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Abstract—The anticipated increase in the number of plug-
in electric vehicles (EV) will put additional strain on electrical
distribution circuits. Many control schemes have been proposed
to control EV charging. Here, we develop control algorithms
based on randomized EV charging start times and simple one-
way broadcast communication allowing for a time delay between
communication events. Using arguments from queuing theory
and statistical analysis, we seek to maximize the utilization of
excess distribution circuit capacity while keeping the probability
of a circuit overload negligible.

I. INTRODUCTION

If electric vehicles (EV) make up a significant fractlion of
the future vehicle fleet, there will be significant impacts on
electrical generation and transmission due to the increase in
electricity consumption. Some researchers have viewed the
potential increase in EVs as an opportunity to utilize the
on-board battery storage in an interactive way lo provide
two-way energy flows to buffer time-variable renewables[1],
[2], [3] or to provide ancillary services such as (short-
term) frequency regulation[4]. We also view these potential
applications as mutually beneficial to consumers, utilities,
and generalors, however, the first potential impact of EVs,
independent of mass deployment of renewable generation, is
filling in the nighttime load-curve minimum typical of most
regions.[5] The electrical system as it is currently configured
would benefit in several ways. The primary benefit is a
higher utilization of currently deployed assets resulting in
faster paybacks on generation, transmission, and distribution
investments. Second, in some regions, the locational marginal
prices for wholesale energy become negative during the
nighttime hours. If properly controlled, EVs will provide
a reliable increased nighttime load making the operation
of baseload generation more profitable. Modifying the load
curve in this way will also reduce the relative impact of de-
mand charges relative to energy charges for many distribution
utilities.

To serve this new load, distribution utilities must determine
how many EVs can be reliably served on a given distribution
circuit without substantially increasing the probability of an
overload or other system upset. A likely overload scenario is
the synchronization of EV charging start times that would oc-
cur as their owners begin EV charging immediately after they
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arrive home from work during the weekday evening hours.
We seek to avoid this load synchronization by controlling EV
charging start times.

Although sophisticated control schemes relying on high-
speed two-way communication between all EV loads and
centralized controllers could allow distribution circuits to run
at nearly full capacity, the reliability of electrical service
would then compromised due to real-time reliance upon a
sophisticated communications network. Instead, we seek a
distributed control method that relies upon no or minimal
communication, where the decision of when to begin charg-
ing is made local to each EV charger. We propose o regulate
EV charging start times by modulating a single, circuit-
wide EV connection rate (or arrival rate) that determines,
on average, how many EV chargers can commence charging
per unit time. The circuit-wide rate may be sent to each
charger via one-way, broadcast communication and updated
periodically at a frequency that suits a particular utility’s or
circuit’s needs. As a limit of this scheme, we also consider a
simpler version where a fixed arrival rate is preprogrammed
into the charger by the utility.

For this initial work, we consider a few simplifying as-
sumptions. We envision that each utility or circuit will have a
predetermined EV-charging ‘window’ of length AT with start
and stop times that are correlated with the minimum in the
load curve for that utility or circuit, schematically shown in
Fig la. We also assume that, during AT, the other loads are
known well enough that an available excess capacity Poycess
can be reliably determined and that all EV chargers consume
the same amount of power P, so that the capacity for EV
charging is expressed in terms of the maximum number of
EVs charging without an overload, i.e. N = Pezcess/Peon-
Each of these assumption can relaxed to allow for charging at
any point in the load curve, fluctuations in uncontrolled, non-
EV loads on the circuit, and multiple classes of EV charging
powers.

Schematically shown in Fig 1b, the window AT is split
into many smaller time intervals of length 7 with beginning
and end times ;. At each ¢;, the number n; of EVs charging




is measured' and n; is used to determine the connection (or
arrival) rate of EV chargers A(n;) that will apply until the
end of the internal at ¢;1, i.e. for a time 7. In this context, 7
is the time interval between utility broadcast communication
events. During this interval, EVs are connecting at a rate
A(n;) but are also leaving at an average rate un(t) where p =
AE/P,,, is the inverse of the average EV charging time and
AF is the average amount of energy required to reach full EV
battery charge. Although the individual decisions to start and
stop charging are made locally, control of the charging load
is exercised through broadcasting a single parameter A(n;)
which amounts to feedback control because it depends on the
number of EV charging at time ¢;.

