

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Moscow Test Well, INEL Oversight Program: Aqueous Geochemistry

by

Michael McCurry and Jeanne Fromm

Idaho State University

/ John Welhan

Idaho Geological Survey

September 29, 1992

Technical Report

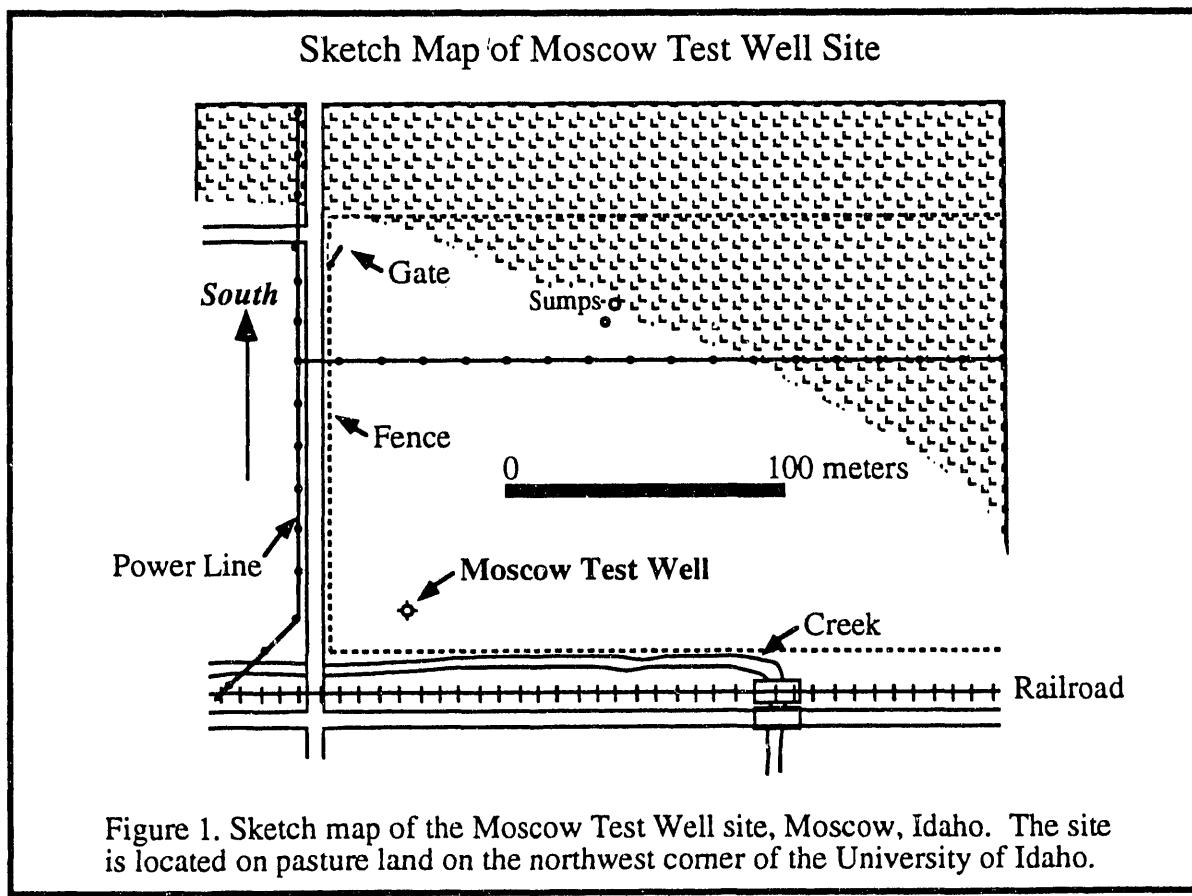
MASTER

ct2

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TABLE OF CONTENTS

<u>TOPICS</u>	<u>Page</u>
Introduction	1
Aquifer Analyses	2
Data Comparison	4
Interlab Comparisons	5
Blanks and Spikes	6
Conclusions	9
Appendix: Tabulation of geochemical data from Moscow Test Well	12
<u>FIGURES</u>	
Fig. 1 Sketch Map of Moscow Test Site	1
Fig. 2 Comparison of Moscow Test Well with nearby well	2
Fig. 3 Comparison of bailer and packer samples	4
Fig. 4 Interlab comparisons	6
Fig. 5 Trace metal contaminants	8
Fig. 6 Inorganic spike parameters	8
Fig. 7 VOC spike analyses	9
<u>TABLES</u>	
Table 1 Summary of geochemical data from Moscow Test Well	3
Table 2 Spike concentrations	7


Moscow Test Well, INEL Oversight Program: Aqueous Geochemistry

by, Michael McCurry and Jeanne Fromm, Idaho State University
John Welhan, Idaho Geological Survey

INTRODUCTION

This report presents a summary and interpretation of data gathered during sampling of the Moscow Test Well at Moscow, Idaho during April and May of 1992. The principal objectives of this chemical survey were to validate sampling procedures with a new straddle packer sampling tool in a previously hydrologically well characterized and simple sampling environment, and to compare analytical results from two independent labs for reproducibility of analytical results. Analytes included a wide range of metals, anions, nutrients, BNA's, and VOC's.

Secondary objectives included analyzing of waters from a large distilled water tank (utilized for all field laboratory purposes as "pure" stock water), of water which passed through a steamer used to clean the packer, and of rinsates from the packer tool itself before it was lowered into the test well. Analyses were also obtained of blanks and spikes for data validation purposes.

A complete listing of analytical results and related data validation information are given in Appendix I. A summary of these data are presented in Table 1.

Aquifer Analyses

Aquifer analyses were obtained first using a bailer to sample at 75' depth, then with the packer tool. The packer was configured to sample at the same depth, with the lower packer inflated, and the upper packer not inflated. The upper packer was not inflated because of mechanical problems.

Summaries of analyses are listed in Table 1. Twenty-two analytes and 26 of 40 inorganic parameters were at or above detection limit. No organic compounds (VOC's or BNA's) were detected. All of the analytes yielded values in the range we expected based upon the general character of the aquifer.

No previous analytical data from this well were available for comparison. An analysis of water from a well located about 100 ESE of the test well yielded values which differ significantly from those obtained in this study (Figure 2). The Moscow Test Well samples vary from one-third to three times the values from the comparison well. However, they are of the same order of magnitude, and we believe the differences are primarily due to the complicated nature of the aquifer rather than anything to do with our sampling procedures.

