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ABSTRACT 
In this paper, we study some geographic aspects of the In­
ternet. We base our analysis on a large set of geolocated IP 
hop-level session data (including about 300,000 backbone 
routers, 150 million end hosts, and 1 billion sessions) that 
we synthesized from a variety of different input sources such 
as US census data, computer usage statistics, Internet market 
share data, IP geolocation data sets, CAJDA's Skitter data set 
for backbone connectivity, and BGP routing tables. We use 
this model to perform a nationwide and statewide geographic 
analysis of the Internet. Our main observations are: 

(1) There is a dominant coast-to-coast pattern in the US 
Inlt:rnet traffic. In fact , in many instances even if the end­
devices are not near either coast, still the traffic between 
them takes a long detour through the coasts. 

(2) More than half of the Internet paths are inflated by 
100% or more compared to their corresponding geometric 
straight-line distance. This circuitousness makes the average 
ratio between the routing distance and geometric distance 
big (around 10). 

(3) The weighted mean hop count is around S, but the 
hop counts are very loosely correlated with the distances. 
The weighted mean AS count (number of ASes traversed) is 
around 3. 

(4) The AS size and the AS location number distributions 
are heavy-tailed and strongly correlated. Most of the ASes 
are medium sized and there is a wide variability in the ge­
ographic dispersion size (measured in terms of the convex 
hull area) of these ASes. 

1. INTRODUCTION 
Owing to its great importance, the Internet, ha..'5 been 

a subject of a large number of st.udies. Much of the 
previous work has focused on studying topology of the 
Internet at the network level , without any regard to 
geography. In this paper, we perform a. geography­
ba..<;ed analysis of the Internet. Our main focus is on 
understanding the geographic properties of routing and 
the geographic structure of autonomous systems. Our 
conclusions provide new insights into the structure and 
functioning of the Internet. 

Our results are obtailled USillg a very high fidelity 
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model of the US Internet infrastructure that we cre­
ate by combining various datasets. Our background 
topology is derived primarily from the CAIDA's Skitter 
datasetl. We use the telegeography colocation database 
to obtain all the major point of presence locations in 
the US . We then create millions of end-devices and 
also billions of session-level traffic between these end­
devices. The end-devices and the session traffic are 
generated in consultation with US census data, com­
puter usage surveys, and market shares of various In­
ternet service providers. For routing, we use an AS (au­
tonomous system) path inference algorithm that uses 
realistic BGP tables to derive inter-domain paths. The 
level of authenticity captured by our model has rarely 
been achieved before. 

It is a well known fact that the Internet routes could 
be highly circuitous [26, 23]. In this paper, we ask the 
question: How geographic is the Internet routing? We 
compute the travel distance between two end-points as 
the sum of the geometric (geographic) distance between 
the end-points of the various links on the path. For ex­
ample, if the path from an end-device in Los Angeles 
to one in New York goes through San }rancisco and 
Miami, the travel distance for this path is the sum of 
geometric distance from Los Angles to San Francisco, 
from San Francisco to Miami , and from Miami to New 
York. Our experiments show that. a large fraction of the 
traffic travels through the east and/or the west coasts 
of the US. Consider two end-devices A and B and the 
traffic flowing from A to B. Let sand t be the lo­
cations of A and E, respectively. What we observe is 
that for many such pairs A and E, the packets from 
A travels (possibly multiple times) to the east and/or 
the west coa.st before reaching B and this is true even 
if neither A nor E are near either coasts. We observe 
this phenomenon both at the national level (entire US 
traffic) alld thc statc level (traffic origillatillg from some 
particular state). 

Looking at the ratio between travel distance and geo-

IThe Skitter dataset graph is not connected, 80 we add few 
extra links based on other auxiliary datasets to make the 
graph connected. 



metric distance , we observe more than 50% of the traffic 
has this ratio greater than 2 (i.e., the travel distance is 
at least twice the geometric distance) and about 20% of 
the traffic has this ratio greater than 4. The average ra­
tio was around 10. One observes a similar behavior even 
if the traffic volume (number of bytes flowing across) is 
taken into account. For example, about 46% of the traf­
fic volume our model generates are between end-devices 
that are less than 1000 miles apart, whereas, only 13% 
of the traffic volume have their travel distance less than 
1000 miles. 

Another related question that we investigate is the 
spread .of the hop and AS counts and their relationship 
wIth dlStance~ :Majority of the paths have hop count 
less than 6, ana /~e found that the average hop count 
is near 5. The AS count (the number of ASes passed 
on the way) is almost always less than 3 and for most 
of the traffic it is around 2. Also, a bit surprising is 
the fact that the hop count is very loosely correlated 
with the geometric distance. For example, it is almost 
equally likely two end-devices that are 500 miles or 2000 
miles apart will have a hop count of 5. A similar lack of 
correlation also holds between the hop count and travel 
distance. 