The EV service concept proposed above is extremely
robust. The connection of EV chargers is inherently a random
process naturally avoiding any of the dangerous synchro-
nization that can occur in EV charging. The reliance on
the communication network is minimal since decisions to
start or stop charging are distributed and based upon a single
number A(n;) received via rate-limited, one-way, broadcast
communication. In addition, misoperation by one or a handful
of EV chargers will not greatly affect the overall load.
However, the randomness of the EV connection process will
cause the aggregate EV load fluctuate (in addition to the
fluctuations in the underlying load). Excluding the possibility
of real-time intervention during the time interval 7, a utility
must carefully choose A(n;) to maximize EV service and
asset utilization without overloading or damaging the circuit.
The remainder of this manuscript analyzes this problem and
seeks to make good choices for A(n;).

II. CALCULATIONS

Within any period 7, the EV charging process described
above closely resembles the birth-death queuing models
typically used in telecommunications where both the arrival
and completion of calls is often assumed to be a random
process with an average arrival rate A and departure (or end of
service) rate p. For our EV-charging problem, one implication
of adopting this model is that the time between the start
of EV-charing events is exponentially distributed. The same
holds for the time between completion of EV-charging events.
In practice, the arrival and departure-time distributions will
certainly be cut off by AT and AEy/P,.,, respectively,
where AFEy is the EV battery capacity. However, for a large
number of EVs in the system, the effect of eliminating these
tails should be minimal.

We begin with a simplified ‘constant-rate’ version of the
problem letting 7 — oo corresponding to the case where
A = ) is preprogrammed and the problem is essentially one
of design and not control. In this limit, the problem reduces
to an M /M /oo queuing problem([6] where the probability of

ITo develop intuition and to keep the computations simple in this initial
work, we consider the situation where n; is available to the entity controlling
the system. Although this may require two-way communication, this can
easily be relaxed by instead measuring the real or apparent power drawn by
the circuit using a current transformer at the substation and controlling EV
charging based the apparent power available below the circuit capacity.

Fig. 1. a) Example schematic load curve showing a load valley lasting for
time AT during the nighttime hours where excess capacity on the circuit
can accommodate a maximum of N EV chargers without overloading where
each EV charger consumes Fr,n real power. b) Schematic representation
of control scheme. The open circles represent the sparse measurements of
n; at the beginning of a time interval 7. See main text for details.
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finding n EVs charging is given by
T, = e A" /n!, (D

and the probability of a circuit overload, i.e. n > IV, is given
by

Py =) mm=1-T(N,a)/T(N). )
m=N
Here, n = ) nm, = X\o/p is the average number of EVs
charging and I'(-) and T'(+, -) are the Gamma and incomplete
Gamma functions.

Next, we consider a ‘variable-rate’ version of the problem
where we control EV charging by allowing A to depend on 7;.
The goal of this control protocol is to maximize the utilization
of excess circuit capacity while keeping the probability of
overload Py acceptably low. For a given control protocol
A(n), the probability distribution 7%, of the number n; of EVs
charging at time t;, obeys a simple Markov chain equation:

=Y Wam(A(m)7)mi? (3)




where we have introduced W,,,, (A7) - the transition kernel
of the M /M /oo process with the rates A and p. For n > m,
the transition kernel can be expressed as the following sum

[7]:
n n!qn_kﬁm_k(l _ e)k

, (4
= kl(n — k)!(m — k)! @

Woim (A7) = exp(—q)

where ¢ = 1 — exp(—p7) and ¢ = Ae/p. Assuming that
the system was not overloaded at time ¢;;, the probability
of an overload at time ¢; (i.e. n; > N) is given by Py =
> msN T4 and can be written as

2.

n<N,m>N

Py = Wn(A(n)7)wi! < max Win(Mn)T)

m>N
()

The last inequality, which is based on the normalization of
mi=1 and that 7i~! = 0 for n > N, forms the foundation for
constructing our variable-rate protocol. We define the control
protocol A(n) as a solution of

> Wma(AMn)r) =Py <1, n<N

m>N

(6)

and set A(n) = 0 for n > N. For a given value of Py
this protocol is guaranteed to have an overload probability
bounded from above: Py < Pg. We note that this control
scheme might be suboptimal because we impose more strict
constraints on the overload probability than required; instead
of requiring the total overload probability to be less then
Py, we look for a solution where the probability of overload
conditioned on the starting with n;_; EVs connected is
bounded by P}, for every n;_,. However, as we will show,
the performance of this control scheme is almost perfect, so
further optimization can result only in diminishingly small
improvements. The result also indicates that one starting
condition n;_, dominates the transition to the overloaded
state.

