paper, we perform a geography-
based analysis of the Internet. Our main focus is on
understanding the geographic properties of routing and
the geographic structure of autonomous systems. Our
conclusions provide new insights into the structure and
functioning of the Internet.

Our results are obtained using a very high fidelity

model of the US Internet infrastructure that we cre-
ate by combining various datasets. Our background
topology is derived primarily from the CAIDA’s Skitter
dataset!. We use the telegeography colocation database
to obtain all the major point of presence locations in
the US. We then create millions of end-devices and
also billions of session-level traffic between these end-
devices. The end-devices and the session traffic are
generated in consultation with US census data, com-
puter usage surveys, and market shares of various In-
ternet, service providers. For routing, we use an AS (au-
tonomous system) path inference algorithm that uses
realistic BGP tables to derive inter-domain paths. The
level of authenticity captured by our model has rarely
been achieved before.

It is a well known fact that the Internet routes could
be highly circuitous [26, 23]. In this paper, we ask the
question: How geographic is the Internet routing? We
compule the travel distance between two end-points as
the sum of the geometric (geographic) distance between
the end-points of the various links on the path. For ex-
ample, if the path from an end-device in Los Angeles
to one in New York goes through San Francisco and
Miami, the travel distance for this path is the sum of
geometric distance from Los Angles to San Francisco,
from San Francisco to Miami, and from Miami to New
York. Our experiments show that a large fraction of the
traffic travels through the east and/or the west coasts
of the US. Consider two end-devices A and B and the
traffic flowing from A to B. Let s and ¢ be the lo-
cations of A and B, respectively. What we observe is
that for many such pairs A and B, the packets from
A travels (possibly multiple times) to the east and/or
the west coast before reaching B and this is true even
if neither A nor B are near either coasts. We observe
this phenomenon both at the national level (entire US
traffic) and the state level (traffic originating from some
particular state).

Looking at the ratio between travel distance and geo-

'The Skitter dataset graph is not connected, so we add few
extra links based on other auxiliary datasets to make the
graph connected.




metric distance, we observe more than 50% of the traffic
has this ratio greater than 2 (i.e., the travel distance is
at least twice the geometric distance) and about 20% of
the traffic has this ratio greater than 4. The average ra-
tio was around 10. One observes a similar behavior even
if the traffic volume (number of bytes flowing across) is
taken into account. For example, about 46% of the traf-
fic volume our model generates are between end-devices
that are less than 1000 miles apart, whereas, only 13%
of the traffic volume have their travel distance less than
1000 miles.

Another related question that we investigate is the
spread of the hop and AS counts and their relationship
with distance./| Majority of the paths have hop count
less than 6, and"we found that the average hop count
is near 5. The AS count (the number of ASes passed
on the way) is almost always less than 3 and for most
of the traffic it is around 2. Also, a bit surprising is
the fact that the hop count is very loosely correlated
with the geometric distance. For example, it is almost
equally likely two end-devices that are 500 miles or 2000
miles apart will have a hop count of 5. A similar lack of
correlation also holds between the hop count and travel
distance.

Other than the geographic aspects of routing, we also
investigate the geographic structure of the ASes. As
discussed in Lakhina et al. [12], an important problem
with current topology generators is their inability to la-
bel the routers with autonomous systems information in
a representative way. To help solve this problem they
suggested a study of two geographic properties of ASes:
(i) the number of distinct locations spanned by an AS,
and (ii) the geometric dispersion (measured in terms of
the convex hull area) of an AS. The idea being that
these two geographic properties can help guide assign-
ment of routers to ASes. We investigate these proper-
ties using our model and arrive at similar conclusions
as [12]. Note that compared to the datasets used by
Lakhina et al., we believe that our model captures a
more realistic abstraction of the entire US Internet in-
frastructure. We observe that the AS size (obtained by
counting the number of routers) and AS location num-
ber both follow a heavy-tailed distribution and there is
a strong correlation between size and location number.
Also, as reported in [12], we notice that ASes have a
wide variability in their geographic dispersion. For each
AS, we create its convex hull of its locations and use the
area of the convex hull to measure the geographic dis-
persion of that AS. Most of small-sized ASes (less than
10 routers) have a small convex hull area. The convex
hull of the large ASes (more than 100 routers) covers
almost the entire US. Most the ASes are mid-sized (be-
tween 10 to 100 routers) and such ASes exhibit a wide
variability in their convex hull area.

The reminder of the paper is structured as follows. In

Section 2, we discuss the related work. In Section 3, we
summarize our Internet model. The model was previ-
ously used by Yan et al. [28] to rank the critical Internet
infrastructures within the US. In Section 4, we analyze
the geographic properties of Internet routing and in Sec-
tion 5, we analyze the geographic properties of the AS
structure. We conclude in Section 6.