Comparison of Moscow Test Well with Nearby Well

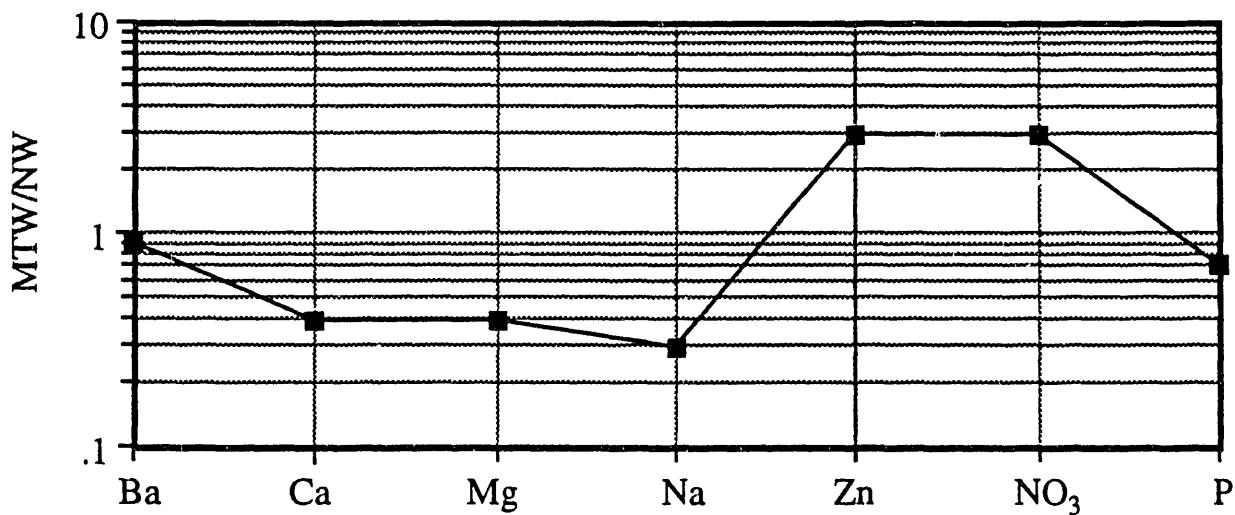


Figure 2. Analyses of ground water from the Moscow Test Well are compared to those of an unnamed well located approximately 100 m east-southeast; means of bailer and packer derived samples are divided by analyses from the nearby well values. Analyses from the nearby well were obtained from J. Kauffman, Univ. of Idaho (personal communication, 1992).

TABLE I. Summary of Geochemical Data from Moscow Test Well

Data Comparison

Packer and bailer analyses are compared in Figure 3. Averages of bailer samples analyses (where at above detection limit levels) are divided by similarly averaged packer samples. Therefore, samples plotting in the top half of the diagram (i.e. with values more than 1) are enriched in bailer samples, those with values less than one are enriched in packer samples. With a few prominent exceptions, packer and bailer samples either correlate to within analytical uncertainties, or are consistent with each other (at values below recorded detection limits).

Seven analytes yielded differences well outside the range which could be expected from sampling and analytical uncertainties (Figure 2). The most prominent of these are Pb, Li, N and Br. These differ by factors of three to eight (Li).

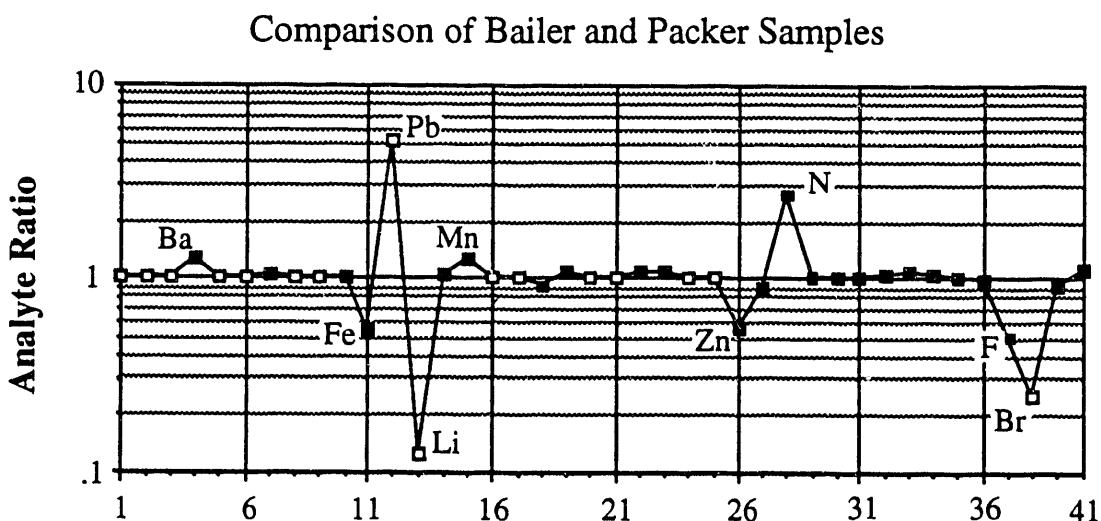


Figure 3. Analyte concentrations from bailer samples are divided by the respective concentrations for packer samples for comparison purposes. Analytes are listed by number, in the same order as they are listed in Table 1, beginning with Al (analyte 1). Open squares are for cases in which one analyte is below detection limit; therefore these are limiting values. Analytes which yielded concentration differences beyond what was expected for sampling and analysis uncertainties are highlighted by name.

Variations among most of the metals exhibit a pattern of enrichments and depletion's (defined as bailer/packer concentration) which are difficult to account for. Pb, and to a lesser extent Ba and Mn show enrichment, whereas Fe, Li and Zn exhibit depletion's. Analyses of blanks, spikes, and stock DI water would seem to rule out gross analytical error or preparation procedures as the cause of the differences. Three possibilities are suggested. First, that the differences result from real variations in aquifer chemistry. Second, that they result from an unknown source of contamination. Third, subtle analytical errors resulting from measurements made near detection limits.

Lithium, Bromide and Kjeldahl nitrogen anomalies may be better explained. Lithium and bromide are both below detection limits for bailer derived samples and occur at concentrations of 80 and 800 $\mu\text{g/l}$ in packer samples. On a molar basis the concentrations of Li and Br are 11.5 and 10.1 $\mu\text{mol/l}$; these concentrations are probably identical to within analytical uncertainties. The fact that both lithium and bromide are present in packer samples, and do not occur in any other samples, indicates that these elements were incompletely removed by purging after introduction of the LiBr tracer into the "packed" interval.

It is also possible that these differences are natural variations in the aquifer system. However, the fact that they are present in the samples in stoichiometrically balanced proportions with respect to the tracer makes such an origin unlikely.

Incomplete LiBr tracer removal may be a significant problem in future sampling procedures. This is particularly important for measurements which may reach the sub-ppb range (i.e. by ICP-MS), as trace metal contaminants from the tracer may occur at measurable levels. It is therefore recommended to obtain lot analyses of the LiBr tracer for metals of interest.

Finally, Kjeldahl nitrogen is significantly higher in bailer than packer samples. We believe this is probably because of contamination of the bailer from waters shallow in the well.

Interlab comparisons

Two independent labs produced data for a variety of metals and anions using different analytical techniques. For example, the State Lab and DataChem analyzed for metals respectively using Furnace AA and ICP techniques. Analytical results are compared in Figure 4. For common analytes most of the lab results compare favorably, generally to within analytical uncertainties.