Other than the geographic aspects of routing, we also 
investigate the geographic structure of the ASes. As 
discussed in Lakhina et al. [12], an important problem 
with current topology generators is their inability to la­
bel the routers with autonomous systems information in 
a representative way. To help sol~e this problem they 
suggested a study of two geographic properties of ASes: 
(i) the number of distinct locations spanned by an AS, 
and (ii) the geometric dispersion (measured in terms of 
the convex hull area) of an AS. The idea being that 
these two geographic properties can help guide assign­
ment of routers to ASes. We investigate these proper­
ties using our model and arrive at similar conclusions 
as [12] . Note that compared to the datasets used by 
Lakhina et al., we believe that our model captures a 
more realistic abstraction of the entire US Internet in­
frastructure. We observe that the AS size (obtained by 
counting the number of routers) and AS location num­
ber both follow a heavy-tailed distribution and there is 
a strong correlation between size and location number. 
Also, as reported in [12], we notice that ASes have a 
wide variabili ty in their geographic dispersion. For each 
AS , we create its convex hull of its locations and .use the 
area of the convex hull to measure the geographic dis­
persion of that AS. Most of small-sized ASes (less than 
10 routers) have a small convex hull area. The convex 
hull of the large ASes (more than 100 routers) covers 
almost the entire US . Most the ASes are mid-sized (be­
tween 10 to 100 routers) and such ASes exhibit a wide 
variability in their convex hull area. 

The reminder of the paper is structured as follows. In 
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Section 2, we discuss the related work. In Section 3, we 
summarize our Internet model. The model was previ­
ously used by Yan et al. [28] to rank the criticallnternet 
infrastructures within the US. In Section 4, we analyze 
the geographic properties of Internet routing and in Sec­
tion 5, we analyze the geographic properties of the AS 
structure. We conclude in Section 6. 

2. RELATED WORK 
Over the past decade, there have been numerous ef­

forts on analyzing the structural properties of the Inter­
net topology. Much of the work has focused on studying 
topology at the network level. We refer the reader to 
a recent survey of Willinger et al. [27] for more details 
on network topology generation schemes. Our goal is 
not to propose a new topology generation scheme, but 
to point out various geographic properties that arise in 
the Internet. 

Much of the work on Internet routing has mainly fo­
cused on measuring properties like end-to-end perfor­
mance, routing convergence, etc., or on modifying cer­
tain aspects of routing to get an improved performance. 
Our main focus is on understanding geographic prop­
erties of Internet routing. It is well known that the 
Internet route can be highly circuitous. This was first 
suggested by Tangmunarunkit et al. [26], who used a 
simplified routing model to show that the routing poli­
cies significantly increases the shortest hop distance. 
The paper by Tangmunarunkit et al. considered just the 
network path taken by the routes and ignored the geo­
graphic information. Subramanian et al. [23] were the 
first to study geographic properties of Internet routing. 
They used the GeoTrack [17] tool to determine the geo­
graphic path of the routes. They suggested that the cir­
cuitousness of Internet paths depends on the geographic 
and network locations of the end-host, and tends to be 
greater when paths traverse multiple ISP. Their dataset, 
however is quite small (it had only about 84,000 end­
to-end paths). Spring et al. [22] documented some root 
causes of this circuitousness. 

We undertake the first large-scale study of the redun­
dancy in Internet routing. A lot of models have also 
been proposed to charal."terize the routing and traffic ill 
the Internet [13, 14, 30, 18]. Instead of relying on inter­
domain routing models, we use an AS path inference 
algorithm to derive the actual inter-domain paths that 
are used in the Internet. By combining many real-life 
datasets we generate synthetic end-to-end sessions for 
the entire US population. The traffic we generate stati­
cally follows the traffic distribution observed in the US. 

Lal<hina et al. [12] studied a wide range of geographic 
properties of the Internet, focusing on routers links 
and autonomous systems. Most relevant to our ;aper i~ 
their study of the geographic properties of autonomous 
systems. We discuss more about their paper in Sec-



tion 5. Yook et al. [29] studied the fractal dimension 
of routers, ASes, and population density. They argued 
that the fractal dimension of all these parameters is 
around 3/2. 

3. METHODOLOGY AND MODELING 
In this section, we describe the various aspects of our 

modeling setup. As mentioned earlier, we use many dif­
ferent datasets such as the US census data, the US com­
puter usage statistics, and the Internet market shares 
of various service providers to construct a large-scale 
realistic model of the US Internet infrastructure. The 
Internet model that we use in this paper was introduced 
by Yan et al. [28], and we refer the reader to that pa­
per for a complete description of the model. In this 
paper, we summarize only the relevant features of this 
model. The motivation behind the Yan et al. paper was 
to perform a criticality analysis and assessment of the 
US Internet infrastructure. Yan et al. used a variety of 
different. network analysis tools to identify critical In­
ternet infrastructure facilities with the US. The various 
geometric and geographic analysis that we do in this 
paper are of different flavor from the analysis done by 
Yan et al. [28]. 
Backbone Topology. The Internet backbone con­
sists of routers and links that are owned and oper­
ated by the major Internet service providers. We ex­
tract 18,000 backbone equipment locations housing ap­
proximately 291,000 unique IP (Internet Protocol) ad­
dresses in the US from the Skitter dataset collected by 
the CAIDA project (available at http://1oNW . caida. 
org/tools/measurement/skitter/). Since the origi­
nal Skitter dataset is not connected, we add two types 
of virtual links to make the resulting graph connected. 