2. RELATED WORK

Over the past decade, there have been numerous ef-
forts on analyzing the structural properties of the Inter-
net topology. Much of the work has focused on studying
topology at the network level. We refer the reader to
a recent survey of Willinger et al. [27] for more details
on network topology generation schemes. Our goal is
not to propose a new topology generation scheme, but
to point out various geographic properties that arise in
the Internet.

Much of the work on Internet routing has mainly fo-
cused on measuring properties like end-to-end perfor-
mance, routing convergence, etc., or on modifying cer-
tain aspects of routing to get an improved performance.
Our main focus is on understanding geographic prop-
erties of Internet routing. It is well known that the
Internet route can be highly circuitous. This was first
suggested by Tangmunarunkit et al. [26], who used a
simplified routing model to show that the routing poli-
cies significantly increases the shortest hop distance.
The paper by Tangmunarunkit et al. considered just the
network path taken by the routes and ignored the geo-
graphic information. Subramanian et al. [23] were the
first to study geographic properties of Internet routing.
They used the GeoTrack [17] tool to determine the geo-
graphic path of the routes. They suggested that the cir-
cuitousness of Internet paths depends on the geographic
and network locations of the end-host, and tends to be
greater when paths traverse multiple ISP. Their dataset,
however is quite small (it had only about 84,000 end-
to-end paths). Spring et al. [22] documented some root
causes of this circuitousness.

We undertake the first large-scale study of the redun-
dancy in Internet routing. A lot of models have also
been proposed to characterize the routing and traffic in
the Internet [13, 14, 30, 18]. Instead of relying on inter-
domain routing models, we use an AS path inference
algorithm to derive the actual inter-domain paths that
are used in the Internet. By combining many real-life
datasets we generate synthetic end-to-end sessions for
the entire US population. The traffic we generate stati-
cally follows the traffic distribution observed in the US.

Lakhina et al. [12] studied a wide range of geographic
properties of the Internet, focusing on routers, links,
and autonomous systems. Most relevant to our paper is
their study of the geographic properties of autonomous
systems. We discuss more about their paper in Sec-




tion 5. Yook et al. [29] studied the fractal dimension
of routers, ASes, and population density. They argued
that the fractal dimension of all these parameters is
around 3/2.

3. METHODOLOGY AND MODELING

In this section, we describe the various aspects of our
modeling setup. As mentioned earlier, we use many dif-
ferent datasets such as the US census data, the US com-
puter usage statistics, and the Internet market shares
of various service providers to construct a large-scale
realistic model of the US Internet infrastructure. The
Internet model that we use in this paper was introduced
by Yan et al. [28], and we refer the reader to that pa-
per for a complete description of the model. In this
paper, we summarize only the relevant features of this
model. The motivation behind the Yan et al. paper was
to perform a criticality analysis and assessment of the
US Internet infrastructure. Yan et al. used a variety of
different. network analysis tools to identify critical In-
ternet infrastructure facilities with the US. The various
geometric and geographic analysis that we do in this
paper are of different flavor from the analysis done by
Yan et al. [28].

Backbone Topology. The Internet backbone con-
sists of routers and links that are owned and oper-
ated by the major Internet service providers. We ex-
tract 18,000 backbone equipment locations housing ap-
proximately 291,000 unique IP (Internet Protocol) ad-
dresses in the US from the Skitter dataset collected by
the CAIDA project (available at http://www.caida.
org/tools/measurement/skitter/). Since the origi-
nal Skitter dataset is not connected, we add two types
of virtual links to make the resulting graph connected.

Each IP address corresponds to a network interface at
a backbone router and multiple IP addresses can belong
to the same physical backbone router. This is the well
known IP alias-resolution problem [21]. To overcome
this problem, we use the alias clustering data provided
by the iPlane project (available at http://iplane.cs.
washington.edu/data/alias_lists.txt). Using the
iPlane data, for any two IP addresses in the Skitter
dataset that belong to the same physical router, we cre-
ate a virtual link between them. These are the first type
of virtual links that we add to the Skitter graph.

If two IP addresses belong to the same autonomous
system (AS) and are located at the same place, it is
unlikely that traflic between them traverses through a
different location. The geographical position of each
backbone IP address, in the form of its longitude and
latitude, is derived from the ip2location dataset (avail-
able at http://www.ip2location.com). Geolocation
is generally considered to work fairly well to a city-
level resolution, which is our main concern for anal-
ysis. Street-address level accuracy is much harder to
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achieve. We use a star structure to connect co-located
IP addresses owned by the same AS (the star struc-
ture is used to prevent addition of too many links). We
call the center of such a star topology a hub IP. These
are the second type of virtual links that we add to the
Skitter graph.

