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Statistical properties of an algorithm used for illicit
substance detection by fast-neutron transmission
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ABSTRACT

A least-squaresalgorithmdevelopedforanalysisof fast-neula'ontransmissiondataresultingfrom non-destructive
interrogationofsealedluggageand containersissubjectedtoa probabilisticinterpretation.The approachistoconvert
knowledge of uncertainties in the derived areal elemental densities, as provid_ by this algorithm, into probability
information that can be usexl to judge whether an interrogated object is either benign or potentially contains an illicit
substance that should be investigated further. Two approachesare considered in this paper. One involves integration of a
normalized probability density function associated with the least-squares solution. The other tests this solution against a
hypothesis that the interrogatedobject indeed contains illicit material. This is accomplished by an application of the F-
distribution from statistics. These two methods of data interpretation are applied to specific sets of neutron transmission
results produced by Monte Carlo simulation.

..

I. INTRODUCTION

Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of
their ability to identify light elements such as hydrogen, carbon, nitrogen and oxygen, t These elements are not easily
identified by other non-invasive techniques such as X-ray spectroscopy. Fast-neutron transmission spectroscopy employs a
collimated neutron beam from a continuum source as the nuclear probe. Data are acquired by neutron time-of-flight
spectroscopy. Comparison is made between the primary spectrum and the spectrum after transmission through the object
being interrogated. A favorable neutron source for this propose can be generated at an accelerator facility via the
9Be,(d,n)l°B reaction, with incident deuterons in the 3-7 MeV energy range.2 A typical setup is shown schematically in.
Fig.1 below.

Deuteron Incident Transmitted .....
Beam Neutrons - Neutronsam
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Be Target

x-O x-L

Fig. 1. Schematicdiagram of a neutron transmissionexperiment in which the ecminuumsource of MeV neutrons is producedby
deuteronsfromanacceleratorincidenton a thick Be metaltarget.Thenent_oncollimationSystemis not shown.

Time (orequivalently energy) spectra are collected in a number of bins (n) by the recording device. Typically, n > 100. The
relationship between the numbers of incident (Noi) and transmitted (Ni) neutrons for a particular time or energy bin (i) is
expressed by means of the formula
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N, = No, exp [-Eo,(E,)[n,(x)dx] , (1)
k-I 0

where ok(Ei)isthetotalcross-sectionforelementk atenergyE i,nk(x) isthevolumetricdensityofelementk alongthe
neutronpaththroughtheinterrogatedobject,andPk- _oL nt(x)dxisthearealdensityofelementk integratedalongthat
path(x= 0,L)throughtheobjectinterrogatedby theneutronprobe.The listofelementstobe consideredwillalways
includehydrogen(I-I),carbon(C),nitrogen(N)and oxygen(O)asa minimum set.However,sinceluggageand cargo
containersusuallyincorporateotherelementsaswell,invariousproportions,we haveconsideredsimulationsinvolvingthe
additionofsuchelementsas routine(F),aluminum(AI),silicon(Si),chlorine(CI),iron(Fe),and copper(Cu).I The
number of elements (m) included in the analysis is usually < 10. If we define Yi - In (No.,./Ni)and let (A)/k = ok(Ei),
then Eq.1 can be expressed in matrix form by

A p = y. (2) _

The fitting model is governed by the matrix A and therefore entails the choice of elements and the individual total cross-
section values. The approximate equality in Eq.2 requires an explanation. If the collection of m areal densities symbolized
by p and the cross-section set forming A were known with certainty a priori then the transmission parameters y could be
calculated exactly. However, what is actually known is just the reverse. The vector y is determined from expe_ment and the
cross-sections in A are derived from evaluated data fries. Both have associated uncertainties. A set of solution parameters p _
must be found which best satisfies the over-determined (since n >> m) system of linear equations represented by Eq.2. The
least-squares solution is very unlikely to yield exact equality for this matrix expression.

..4

In this paperwe review the algorithm used to solve Eq.2 and then turn to an examination of probabilistic interpretations for
the solutions which it provides. These statistical methodologies are subsequently applied to some realistic examples of
simulatedneutron-interrogationdata. _

2.UNFOLDING ALC_RITHM
.- _.

Themethodofleastsquares3 isemployedtoobtaina solutiontoF_,q.2.Thisinvolvesfindingavectorp whichminimizesthe
quantity

Z2 = (3'- A p)l"Vy.1 (y. A p), (3)

where ,,1",indicates matrix transposition and ,,-1,,denotes matrix inversion. --

The solution is given by the formulas
.. ...