Possible exceptions may include F, Sr and Zn. Zn and F concentration ratios (State Lab divided by DataChem values) are significantly low for packer samples, and Sr is high for a rinsate sample. However, there is no consistent pattern of enrichment or depletion. Both labs yielded similar results for bailer and packer samples for Sr and Zn. Similarly, F spike values are within 10% of each other for both labs and of the actual prepared value, indicating good precision and accuracy. We have no adequate explanation for the three observed excursions, and therefore recommend that future work includes sending of a subset of samples to both labs to evaluate whether this is a recurring problem.

Interlab Comparisons

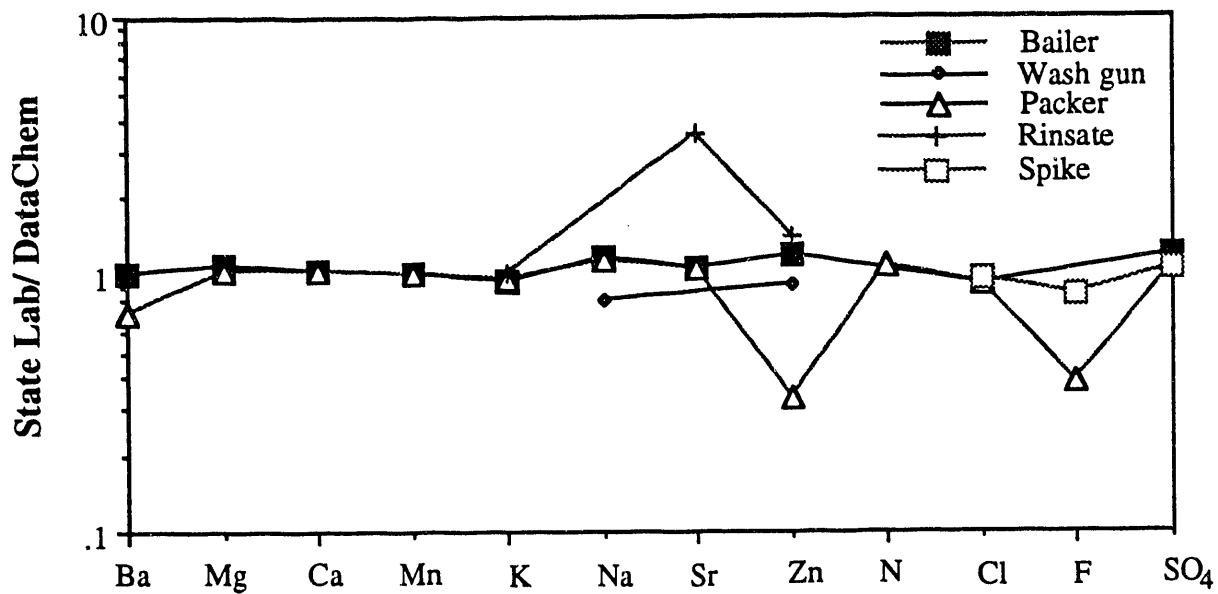


Figure 4. A comparison of analyte values for the Idaho State Lab and for DataChem. Comparisons are shown for analytes for which the State Lab and DataChem received duplicate samples and which yielded concentrations above detection limits for the respective labs.

Blanks and Spikes

Several blank and spiked samples were analyzed along with other samples. Composite summaries of the analyses are listed in Table 1. Complete data on these samples is listed in Appendix I.

There are two types of blank samples. One set, for metals, anions, and nutrients, was prepared in the field using stock distilled water, and adding preservatives, in a manner identical to the other samples. The second, for VOC's and BNA's, was prepared in Boise at the Bureau of Laboratories, Idaho Department of Health and Welfare. They were mailed to the field station at Moscow, Idaho, during operations. They were then relabeled in the normal course of work at the well site and returned to Boise as unknowns along with other samples.

Spiked solutions were prepared in Boise at the Bureau of Laboratories, Idaho Department of Health and Welfare. They were mailed to the field station at Moscow, Idaho, during operations. They were then relabeled in the normal course of work at the well site and returned to the respective labs as unknowns along with other samples. Spike concentrations are listed in Table 2.

TABLE 2. Spike Concentrations^a

Metals - µg/l	Ba	Ca	Cd	Cr	Cu	Fe	K	Mg	Na	Ni	Pb	Zn
	100	5,000	5	5	20	100	5,000	5,000	5,000	10	5	10
Anions - mg/l	Cl	F ⁻		SO ₄ ²⁻								
	20	1		20								
Nutrients - mg/l	NO ₃ as N				Total P							
		5			5							
VOC's -	Regulated VOC's listed in Table 2: 5 µg/l ^b Tetrachlorethene: 5 µg/l ^b											
BNA's -	All BNA's listed in Table 2: 5 µg/l											

a. Spike solutions prepared at the Bureau of Laboratories, Idaho Dept. of Health and Welfare; they were mailed to the field at Moscow, Idaho, during operations. They were then relabeled in the course of this project and returned to the State Lab and to DataChem Lab as unknowns along with other samples.

b. One spike solution, labeled MTW#16 in Table 1, was spiked with 20 µg/l of the respective VOC analytes (W. Baker, personal communication, 1992).

Inorganic blanks samples are listed in Table 1 as DI water tank samples, samples MTW#11 and 12, sent respectively to the DataChem and the State Lab. All parameters register at below detection limits, except for K, Na, Zn, P, and Kjeldahl N. All are at low concentrations, but are well above detection limits. It seems clear that the stock deionized water tank contained minor but significant levels of contamination by these elements.

Additional samples were taken from the steam sprayer, used to clean the packer before insertion into the well. Little additional contamination seems to have occurred in water which passed through the cleaner with the exception of Zn. Concentrations of several metals are compared from the DI reservoir, spray gun and rinsate from the packer to compare and contrast various sources of contamination (Figure 5). Note that zinc increases by a factor of 10 from the DI stock to spray gun. No other significant variation was noted. We have no direct evidence of where Zn may have entered the water, however one possibility is that the water came in contact with solder within the water heater.

The packer itself is obviously contaminated with a variety of substances. Fortunately, with the possible exception of Na, all appear to be at low concentration levels, and were presumably removed from the packer during the cleaning process.