With these virtual links, we are able to produce a con-
nected Internet backbone that covers more than 99.7%
of the IP addresses in the Skitter dataset.

Internet Point of Presence. An Internet PoP (point
of presence) is an access point to the Internet back-
bone, which is typically owned by an ISP (Internet
Service Provider), or located in an Internet exchange
point. We obtained a set of 543 PoPs from the tele-
geography colocation database (available at: http://
www.telegeography.com/), which lists the operators
present in each PoP. We then use the Skitter dataset
to populate the PoPs with backbone IP addresses. For
this we use the following heuristic: if the latitude and
longitude of a backbone IP address agrees with that of
a PoP, we assign it to that PoP. This simple assignment
scheme, however, leads to inconsistency: for an AS A
present in PoP P according to the telegeography colo-
cation database, it may not have any of its backbone
IPs assigned to that PoP. To circumvent this problem,
we create a virtual backbone IP address that belongs
to the AS A in PoP P; moreover, if there exists a ge-
olocated backbone IP address that belongs to AS A
within 15 miles from PoP P, we connect the virtual IP
address to the geolocated IP address. In total, this pro-
cess created only 1247 virtual backbone IP addresses.
These virtual backbone IP addresses form only a small
fraction (about 0.4%) of all backbone IP addresses.

Virtual Point of Presence. As the Skitter dataset
is generated from traceroute output, inter-AS links de-
rived from it are incomplete and biased [10]. To miti-
gate this problem, we assume that all the ASes present
in the same PoP are internally connected. We create a
virtual PoP IP inside each PoP and connect it to every
hub IP in that PoP. Note that this process may intro-
duce artificial inter-AS links that may not actually exist.
For example, if AS 4 and AS B do not have any busi-
ness relationships, there may not be physical AS links
between A and B3, but the above process might add links
between A and B. The routing scheme in our model
(explained below), however, uses inferred AS-level rela-
tionships obtained from realistic BGP data to compute
AS-level paths and these artificial links will then not be
used for routing.

End Devices. We generate synthetic end devices, in-
cluding both residential and business computers, and
then connect them to the Internet backbone topology.
We distinguish residential and business computers in
our model. In total, we generated 73,884, 296 residen-
tial computers and 58,923,964 business computers in




(a) Fraction of the traffic going less than 500 miles

(c) Fraction of the traffic going between 1000 - 2000 miles

(d) Fraction of the traffic going more than 2000 miles

Figure 1: Traffic distribution generated by our model. Figure (a): Fraction of the traffic going to a geometric distance less
than 500 miles. Figure (b): Fraction of the traffic going to a geometric distance between 500 and 1000 miles. Figure (c):
Fraction of the traffic going to a geometric distance between 1000 and 2000 miles. Figure (d): Fraction of the traffic going
to a geometric distance greater than 2000 miles. Each state is colored by the fraction of the traffic of that particular type
originating from that state. Blue means between 0-10%, Brown means between 10-20%, Green means between 20-30%, Orange
means between 30-40%, Purple means between 40-50%, and Red means between 50-60%. For example, if in Plot (a) a state
is colored blue then between 0-10% of total traffic originating from that state goes less than 500 miles.

the US. These numbers are a rough approximation to
the number of computers in the US. To generate resi-
dential computers, we use the latest US census bureau
data (like income distribution, percentage of residential
computer usage for each annual family income category,
etc). This gives us a census-block level population in
each 250% 250 square meter grid in the US for the en-
tire 24 hour duration [16]. To generate business com-
puters, we use the Dun & Bradstreet (D&B) dataset,
which provides information about all companies in the
US, including their headquarter locations, numbers of
employees, and SIC (Standard Industrial Classification)
codes. A SIC code has four digits and indicates the busi-
ness type of a company. The US census data presented
in [6] gives us computer penetration ratios in different
business categories.

Access routers. Internet access routers are used to

connect end devices to the Internet backbone. We con-
sider three types of Internet access services, dial-up,

DSL, and Cable, as they are three mostly widely used
Internet access methods in the US. We use the Home
Broadband Adoption 2006 report by Pew Internet &
American Life Project to randomly assign the Internet
access type of each end device.

For the dial-up service, we collect a list of aggregators
for each zip code from the Internet Service Provider di-
rectory (available at http://www.findanisp.com) and
for each of these aggregators we create an Internet ac-
cess router. For DSL and cable services, we use the
subscriber numbers of the top companies. For both
these services, the top nine companies collectively cover
more than 50% of the market, see, e.g., http://www.
leichtmanresearch.com/press/081108release.html.
For each of these companies, we collect a list of zip codes
where the company provides DSL or Cable services and
use that information to add an Internet access router
for each zip code within its service coverage.