Vp = (A1"Vy"1 A)"1,
(4)

p= Vp A1. Vy'l y,

where V_ is the covariance matrix for areal densities p and Vy is the covariance matrix for the transmission data y. Thela

value of Z2 obtained by substitut_ag this solution into Eq.3 is governed by a chi-square distributionwith f= n-m degrees of

freedom.3 The transmission-data covariance matrix Vy is derived from the expression

(Vy)/j-- 8ij [(1/No_ + (1/N_] + Yt=l,m P_ (Ck)/jeta °ta v_ o'_ , (5)

where eta = 6k(Ei) is a total cross-section, vk/ is the corresponding fractional error, and Ck is the cross.section error
correlation matrix. Care must be taken in generating Vyto insure that it is positive definite.3 Then it can be inverted and Vp
will also be positive definite. The covariance matrix Vy is clearly formed by superimposing two components. The first is
diagonal and includes randomdetector-count errors. Larger integrated neutron fluences yield better statistical accuracy. The
second term reflects systematic errors in neutron total cross-sections used for the analysis. The required cross-sections crk/
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and their errors are generated from evaluated fries, e.g., ENDF/B-VI. 4 It has been found that more consistent results are
obtained when transmission-generated cross-sections are employed rather than direct energy-averaged cross-sections, as
discussed in tel 5. Eq.5 is an approximation which evolves from an application of the effective variance method.6 The
impact of errors in the total cross-sections foran individual element obviously depends on the areal density of that element•
Since this is not known a priori, an iterativ_"approach is requiredto implement the least-squaresmethod. The first pass is
carried out without including cross-section errors. Thus, we set p = 0 in Eq.5. This leads to a solution Pa which is
subsequently used to derive a revised matrix Vy via Eq.5 for the second pass of this analysis. If no cross-section errorsare
considered, then a second pass is not requiredand p = Pa is the desired solution•

The expected value of _2/f is unity.3 If it is significantly larger than unity, then one is alerted to the fact that the scatter in

the data is inconsistent with the errors represented by Vy, or that the model used for the unfolding is wrong, or that a
combination of both factors contributes to the discrepancy. Every attempt should be made to try and trace down these
sources of discrepancy. If the problem is not entirely resolved by this procedure, and X2/f is still larger than unity, one

should "f'LX"the problem somewhat arbitrarily by simply adjusting the solution covariance matrix Vp via scaling of all its
elements. That is, we make the substitution Vp --->[(_2/f)l/2 ]Vp, leaving the solution values p untouched. The rescaled
matrix will automatically force _2/f to unity. This is not a totally satisfying resolution of the problem because it simply
spreads unreconciled discrepancies proportionallyacross all the parametererrors. However, for the purposes of probabilistic
interpretation of the results it is necessary to take this step because one cannot proceed with a probabilistic analysis that
incorporatesa matrix Vpwith too small errors. What should be done if _2/f < 1? This is a more perplexing problem. What
it signifies is that the scatter in transmission data is smaller than the assigned errors. This is less likely to be traceableto
randomerrors thanto the systematic total cross-section errors.One could consider reducing thecross-section errors,but this
seems arbium'y if these errors are derived from fries and represent an evaluator's educated beliefs on the subject.We have ..
found that quite small chi-square values often emerge from our simulation studies because cross-section uncertainties are
not incorporated into the Monte Carlo simulation code MCN'Pbut have generally been considered in our unfolding
algorithm.1.7 To circumvent this dilemma for the present discussion, we have chosen to treat an example in Section 4
which includes randomerrors but no cross-section errors. As long as the Monte Carlo simulation and unfolding analysis are
carried out on equal footing, it is advisable to alter Vt, by adjusting the errorseven if _2/f < 1 is obtained from unfolding.

The technique is again to multiply the solution Vpby'(_2/f)1/2 as shown above. From a probabilisticpoint of view, this is a
reasonable choice, andit is likely that the erroradjustmentswill be relatively modest.