Each IP address corresponds to a network interface at 
a backbone router and multiple IP addresses can belong 
to the same physical backbone router. This is the well 
known IP alias-re801ution problem [21]. To overcome 
this problem, we use the alias clustering data provided 
by the iPlane project (available at http://iplane . cs. 
washington. edu/data/alias_lists. txt). Using the 
iPlane data, for any two IP addresses in the Skitter 
dataset that belong to the same physical router, we cre­
ate a virtual link betweell them. These are the fir::;t type 
of virtual links that we add to the Skitter graph. 

If two IP addresses belong to the same autonomous 
system (AS) and are located at the same place, it is 
unlikely that traffic between them traverses through a 
different location. The geographical position of each 
backbone IP address, in the form of its longitude and 
latitude, is derived from the ip2location dataset (avail­
able at http://IoNW.ip21ocation.com). Geolocation 
is generally considered to work fairly well to a city­
level resolution, which is our main concern for anal­
ysis. Street-address level accuracy is much harder to 
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achieve. We use a star structure to connect co-located 
IP addresses owned by the same AS (the star struc­
ture is used to prevent addition of too many links). We 
call the center of such a star topology a hub IP. These 
are the second type of virtual links that we add to the 
Skitter graph. 

With these virtual links, we are able to produce a con­
nected Internet backbone that covers more than 99.7% 
of the IP addresses in the Skitter dataset. 

Internet Point of Presence. An Internet PoP (point 
of presence) is an access point to the Internet back­
bone, which is typically owned by an ISP (Internet 
Service Provider), or located in an Internet exchange 
point. We obtained a set of 543 PoPs from the tele­
geography colo cation database (available at: http: I I 
1oNW. telegeography. com/), which lists the operators 
present in each PoP. We then use the Skitter dataset 
to populate the PoPs with backbone IP addresses. For 
this we use the following heuristic: if the latitude and 
longitude of a backbone IP address agrees with that of 
a PoP, we assign it to that PoP. This simple assignment 
scheme, however, leads to inconsistency: for an AS A 
present in PoP P according to the telegeography colo­
cation database, it may not have any of its backbone 
IPs assigned to that PoP. To circumvent this problem, 
we create a virtual backbone IP address that belongs 
to the AS A in PoP P; moreover, if there exists a ge­
olocated backbone IP address that belongs to AS A 
within 15 miles from PoP P, we connect the virtual IP 
address to the geolocated IP address. In total, this pro­
cess created only 1247 virtual backbone IP addresses. 
These virtual backbone IP addresses form only a. small 
fraction (about 0.4%) of all backbone IP addresses. 

Virtual Point of Presence. As the Skitter da.taset 
is generated from traceroute output, inter-AS links de­
rived from it aTe incomplete and biased [10]. To miti­
gate this problem, we assume that all the ASes present 
in the same PoP are internally connected. We create a 
virtual PoP IP inside each PoP and connect it to every 
hub IP in that PoP. Note that this process may intro­
duce artificial inter-AS links that may not actually exist. 
For example, if AS A and AS B do not have any busi­
ness relationships, there may not be physical AS links 
between A and B, but the above process might add links 
between A and B. The routing scheme in our model 
(explained below), however, uses inferred AS-level rela­
tionships obtained from realistic BGP data to compute 
AS-level paths and these artificial liuks will theH Hot be 
used for routing. 

End Devices. We generate synthetic end devices, in­
cluding both residential and business computers, and 
then connect them to the Internet backbone topology. 
We distinguish residential and business computers in 
our model. In total, we generated 73,884,296 residen­
tial computers and 58,923,964 business computers in 



(a) Fraction of the traffic going less than 500 miles (b) Fraction of the traffic going between 500 - 1000 miles 

(c) Fraction of the traffic going between 1000 - 2000 miles (d) Fraction of the traffic going more than 2000 miles 

Figure 1: Traffic: distribution generated by our mode/. Figure (a): Fraction of the traffic going to a geometric distance less 
than 500 miles. Figure (b): Fraction of the traffic going to a geometric distance between 500 and 1000 miles. Figure (c): 
Fraction of the traffic going to a geometric distance between 1000 and 2000 miles. Figure (d): Fraction of the traffic going 
to a geometric dista.nce greater than 2000 miles. Each state is colored by the fraction of the traffic of that particular type 
originating from that state. Blue means between 0-10%, Brown means between 10-20%, Green means between 20-30%, Orange 
means between 30-40%, Purple means between 40-50%, and Red means between 50-60%. For example, if in Plot (a) a state 
is colored blue tben between 0-10% of total traffic originating from that state goes less than 500 miles. 

the US . These numbers are a rough approximation to 
the number of computers in the US. To generate resi­
dential computers , we use the latest US census bureau 
data (like income distribution, percentage of residential 
computer usage for each annual family income category, 
etc) . This gives us a census-block level population in 
each 250x250 square meter grid in the US for the en­
tire 24 hour duration [16]. To generate business com­
puters, we use the Dun & Bradstreet (D&B) dataset, 
which provides information about all companies in the 
US, including their headquarter locations, numbers of 
employees, and SIC (Standard Indnst.rial Classification) 
codes. A SIC code has four digits and indicates the busi­
ness type of a company. The US census data presented 
in [6] gives us computer penetration ratios in different 
business categories. 

