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Abstract

[n November 2005, the international workshop “Gamma Evaluation Codes for Plutonium and
Uranium Isotope Abundance Measurements by High-Resolution Gamma Spectrometry:
Current Status and Future Challenges” was held in Karlsruhe, Germany. Some of the main
issues discussed during the November 2005 meeting were related to concerns voiced by
international inspectorate authorities such as the International Atomic Energy Agency
(LAEA), the European Atomic Energy Community (EURATOM), and the Brazilian-
Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) about the
standardization and sustainability of gamma-ray isotopic analysis codes that are commonly
used during safeguards inspections. A follow-up international workshop was conducted in
Oak Ridge, TN in 2008. This workshop was in response to needs expressed by the
international safeguards community during the Karlsruhe meeting and recommendations
made under Action Sheet 14; a cooperative effort between the U. S. Department of Energy
and ABACC. The purpose of the Oak Ridge workshop was to bring code developers and end
users together to better understand the capabilities and limitations of the codes; to discuss
mechanisms to ensure these codes are sustained and quality tested; and to ensure updates or
revisions are performed in a controlled manner. During an Action Sheet 14 meeting held in
Rio de Janeiro, Brazil in which the IAEA and EURATOM participated as observers, and in
subsequent meetings of the European Safeguards Research and Development Association
(ESARDA), all parties agreed that the regional working group initially established under the
DOE/ABACC cooperation should be expanded to an international working group. The
purpose of the international working group is to provide a forum to exchange information,
discuss technical developments, and validate and test the various codes. However, progress to
formally establish the working has been slowed by a lack of dedicated funding and
competing priorities within the various international organizations. Recently, the ESARDA
Nondestructive Assay Working Group established a dedicated website for the International
Working Group on Gamma Spectrometry Techniques (IWG-GST). In this paper, we will
explore specific steps that should be taken to strengthen this working group’s ability to affect
development of a common testing platform and address concerns regarding applicability,
sustainability and version control for these important codes.



1. Introduction

In November 2005, the international workshop “Gamma Evaluation Codes for Plutonium and
Uranium lsotope Abundance Measurements by High-Resolution Gamma Spectrometry:
Current Status and Future Challenges” was held in Karlsruhe, Germany'". Some of the main
issues discussed during the meeting were related to concerns voiced by international
inspectorate authorities such as the International Atomic Energy Agency (IAEA)?, the
European Atomic Energy Community (EURATOM), and the Brazilian-Argentine Agency for
Accounting and Control of Nuclear Materials (ABACC) about the standardization and
sustainability of gamma-ray isotopic analysis codes that are commonly used during
safeguards inspections. During an Action Sheet 14 meeting held in Rio de Janeiro, Brazil in
which the IAEA and EURATOM participated as observers, and in subsequent meetings of
the European Safeguards Research and Development Association (ESARDA), all parties
agreed that the regional working group initially established under the DOE/ABACC
cooperation should be expanded to an international working group. A proposal to launch
The International Working Group on Gamma Spectrometry Techniques (IWG-GST) under
the auspices of the ESARDA NDA Working Group was accepted in a meeting organized
in Aix-en-Provence, France, in May, 2007. A follow-up international workshop was
conducted in Oak Ridge, TN in 2008 in response to the Karlsruhe meeting and
recommendations made under Action Sheet 14°). The purpose of the Oak Ridge workshop
was to bring code developers and end users together to better understand the capabilities and
limitations of the codes; to further discuss mechanisms to ensure these codes are sustained
and quality tested; and to ensure updates or revisions are performed in a controlled manner.
In the following, we will first describe the background and recent development of the main
enrichment measurement and plutonium isotopics methods and then explore specific steps
that are being taken and should be taken to strengthen this working group’s ability to affect
development of a common testing platform and address concerns regarding applicability,
sustainability and version control for these important codes.