If the chosen access service is dial-up, we randomly




assign the end device to an aggregator for the zip code
where the device is located. If the access type is DSL
or Cable, we randomly choose an Internet broadband
access router based on the market shares of the top
broadband companies. After an Internet access router
is chosen, we create a link between it and the end device.

Recall that there are 543 PoPs in the backbone topol-
ogy and each of them has a list of backbone IPs. Also,
each PoP IP is associated with an AS number. Given
an Internet access router, we use the following heuristic
to decide which PoP IP it connects to. First, we sort
all PoPs according to their distances from the Internet
access router. Then, starting from the closest PoP, we
check whether it has a PoP IP that peers with the ISP
company owning that Internet access router. This can
be done by checking whether the AS number of the PoP
IP connects to any one of the AS numbers owned by the
ISP company in the AS-level graph. If we cannot find
one, we try the second closest PoP. This process repeats
until one such PoP IP is found. Thereafter, we create
a link between it and the Internet access router.

Sessions. We generate synthetic sessions, including
HTTP, email, P2P, and streaming traflic, for every com-
puter for a period of 24 hours, We genegitod a total
of 1.14 billion sessions. For ¢ach Internet session,‘le
assigh’it a sessien type and choose its origin and des-
tination. For an email or P2P session, we assume that
the end-points of the session are end-devices residing
either at a home or a business location. For HTTP
or streaming traffic, we assume that the source of the
session is an end-device whereas the destination of the
session is a server. To pick an end device as either
the source or destination, we pick a device from a (US)
state based on the percentage of devices in that state.
When the end-device is a server (for HTTP and stream-
ing sessions), we pick a server from one of the top 100
servers that are most visited, based on the proportion
of web access hits they receive (information available
at http://www.alexa.com/). Many web servers are
located in the technological centers of Silicon Valley
and Washington D.C., as well as a few smaller centers
mostly in metropolitan areas. We ignore the effects of
content distribution networks (as they are difficult to
model). Figure 1 gives a more visual representation of
the sessions that our simulation generates. For example,
Figure 1(b) shows that more than 20% of traffic origi-
nating in the mid-west states of North Dakota, South
Dakota, Kansas, Oklahoma, and Texas travel goes to
destinations less than 1000 miles away, which roughly
makes it to either coast. Similarly, from Figure 1(d)
we see that about 40-50% of the traffic originating from
California goes a distance greater than 2000 miles (so
to east coast).

In our simulations, 40% of the sessions are HTTP
(with a split of 25.14% and 4.86% among home and
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business computers), 30% of the sessions are email (with
a split of 11.87% and 18.13% among home and business
computers), 20% of the sessions are P2P (with a split of
18.71% and 1.29% among home and business comput-
ers), and remaining 10% of the sessions are streaming
(with a split of 6.29% and 3.71% among home and busi-
ness computers). The above traffic mix was generated
in consultation with the information available from [1,
2, 8;.5)

Previous works have suggested that approximately
80% of the web document transfers are less than 100
kilobytes in size [4], but this distribution has a heavy
tail [4, 7). We choose 25 kilobytes as the average size
of the HTTP sessions. This number is computed by
downloading a number of webpages and finding the av-
erage size of these downloaded web pages. We choose
the average size of the email sessions as 100 kilobytes.
This number is based on the average size of all emails
in the inbox of various employees at a large institu-
tion. The average streaming rate of streaming sessions
is 200 kilobytes per sec [9] and the average duration of
streaming session is approximately 125 sec [24]. This
gives an average size of approximately 250 x 125 = 30
megabytes for streaming sessions. The average size of
a P2P session is computed by observing the history of
already completed transfers in a P2P client [20]. Now
for each session its size (based on whether it is HTTP,
email, P2P, or streaming) is drawn from an exponential
distribution with mean (average size) as given above.

Routing. Internet routing is strictly hierarchical: inter-
domain routing protocols (e.g., border gateway pro-
tocol) regulate Internct traffic among different ASes,
and intra-domain routing protocols (e.g., Open Short-
est Path First and Routing Information Protocol) spec-
iy how traflic is routed within the same AS. Due to
complexity of BGP and the fact that commercial re-
lationships between ASes are generally unavailable to
the public, we use AS-level paths inferred from exist-
ing BGP routing tables for inter-domain routing. We
use the AS path inference algorithm from [19], which is
able to infer AS-level paths with 95% accuracy. For the
intra-domain routing, we simply use the shortest path
algorithm.