Spiked samples analyses from the State Lab compare favorably with prepared concentrations for all but two inorganic analytes (Figure 6). All analytes are within analytical uncertainties excepting SO₄ and possibly Zn,

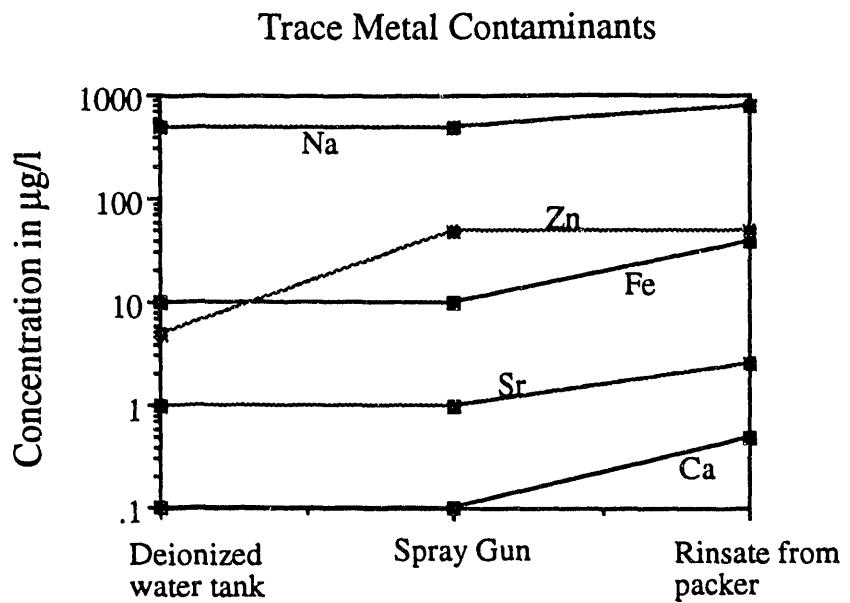


Figure 5. Selected trace element contents from solutions sampled from the main deionized water tank, from the spray gun used to steam clean the packer, and from water which drained off the packer during the steam cleaning process.

which are low by 70% and 30%, respectively. These results are very good given that the complex nature of the spiked solutions may have given rise to sample instability (J. Dodd, personal communication, 1992). The low sulfate is a concern, and particular attention should be directed at the analyte in future work to determine if it is consistently low.

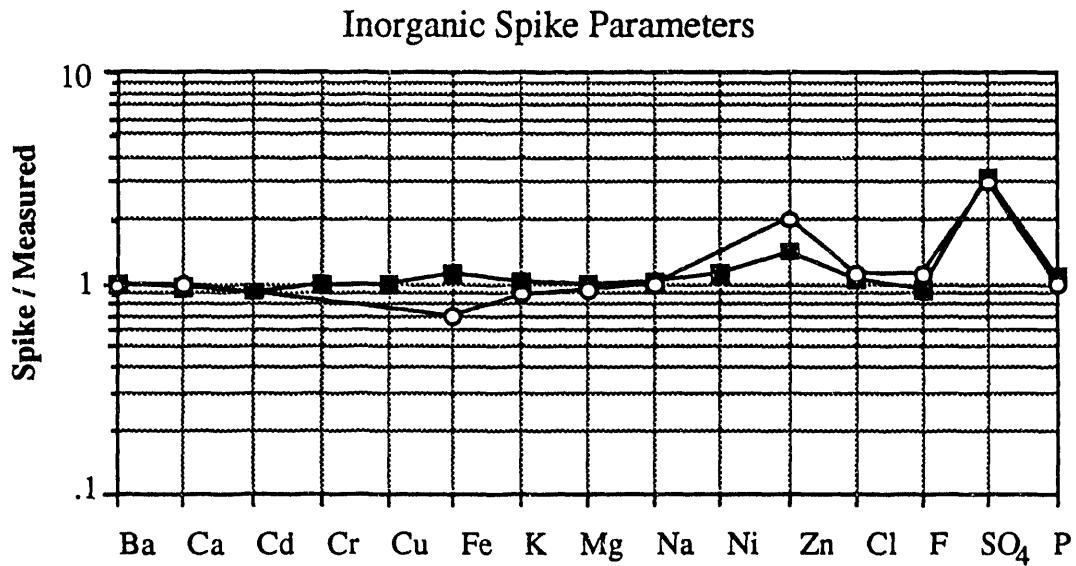


Figure 6. Prepared spike concentrations are divided by measured values for a variety of inorganic analytes. Only those analytes registering at above detection limits are shown. State Lab - closed squares; DataChem - open circles.

VOC spikes also yielded acceptable analyses. Analyzed values are compared to the prepared concentrations in Figure 6. Considerable scatter occurs in one set of analyses. This spike was prepared with spike concentrations of 5 ppb; the other was prepared with 20 ppb spike concentrations (W. Baker, personal communication, 1992). The apparently random scatter at the lower concentration suggests that the State's system is working at near detection limits at the 5 ppb level.

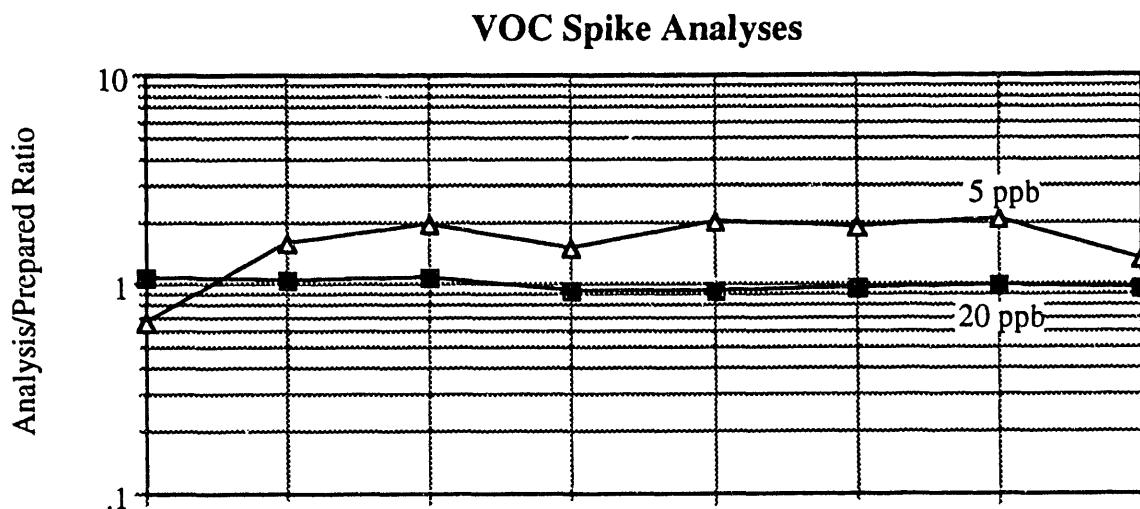


Figure 7. Prepared spike concentrations are divided by measured values for eight regulated VOC's listed in Appendix I. Two types of spikes were analyzed, one at 5 $\mu\text{g}/\text{ml}$ (shown as ppb), the other at 20 $\mu\text{g}/\text{ml}$.

No BNA spikes yielded analyses registering at above detection limits (Appendix I lists the analytes). The apparent absence of BNA's probably resulted from laboratory problems, which have since been corrected (W. Baker, personal communication, 1992).

Conclusions

Results of the Moscow Test are generally satisfactory. However, several significant problems were identified. First, several analytes yielded discordant results (Sr, Zn, F, and possibly SO_4). We therefore recommend that at least a subset of samples be analysed at an independent lab, using different analytical methods where possible. Second, significant deviations were identified between bailer and packer which could not be adequately accounted for (Fe, Pb, Zn). Additional work should be done to identify the source of variation among these analytes: for example, to determine whether sporadic sources of contamination or analytical problems may be involved. Thirdly, the steam cleaner appears to be a significant source of Zn contamination. It may not be possible to completely eliminate this source of contamination, but it should be considered in future interpretations of Zn data. Fourth, BNA determinations from the State Lab are below specifications.

