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Statistical properties of an algorithm used for illicit
substance detection by fast-neutron transmission
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ABSTRACT

A least-squares algorithm developed for analysis of fast-neutron transmission data resulting from non-destructive
interrogation of sealed luggage and containers is subjected to a probabilistic interpretation. The approach is to convert
knowledge of uncertainties in the derived areal elemental densities, as provided by this algorithm, into probability
information that can be used to judge whether an interrogated object is either benign or potentially contains an illicit
substance that should be investigated further. Two approaches are considered in this paper. One involves integration of a
normalized probability density function associated with the least-squares solution. The other tests this solution against a
hypothesis that the interrogated object indeed contains illicit material. This is accomplished by an application of the F-
distribution from statistics. These two methods of data interpretation are applied to specific sets of neutron transmission
results produced by Monte Carlo simulation.

L INTRODUCTION

Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of

their ability to identify light elements such as hydrogen, carbon, nitrogen and oxygen.! These elements are not easily

identified by other non-invasive techniques such as X-ray spectroscopy. Fast-neutron transmission spectroscopy employs a

collimated neutron beam from a continuum source as the nuclear probe. Data are acquired by neutron time-of-flight

spectroscopy. Comparison is made between the primary spectrum and the spectrum after transmission through the object

being interrogated. A favorable neutron source for this purpose can be generated at an accelerator facility via the

9Be(d,n)!%B reaction, with incident deuterons in the 3-7 MeV energy range.2 A typical setup is shown schematically in -
Fig.1 below.

Transmitted
Neutrons

E—— Detector

Deuteron Incident

x=0 x=L

Fig. 1. Schematic diagram of a neutron transmission experiment in which the continuum source of MeV neutrons is produced by
deuterons from an accelerator incident on a thick Be metal target. The neutron collimation system is not shown.

Time (or equivalently energy) spectra are collected in a number of bins (n) by the recording device. Typically, n > 100. The
relationship between the numbers of incident (N,) and transmitted (N;) neutrons for a particular time or energy bin (i) is
expressed by means of the formula
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N, = Ny exp [-3.6,(E) _[ n, (x)dx] , )
k=l
where G (E) is the total cross-section for element k at energy E;, n,‘(x) is the volumetric density of element £ along the
neutron path through the interrogated object, and p, = I n,(x)dx is the areal density of element & integrated along that
path (x = O,L) through the object interrogated by the neutron probe. The list of elements to be considered will always
include hydrogen (H), carbon (C), nitrogen (N) and oxygen (O) as a minimum set. However, since luggage and cargo
containers usually incorporate other elements as well, in various proportions, we have considered simulations involving the
addition of such elements as flourine (F), aluminum (Al), silicon (Si), chlorine (Cl), iron (Fe), and copper (Cu).! The
number of elements (m) included in the analysis is usually < 10. If we define y; = In (N,/N,) and let (A), = O,(E). ‘
then Eq.1 can be expressed in matrix form by
Ap=y. @) .

The fitting model is governed by the matrix A and therefore entails the choice of elements and the individual total cross-
section values. The approximate equality in Eq.2 requires an explanation. If the collection of m areal densities symbolized ..
by p and the cross-section set forming A were known with certainty a priori then the transmission parameters y could be
calculated exactly. However, what is actually known is just the reverse. The vector y is determined from experiment and the
cross-sections in A are derived from evaluated data files. Both have associated uncertainties. A set of solution parameters p ..
must be found which best satisfies the over-determined (since n >> m) system of linear equations represented by Eq.2. The
least-squares solution is very unlikely to yield exact equality for this matrix expression. '

In this paper we review the algorithm used to solve Eq.2 and then turn to an examination of probabilistic interpretations for “
the solutions which it provides. These statistical methodologies are subsequently applied to some realistic examples of
- simulated neutron-interrogation data. -

2. UNFOLDING ALGORITHM

The method of least squares? is employed to obtain a solution to Eq 2. This involves finding a vector p which minimizes the :
quantity

2=0-ApTV,! 5-Ap), 3)
where "1 indicates matrix transposition and "-1" denotes matrix inversion.
The solution is given by the formulas