To compute the route between any two PoP IPs we
use an algorithm similar to [15] which has been shown to
achieve more than 78% accuracy. For some estination
PoP IPs, the algorithm in [19] fails to infer AS-level
paths to them. In such circumstances, we derive their
AS numbers and use www.xedorbit.com to obtain a list
of prefixes for each of them. We then use the algorithm
in [19] again to infer AS-level paths to these prefixes.
These derived AS-level paths are further used to com-
pute the IP-level paths to these destination PoP IPs.
A more thorough description of the routing scheme is
given in [28].




3000

2500

2000

1500

Geometric Distance

1000

8000 10000

Distance Traveled

3000 —

Goometric Distance

8000

6000
Distance Traveled

4000 10000

Figure 2: Fach point represents an Internet session. The X-axis represents the route distance between the source and the
destination of the session. The Y -axis represents the geometric distance between the source and the destination of the session.
Only a uniform 1/10000th fraction of all sessions we generated are represented in this plot. The plot on the right is same as
that on the left except that lines y = z, y = —z + 5100, and y = = — 5100 are drawn for visual aid.

4. INTERNET ROUTING ANALYSIS

We analyze the paths generated by our experiments.
For a session between a source at location s and a des-
tination at location ¢, we use the Haversine formula to
compute the geometric distance between s and ¢t. The
Haversine formula takes as input the latitude and longi-
tude of the end-points. Let (lats,lons) and (lat,lon;)
be the latitude and longitude of the locations s and t.
The Haversine distance d between s and t equals,

d=Rxc

Here, R = 3961 miles is the radius of the earth and
= 2 x arctan2(y/a, V1 — a) where a = sin?((lat, —
lats)/2) + cos(lat,) x cos(lat;) x sin®((lon, — lons)/2).

4.1 Nationwide Analysis

The route (travel) distance between s and t is com-
puted by summing up the lengths of the link on which
the packets travel from s to ¢ in our simulation. Figure 2
plots the geometric distance against the route distance.
Each point here is a session in our simulation. Notice
that since the route distance is always greater than the
geometric distance, there are no points above the y = z
line. In the following, we refer to geometric and route
distance of a session to mean the geometric and route
distance between the end points of the session.

In Figure 2, we notice that for many sessions the route
distance is far greater than their corresponding geomet-
ric distance. In order to validate the feasibility of our
synthesized data, we geolocated a few trace route ex-
ercises. One such example is shown in Figure 3. It is
very easy to find such long paths (that go from coit to
coast multiple times), in fact it is more the rule than
the exception and we encourage the reader to try this
little experiment at home. The fact that there exists
sessions whose route distance is significantly more than

destination

Figure 8: A real traceroute path. The traceroute was sent
from a computer in Santa Fe, New Mexico to Palm Beach,
Florida. Notice the long route going through both coasts.

their corresponding geometric distance may not be all
that surprising given that there are many economic and
engineering aspects that drive the Internet routing and
this observation has been made before (see, e.g., 26,
23]). But what is a bit surprising is the number of such
sessions (we elaborate this point in Section 4.3).

Another surprising feature from Figure 2 is the heavy
concentration of points near the lines y =z, y = —z +
5100, and y = 5 = —5100 (in form of a triangular strip).
Note that, 5100 = 2 x 2550 is approximately the round-
trip distance between the east coast and the west coast
(2550 is approximately the average distance between
the east and the west coast of the US). We now try to
explain why there is this concentration near these lines.
We look at each of the these three lines separately.

(1) Line y = z: The points close to the line y = = rep-
resent the sessions where the source and destination
are at distance y apart, and the routes taken by the
packets have lengths almost y (i.e., sessions where ge-
ometric distance is very close to the route distance ).
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For each state, only a uniform 1/1500th fraction of all sessions that we generated for that particular state are represented in
this plot. The red markers are drawn only for visual aid.

(2)

(3)

These points represent the best-case scenario as the
routing is almost perfect.

Line y = —z 4 5100: The points close to the line
y = —z + 5100 = = = 5100 — y represent the sessions
where the source and destination are at a geometric
distance of y, whereas the route distance is 5100 —y =
2 % 2550 — y. Most of the points, that lie close to this
line have the property that if“Source is at location
s and"destination at location t then roughly either of
the following happens: (a) if s is to the west of £, then
the route taken by packet in going from s to ¢ involves
going s to the west coast, from the west coast to the
east coast, and from the east coast to 1, or (b) if s is to
the east of ¢, then the route taken by packet in going
from s to t involves going s to the east coast, from the
east coast to the west coast, and from the west coast
to t. To quantify the above statement, we picked all
the points that lie close to this line (between the lines
y = —x+4900 and y = —z + 5300) and analyzed the
paths that produce these points. We noticed that
more than 90% of these points satisfied either the
property (a) or (b).