The problem has been identified, and corrective measures taken. However, this should be verified in future work with additional spikes. Finally, significant amounts of LiBr tracer remain in the well water under the sampling conditions employed in this pilot study. The amounts are large enough to exceed natural water concentrations of both Li and Br. Residual tracer could present a problem for other analytes if methods with detection limits to picograms per liter (e.g., ICP-MS) are used. Since we hope to do this in the future, we should obtain lot analyses for relevant constituents from the LiBr stock.

APPENDIX 1. Tabulation of geochemical data from Moscow Test Well.

APPENDIX I Moscow Test Well Data

1 Moscow Test		Metals Analyses (ug/l)																						
2	3	Sample	Type	Purpose	Sampled By-	Date	Time	Depth	Lab	Al (ug/l)	St (ug/l)	As (ug/l)	Ba (ug/l)	Be (ug/l)	Ca (ug/l)	Cr (ug/l)	Co (ug/l)	Cu (ug/l)	Fe (ug/l)	Pb (ug/l)	Li (ug/l)	Mg (ug/l)	Min (ug/l)	Hg (ug/l)
4	9106001	Metals-dis	Bailer-at 75'	MM, JF, JW	4/1/39/2	16:41	75'	State Lab	<10	200	<5	<1	110	<2	10	40	30	40,000	90	<0.5				
5	9106002	Metals-tot	Bailer-at 75'	MM, JF, JW	4/1/39/2	17:12	75'	State Lab	<10	200	<5	<1	110,000	<2	10	80	19	39,500	100	<0.5				
6	9106003	NTT	Bailer-at 75'	MM, JF, JW	4/1/39/2	17:33	75'	State Lab																
7	9106004	Anions	Bailer-at 75'	MM, JF, JW	4/1/39/2	17:23	75'	State Lab																
8	9106005	BNA	Bailer-at 75'	MM, JF, JW	4/1/39/2	18:00	75'	State Lab																
9	9106006	BNA	Rinsate off packer	MM, JF, JW	4/1/49/2	10:15	n/a	State Lab																
10	9106007	Anions	Rinsate off packer	MM, JF, JW	4/1/49/2	10:15	n/a	State Lab																
11	9106008	Metals-dis	Rinsate off packer	MM, JF, JW	4/1/49/2	10:15	n/a	State Lab	<10	<100	<5	1	100	<2	<10	60	<5	100	<10	<0.5				
12	9106009	Metals-tot	Rinsate off packer	MM, JF, JW	4/1/49/2	10:15	n/a	State Lab	<10	<100	<5	1	<100	<2	<10	80	<5	<100	10	<0.5				
13	9106010	NTT	Rinsate off packer	MM, JF, JW	4/1/49/2	10:15	n/a	State Lab																
14	9106011	VOC	Rinsate off packer	MM, JF, JW	4/1/49/2	10:15	n/a	State Lab																
15	9106012	VOC	Bailer-at 75'	MM, JF, JW	4/1/49/2	11:15	n/a	State Lab																
16	9106013	VOC	Spike	MM, JF, JW	4/1/49/2	11:30	n/a	State Lab																
17	9106014	NTT	Spike	MM, JF, JW	4/1/49/2	11:35	n/a	State Lab																
18	9106015	NTT	Spike	MM, JF, JW	4/1/49/2	11:35	n/a	DataChem																
19	9106016	Metals-dis	Blank	MM, JF, JW	4/1/49/2	11:40	n/a	DataChem	<60	<100	<100	<5	<10	5,000	<20	<10	<20	<20	<50	<10	4,700	<0		
20	9106017	Metals-dis	Spike	MM, JF, JW	4/1/49/2	11:40	n/a	DataChem	<60	<100	<20	<5	<10	<500	<20	<10	<20	<20	<50	<10	<500	<0		
21	9106018	Anions	Spike	MM, JF, JW	4/1/49/2	11:42	n/a	State Lab																
22	9106019	Anions	Spike	MM, JF, JW	4/1/49/2	11:47	n/a	DataChem																
23	9106020	NTT	Blank	MM, JF, JW	4/1/49/2	12:02	n/a	State Lab																
24	9106021	NTT	Blank	MM, JF, JW	4/1/49/2	12:04	n/a	DataChem																
25	9106022	Metals-dis	Spike	MM, JF, JW	4/1/49/2	12:16	n/a	State Lab	<10	100	<5	<1	<10	5	20	110	<5	500	<10	<0.5				
26	9106023	Metals-dis	Blank	MM, JF, JW	4/1/49/2	12:37	n/a	State Lab	<10	<100	<5	<1	<100	<2	<10	<10	<5	<100	<10	<0.5				
27	9106024	BNA	Spike	MM, JF, JW	4/1/49/2	14:46	n/a	State Lab																
28	9106025	BNA	Blank	MM, JF, JW	4/1/49/2	14:55	n/a	State Lab																
29	9106026	Metals-tot	DI water tank	JKO	5/1/49/2	not recorded	n/a	DataChem	<60	<100	<20	<5	<100	<20	<10	<500	<10	<500	<10	<0.5				
30	9106027	Metals-tot	DI water tank	JKO	5/1/49/2	not recorded	n/a	State Lab	<10	<100	<5	<1	<100	<2	<10	<10	<5	<100	<10	<0.5				
31	9106028	Metals-dis	DI water tank	JKO	5/1/49/2	not recorded	n/a	DataChem	<60	<100	<20	<5	<100	<20	<10	<500	<10	<500	<10	<0.5				
32	9106029	Metals-dis	DI water tank	JKO	5/1/49/2	not recorded	n/a	State Lab	<10	<100	<5	<1	<100	<2	<10	<10	<5	<100	<10	<0.5				
33	9106030	Anions	DI water tank	JKO	5/1/49/2	not recorded	n/a	DataChem																
34	9106031	Anions	DI water tank	JKO	5/1/49/2	not recorded	n/a	State Lab																
35	9106032	NTT	DI water tank	JKO	5/1/49/2	not recorded	n/a	State Lab																
36	9106033	Metals-tot	?Lower packer in	JKO	5/1/39/2	not recorded	75'	DataChem	<60	<100	<10	140	<5	<10	98,000	<20	<20	<50	<50	70	36,000	70		
37	9106034	Metals-tot	?Lower packer in	JKO	5/1/39/2	not recorded	75'	State Lab	<10	200	<5	100	<5	10	100	<5	10	100	<5	37,000	70	<0.5		
38	9106035	Metals-dis	?Lower packer in	JW	5/1/39/2	not recorded	75'	DataChem	<60	<100	<10	140	<5	<10	99,000	<20	<10	<20	<50	80	36,000	70		
39	9106036	Metals-dis	?Lower packer in	JW	5/1/39/2	not recorded	75'	State Lab	<10	100	<5	<1	102,500	<2	10	80	<5	37,000	70	<0.5				
40	9106037	Anions	?Lower packer in	JKO	5/1/39/2	not recorded	75'	DataChem																
41	9106038	Anions	?Lower packer in	JKO	5/1/39/2	not recorded	75'	State Lab																
42	9106039	NTT	?Lower packer in	JKO	5/1/39/2	not recorded	75'	DataChem																
43	9106040	NTT	?Lower packer in	JKO	5/1/39/2	not recorded	75'	State Lab																
44	9106041	BNA	?Lower packer in	JKO	5/1/39/2	not recorded	75'	State Lab																
45	9106042	VOC																						
46	9106043(d)	VOC	Blank	JKO	5/1/59/2	14:00	n/a	State Lab																
47	9106043(d)	VOC	Blank	JW	5/1/39/2	13:05	n/a	State Lab																
48	9106044(d)	VOC	Spike	JKO	5/1/59/2	14:03	n/a	State Lab																
49	9106044(d)	VOC	Spike	JW	5/1/39/2	13:07	n/a	State Lab	<60	<100	<10	700	<20	<10	130	<50	<10	<20	<50	130	<50	<20		
50	9106045	Metals-tot	Rinsate from lowe	JKO	5/1/49/2	not recorded	n/a	DataChem	<60	<100	<10	700	<20	<10	130	<50	<10	<20	<50	<10	<20	<50	<20	