_ atv - Ay
v, = atv,t ayt, o
p=v,at vy,

where V_ is the covariance matrix for areal densities p and Vy is the covariance matrix for the transmission data y. The
value of 2 obtained by substitut..g this solution into Eq.3 is governed by a chi-square distribution with f= n-m degrees of
freedom.3 The transmission-data covariance matrix Vy is derived from the expression

(V)= 8; [(INg) + (IND] + Zpoy P2 (€ Vii O Vi Oy ©)

where 6,;= O,(E) is a total cross-section, v; is the corresponding fractional error, and C, is the cross-section error
correlation matrix. Care must be taken in generating V, to insure that it is positive definite.3 Then it can be inverted and V

will also be positive definite. The covariance matrix 6 is clearly formed by superimposing two components. The first lS
diagonal and includes random detector-count errors. Larger integrated neutron fluences yield better statistical accuracy. The
second term reflects systematic errors in neutron total cross-sections used for the analysis. The required cross-sections oy,




and their errors are generated from evaluated files, e.g., ENDF/B-VL.* It has been found that more consistent results are
obtained when transmission-generated cross-sections are employed rather than direct energy-averaged cross-sections, as
discussed in ref. 5. Eq.5 is an approximation which evolves from an application of the effective variance method.® The
impact of errors in the total cross-sections for an individual element obviously depends on the areal density of that element.
Since this is not known a priori. an iterative approach is required to implement the least-squares method. The first pass is
carried out without including cross-section errors. Thus, we set p = 0 in Eq.5. This leads to a solution p, which is
subsequently used to derive a revised matrix V,, via Eq.5 for the second pass of this analysis. If no cross-section errors are
considered, then a second pass is not required and p = p, is the desired solution.

The expected value of %2 /f is unity.3 If it is significantly larger than unity, then one is alerted to the fact that the scatter in
the data is inconsistent with the errors represented by Vy , or that the model used for the unfolding is wrong, or that a
combination of both factors contributes to the discrepancy. Every attempt should be made to try and trace down these
sources of discrepancy. If the problem is not entirely resolved by this procedure, and %2 /f is still larger than unity, one
should "fix" the problem somewhat arbitrarily by simply adjusting the solution covariance matrix Vp via scaling of all its
elements. That is, we make the substitution vV, - [(x? m2iv,, leaving the solution values p untouched. The rescaled
matrix will automatically force %2 /f to unity. This is not a totally satisfying resolution of the problem because it simply
spreads unreconciled discrepancies proportionally across all the parameter errors. However, for the purposes of probabilistic
interpretation of the results it is necessary to take this step because one cannot proceed with a probabilistic analysis that
incorporates a matrix V, with too small errors. What should be done if %2 /f < 1? This is a more perplexing problem. What _
it signifies is that the scatter in transmission data is smaller than the assigned errors. This is less likely to be traceable to
random errors than to the systematic total cross-section errors. One could consider reducing the cross-section errors, but this
seems arbitrary if these errors are derived from files and represent an evaluator's educated beliefs on the subject. We have ..
found that quite small chi-square values often emerge from our simulation studies because cross-section uncertainties are
not incorporated into the Monte Carlo simulation code MCNP but have generally been considered in our unfolding
algorithm.!7 To circumvent this dilemma for the present discussion, we have chosen to treat an example in Section 4
which includes random errors but no cross-section errors. As long as the Monte Carlo simulation and unfolding analysis are
carried out on equal footing, it is advisable to alter Vp by adjusting the errors even if %2 /f <1 is obtained from unfolding.

- The technique is again to multiply the solution V, by (x2 /)12 as shown above. From a probabilistic point of view, this is a -
reasonable choice, and it is likely that the error adjustments will be relatively modest.