Line y = z — 5100: The points close to the line
y =z — 5100 = = = 5100 + y represent the sessions
where the source and destination are at a geometric
distance of y, whereas the route distance is 5100+y =
2 x 2550 + y. Most of the points that lie close to this
line have the property that if source is at location s
and destination at location t then roughly either of
the following happens: (a) if s is to the west of {,
then the route taken by packet in going from s to ¢
involves going s to the east coast, from the east coast
to the west coast, and from the west coast to ¢, or (b)
if s is to the east of #, then the route taken by packet
in going from s to ¢ involves going s to the west coast,

from the west coast to the east coast, and from the
east coast to t. Again to quantify this statement, we
picked all the points that lie close to this line (between
the lines y = 2—4900 and y = £—5300) and analyzed
the paths that produce these points. We noticed that
98.5% of these points satisfied either the property (a)
or (b).

From Figure 2 and the above discussion, we conclude
that there is a very interesting coast to coast shuttling
of traffic even when the source and destination are close
to each other. In particular, peering agreements among
ASes are typically structured such that geometric dis-
tance is not the main cost driver.

4.2 Per State Analysis

Figure 2 shows that at a national level there are some
interesting phenomena happening. So the natural ques-
tion would be to see if sonre’Similar happens when we
restrict ourselves to traffic originating from some par-
ticular state in the US. To answer this question, we
repeated the simulation on a state level. For each state
in the US, we looked at the sessions originating from
that particular state and used the route distance that
we get out of this to redraw the previous plot between
the geometric distance and the route distance. In the
full version, we present the analysis of all the 48 states
(excluding, Hawaii and Alaska which were not part of
our model). For now, we concentrate on 6 states, that
form a good representation of our results. We now ana-
lyze some interesting trends appearing in these six state
plots.

(1) California: The plot for California (Figure 4) follows
the national plot (Figure 2). We observe that there
are lots of points near the lines, y = z, y = —z +
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Figure 7: Plot for the state of Florida.

For each state, only a uniform 1/1500th fraction of all sessions that we generated for that particular state are represented in
this plot. The red markers are drawn only for visual aid.

(2)

(3)

(4)

5100, and y = z — 5100. The reason for this behavior
is same as in the national case. Also, compared to
other states there are far more points in the California
plot because our session generation model takes into
account population, income, economy of a region, etc,
which are much higher in California than other states.

Illinois: The plot for 1llinois (Figure 5) has two thick
horizontal stripes. The first one is approximately be-
tween y = 550 to y = 800. A majority of the points
that lie in this stripe represent sessions originating
from Illinois and going to the east coast. Observe
that even for the same geometric distance there is
a wide discrepancy in the route distance. The sec-
ond stripe is approximately between y = 1700 and
y = 1800. A majority of points that lie in this strip
represent sessions originating from Illinois and going
to the west coast.

New York: The plot for New York (Figure 6) has
lots of points between lines y = z and y = z + 400.
About, 80% of the points that lie between these two
lines represent sessions originating from New York
and taking a small detour within the east coast (like
going to Washington DC) before heading to the des-
tination. For larger values of y, this destination is the
west coast. In the New York plot, one also notices a
concentration of points around the lines y = z 4 2500
and y = a + 5000.

Florida: The plot for Florida (Figure 7) is similar to
Illinois in that it has two dominant horizontal stripes.
The first stripe is approximately between the lines
y = 700 and y = 1000, and it is produced by the traf-
fic originating from Florida and going to the North-
east of the US. The second stripe is approximately
between y = 2400 and y = 2600, and this stripe is

produced by the traffic originating from Florida and
going to the west coast.

(5) Texas: The plot for Texas (Figure 8) has lots of
points in and around the circles depicted in the plot.
This circle is on the left is caused by the traffic origi-
nating from Texas and going either to the east or the
west coast (which are roughly at the same distance).
The circle on the right is again caused by the traffic
originating from Texas and going either to the east or
the west coast, but this time there is a detour through
the other coast, i.e., the traffic to the west coast takes

a detour through east coast and vice-versa.

(6) New Mexico: The plot for New Mexico (Figure 9)
is quite sparse because population, income, etc, are
quite low in New Mexico. There is some concentra-
tion of the points in and around the circle depicted in
the plot. This is mainly due to the traffic originating

from New Mexico and going to the east coast.