3. PROBABILISTICINTERPRETATIONS

It can be shown from the principles of information theory3 that if one knows only the mean values p fora set of parameters-

q and their associated covariance matrix Vp, the best choice is a multivariate normal probabilitydensity function P in the
variablearrayq, namely,

P(q; p, Vp) = (2_) "m_[det(Vp)]-1/2 exp [-(1/2) (q- p)? Vp I (q- p)]. (6)

This is a normalized function in that SP(q; p, Vp) dq = 1. The first probabilistic approach we will consider here is based on
Eq.6. Suppose that P0 represents values of the parameters for an illicit substance. Having obtained a solution p from
unfolding the transmission data by least squares, we ask the question: "What is the risk Ro that this solution signals
detection of P07'' Oneanswer to this question is given by the formula

Ro = -fuP(q; P, Vp) dq, (7)

where U encompasses all points outside the m-dimensional closed surface (hyper-ellipsoid) defined by the probability

density ot = P(P0; P, Vp), i.e., all points q belonging to the set U = (q: P(q; p, Vp) < o_}.Fig.2 illustrates the geometry for
the case m ffi2.
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Fig.2. Schematicdiagramof anellipsein twodimensions.Therelationshipbetweenthesolutionarray( p ) and thatcorrespondingto an
illicitsubstance( P0) is indicated.

- R0 represents a certain probability that what we observe within the interrogatedobject by obtaining p is really an illicit
substancedefined by P0- The multi-dimensional integral in Eq.7 can be readily convened into a one-dimensional integral,s
We obtain

" 21-m/2iR o = 1 ym-le-y_/2 dy, (8)-"

..

where

- r02= (P0" P)* Vp"1 (P0" P)" (9)_

We can think of r as a measure of "distance" between the known illicit substance P0 and the solution p in the units of
. reducedstandardd°eviation.The table below shows the risk factor 17,0 for differentnumbersof elements m as a function of ro.

Risk Factor

_ m ra=l 2 3 4 5

1 31.731% 4.550% 0.270% 0.006% 0.000%
2 60.653% 13.534% 1.111% 0.034% 0.000%
3 80.125% 26.146% 2.929% 0.113% 0.002%
4 90.980% 40.601% 6.110% 0.302% 0.005%
$ 96.257% 54.942% 10.906% 0.684% 0.014%
6 98.561% 67.668% 17.358% 1.375% 0.034%
7 99.483% 77.978% 25.266% 2.512% 0.076%
8 99.825% 85.712% 34.230% 4.238% 0.155%
9 99.944% 91.141% 43.727% 6.688% 0.297%
10 99.983% 94.735% 53.210% 9.963% 0.535%



We must ask whether this approach provides the most useful measure of risk probability. The region U over which
integration occurs includes many other points besides Po. In a sense, what is given here is a very conservative estimate of
risk, i. e., an upper bound on the risk that solution p could be an illicit substance characterizedby Po.

An approach which appears to give a better statistical measure of risk is to apply the F-distributiontest. Let H0 be the null
hypothesis that solution p signifies the presence of an illicit substance denoted by P0. Fromthis point of view we can define
the 100 (l-a)% confidence intervalfor Ho by the condition

r02 = (p- po)t Vp"1(P-po)<mFm,n.m(a), (10)

where n is the number of measurements and m is the numberof elements used in the regression analysis, and Fm,n.m(a) is
the upper (100 a)th percentile of an F-distributionwith m and n-m degrees of freedom. If the condition in Eq. 10 is not
satisfied, we must assume that the solution p is not an illicit substance with the probability for error given by a. If the
condition in Eq. 10 holds, we cannot reject Ho and must examine the situation further. It is important to note that the F-
distribution test is designed to test the absence of an illicit substance at a given confidence level. As a practical matter, we
suggest using a = 0.001 or less. For example, ff upon applying the test we find that Eq. 10 is not satisfied at a level of a =

0.001, we conclude that the solution p is not an illicit substance represented by Po and the odds of the conclusion being
wrong are less than 1 in 1,000.

Simultaneous 100(1-a)% confidence intervals from the regression analysis can be defined for each parameterPiby

Pi+ [(Vp)ii]t/2 [m Fm,n.m(a) ]lj2. (11) -_

In applying statistical tests, it is essential to use the optimal number of regression parameters. That is ff we use a large
number of elements to obtain a solution from Eq. 4 and find out that certain regression coefficients do not differ-
significantly from zero, we must redo the regression analysis with only the relevant number of elements included. Eq. 11
can serve to determine which elements may be safely dropped from the subsequentanalysis. Also, we need to take into
account the fact that the derived areal densities p are dependent upon the thickness of the object being interrogated.Since
what is known about illicit substances are their raw elemental densities, we must design a way to incorporate the size-
dependence of the solution into the test. One approachis to use size-independent qualifiers q to define the illicit substance.
For example, we can choose to use the set % = Pk / [_t=l m Pk] for k = 1.... ,m, where m is the number of elements used in-
the final regression analysis. A useful way to identify such qualifiers is via expressions such as O/(H+C+N+O), O/N,
H/(N+C), etc. Then, an illicit substance defined by q0 can be easily converted into a size-dependent vector P0 against which
the solution p can be tested. The testing procedure is illustratedby an example in the next section.