APPENDIX I Moscow Test Well Data

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X
5.1	9100046	Metals-tot	Rinsate from lowe	JKO	5/14/92	not recorded	n/a	State Lab	<10	<100	<1	600	<2	10	190	<5	100	20	<0.5					
5.2	9100047	Metals-dis	Rinsate from lowe	JKO	5/14/92	not recorded	n/a	DataChem	<60	<100	<10	<100	<20	<10	<20	<50	<10	<20	<50	<10	<20	<20		
5.3	9100048	Metals-dis	Rinsate from lowe	JKO	5/14/92	not recorded	n/a	State Lab	<10	<100	<1	500	<2	10	20	<5	100	10	<0.5					
5.4	9100049	Anions	Rinsate from lowe	JKO	5/14/92	not recorded	n/a	DataChem																
5.5	9100050	Anions	Rinsate from lowe	JKO	5/14/92	not recorded	n/a	State Lab																
5.6	9100051	Discarded	Discarded		Discarded	Discarded	n/a																	
5.7	9100052	NTT	Rinsate from lowe	JKO	5/14/92	not recorded	n/a	State Lab																
5.8	9100053	BNA	Rinsate from lowe	JKO	5/14/92	not recorded	n/a	State Lab																
5.9	9100054	VOC	Rinsate from lowe	JKO	5/14/92	not recorded	n/a	State Lab																
6.0	9100055	BNA	Blank	JKO	5/13/92	13:05	n/a	State Lab																
6.1	9100056	BNA	Spike	JKO	5/13/92	13:05	n/a	State Lab																
6.2	9100057	Anion	Spike	JKO	5/13/92	13:05	n/a	State Lab																
6.3	9100058	Phosphorous	Spike	JKO	5/15/92	13:30	75'	DataChem	<60	<60	<100	160	<5	<10	<20	<20	<50	10	50	<5	38,500	90	<0.5	
6.4	9100059	Metals-tot	Bailer sample - 7JKO		5/15/92	13:33	75'	State Lab	<10	200	<1	107,500	<2											
6.5	9100060	Metals-tot	Bailer sample - 7JKO		5/15/92	13:36	75'	DataChem	<60	<60	<100	100,000	<20	<10	<20	<20	<50	<10	38,000	90				
6.6	9100061	Metals-dis	Bailer sample - 7JKO		5/15/92	13:39	75'	State Lab	<10	100	<1	107,500	<2											
6.7	9100062	Metals-dis	Bailer sample - 7JKO		5/15/92	13:45	75'	DataChem																
6.8	9100063	Anions	Bailer sample - 7JKO		5/15/92	13:48	75'	State Lab																
6.9	9100064	Anions	Bailer sample - 7JKO		5/15/92	13:51	75'	State Lab																
7.0	9100065	NTT	Bailer sample - 7JKO		5/15/92	13:55	75'	State Lab																
7.1	9100066	BNA	Bailer sample - 7JKO		5/15/92	13:57	75'	State Lab																
7.2	9100067	VOC	Bailer sample - 7JKO		5/15/92	12:00	n/a	DataChem	<60	<100	<10	<100	<50	<10	<20	<20	<50	<10	<100	<20	<20	<0.5		
7.3	9100068	Metals-tot	Wash gun	JKO	5/15/92	12:00	n/a	State Lab	<10	<100	<1	<100	2	<10	<20	<20	<50	<10	<100	<20	<20	<0.5		
7.4	9100069	Metals-tot	Wash gun	JKO	5/15/92	12:00	n/a	DataChem	<60	<100	<20	<10	<100	2	<10	<20	<20	<50	<10	<100	<20	<20		
7.5	9100070	Metals-dis	Wash gun	JKO	5/15/92	12:00	n/a	DataChem	<60	<100	<20	<10	<100	<20	<10	<20	<20	<50	<10	<100	<20	<20		
7.6	9100071	Metals-dis	Wash gun	JKO	5/15/92	12:00	n/a	State Lab	<10	<100	<1	<100	<2	<10	<20	<20	<50	<10	<100	<20	<20	<0.5		
7.7	9100072	Anions	Wash gun	JKO	5/15/92	12:00	n/a	DataChem																
7.8	9100073	Anions	Wash gun	JKO	5/15/92	12:00	n/a	State Lab																
7.9	9100074	NTT	Wash gun		5/15/92	12:00	n/a	State Lab																

APPENDIX I Moscow Test Well Data

Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT
1																					
2																					
3	Mo (ug)	Ni (ug)	K (ug/l)	Se (ug/l)	Ag (ug/l)	Na (ug/l)	Sr (ug/l)	Tl (ug/l)	Va (ug/l)	Va (ug/l)	Total Nitrate	Total N	Total Kjeldahl N	Total Phosph.	Spec. cond.	as CaCO ₃	HCO ₃ -	Hardness	Total alkalinity	Alkalns	
4	<10	5,700	5	<1	38,800	500					14										
5	10	5,600	5	<1	37,500	417					15										
6																					
7																					
8																					
9																					
10																					
11	<10	<100	<5	<1	600	<1	67														
12	<10	100	5	<1	300	<1	61														
13																					
14																					
15																					
16																					
17																					
18																					
19	>0	<50	4,800, 4000	<0.2	<10	4,800, 5,000	<5	<200	<10	20											
20	>0	<50	<100	<0.2	<10	<500	<5	<200	<10	<10											
21																					
22																					
23																					
24																					
25	11	5,100	5	<1	5.1	3.2				14											
26	<10	<100	5	<1	<100	<1	<1	<100	<1	<2											
27																					
28																					
29	<20	<50	<100, <100	<0.2	<10	<500	<5	<200	<10	<10											
30	<10	<100	5	<1	<1	300	<1														
31	<20	<50	<100, <100	<0.2	<10	<500	<5	<200	<10	<10											
32	<10	100	5	<1	300	<1															
33																					
34																					
35																					
36	<20	<50	5,600, 5000	<0.2	<10	33,000, 31,000	450	<200	10	<10											
37		12	5,200	5	<1	35,000	400														
38	<20	<50	5,400, 5000	<0.2	<10	31,000, 31,000	450	<200	10	<10											
39	11	5,300	5	<1	35,000	475															
40																					
41																					
42																					
43																					
44																					
45																					
46																					
47																					
48																					
49																					
50	>20	<50	<1000, <1000	<0.2	<10	<1,000, <500	<5	<200	<10	<10											