4.3 Distance Ratio Analysis

Figure 2 and the various state plots Figures 4 to 9
showed that it in many cases the routing distance is far
greater than the geometric distance. To better under-
stand how far apart these distances could be, we look
at various “ratio plots”. In Figure 10(a), we study the
ratio of route distance to geometric distance. Let us
define stretch? of a path as the ratio between length
of the route and the geometric distance between the
end-points of the path. For about 45% of the paths
the stretch is between 1 and 2. An ideal stretch of ex-
actly 1 was never achieved, but this is to be expected,
since some small amount of detour compared to geomet-
ric distance will always exist. About 81% of the paths

*In [23], stretch is referred to as the distance ratio.
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For each state, only a uniform 1/1500th fraction of all sessions that we generated for that particular state are represented in
this plot. The red markers are drawn only for visual aid.
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have stretch less than 4. So still a significant fraction
(about 19%) of the paths suffer a large detour from the
geometric path. The average stretch (over all sessions)
is 10.25.

In Figure 10 through heat maps we also show: (i)
stretch vs. geometric distance, and (ii) stretch vs. travel
distance. In these heat maps the number of sessions de-
crease gradually as we go from a red to blue region. An
observation is that generally the short distance traffic
(i.e., traffic going between source and destination which
are geometrically close) have large stretch. For exam-
ple, if restricted to traffic that goes less than 500 miles
(in geometric distance) then the average stretch is as big
as 35. The simple reason for this is that if the geomet-
ric distance is small, then even a small detour (relative
to the geometric distance) will result in large stretch.
Most of the long distance traffic (i.e., traffic going be-
tween source and destination which are geometrically
far) have small stretch. For example, if considers traffic
that goes more than 2000 miles (in geometric distance)
then the average stretch is only around 1.8. The reason
for this being that since the geometric distance is big,
even a reasonably big detour (relative to the geometric
distance) will not lead to a big stretch.

4.4 Traffic Distribution Analysis

The previous plots were only considering distances,
and were completely ignoring the volume of traffic (mea-
sured in number of bytes) that go across various source-
destination pairs. As one would expect there is a lot
of asymmetry in the volume of traffic among different
source-destination pairs. In Figure 11(a), we compare
the volume of traffic against the geometric distance.
This plot just depends on our model of traffic (session)
generation and is independent of the routing strategy
used. About 22% of the traffic volume our model gen-
erates goes less than 500 miles, about 46% of the traffic
volume goes less than 1000 miles, and about 76% of the
traffic volume goes less than 2000 miles. The farthest
source-destination pair in our model was around 2650
miles apart. What is also interesting to observe is the
multi-modality of this plot that arises due to distances
between various metropolitan areas in the US. Due to
large population density in the metropolitan areas a
large fraction of sessions we generate are between these
metropolitan areas.

In Figure 11(b), we plot the volume of traffic against
the route distance. Because of the routes being far
from geometric, only about 13% of the traffic volume
has route distance less than 1000 miles, about 26% of
the traffic volume has route distance less than 2000
miles, and about 76% of the traffic volume has route
distance less than 5000 miles. Comparing this to the
Figure 11(a), one notices that about 76% of the traf-
fic volume has geometric distance less than 2000 miles,
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Figure 12: Frequency distribution of the hop count.
Sample size: around a million sessions.

whereas, to get the same percentage in the route dis-
tance one has to go 5000 miles. So again, one notices
the discrepancy between the properties of travel and
geometric distances.

4.5 Hop Count and AS Count Analyses

We now analyze the hop and AS distribution of the
routing paths. The hop count between a source and des-
tination is defined as the number of hops that a packet
takes in going from the source to the destination. In
Figure 12, we plot the distribution of the hop count.
We observe that a large fraction of paths (about 38.3%)
have a hop count of 6. Also, about 20.8% of the paths
have a hop count of 5 and 25.4% of the paths have a hop
count of 6. The weighted mean hop count is 5. The plot
also suggests that the hop count distribution is tightly
concentrated around its mean.

In Figure 13, we plot the variation of the hop count
against the geometric distance. The plot suggests that
the geometric distance has very little effect on the hop
count. For example, if we look at the paths with hop
count 6, we see that there is a uniform spread of these
paths independent of the distance between source and
destination. That is, there are almost equal numbers of
close and far source-destination pairs with a hop count
of 6. The same observation holds for other hop counts
too. So we conclude that the number of hops is de-
pendent more on the commercial relationships between
ASes, and less on the geometric distance. To make this
conclusion more formal, we measure the correlation co-
efficient® between hop count and geometric distance.
The correlation coefficient turned out to be quite small
(about 0.15) suggesting that the hop count and geomet-
ric distance are almost independent. A similar conclu-

of wvariables F and G,
(fi,91),---,(fnygn), the (Pearson) sample corre-
lation coefficient between F and G is defined as
ST - D — 9)/((n ~ Vosog), where f and 3
are the sample mean of F and G and o5 and o, are the
sample standard deviation of F' and G, respectively.