3. PROBABILISTIC INTERPRETATIONS
It can be shown from the principles of information theory? that if one knows only the mean values p for a set of parameters -

q and their associated covariance matrix Vp , the best choice is a multivariate normal probability density function P in the .
variable array q, namely,

P@; p. V) = (2ny™2 [det(V)I'2 exp [(1/2) (- p)T V! (a-p)). 6)

This is a normalized function in that [ P(q; p, Vp) dq = 1. The first probabilistic approach we will consider here is based on
Eq.6. Suppose that p, represents values of the parameters for an illicit substance. Having obtained a solution p from
unfolding the transmission data by least squares, we ask the question: "What is the risk R, that this solution signals
detection of p, ?" One answer to this question is given by the formula

Ro=Jy P(a; p, V) dq , 0]

where U encompasses all points outside the m-dimensional closed surface (hyper-ellipsoid) defined by the probability
density o = P(pg: p, Vp), i.e., all points q belonging to the set U= {q: P(q; p, Vp) < o). Fig.2 illustrates the geometry for
the case m = 2,



Region U
(external to ellipse)

q

Fig. 2. Schematic diagram of an ellipse in two dimensions. The relationship between the solution array ( p ) and that corresponding to an
illicit substance ( pg ) is indicated.

R, represents a certain probability that what we observe within the interrogated object by obtaining p is really an illicit -

substance defined by p,. The multi-dimensional integral in Eq.7 can be readily converted into a one-dimensional integral.?
We obtain

21-—m12 %
m
| —]|o°
)
1% (P - P V1 (py- D). 0.

We can think of r, as a measure of "distance” between the known illicit substance p, and the solution p in the units of
. reduced standard deviation. The table below shows the risk factor Ry, for different numbers of elements m as a function of r,,.

R,=1- y™e?'? dy, ®"

where

Risk Factor
ry=1 2 3 4 5

31.731% 4.550% 0270% 0.006%  0.000%
60.653% 13.534% 1.111% 0.034%  0.000%
80.125% 26.146% 2929% 0.113%  0.002%
90.980% 40.601% 6.110% 0302%  0.005%
96.257% 54.942% 10.906% 0.684%  0.014%
98.561% 67.668% 17358% 1375%  0.034%
99.483% 77.978% 25266% 2.512%  0.076%
99.825% 85.712% 34.230% 4.238%  0.155%
99.944% 91.141% 43.727% 6.688%  0.297%
99.983% 94.735% 53.210% 9.963%  0.535%
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We must ask whether this approach provides the most useful measure of risk probability. The region U over which
integration occurs includes many other points besides p,. In a sense, what is given here is a very conservative estimate of
risk, i. e., an upper bound on the risk that solution p could be an illicit substance characterized by p,.

An approach which appears to give a better statistical measure of risk is to apply the F-distribution test. Let Hy be the null
hypothesis that solution p signifies the presence of an illicit substance denoted by py . From this point of view we can define
the 100 (1-a)% confidence interval for Ho by the condition

= (p- o)‘rV'1 P-ppsmF,,  (0), (10

where n is the number of measurements and m is the number of elements used in the regression analysis, and F,, , , (@) is
the upper (100 a)th percentile of an F-distribution with m and n-m degrees of freedom. If the condition in Eq. 10 is not
satisfied, we must assume that the solution p is not an illicit substance with the probability for error given by a. If the
condition in Eq. 10 holds, we cannot reject Hy and must examine the situation further. It is important to note that the F-
distribution test is designed to test the absence of an illicit substance at a given confidence level. As a practical matter, we
suggest using a = 0.001 or less. For example, if upon applying the test we find that Eq. 10 is not satisfied at a level of & =
0.001, we conclude that the solution p is not an illicit substance represented by p, and the odds of the conclusion being
wrong are less than 1 in 1,000,

Simultaneous 100(1-0)% confidence intervals from the regression analysis can be defined for each parameter p; by
pi £ [(Vpil'2 [m Fpy p py (0) 112 1n-

In applying statistical tests, it is essential to use the optimal number of regression parameters. That is if we use a large
number of elements to obtain a solution from Eq. 4 and find out that certain regression coefficients do not differ -
significantly from zero, we must redo the regression analysis with only the relevant number of elements included. Eq. 11
can serve to determine which elements may be safely dropped from the subsequent analysis. Also, we need to take into -
account the fact that the derived areal densities p are dependent upon the thickness of the object being interrogated. Since -
what is known about illicit substances are their raw elemental densities, we must design a way to incorporate the size- .
dependence of the solution into the test. One approach is to use size-independent qualifiers q to define the illicit substance.

~ For example, we can choose to use the set q, = p, / [£,=)™ Py for k= 1,....,m , where m is the number of elements used in -
the final regression analysis. A useful way to identify such qualifiers is via expressions such as O/(H+C+N+O), O/N,
H/(N+C), etc. Then, an illicit substance defined by g, can be easily converted into a size-dependent vector p, against whxch
the solution p can be tested. The testing procedure is illustrated by an example in the next section.