As a first measure of the control system’s performance, we
consider the time response of the control or equivalently the
time to relax to a steady state. In the constant-rate scheme,
this time is estimated as the product of the average number
of EVs charging in equilibrium and the typical inter-arrival
time 7/ Ao, which according to the discussion below Eq. (2)
is /Ao = 1/p. Control in this case can be slow because the
relaxation time is the typical time required to charge an EV,
which can be several hours for present EV battery and charg-
ing technology[5], [8]. In the variable-rate case, the relaxation
time can be estimated as the number of time intervals 7 it
takes, starting with ng = 0, to reach n ~ N. To leading order,
the solution of (6) can be estimated as A(n)7 =~ N —n—A,,
where A, ~ —log PyvV/N —n for N —n > 1. Thus, in
the limit N > 1,u7 < 1 and pN7 < 1, there will be

~

n ~ N +log Pyv/'N cars in the system after one interval 7.
After the second interval 7, n = N+log Py+/— log P,v/Py.
Thus, the total time required to reach stationary state can be
estimated as 7 log(—N log Py). For realistic values of N and
Py, the response time of the variable-rate protocol is now
under the control of the utility which can set 7 based on
technological or economic considerations.

A second measure of system’s performance, which we
address in the remainder of this manuscript, is the average
capacity utilization defined as #/N ranging from 0 with
no EVs charging to 1 when the excess circuit capacity is
fully utilized. Our control schemes seek to maximize 72/N
while keeping Py acceptably small. The proximity of /N
to one for a given Py is a measure of the quality of
the control scheme. Exact calculation of this quantity is
a computationally challenging problem that is beyond the
scope of this work. Instead, here we obtain the lower bound
for the capacity by exploiting the convexity of the function
A(n) derived from Eq. (6). We first note, that the stability of
the queue (i.e. existence of the stationary distribution) implies
that the following relation holds:

)

It is nol possible to extract the value of @ from Eq. (7)
directly because A(n) is a nonlinear function of n. However,
for convex and monotonically decreasing functions A(n) that
solve the equation (6) one can use the relation (7) to find the
lower bound for 7. It follows from Jensen’s inequality that
uit — A(n) > pn — A(n) and from motonicity of un — A(n)
we conclude that 7 > n* with n* being the solution of the
equation

Mn)T = ptt

®)

where we have assumed some convex and monotonic con-
tinuation of the discrete function A(n).

An*) = un*,

Equations (6) and (8) have been solved numerically with
Newton’s method with the help of the approximate expres-
sions for the transition kernel ) -  Wp,,(A7). For a given
value of Py, a table of A(n) was found foralln =0... N -1
which was then continued to real values of n with second-
order spline interpolation. Equation (8) was then solved to
find the lower bound on 7, i.e. n*, as a function of the
overload probability bound PJ;.

III. RESULTS AND DISCUSSION

To understand the differences between the constant-rate
and variable-rate protocols, Fig. 2 displays A(n) versus n for
N = 100 and Py = 10719 For the variable-rate case, the
condition on the overload probability in Eq. (6) suppresses
A(n) as n approaches N while no such condition exists in
the constant-rate case. The resetting of A(n) at the beginning
of each time interval 7 provides a mechanism for controlling
the fluctuations in n(t) due to the random EV connection
process. For example, if fluctuations in the rate of EVs
connections between ¢;_1 and t; generated a few more EV
connections that was expected on average, i.e. more than
TA(n;—1), then average connection rate in the subsequent
period is decreased. The opposite control response occurs if
the average number of connections falls short of the expected
average.

We find that the particular shape of A(n) as n approaches
N is important. In Fig. 2, N = 100 and A(n) could be
closely approximated by a linear function up to about n = 60.
Extending that line to A = 0 near n = 70 would provide
a very familiar type of control, i.e. proportional feedback




Fig. 2. EV connection rate A(n) versus n for the constant-rate (red, dashed
line) and variable-rate cases (blue, solid curve) for V = 100 and Py =
10~19, For the variable-rate case, u7 = 0.001.

50 p————

- .

control with a deadband between n = 70 and n = 100.
However, our analysis of this modified control protocol finds
this linearized A(n) shows little improvement in average
capacity utilization over the constant-rate case demonstrating
that the details of A(n) for n ~ NN are crucial to optimal
control performance.