4. AN EXAMPLE

Here we apply the statistical tests to the neutron transmission data generated with MCNP for two substances: explosive

RDX (C3H6N606) and benign melamine (C3H6N6). We denote these substances with subscripts ! and 2, respectively, for
testing purposes. We would like to test for the presence of RDX. As mentioned above, we do not consider cross-section
errors in this analysis. In our simulations, we used n=193 for the numberof time, or energy, bins.

We first apply Eq. 4 to compute regression coefficients l_ using ten elements: H, C, N, O, F, Al, Si, Cl, Fe, Cu. We see that
the last 6 elements do not contribute anything to the solution and, according to Eq. 11, the coefficients P5 through Pl0 are
zero within a 99.9% confidence interval. We then rerun the regression calculation using just 4 elements (H, C, N, and O),

and scale the resulting covariance mau'ixVp _ [(Z2/f)1/2 ] Vpas describedabove. We get for m = 4,

Pl = (0.0860, 0.04419, 0.0911, 0.0892),
P2 = (0.2223, 0.1120, 0.2316, 0.0000),

as the solution values for the integrated elemental densities and

i



/3866 / /10_7/-27.2233 114.361 10_71-23.124197.1408

Vp= /-15.8349-63.0473 101.046 ' Vp2= /-13.4505-53.5538 85.8307 '

_,-2.73119 -21.2529 1.95051 22.5448 _.-2.31994 -18.0527 1.65681 19.1501

for the corresponding symmetric covariance matrices of the two tested substances. The RDX substance we test against has

the following qualifiers: H/(H+C+N+O)=2/7, C/(H+C+N+O)=I/7, N/(I-I+C+N+O)=2/7, O/(H.:.C+N+O)=2/7, i. e. qo =
(2/7,1/7,2/7,2/7). We transform qo to an equivalent P0.The Substance 1 will be tested against pol= (0.0887, 0.0444, 0.0887,
0.0887) and the Substance 2 will be tested against po2= (0.1614, 0.0807, 0.1614, 0.1614) in accordance with the formula
given in the previous section. We get following values for the "distance" of the tested substances from the "RDX point"
from Eq. 9,

.°

rol= 2.62 (Substance 1), to2= 126 (Substance 2),

and the corresponding risk levels from Eq. 8,

Rol- 0.14 (Substance 1), Ro2< 10"14 (Substance 2).

Note that if we include all 10 elements, the risk level for the Substance 1 becomes about 74% while the risk level for the

Substance 2 essentially stays at zero.

We can also test the hypotheses that the Substance 1 is RDX and that the Substance 2 is RDX. As shown in F.xl.10, the test-
involves comparing ro" with 4F4,189(ct) for a 100 (l-ix)% confidence interval. The values of 4F4,189(o0 and r02 are shown
in the table below for different levels of or. -

l

Ot m Fma.m(00 ro2 :
Substance 1 Substance2 --

0.1 7.899 6.88 1.58x104
0.01 13.68 6.88 1.58x104

0.001 19.29 6.88 1.58x104 -'
0.0001 24.90 6.88 1.58x104

0.00001 30.56 6.88 1.58x104

We clearly see that we can reject the Substance 2 as RDX with the odds of being wrong less than 1 in 105 while the
Substance I does notfail the test for RDX even at the 10% level.

5. CONCLUSIONS

The statistical methods of analysis and hypothesis testing presented in this paper are powerful tools for illicit substance
detection. Using a multivariate regression mode/, we can determine from the fast-neutron transmission spectra the most
likely integrated elemental densities for the interrogated substance. Coupled with their computed covariance matrix, they
provide a basis for testing the substance against a known explosive or drug. Using results from MCNP simulations of
transmission experiments, we can see the strengths and limitations of two different statistical methods. In the end, we are
left with a probabilistic measure of the risk that an illicit substance is present. Studies of simulated data can show which
risk levels aresignificant and with what confidence the results of testing may be trusted. By placing numericalbenchmarks
at thedisposal of the interrogator, our statistical unfolding algorithm provides an objective frameworkformaking decisions
on risk based on probabilities.
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