4. AN EXAMPLE

Here we apply the statistical tests to the neutron transmission data generated with MCNP for twc substances: explosive
RDX (C3HgNgOg) and benign melamine (C3HgNg). We denote these substances with subscripts 1 and 2, respectively, for
testing purposes. We would like to test for the presence of RDX. As mentioned above, we do not consider cross-section
errors in this analysis. In our simulations, we used n=193 for the number of time, or energy, bins.

We first apply Eq. 4 to compute regression coefficients py using ten elements: H, C, N, O, F, Al, Si, Cl, Fe, Cu. We see that
the last 6 elements do not contribute anything to the solution and, according to Eq. 11, the coefficients ps through p,q are
zero within a 99.9% confidence interval. We then rerun the regression calculation using just 4 elements (H, C, N, and O),
and scale the resulting covariance matrix V - [(? /t)m] V as described above. We get for m = 4,

p; =(0.0860, 0.04419, 0.0911, 0.0892),
p, =(0.2223, 0.1120, 0.2316, 0.0000),

as the solution values for the integrated elemental densities and



. and the corresponding risk levels from Eq. 8,

31.8616 27.064
-7| -27.2233 114.361 —q| -23.1241 97.1408
Vp, =10 » Vp, =10
1 -15.8349 -63.0473 101.046 2 -13.4505 -53.5538 85.8307

-2.73119  -21.2529 1.95051 22.5448 -2.31994 -18.0527 1.65681 19.1501

for the corresponding symmetric covariance matrices of the two tested substances. The RDX substance we test against has
the following qualifiers: H/(H+C+N+0)=2/7, C/(H+C+N+0)=1/7, N/(H+C+N+0)=2/7, O/(H::C+N+0)=2/7, i. e. q; =
(2/7,1/1,2/12/7). We transform q, to an equivalent py.The Substance 1 will be tested against py,= (0.0887, 0.0444, 0.0887,
0.0887) and the Substance 2 will be tested against pg,= (0.1614, 0.0807, 0.1614, 0.1614) in accordance with the formula
given in the previous section. We get following values for the "distance” of the tested substances from the "RDX point"
from Eq. 9,

Io;= 2.62 (Substance 1), ro,= 126 (Substance 2),

Rg,=0.14 (Substance 1), . Rg,< 10714 (Substance 2) .

Note that if we include all 10 elements, the risk level for the Substance 1 becomes about 74% while the risk level for them
Substance 2 essentially stays at zero.

We can also test the hypotheses that the Substance 1 is RDX and that the Substance 2 is RDX. As shown in Eq. 10, the testa?
involves comparing r, “ with 4F, ;49 () for a 100 (1-c)% confidence interval. The values of 4F, 149 () and r, 2 are shown .

- in the table below for different levels of ct.

a MmE, ;. m(0) T2 :

' Substance 1 Substance 2 -
0.1 7.899 6.88 1.58x10%
0.01 13.68 6.88 1.58x10*
0.001 19.29 6.88 1.58x10*
0.0001 24.90 6.88 1.58x104
0.00001 30.56 6.88 1.58x10*

We clearly see that we can reject the Substance 2 as RDX with the odds of being wrong less than 1 in 10° while the
Substance 1 does not fail the test for RDX even at the 10% level.

3, CONCLUSIONS

The statistical methods of analysis and hypothesis testing presented in this paper are powerful tools for illicit substance
detection. Using a multivariate regression mode!, we can determine from the fast-neutron transmission spectra the most
likely integrated elemental densities for the interrogated substance. Coupled with their computed covariance matrix, they
provide a basis for testing the substance against a known explosive or drug. Using results from MCNP simulations of
transmission experiments, we can see the strengths and limitations of two different statistical methods. In the end, we are
left with a probabilistic measure of the risk that an illicit substance is present. Studies of simulated data can show which
risk levels are significant and with what confidence the results of testing may be trusted. By placing numerical benchmarks
at the disposal of the interrogator, our statistical unfolding algorithm provides an objective framework for making decisions
on risk based on probabilities.
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