Figure 3 shows the average capacity utilization for both
the constant and variable-rate cases. The ability of the
variable-rate control to essentially clip fluctuations in n by
modifying A is clearly evident in the the higher values of
7i/N achieved. Figure 3 also demonstrates the incremental
value of broadcast-communication control over the case of
no communication. Considering low overload probabilities,
eg. Py = 1071° Fig. 3 shows even when the optimal
value of Ag is used, the best excess capacity utilization in
the constant-rate scheme is only = 30%. Simply adding one-
way broadcast communication to allow the utility to update
the connection rate every 7 = 0.01/y, the utilization jumps to
~ 80%. To provide a sense of the communication time scale,
a typical charging time for an EV using today’s technology[8]
is approximately 5 hours. Therefore, to achieve 80% utiliza-
tion at Py = 1071 would require a communication rate of
once every 3 minutes, which is achievable even with slow
communication methods such as power line carrier (PLC).
Figure 3 shows that increasing the communication rate by
a factor of ten (about once every 20 seconds) only boosts
the average capacity utilization from 80% to 90%. From
this analysis, we conclude that the presence of relatively
slow, one-way, broadcast communication is sufficient to allow
utilities to effectively manage EV charging.

Figure 4 provides the same analysis as Fig. 3 except the
available excess capacity /V has been increased from 100
to 1000 EVs. The performance of both control methods
improves as [V increases. In each case, the better performance
is due to fractionally smaller variance in the equilibrium
distribution ,, for the constant-rate case and in the number
of EV connections during 7 for the variable-rate. As N is
increased, the value of even slow communication is still
apparent due to the increase in excess capacity utilization

Fig. 3. Average capacily utilization for the constant-rate case (red, dash-
dot curve) and the variable-rate case with N = 100 and pu7 = 0.01 (blue,
dashed curve) and uT = 0.001 (blue, solid curve). The horizontal axis is
the common log of the inverse of the probability of overload. Intuitively for
all cases, the average capacity utilization falls as the probability of overload
become smaller. In addition, the utilization also falls as 7 increases in the
variz;bée-rale case.
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Fig. 4. Same as Fig. 3 except here N = 1000. For larger IV using variable-
rate control, the capacity utilization approaches | and becomes less sensitive
to 7.
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from 70% to about 95%. However, increasing the speed of
communication becomes less and less important.

IV. CONCLUSION AND FUTURE DIRECTIONS

Avoiding synchronization of EV-charging start times is
crucial to avoiding circuit overloads as the penetration of
EVs on a distribution circuit increases. Randomization of
start times is one method that avoids this synchronization
and also allows the properties of the EV charging load to be
analyzed from the standpoint of queuing theory. Our initial
analysis shows that even relatively slow, one-way, broadcast
communication such as PLC can be used to modulate the
random EV connection process and effectively control the
EV-charging load. When there is a large amount of excess
circuit capacity for EV charging (e.g. 1000 EV connected at
a time), our control algorithm easily achieves 95% utilization
of the capacity with a minimal probability of overloading the



circuit. Our analysis also shows that compared to no commu-
nication, even relatively slow, one-way, broadcast communi-
cation boosts the utilization of circuit capacity dramatically.
However, as the speed of that communication increases, there
are diminishing returns for EV charging.

Our initial work lays the foundation for further study into
this EV-charging control method that could also be applied
to other forms of demand response if the consumer finds
randomization of load start times acceptable. Our work can
be expanded on in several ways:

« To avoid having to define an accurate excess circuit
capacity for every distribution circuit, a utility may
choose to use measurements of the current injected into
the circuit at the substation to determine excess capacity
in real time. These measurements would also capture
the statistical fluctuations in the non-EV-charging loads.
Our analysis should be performed in this setting to
account for time-dependent average excess capacity and
its fluctuations.

« Our analysis assumed that the population of EVs con-
nected to their chargers but not presently charging was
relatively large so that the number of unconnected EVs
had little dependence on the number of connected EVs.
During daylight hours when EVs are driven to the work-
place, the number of EVs on a residential distribution
circuit may be greatly reduced and also fluctuate greatly
as they are used for day trips. Our analysis should be
extended to account for these effects.

o Our analysis assumes that once an EV begins charging,
it stays connected until its battery is fully charged. A
more realistic setting would include the possibility of
EVs disconnecting before reaching full charge either due
to the requirements of the owner or perhaps due to a
broadcast control signal from the utility.

o The constraint in our model is based only on circuit
capacity and does not include any effects of power flow.
Including the effects of reactive power would make for a
much richer problem because EVs at different locations
on the circuit would contribute different amounts of
current draw at the substation.

« Our model was confined (o a single distribution circuil.
Natural extensions would consider both capacity and
power flow effects at substation or even local transmis-

sion scales.

o Finally, a more general model would also incorporate
the transportation grid and may account for delays in
transportation flows, EVs changing stations (e.g. from
home to work and back) and possibly even cross-
correlations between irregularities in traffic flows and
EV charging.
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