Access routers. Internet access routers are used to 
connect end devices to the Internet backbone. We con­
sider three types of Internet access services, dial-up , 
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DSL, and Cable, as they are three mostly widely used 
Internet access methods in the US . We use the Home 
Broadband Adoption 2006 report by Pew Internet & 
American Life Project to randomly assign the Internet 
access type of each end device. 

For the dial-up service, we collect a list of aggTegators 
for each zip code from the Internet Service Provider di­
rectory (available at http://WWIN.findanisp.com) and 
for each of these aggregators we create an Internet ac­
cess router. For DSL and cable services, we use the 
subscriber numbers of the top companies. For both 
these services, the top nine companies collectively cover 
more than 50% of the market , see, e.g., http : //www . 
leichtmanresearch.com/press/081108release.html. 
For each of these companies, we collect a list of zip codes 
where the company provides DSL or Cable services and 
use that information to add an Internet access router 
for each zip code within its service coverage. 

If the chosen access service is dial-up, we randomly 



assign the end device to an aggregator for the zip code 
where the device is located. If the acce.ss type is DSL 
or Cable, we randomly choose an Internet broadband 
access router based on the market shares of the top 
broadband companies. After an Internet access router 
is chosen, we create a link between it and the end device. 

Recall that there are 543 PoPs in the backbone topol­
ogy and each of them has a list of backbone IPs. Also, 
each PoP IP is associated with an AS number. Given 
an Internet access router, we use the following heuristic 
to decide which PoP IP it connects to. First, we sort 
all PoPs according to their distances from the Internet 
access router. Then, starting from the closest PoP, we 
check whether it has a PoP IP that peers with the ISP 
company owning that Internet access router. This can 
be done by checking whether the AS number of the PoP 
IP connects to anyone of the AS numbers owned by the 
ISP company in the AS-level graph. If we cannot find 
one, we try the second closest PoP. This process repeats 
until one such PoP IP is found. Thereafter, we create 
a link between it and the Internet access router. 

Sessions. We gene rat lsynthetic sessions, including 
HTTP' email, P2P, and streaming Lraffic, forp v.;:ry com­
puter for a period of 24 hours) We gen~. a total 
of l.1~ billion ~essions For ·-erach Internet se§.!.Q , ~1W'e 
assig 1 . - a . . type and cho ose its origin and des­
tination. For an email or P2P session , we assume that 
the end-points of the session are end-devices residing 
either at a home or a business location. For HTTP 
or !:itreaming traffic, we assume that the source of the 
session is an end-device whereas the destination of the 
session is a server. To pick an end device as either 
the source or destination, we pick a device from a (US) 
state based on the percentage of devices in that state. 
When the end-device is a server (for HTTP and stream­
ing sessions), we pick a server from one of the top 100 
servers that are most visited, based on the proportion 
of web access hits they receive (information available 
at http://wwVl.alexa.com/) . Many web servers are 
located in the technological centers of Silicon Valley 
and Washington D.C., as well as a few smaller centers 
mostly in metropolitan areas. VVe ignore the effects of 
content distribution networks (as they are difficult to 
model). Figure 1 gives a more visual representation of 
the sessions that our simulation generates. For example, 
Figure 1 (b) shows t.hat more than 20% of t.raffic origi­
nating in the mid-west states of North Dakota, South 
Dakota, Kansas, Oklahoma, and Texas travel goes Lo 
destinations less than 1000 miles away, which roughly 
makes it to either coast. Similarly, from Figure ltd) 
we see that about 40-50% of the traffic originating from 
Ca.lifornia goes a distance greater than 2000 miles (so 
to east coast). 

In our simulations, 40% of the sessions are HTTP 
(with a split of 25.14% and 4.86% among home and 
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business computers), 30% of the sessions are email (with 
a split of 1l.87% and 18.13% among home and business 
computers), 20% of the sessions are P2P (with a split of 
18.71% and l.29% among home and business comput­
ers), and remaining 10% of the sessions are streaming 
(with a split of 6.29% and 3.71 % among home and busi­
ness compnters). The above traffic mix was gem'rated 
in consultation with the information available from [1, 
2,3, 5]. 