2. Current Codes

The current gamma-ray isotopics evaluation codes can be broadly divided into two
categories; measurements with medium resolution detectors, such as Nal or CdTe
detectors that operate in ambient temperature; and measurements with high resolution
detectors, such as HPGe detectors. Medium resolution detector systems based on Nal
detectors are used extensively by international safeguards inspectorates from ABACC,
EURATOM and the IAEA to verify uranium enrichment (7] This routine use is generally
built around the enrichment meter method™, which uses the 185 keV peak of U-235 as
the basis of the analysis. Example portable instruments that use the enrichment meter
method include the PMCA®! and the IMCAM®'!, High resolution detector systems can
also be used for uranium enrichment measurements with the enrichment method''?! and
are required for plutonium analysis. Several software packages have been developed for
this puerose over the years. The most well known plutonium isotopics codes are

MGA" > and FRAM!"”!, Codes that are less well known and not as widely used by the
international community include TRIFIDY® and 1GA!.



Unfortunately, there are two somewhat divergent codes that both use the MGA name.
The original Ray Gunnink MGA code has been commercialized through Canberra, and
enhanced for example to deal with poor statistics and problematic peak shapes, to provide
high energy only analysis, and to include uranium analysis under the name MGAU
[1819,2021.22.23] At the same time, Lawrence Livermore National Laboratory retained a
copy of the MGA for plutonium analysis at the time of Dr. Gunnink’s retirement and has
commercialized it and other related routines described below through Ortec under the
name MGA++ #2521 The distinction between MGA and MGA++ is subtle. The
MGA++ is a suite of codes that include an improved MGA for plutonium analysis; a
slightly different U235 code than MGAU for uranium analysis; MGAHLI, that uses only
>200 keV plutonium data for plutonium isotopic analysis; and CZTU - a uranium
isotopic analysis viaa CZT detector®”). However, the underlying unfolding engines are

mostly using routines originally created by Dr. Gunnink. (28,29

The FRAM code has also been developed further®>"3% at Los Alamos National
Laboratory. The latest development added many new features in response to new
measurement requirements and to meet user needs (3334 Some of the improvements
worth mentioning here are:

- Physical model efficiency curve fit in addition to the existing empirical model
curve;

- Capability to fit the X-ray peaks;

- Uranium analysis enhancements, which include the corrections for the loss of
peak areas due to summing, the 28 correlation prediction, and the decay
correction for non-equilibrium Z8U/7 Th;

- Capability of isotopic analysis data taken with the Peltier-cooled CdTe detectors
3536 and

- Automated parameter file selection to speed the measurements process for robotic
applications or applications for samples with largely unknown contents.

Since the isotopics codes were originally conceived, there has been a significant amount
of development in detector technology, signal processing electronics and computer
technology. The electronics have become digital, and more portable. In most cases, a
digital implementation provides superior throughput, but requires a different setup and
optimization to make the electronics match the detector and for the isotopics codes to
work properly. Advancements in computer processors and changes in operating systems
have resulted in updates to various codes.

For medium resolution detectors, LaBr crystals have begun to replace the Nal detectors in
many applications due to improvements in resolution. Additional scintillation crystals
with comparable or better characteristics are being investigated. This has prompted a
renewed interest in using more sophisticated analysis algorithms for these medium
resolution detectors””**!. The more sophisticated analysis algorithms generally use a
peak fitting technique which is an advanced version of the enrichment meter technique
that utilizes computed responses that are fit by least squares to the spectral data. Since
the technique uses computed spectrum responses to analyze the data, the results are




generally more accurate for the same measurement system and conditions. In addition,
this technique can account for interferences from other isotopes such as thorium. The
NalGEM P analysis software, also developed by Dr. Gunnink, is one such example. The
NalGEM software is commercialized through [Cx Technologies and GBS Elektronik has
been approved both by ABACC and the IAEA for safeguards inspections.