APPENDIX I Moscow Test Well Data

Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AJ	AP	AQ	AR	AS	AT	
5.1	<10	100	<5	<1		600	4.2					53										
5.2	<20	<50	<100, <100	<0.2	<10		700	0.7	<200	<10		40										
5.3	<10	100	<5	<1		800	2.5					44									300	
5.4																						
5.5																						
5.6																						
5.7																						
5.8																						
5.9																						
6.0																						
6.1																						
6.2																						
6.3																						
6.4	<20	<50	5,600, 6,000	<0.2	<10	31,000, 34,000	480	<200	<10	<10												
6.5		10	5,500	<5	<1		35,000	500				17										
6.6	<20	<50	5,700, 6,000	<0.2	<10	33,000, 33,000	480	<200	<10			10										
6.7		10	5,400	<5	<1		37,500	513				10										
6.8																						
6.9																						
7.0																						
7.1																						
7.2																						
7.3	<20	<50	<100, <100	<0.2	<10	<1,000, <500	<5	<200	<10			60										
7.4		<10		<5	<1		300	<1				39										
7.5	<20	<50	<1000, <100	<0.2	<10	<1,000, <500	<5	<200	<10			50										
7.6		<10		<5	<1		400	<1				46										
7.7																						
7.8																						
7.9																						

APPENDIX I Moscow Test Well Data

AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI
1														
2														
3	Fr-(μ g/l)	Br-(μ g/l)	NO ₃ (μ g/l)	SO ₄ (μ g/l)										
4														
5														
6														
7	<100				47,000									
8														
9														
10	<100				<1,000									
11														
12														
13														
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
24														
25														
26														
27														
28														
29														
30														
31														
32														
33	<200				<50									
34	<100													
35														
36														
37														
38														
39														
40	600				3,200									
41	230				41,000									
42														
43														
44														
45														
46														
47														
48														
49														
50														

NOTE: written comment that "sample lost - no duplicate (or re-analysis" (no signature or date given to this comment)

APPENDIX I Moscow Test Well Data

	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI
51															
52															
53															
54	<200	<200	<10	<200											
55	<100						2,000								
56															
57															
58															
59															
60															
61															
62															
63															
64															
65															
66															
67															
68	700	<200		3,000	40,000										
69	<100				49,000										
70															
71															
72															
73															
74															
75															
76															
77	<200	<200	<10	<200											
78	180														
79															

BNA analyst's comments: a large amount of molecular sulfur present.

W. Baker 502.2 nd nd nd nd

APPENDIX | Moscow Test Well Data

APPENDIX I Moscow Test Well Data

	BJ	BK	BL	BM	BN	BO	BP	BQ	BR	BS	BT	BU	BV
51													
52													
53													
54													
55													
56													
57													
58													
59													
60													
61													
62													
63													
64													
65													
66													
67													
68													
69													
70													
71													
72	nd				nd			nd		nd		nd	
73													
74													
75													
76													
77													
78													
79													

APPENDIX I Moscow Test Well Data

	BW	BX	BY	BZ	CA	CB	CC	CD	CE	CF	CG	CH	CI
1													
2													
3	4-Chlorobutene	1,2-Dibromo-3-cis-1,2-Dibromobutene	Dibromoethane	1,1,2-Dichlorobenzene	1,3-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	cis-1,2-Dichloroethane	1,2-Dichloroethane	1,2-Dichloroethene	1,3-Dichloropropene	1,2-Dichloropropene	2,2-Dichloropropene
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
15	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
31													
32													
33													
34													
35													
36													
37													
38													
39													
40													
41													
42													
43													
44													
45	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
46	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
47	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
48	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
49	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
50	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

APPENDIX I Moscow Test Well Data

	BW	BX	BY	BZ	CA	CB	CC	CD	CE	CF	CG	CH	CI
51													
52													
53													
54													
55													
56													
57													
58													
59													
60													
61													
62													
63													
64													
65													
66													
67													
68													
69													
70													
71													
72													
73													
74													
75													
76													
77													
78													
79													

APPENDIX | Moscow Test Well Data

APPENDIX I Moscow Test Well Data

	Cl	Cr	Cl _L	Cl _M	Cl _N	Cl _O	Cl _P	Cl _Q	Cl _R	Cl _S	Cl _T	Cl _U	Cl _V
51													
52													
53													
54													
55													
56													
57													
58													
59													
60													
61													
62													
63													
64													
65													
66													
67													
70													
71													
72	nd		nd		nd		nd		nd		nd		nd
73													
74													
75													
76													
77													
78													
79													

APPENDIX I Moscow Test Well Data

	CW	CR	CT	CA	DA	DB	DC	DD	DE	DF	DG	DH	DI
1													
2													
3	Tetrachloroethene	Toluene (ug/l)	1,2,3-Trichloroethylene (ug/l)	1,2,4-Trichloroethylene (ug/l)	1,1,2-Trichloroethane (ug/l)	Trichloroethane (ug/l)	1,2,3-Trichloroethane (ug/l)	1,2,4-Trichloroethane (ug/l)	1,3,5-Trimethylbenzene (ug/l)	1,3,5-Trimethylbenzene + p-Xylene + m-Xylene (ug/l)			
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14	nd		169	nd	nd	nd	nd	nd	nd	nd	nd	nd	
15	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
31													
32													
33													
34													
35													
36													
37													
38													
39													
40													
41													
42													
43													
44													
45	nd		0.4	nd	nd	nd	nd	nd	nd	nd	nd	nd	
46	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
47	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
48			6.82	nd	nd	nd	nd	nd	nd	nd	nd	nd	
49			18.4	nd	nd	nd	nd	nd	nd	nd	nd	nd	
50													

APPENDIX I Moscow Test Wall Data

	CW	CA	CR	CZ	DA	DB	DC	DD	DE	DF	DG	DH	DI
51													
52													
53													
54													
55													
56													
57													
58													
59													
60													
61													
62													
63													
64													
65													
66													
67													
68													
69													
70													
71													
72													
73													
74													
75													
76													
77													
78													
79													