Previous works have suggested that approximately 
80% of the web document transfers are less than 100 
kilobytes in size [4], but this distribution has a heavy 
tail [4, 7] . We choose 25 kilobytes as the average size 
of the HTTP sessions. This number is computed by 
downloading a number of webpages and finding the av­
erage size of these downloaded web pages. We choose 
the average size of the email sessions as 100 kilobytes. 
This number is based on the average size of all emails 
in the inbox of various employees at a large institu­
tion. The average streaming rate of streaming sessions 
is 200 kilobytes per sec [9] and the average duration of 
streaming session is approximately 125 sec [24] . This 
gives an average size of approximately 250 x 125 ~ 30 
megabytes for streaming sessions. The average size of 
a P2P session is computed by observing the history of 
already completed transfers in a P2P client [20]. Now 
for each session its size (based on whether it is HTTP, 
email, P2P, or streaming) is drawn from an exponential 
distribution with mean (average size) as given above. 

Routing. Internet routing is strictly hierarchical: inter­
domain routing protocols (e.g., border gateway pro­
tocol) regulate Internet traffic aIIlollg differeut ASes, 
and intra-domain routing protocols (e.g., Open Short­
est Path First and Routing Information Protocol) spec­
ify how Lraffic i~ routed wiLhin t.he same AS. Due to 
complexity of BGP and the fact that commercial re­
lationships between ASes are generally unavailable to 
the public, we use AS-level paths inferred from exist­
ing BGP routing tables for inter-domain routing. We 
use the AS path inference algorithm from [19]' which is 
able to infer AS-level paths with 95% accuracy. For the 
intra-domain routing, we simply use the shortest path 
algorithm. 

To compute the route between any two PoP IPs we 
use an algorithm similar to [15] which has been shown to 
achieve more than 78% accuracy. For some estination 
PoP IPs, the algorithm in [19] fails to infer AS-level 
paths to them. In such circumstances, we derive their 
AS numbers and use VlWVl. xedorbi t . com Lo obtain a list 
of prefixes for each of them . We then use the algorithm 
in [19] again to infer AS-level paths to these prefixes. 
These derived AS-level paths are further used to com­
pute the IP-level paths to these destination PoP IPs. 
A more thorough description of the routing scheme is 
given in [28]. 
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Figure 2: Each point represents an Internet session. The X -axis represents the route distance between the source and the 
destination of the session. The Y-axis represents the geometric distance between the source and the destination of the session. 
Only a uniform 1/10000th fraction of all sessions we generated are represented in this plot. The plot on the right is same as 
that on the left except that lines y = x, y = - x + 5100, and y = x - filOO are drawn for visual aid. . 

4. INTERNET ROUTING ANALYSIS 
We analyze the paths generated by our experiments. 

For a session between a source at location s and a des­
tination at location t, we use the Haver-sine formula to 
compute the geometric distance between sand t. The 
Haversine formula takes as input the latitude and longi­
tude of the end-points. Let (lats , Ion.) and (latt,lant) 
be the latitude and longitude of the locations sand t. 
The Haversine distance d between sand t equals, 

d= R x c 

Here, R = 3961 miles is the radius of the earth and 
c = 2 x arctan2( Va,;r=Q:) where a = sin2«latt -
lats)/2) + cos(lats) x cos( latt) x sin2«lant - lans)/2). 

4.1 Nationwide Analysis 
The route (travel) distance between sand t is com­

puted by summing up the lengths of the link on which 
the packets travel from s to t in our simulation. Figure 2 
plots the geometric distance against the route distance. 
Each point here is a session in our simulation. Notice 
that since the route distance is always greater than the 
geometric distance, there are no points above the y = x 
line. In the following, we refer to geometric and route 
distance of a session to mean the geometric and route 
distance between the end points of the session. 

In Figure 2, we notice that for many sessions the route 
distance is far greater than their corresponding geomet-

Figure 3: A real traceroute path . The traceroute was sent 
from a computer in Santa Fe, New Mexico to Palm Beach, 
Florida. Notice the long route going through both coasts. 

their corresponding geometric distance may not be all 
that surprising given that there are many economic and 
engineering aspects that drive the Internet routing and 
this observation has been made before (see, e.g., [26, 
23]) . But what is a bit surprising is the number of such 
sessions (we elaborate this point in Section 4.3). 

Another surprising feature from Figure 2 is the heavy 
concentration of points near the lines y = x, y = -x + 
5100, and y = ~ = -5100 (in form of a triangular strip). 
Note that , 5100 = 2 x 2550 is approximately the round­
trip distance between the east coast and the west coast 
(2550 is approximately the average distance between 
the east and the west coast of the US). We now try to 
explain why there is this concentration near these lines. 
We look at each of the these three lines separately. 

ric distance. In order to validate the feasibility of our 
synthesized data, we geolocated a few trace route ex­
ercises. One such example is shown in Figure 3. It is 
very easy to find such long paths (that go from co~t to 
coast multiple times), in fact it is more the rule- than 

(1) Line y = x: The points close to the line y = x rep­
resent the sessions where the source and destination 

the exception and we encourage the reader to try this 
little experiment at home . The fact that there exist~ 
sessions whose route distance is sigTlificaTltly more thaTl 
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are at distance y apart, and the routes taken by the 
packets have lengths almost y (i .e., sessions where ge­
ometric distance is very close to the route distance) . 
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Figure 4: Plot for the sta.te of California. Figure 5: Plot for the state of Illinois. 