Cadmium Zinc Telluride (CZT) is beginning to replace more conventional CdTe
detectors. Conventional CdTe detectors are available in larger volumes than CZT but
have a lower resistivity and band gap (1.6 eV for CZT compared to 1.47 eV for CdTe)"".
The higher band gap translates into a lower leakage current and a potentially better
resolution. The relative efficiency of the CZT material is also approximately 3 times
higher than the efficiency of a CdTe detector at 81 keV and as much as 20 times higher at
356 keV. CdTe detector performance can be improved with the use of pulse risetime
discrimination and/or Peltier cooling. Relative to the other detector types, the CZT
detectors are still quite small. Many implementations exist where multiple CZT crystals
are combined with sophisticated electronics to provide a single composite system with
better detection sensitivity than using a single crystal. The miniaturized digital electronics
implementations make this more practical and affordable than ever. This has prompted
analysis algorithm development with more sophisticated approaches.

HPGe detector manufacturers have developed extended energy range detectors that
provide resolution that is similar to the traditional smaller detectors, while providing an
acceptable resolution to use the isotopics codes with the added benefit of an increased
detection sensitivity relative to the small low energy only detectors! #2441 However,
the setup parameters of the isotopics codes need to be adjusted for optimum performance.
In addition, the electrical cooling technology has become good enough to produce an
electrically cooled, portable HPGe detector system that can be used for isotopics
measurements in the field!*®*” without the use of liquid nitrogen.

Additional challenges are posed to the isotopics codes by their extensive use for new
materials and material combinations that were not in use during the original design phase
of the codes. This includes measurement of low-activity, heterogeneous waste commonly
encountered during cleanup of old nuclear sites. Some of these scenarios are being at
least partially resolved with the combination of modeling software and the isotopics

4
codes*® *,

Another critical point is related to quality assurance requirements established by national
and international regulatory bodies. Users, code developers and vendors have to follow
several steps if they want to have their quality system recognized by external
organizations. In this regard, elaboration of codes and reporting of the results should be
appropriately documented and validated, preferably using an internationally agreed upon
methodology. This usually requires a level of transparency that commercial code
developers may not want to provide due to the proprietary nature of the code. However,
this level of transparency is needed to resolve questions or discrepancies that may arise
from results generated by the codes that do not agree with process knowledge or other



analysis techniques. It is important that each type of code provide similar results for
similar spectra.

3. Further Development and Sustainability

It is quite clear from the review above that activity to maintain these important codes
continues by many parties. At the same time, these efforts are driven by sometimes rather
exotic situations only. There is no generally accepted method to disseminate information
regarding updates, nor is there a generally accepted envelope of scenarios that the codes
are designed to address. The goal of the International Working Group on Gamma
Spectrometry Techniques (IWG-GST) is to provide a forum for exchange of this kind of
information, technical developments, and validation and testing of gamma-spectroscopy
techniques used to determine the isotopic composition of uranium and plutonium
samples. The IWG-GST will also address issues related to gamma evaluation codes, such
as their applicability, capability and limitations, standardization, sustainability, and
version control. Under the working group, technical personnel from the IAEA, national
and international research institutions, the detector and instrument manufacturers, and the
nuclear fuel cycle industry can provide insight to issues commonly encountered when the
codes are used in a laboratory or field measurement environment. The code developers
get an opportunity to understand the end user issues to provide information and
suggestions to the end users related to the capabilities and limitations of the individual
codes.

To facilitate this exchange of information, the IWG-GST has started the development of a
testing platform for gamma evaluation codes. This platform, which will be hosted in the
webpage of the ESARDA NDA working group', will collect a set of gamma spectra
useful to test the performance of isotopics evaluation codes. The target users of the
platform will be:
- code developers that can use the platform to assess the capability of their newly
developed codes or new versions of existing codes; and
- analysts that can use the platform to compare different codes in order to select the
one that best fits their needs.

The tentative architecture of the platform has been discussed in several meetings and in
principle agreed within the IWG-GST. The test platform will contain different sections
with different purposes:

- set of spectra acquired in ideal measurement conditions mostly devoted to
performance assessment of the accuracy of codes in a “typical” range of
application;

- spectra acquired in non-ideal conditions to test the robustness of the analysis to
harsh or bad conditions; and

- spectra acquired in unusual situations in order to test the extension of the
application of codes outside the present “normal” operational conditions.