APPENDIX I Moscow Test Well Data

	D ₁	D _K	D _L	D _M	D _N	D _O	D _P	D _Q	D _R	D _S	D _T	D _U	D _V	
1														
2														
3	Aldrin	Aziline, $\mu\text{g/L}$	Anthracene	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Benzolic acid	Benz(a)anthracene	Benz(b)fluoranthene	
4														
5														
6														
7														
8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
10														
11														
12														
13														
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
24														
25														
26														
27	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
28	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
29														
30														
31														
32														
33														
34														
35														
36														
37														
38														
39														
40														
41														
42														
43	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
44	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
45														
46														
47														
48														
49														
50														

APPENDIX I Moscow Test Well Data

	DN	OK	DL	DM	DN	DO	DP	DQ	DR	DS	DT	DU	DV
51													
52													
53													
54													
55													
56													
57													
58													
59													
60	nd		nd										
61	nd		nd										
62													
63													
64													
65													
66													
67													
68													
69													
70													
71	nd		nd										
72													
73													
74													
75													
76													
77													
78													
79													
79													

APPENDIX I Moscow Test Well Data

	DW	DX	DY	DZ	EA	EB	EC	ED	EE	EF	EG	EH	EI
1													
2													
3	Benz(k)Fluoranthene	Benz(g,h,i)perylene	Benz(a)pyrene	Benzyl alcohol	a-BHIC	b-BHIC	d-BHIC	e-BHIC (Lindane)	Bis(2-chloroethoxy)	Bis(2-chloroethyl)	Bis(2-ethylhexyl)	4-Bromophenyl P	
4													
5													
6													
7													
8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
28	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
29													
30													
31													
32													
33													
34													
35													
36													
37													
38													
39													
40													
41													
42													
43													
44	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
45													
46													
47													
48													
49													
50													

APPENDIX I Moscow Test Well Data

	DW	DX	DY	DZ	EA	EB	EC	ED	EE	EF	EG	EH	EI	EJ
51														
52														
53														
54														
55														
56														
57														
58														
59														
60	nd													
61	nd													
62														
63														
64														
65														
66														
67														
68														
69														
70	nd													
71	nd													
72														
73														
74														
75														
76														
77														
78														
79														

APPENDIX I Moscow Test Well Data

	EJ	EK	EL	EM	EN	EO	EP	EQ	ER	ES	ET	EU	EV
1													
2													
3	Butyl benzyl phth	Chlordane											
4													
5													
6													
7													
8	nd	ad	nd										
9	nd	ad	nd										
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
28	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
29													
30													
31													
32													
33													
34													
35													
36													
37													
41													
42													
43													
44	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
45													
46													
47													
48													
49													
50													

APPENDIX I Moscow Test Well Data

	EJ	EK	EL	EM	BN	EO	EP	EQ	ER	ES	ET	EU	EV
5.1													
5.2													
5.3													
5.4													
5.5													
5.6													
5.7													
5.8													
5.9													
6.0	nd												
6.1	nd												
6.2													
6.3													
6.4													
6.5													
6.6													
6.7													
6.8													
6.9													
7.0													
7.1	nd												
7.2													
7.3													
7.4													
7.5													
7.6													
7.7													
7.8													
7.9													

APPENDIX I Moscow Test Well Data

EW	EX	EY	EZ	FA	FB	FC	FD	FE	FF	FG	FH	FH
1												
2												
3	Di-n-butyl phthalate	3,3'-Dichlorobenz	2,4-Dichlorophen	Dieldrin								
4												
5												
6												
7												
8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
28	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
29												
30												
31												
32												
33												
34												
35												
36												
37												
38												
39												
40												
41												
42												
43												
44	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
45												
46												
47												
48												
49												
50												

APPENDIX I Moscow Test Well Data

	EW	EX	EY	EZ	FA	FB	FC	FD	FE	FF	FG	FH	FI
51													
52													
53													
54													
55													
56													
57													
58													
59		nd											
60	nd												
61	nd												
62													
63													
64													
65													
66													
67													
68													
69													
70													
71	nd												
72													
73													
74													
75													
76													
77													
78													
79													

APPENDIX I Moscow Test Well Data

	FN	FK	FL	FM	FN	FO	FP	FQ	FR	FS	FT	FU	FV
1													
2													
3	Di-a-octyl phthalate	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	Fluoranthene	Fluoracetone	Heptachlor	Heptachlorobenzene	Heptachlorobutadiene	
4													
5													
6													
7													
8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
29													
30													
31													
32													
33													
34													
35													
36													
37													
38													
39													
40													
41													
42													
43													
44	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
45													
46													
47													
48													
49													
50													

APPENDIX I Moscow Test Well Data

	FN	FK	FL	FM	FN	FO	FP	FO	FR	FS	FT	FU	FV
51													
52													
53													
54													
55													
56													
57													
58													
59													
60	nd												
61	nd												
62													
63													
64													
65													
66													
67													
68													
69													
70													
71	nd												
72													
73													
74													
75													
76													
77													
78													
79													

APPENDIX I Moscow Test Well Data

	FW	FX	FY	FZ	GA	GB	GC	GD	GE	GF	GG	GH	GI
1													
2													
3	Hexachlorocyclohexachloroethane	Indeno[1,2,3-cd]Isophorone		2-Methylnaphthalene	Naphthalene	2-Nitroaniline	3-Nitroaniline	4-Nitroaniline	Nitrobenzene	2-Niropheanol	4-Niropheanol	N-Nitrosodimethylamine	
4													
5													
6													
7													
8	ad	nd	nd	nd	nd	nd	nd	nd	nd	ad	ad	nd	
9	nd	nd	nd	nd	nd	nd	nd	nd	nd	ad	ad	nd	
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
28	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
29													
30													
31													
32													
33													
34													
35													
36													
37													
38													
39													
40													
41													
42													
43													
44	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
45													
46													
47													
48													
49													
50													

APPENDIX I Moscow Test Well Data

	FW	FX	FY	FZ	GA	GB	GC	GD	GE	GF	GG	GH	GI
51													
52													
53													
54													
55													
56													
57													
58													
59					nd								
60	nd	nd			nd								
61	nd	nd			nd								
62													
63													
64													
65													
66													
67													
68													
69													
70					nd								
71	nd				nd								
72													
73													
74													
75													
76													
77													
78													
79													

APPENDIX I Moscow Test Well Data

Gl	Cr	Cl	CH	CN	CO	CP	QA	GR	GS	GT
1										
2										
3	N-Nitrosodiphenyl-N-Nitrosodi-n-propylbenzene	Pentachloropheno	Phenanthrene							
4										
5										
6										
7										
8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
28	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
44	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
45										
46										
47										
48										
49										
50										

APPENDIX I Moscow Test Well Data

QJ	CK	GL	GN	GO	GP	QQ	GR	GS	GT
51									
52									
53									
54									
55									
56									
57									
58									
59									
60	nd								
61	nd								
62									
63									
64									
65									
66									
67									
68									
69									
70									
71	nd								
72									
73									
74									
75									
76									
77									
78									
79									

**DATE
FILMED**

8 / 17 / 93

END