For each state, only a uniform 1/1500th fraction of all sessions that we generated for that particular state are represented in 
this plot. The red markers are drawn only for visual aid . 

(2) 

(3) 

These points represent the best-case scenario as the 
routing is almost perfect. 

Line y = -x + 5100: The points close to the line 
y = -x + 5100 == x = 5100 - y represent the sessions 
where the source and destination are at a geometric 
distance of y, whereas the route distance is 5100-y = 
2 x 2550 - V . Most of the poin~l that lie close to this 
line h ve the property that iPSource is at location 
s and~ estination' >at location t then roughly either of 
the following happens: (a) if s is to the west of t , then 
the route taken by packet in going from s to t involves 
going s to the west coast , from the west coast to the 
east coast, and from the east. coast to i, or (b) if s is to 
the east of t, then the route taken by packet in going 
from s to t involves going s to the east coast, from the 
east coast to the west coast, and from the west coast 
to t. To quantify the above statement , we picked all 
the points that lie close to this line (between the lines 
y = -x + 4900 and y = -x + 5300) and analYl:ed the 
paths that produce these points. We noticed that 
more than 90% of these points satisfied either the 
property (a) or (b). 

Line y = x - 5100: The points close to the line 
y = x - 5100 == x = 5100 + y represent the sessions 
where the source and destination are at a geometric 
distance of y, whereas the route distance is 5100+y = 
2 x 2550 + y. Most of the points that lie close to this 
line have the property that if source is at location s 
and destination at location t then roughly ei ther of 
the following happens: (a) if s is to the west of i, 
then the route taken by1.packet in going from s to t 
involves going s to the east coa.'3t, from the east coast 
to the west coast, and from the west coast to i, or (b) 
if s is to the east of t , then the route taken by packet 
in going from s to t involves going s to the west coast, 
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from the west coast to the east coast, and from the 
east coast to t. Again to quantify this statement, we 
picked all the pOints that lie close to this line (between 
the lines y = x-4900 and y = x-5300) and analyzed 
the paths that produce these points. We noticed that 
98.5% of these points satisfied either the property (a) 
or (b). 

From Figure 2 and the above discussion, we conclude 
that there is a very interesting coast to coast shuttling 
of traffic evell wilen the source and destillation are close 
to each other. In particular, peering agreements among 
ASes are typically structured such that geometric dis­
tance is not the main cost driver. 

4.2 Per State Analysis 
Figure 2 shows that at a national level there are some 

interesting phenomena hapRe?i l}~ . So t.he natural ques­
tion would be to see if son~i:hl lar happens when we 
restrict ourselves to traffic originating from some par­
ticular state in the US. To answer this question, we 
repeated the simulation on a state level. For each state 
in the US, we looked at the sessions originating from 
that particular state and used the route distance that 
we get out of this to redraw the previous plot between 
the geometric distance and the route distance. In the 
full version, we present the analysis of all the 48 states 
(excluding, Hawaii and Alaska which were not part of 
our model). For now, we concentrate on 6 states, that 
form a good representation of our results. Vve now ana­
lyze some interesting trends appearing in these six state 
plots. 

(1) California: The plot for California (Figure 4) follows 
the national plot (Figure 2). \\Ie observe that there 
are lots of points near the lines, y = x, y = - .1: + 
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Figure 6: Plot for the state of New York. Figure 7: Plot for the state of Florida. 

For each state, only a uniform 1/ 1500th fraction of all sessions that we generated for that particular state are represented in 
this plot. The red markers are drawn only for visual aid . 

5100, and y = x - 5100. The reason for this behavior 
is same as in the national case. Also , compared to 
other states there are far more points in the California 
plot because our session generation model takes into 
account population, income, economy of a region , etc, 
which are much higher in California than other states. 

(2) Illinois: The plot for Illinois (Figure 5) has two thick 
horizontal stripes. The first one is approximately be­
tween y = 550 to y = 800. A majority of the points 
that lie in this stripe represent sessions originating 
from Illinois and going to the east coast. Observe 
that even for the same geometric distance there is 
a wide discrepancy in the route distance. The sec­
ond stripe is approximately between y = 1700 and 
y = 1800. A majority of points that lie in this strip 
represent sessions originating from Illinois and going 
to the west coast. 

(3) New York: The plot for New York (Figure 6) has 
lots of points between lines y = x and y = x + 400. 
About, 80% of the points that lie between these two 
lines represent sessions originating from New York 
and taking a small detour within the east coast (like 
going to Washington DC) before heading to the des­
tination. For larger values of y , this destination is the 
west coast. In the New York plot, one also notices a 
concentration of points around the lines y = x + 2500 
and y = x + 5000. 

(4) Florida: The plot for Florida (Figure 7) is similar to 
Illinois in that it has two dominant horizontal stripes. 
The first stripe is approximately between the lines 
y = 700 and y = 1000, and it is produced by the traf­
fic originating from Florida and going to the North­
east of the US . The second stripe is approximately 
between y = 2400 and y = 2600, and this stripe is 
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produced by the traffic originating from Florida and 
going to the west coast. 