' The library of spectra and testing platform can be found at http://esarda2.jrc.it/internal_activities/ W G-
NDA/index.html. Access to the site is restricted but a password will be provided upon request.




The most relevant part of the platform will be the first section, because this is where the
user will be able to derive useful information about the capability, accuracy and
limitations of each code. This section will also provide a controlled mechanism for
mutual inter-comparison benchmarking of the codes and in the future could be the seed of
a possible procedure for code certification. The second and third section can be used to
broaden the knowledge about the behavior of codes outside and beyond the normal
application conditions and can provide a useful support to the users who need to tackle
special applications. The codes are not required to “pass” the tests with spectra of the
second and third section, but it will be useful to know the limitations of the code relative
to the end users unique measurement application. This will provide the international
community with a mechanism for exchanging results for measurements on samples that
are not typically encountered in today’s nuclear fuel cycle.

Table 1 shows the preliminary list of spectra that will be included in the testing platform.
Each spectrum will be documented with an accompanying description file. The spectra
will be provided in their native format (.cnf, .chn, .spc, .spe, ...) as well as in an ASCII
format in order to guarantee the portability. Table 2 lists the organizations that have
provided spectra to date. Table 3 through Table 6 provides a listing of spectral data
identified for ideal and non-ideal situations. Other international organizations are
encouraged to provide additional spectra to expand and complete this collection.

Table 1 Structure of the depository for the test spectra.

Section 1 - Ideal spectra

Section 1a — Uranium spectra

Depleted uranium; €<0.7%, Natural uranium; e = 0.7%
LEU; e = (0.7%, 2%), LEU; e = (2%, 5%), LEU; e = (5%, 20%)

Material types HEU; e = (20%, 35%), HEU; & = (35%, 60%), HEU; € = (60%, 90%)
HEU; e > 90%, Reprocessed uranium
Detector types'” HPGe planar, HPGe extended range, HPGe coaxial, CZT, Nal, LaBr;

Section 1b — Plutonium spectra

Weapons grade; (ry36~94%, 1240~6%)
Low burnup; (r239~80%, l‘240~1 90/0)
Material types Medium burnup; (r;30~60%, r240~25%)
High burnup; (ry30~50%, r240~27%)
MOX; (Pu:U~1:40), MOX; (Pu:U~1:20)
MOX; (Pu:U~1:10), MOX; (Pu:U~1:3)

Detector types“’ HPGe planar, HPGe extended range, HPGe coaxial, CdTe, LaBr;

Section 2 — Spectra acquired in non-ideal conditions

Poor statistics, Poor resolution
Anomalies Too high count rate (dead-time, pile-up), Bad electronic setting
Strong attenuators, Non-infinite thickness, High background

Section 3 — Unusual samples

Pu from extremely high burnup
Recycled MOX, Aged Pu with high Am
Pure isotopes; (Puy39>99.9%), Pure isotopes; (Puy;6>99.9%)
Material types Pure isotopes; (Amy,,), Pure isotopes; (Puy;s>80%)
Freshly separated U, Freshly separated Pu
Contamination from FP, Contamination from MA
Inhomogeneous U waste, [nhomogeneous Pu waste
Inhomogeneous U/Pu waste

(1) ldeally a spectrum for any combination detector/material type.




4. Recommendations

Beyond accumulating an agreed upon set of spectra that can be used to evaluate the
performance of the isotopics codes, producing a standard test method and a best practice
guide are the next key steps to proceed forward. In addition, it is important to note that
the upkeep and maintenance of these codes requires funding. The codes that are
commonly used by the international community were developed within the framework of
the U. S. national labs. Codes were initially developed in the early 1970s and continued
through the early 1990s. Funding for continued development was decreased as the codes
were transferred to commercial vendors. Funding should be made available to develop
the scope of the next set of modifications that are necessary to meet the demands of the
advanced nuclear fuel cycle. Federal funding is also needed to transfer and sustain the
technical knowledge to the next generation of spectroscopy experts. Commercial vendors
do not have access to the materials and facilities needed to advance these codes. This will
ensure that the capability of these codes is advanced consistent with the measurement
need. Spectroscopy experts at the research institutions should coordinate advancements to
the codes with the international working group. This will ensure that codes are developed
in a quality manner in accordance with standard test methods prior to release to the end
user. The international working group should be sustained to provide a mechanism for
coordinating interaction between the code developer and other end users.