3Given n measurements
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Figure 11: Figure (a): The distribution of the traffic according to geometric distance using a uniform sample of around 8
million sessions. The X-axis represents the geometric distance broken into bins of 100 miles. The Y -axis represents the
volume of traffic (measured in number of bytes). This plot is closely related to Figure 1. Figure (b): The distribution of
the traffic according to travel distance. The X-axis represents the route distance broken into bins of 100 miles. The Y -axis
represents the volume of traffic (measured in number of bytes).
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sion was obtained by Huffaker et al. [11] by analyzing
the CAIDA datasct for the Asia-Pacific region. Gert6 s CRLLY. S SR BN 1. =
In Figure 14, we plot the variation of the hop count

against the travel distance. As in Figure 13, we observe é == w

little correlation between the hop count and the travel 3 o 1

distance (the correlation coefficient is only 0.136). & e w
The AS count between a source (s) and a destina- §

tion (t) is defined as the number* of ASes crossed by a ;o —

packet traveling from s to ¢ (including, the source and R (— ‘ ‘

destination ASes). If the entire path remains within a |

single AS, then the AS count is 1. In Figure 15, we plot o 2 W

the distribution of the AS count. We observe that a

large fraction of paths (about 75.8%) have an AS count Figure 15: Frequency distribution of the AS count.

less than 2. About 96.2% of paths have an AS count Sample size: around 8 million sessions.

less than 3, which can be used to conclude that almost
all routing paths cross at most 3 ASes.

S. GEOGRAPHIC ANALYSIS OF THE ASES

“We count the number of crossings between ASes, so if a We now turn our attention to properties of autonomous
path enters the same AS twice, we count it as two crossings. systems. Previous work has documented the distribu-
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tion of AS size measured in terms of degree in the AS-
graph [8, 28], measured in terms of number of routers
within the AS [25], and measured in terms in number
of (distinct) locations in which a router for the AS is
present [12]. In all these cases, the observed distribu-
tions were heavy-tailed with the tail spanning orders
of magnitude. In Figure 16, we plot log-log comple-
mentary distribution of the size (measured in terms of
the number of routers) of the ASes. In Figure 17, we
plot log-log complementary distribution of the number
of distinct locations in which an AS is present. Both
these figures agree with the conclusion of [12] and sug-
gest that both these AS properties are heavy-tailed.
One also sees a strong correlation between the AS size
and location numbers (i.e., the larger the size of AS the
more locations it is present in) and this is confirmed by
a correlation coefficient number of 0.84.

Figure 18 plots the area of convex hulls of various
ASes as a function of their sizes. Figure 19 plots the
areas of convex hulls of various ASes as a function of
their location numbers. We discard the ASes that have
presence in less than 3 locations (as such ASes have a
convex hull area of zero).

The Figures 18 and 19 exhibit almost the same behav-
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ior. Most of the small ASes (with less than 10 routers
or presence in less than 10 locations) have small area. If
we consider ASes that have between 10 to 100 routers,
or are present in between 10 to 100 locations, then there
is big variability in terms of their hull area. Most of the
larger ASes (with more than 100 routers or presence in
more than 100 locations) are dispersed geographically,
and a large convex hull area which is proportional to
the square area of the whole continental US®. To quan-
tify these previous observations, we measure the corre- -
lation between the various parameters. The correlation
coefficient between convex hull area and size of an AS
is 0.31, and the correlation coefficient between convex
hull area and location presence of an AS is 0.34. The
intuitive reason why the correlation coefficient is sinall
is that most of the ASes are neither too small nor too
big, and such medium-level ASes have big variability in
their convex hull area, and thus bringing the correlation
coefficient down.

6. CONCLUSIONS

In this paper, we studied a variety of geographic prop-

5The area of the US is approximately 3.7 x 10° square miles.



erties of the US Internet infrastructure. To perform our
study, we combined many different data sources to cre-
ate a realistic model of the US Internet infrastructure.
We show that a large fraction of the traffic gets routed

through the coasts and in many cases the traffic bounces.

multiple times between the two coasts before reaching
the destination. We also investigated the geographic
structure of the ASes, and confirmed the observation
made by Lakhina et al. [12]. The contributions made
in this paper extend our knowledge of the geographic
aspects of the Internet. The results can be used for var-
ious policy decisions and for designing better generative
models for the Internet.
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