(5) Texas: The plot for Texas (Figure 8) has lots of 
points in and around the circles depicted in the plot . 
This circle is on the left is caused by the traffic origi­
nating from Texas and going either to the east or the 
west coast (which are roughly at the same distance). 
The circle on the right is again caused by the traffic 
originating from Texas and going either to the east or 
the west coast, but this time there is a detour through 
the other coast, i.e., the traffic to the west coast takes 
a detour through east coast and vice-versa. 

(6) New Mexico: The plot for New Mexico (Figure 9) 
is quite sparse because population, income, etc, are 
quite low in New Mexico. There is some concentra­
tion of the pOints in and around the circle depicted in 
the plot. This is mainly due to Lhe traffic originating 
from New Mexico and going to the east coast. 

4.3 Distance Ratio Analysis 
Figure 2 and the various state plots Figures 4 to 9 

showed that it in many cases the routing distance is far 
greater than the geometric distance. To better under­
stand how far apart these distances could be, we look 
at various "ratio plots". In Figure lO(a), we study the 
ratio of route distance to geometric distance. Let us 
define stretch2 of a path as the ratio between length 
of the route and the geometric distance between the 
end-points of the path. For about 45% of the paths 
the stretch is between 1 and 2. An ideal stretch of ex­
actly 1 was never a.chieved, but this is to be expected, 
since some small amount of detour compared to geomet­
ric distance will always exist. About 81% of the paths 

2In [231, stretch is referred to as the distance ratio. 
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have stretch less than 4. So still a significant fraction 
(about 19%) of the paths suffer a large detour from the 
geometric path. The average stretch (over all sessions) 
is 10.25. 

In Figure 10 through heat maps we also show: (i) 
stretch vs. geometric distance, and (ii) stretch vs. travel 
distance. In these heat maps the number of sessions de­
crease gradually as we go from a red to blue region. An 
observation is that generally the shori distance traffic 
(i.e., traffic going between source and destination which 
are geometrically close) have large stretch. For exam­
ple, if restricted to traffic that goes less than 500 miles 
(in geometric distance) then the average stretch is as big 
as 35 . The simple reason for this is that if the geomet­
ric distance is small, then even a small detour (relative 
to the geometric distance) will result in large stretch. 
Most of the long distance traffic (i .e., traffic going be­
tween source and destination which are geometrically 
far) have small stretch. For example, if considers traffic 
that goes more than 2000 miles (in geometric distance) 
then the average stretch is only around 1.8. The reason 
for this being that since the geometric distance is big, 
even a reasonably big detour (relative to the geometric 
distance) will not lead to a big stretch. 

4.4 Traffic Distribution Analysis 
The previous plots were only considering distances, 

and were completely ignoring the vol ume of traffic (mea­
sured in number of bytes) that go across various source­
destination pairs. As one would expect there is a lot 
of asymmetry ill the volume of traffic among differe1lt 
source-destination pairs . In Figure l1(a), we compare 
the volume of traffic against the geometric distance. 
This plot just depends on our model of traffic. (session) 
generation and is independent of the routing strategy 
used. About 22% of the traffic volume our model gen­
erates goes less than 500 miles, about 46% of the traffic 
volume goes less than 1000 miles, and about 76% of the 
traffic volume goes less than 2000 miles. The farthest 
source-destination pair in our model was around 2650 
miles apart. What is also interesting to observe is the 
multi-modality of this plot that arises due to distances 
between various metropolitan areas in the US. Due to 
large population density in the metropolitan areas a 
large fraction of sessions we generate are between these 
metropolitan areas. 

In Figme 11 (b), we plot the voillme of traffic against 
the route distance. Because of the routes being far 
from geometric, only about 13% of the traffic volume 
has route distance less than 1000 miles , about 26% of 
the traffic volume has route distance less than 2000 
miles, and about 76% of the traffic volume has route 
distance less than 5000 miles. Comparing this to the 
Figure ll(a), one notices that about 76% of the traf­
fic vol ume has geometric distance less thall 2000 miles , 
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Figure 12: Frequency distribution of the hop count. 
Sample size: around a million sessions. 

whereas, to get the same percentage in the route dis­
tance one has to go 5000 miles. So again, one notices 
the discrepancy between the properties of travel and 
geometric distances. 

4.5 Hop Count and AS Count Analyses 
We now analyze the hop and AS distribution of the 

routing paths. The hop count between a source and des­
tination is defined as the number of hops that a packet 
takes in going from the source to the destination. In 
Figure 12, we plot the distribution of the hop count. 
We observe that a large fraction of paths (about 38.3%) 
have a hop count of 6. Also, about 20.8% of the paths 
have a hop count of 5 and 25.4% of the paths have a hop 
count of 6. The weighted mean hop count is 5. The plot 
also suggests that the hop count distribution is tightly 
concentrated around its mean. 