Table 2: Legend of Spectra Suppliers

LLNL A Berlizov B ABACC A
Sampson | B | ESARDA-DB E LASAL L
Gunnink C JRC J

ORNL D

LANL E
Canberra F

Aquila G




Table 3: Unusual Samples Identified for IWG-GST Evaluation

Description
ID i 4
Unusual isotopics
uUs EC SA

VHIBURNP | Extremely high burnup Pu
RECYLMOX | Recycled MOX
HIAMERPU | Aged Pu with high Am B

Pure isotopes
PURPU239 | pu-239>99.9% F E
PURPU240 | Py-240>99.9% F E
VHIAM241 | Am-241 EF
HEATSRCE | pyu-238>80% F

Freshly separated
FRESHURA | U not in secular equilibrium E L
FRESHPLU | Freshly separated Pu

Contaminants
FISSPROD | presence of fission products
MINORACT _ | presence of minor actinides =

Inhomogeneous materials (f.i.

wastes)
INHGURWA | Inhomogeneous U

waste samples A
INHGPUWA Inhomogeneous Pu

waste samples
MIXUPUWA Mixed U and Pu

waste samples




Table 4: Ideal Uranium Spectra Identified for Evaluation by IWG-GST

Enrich Range ‘
ID (wt. %) HPGe-Planar HPGe-BEGe | HPGe-coax CZT Nal LaBr3
us EC SA | US | EC Us EC|US | EC | SA| US EC | SA US | EC

DEPLURAN 0to 0.7 B.D.E; F E,B |L A| F BLE F | E D, F L Bk
NATLURAN 0,71 HEBE-E.F E,.B |[LLA| F D.EF| E A|DF LLA|D T
LEU00702 0.7to 2 BD EF |EB,J]|L A| | DLE B | E A |D F LLA|DF
LEU02 50 2to5 BD EF|EB,J|LA| F DLE F | E A|DI L D, F
LEUO5 20 5to 20 B E.} E.B,J| L E E
HEU20 35 20 to 35 B.LDLE F J D E D, F D, F
HEU35 60 35 to 60 B.D.E, | B, L D, E ..} D, F
HEUB0 90 60 to 90 B, E.F L =
HEUGRT90 >90 B,D, E E.BJ| L 'E E D, F D, F
REPRURAN All
REPEATCS Any B, F F F

Table 5: Ideal Plutonium Spectra Identified for Evaluation by IWG-GST

ID P"gf?,’z:“lf‘m HPGe-Planar HPGe-coax BEGE o e
us EC EC us EC us EC us EC

WEAPGRAD 94/6 ABE | EJ E, J AB, F A A
LOBURNUP 80/19 AB, | E,J E,J B, | A A
MEBURNUP 60/27 AB, | E J A, E J B F A A
HIBURNUP 50/x B B

MOX01 40 1:40 B, | B

MOX01_20 1:20 B, | E J B, | E F

MOX01_10 110 B F J B

MOX01 03 13 B F J B

REPTPUCS Any F F F




Table 6: Non-ideal Spectra Identified for Evaluation by the IWG-GST

ID Description B pe
COAX Planar BEGE CZT NAI LABR
uUs EC | SA us EC|SA|US|[EC|SA|US|EC|SA us EC | SA uUs EC
POORSTAT |poor statistic D E B F
POORRESL [Poor resolution D.E.F E.F F F
e 1 Zh?ghh&g;agimga;ﬁ: up)| B E =
POORSHAP Bad electronic setting E E F
HIATTENS |Strong attenuators B,D DDF|I B|A]|F D, F L|DF
NONINFTK |Non-infinite thickness BlL
HIBKGRND |High background A
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