In Figure 13, we plot the variation of the hop count 
against the geometric distance. The plot suggests that 
the geometric distance has very little effect on the hop 
count. For example, if we look at the paths with hop 
count 6, we see that there is a uniform spread of these 
paths independent of the distance between source and 
destination. That is, there are almost equal numbers of 
close and far source-destination pairs with a hop count 
of 6. The same observation holds for other hop counts 
too. So we conclude that the number of hops is de­
pendent more on the commercial relationships between 
ASes, and less on the geometric distance. To make this 
conclusion more formal, we measure the correlation co­
efficient3 between hop count and geometric distance. 
The correlation coefficient turned out to be quite small 
(about 0.15) suggesting that the hop count and geomet­
ric distance are almost independent. A similar conclu-

3Given n measurements of variables F and G, 
(/J,gd,.·.,(fn,gn), the (Pearson) sample corre­
lation coefficient between F and G is defined as 
"£~-l (fi - f)(gi - g)/((n - 1)of09)' where f and 9 
are -the sample mean of F and G and Of and 0 9 are the 
sample standard deviation of F and G, respectively. 
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Figure 13: Variation of hop count with geometric distance. 
Sample size: around a miJIion sessions. 

sion wa~ obtaincd by Huffakcr et al. [11] by analy:ting 
t.he CAIDA dataset for the Asia-Pacific region. 

In Figure 14, we plot the variation of the hop count 
against the travel distance. As in Figure 13, we observe 
little correlation between the hop count and the travel 
distance (the correlation coefficient is only 0.136). 

The AS count between a source (s) and a destina­
tion (t) is defined as the number4 of ASes crossed by a 
packet traveling from s to t (including, the source and 
destination ASes). If the entire path remains within a 
single AS, then the AS count is 1. In Figure 15, we plot 
the distribution of the AS count. We observe that a 
large fraction of paths (about 75.8%) have an AS count 
less than 2. About. 96.2% of paths have an AS count 
less than 3, which can be used to conclude that almost 
all routing paths cross at most 3 ASes. 

4We count the number of crossings between ASes, so if a 
path enters the same AS twice, we count it as two crossings. 
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Pig'ure 15: Frequency distribution of the AS count. 
Sample size: around 8 million sessions. 

5. GEOGRAPHIC ANALYSIS OF THE ASES 
We now turn our attention to properties of autonomous 

systems. Previous work has documented the distribu-
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tion of AS size measured in terms of degree in the AS­
graph [8, 28], measured in terms of number of routers 
within the AS [25], and measured in terms in number 
of (distinct) locations in which a router for the AS is 
present [12]. In all these cases, the observed distribu­
tions were heavy-tailed with the tail spanning orders 
of magnitude. In Figure 16, we plot log-log comple­
mentary distribution of the size (measured in terms of 
the number of routers) of the ASes. In Figure 17, we 
plot log-log complementary distribution of the nwnber 
of distinct locations in which an AS is present. Both 
these figures agree with the conclusion of [12] and sug­
gest that both these AS properties are heavy-tailed. 
One also sees a strong correlation between the AS size 
and location numbers (i.e., the larger the size of AS the 
more locations it is present in) and this is confirmed by 
a correlation coefficient nnmber of 0.84. 

Figure 18 plots the area of convex hulls of various 
ASes as a function of their sizes. Figure 19 plots the 
areas of convex hulls of various ASes as a function of 
their location numbers. We discard the ASes that have 
presence in less than 3 locations (as such ASes have a 
convex hull area of zero). 

The Figures 18 and 19 exhibit almost the same behav-
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Figure 19: Convex hull area vs. Number of locations. 

ior. Most of the small ASes (with less than 10 routers 
or presence in less than 10 locations) have small area. If 
we consider ASes that have between 10 to 100 routers, 
or are present in between 10 to 100 locations, then there 
is big variability in terms of their hull area. Most of the 
larger ASes (with more than 100 routers or presence in 
more than 100 locations) are dispersed geographically, 
and a large convex hull area which is proportional to 
the square area of the whole continental US5. To quan­
tify these previous observations, we measure the corre­
lation between the various parameters. The correlation 
coefficient between convex hull area and size of an AS 
is 0.3], and the correlation coefficient between convex 
hull area and location presence of an AS is 0.34. The 
intuitive reasoll why the correlatioll coefficient is slllall 
is that most of the ASes are neither too small nor too 
big, and such medium-level ASes have big variability in 
their convex hull area, and thus bringing the correlation 
coefficient down. 

6. CONCLUSIONS 
In this paper, we studied a variety of geographic prop-

5The area of the US is approximately 3.7 x 106 square miles. 



erties of the US Internet infrastructure. To perform our 
study, we combined many different data sources to cre­
ate a realistic model of the US Internet infrastructure. 
We show that a large fraction of the traffic gets routed 
through the coasts and ill many cases the traffic boullces 
multiple times between the two coasts before reaching 
the destination. We also investigated the geographic 
strllcture of the ASes, and confirmed the observation 
made by Lakhina et al. [12]. The contributions made 
in this paper extend our knowledge of the geographic 
aspects of the Internet. The results can be used for var­
ious policy decisions and for designing better generative 
models for the Internet. 
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