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ABSTRACT

We study linear and nonlinear properties of a new computer simulation

model developed to study the propagation of electromagnetic waves in a

dielectric medium in the linear and nonlinear regimes. The model is

constructed by combining a microscopic model used in the semi-classical

approximation for the dielectric media and the particle model developed

for the plasma simulations. It is shown tha_ the model may be useful for

studying linear and nonlinear wave propagation in the dielectric media.
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I. INTRODUCTION

A new computer simulation model, 1 called the nonlinear Lorentz Com-

putational model, has recently been proposed to study electromagnetic

wave propagation in linear and nonlinear dispersive solid-state media.

The original Lorentz model of the atom, which treats the atom as a

harmonic oscillator, provides a very good description of the linear elec-

tromagnetic properties of the dielectric media. 2

In order to model the response of a nonlinear dielectric medium, a

semi-classical model 3,4'5 is used to represent the electrical behavior of the

nonlinear dispersive solid-state media. To include a nonlinearity arising

from the intrinsic quantum effects, this model is constructed by extending

the Lorentz model for the dielectric media 2 so that the electrons in the

atom are allowed to include a nonlinear restoring force.

It is well known that, according to the quantum-mechanical theory

of the nonlinear susceptibility, each atom possesses many energy eigen

values and has more than one resonance frequency. Since the present

model allows only one resonance frequency for each atom, it provides a

good model for only the cases in which all wave frequencies of interest are

off-resonant or well seperated from the resonance frequency. Nonetheless,

many useful applications are expected to exist even in these limited cases.

The details of the model differ depending upon whether or not the
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medium possesses an inversion symmetry. The tensor properties of the

susceptibility cannot be specified unless the internal symmetries of the

medium are completely known. One of the most important cases is that

of a material which is isotropic and centrosymmetric. 5 Examples of such

materials are liquids, gases, amorphous solids such as glass, and even

many crystals displaying inversion symmetry. In this paper, we focus

our attention on these cases and find that such medium induces a cubic

nonlinear contribution to the polarization which causes the third order

susceptibility in terms of the electric field.

To numerically solve both Maxwell's equations for the fields and the

equation of motion for many charged particles or dipoles self-consistently,

the model is constructed by adopting the numerical techniques which have

been developed in the electromagnetic particle simulation of plasmas. 6,_

Here only the equation of motion for charged particle is modified from

that in the original particle simulation model for free electrons and ions in

order to represent the linear and the nonlinear properties of the dispersive

solid-state media.

Another approach to simulate wave propagation in linear and nonlin-

ear dielectric materials is to use the finite-difference method in the time

domain in which Maxwell's equations are solved directly together with

linear and nonlinear susceptibilities given as frequency-dependent func-

tions a priori. 8'9'1°
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Our nonlinear Lorentz Computational model differs physically and nu-

merically from this model. We may apply our model to study the fem-

tosecond phenomena such as soliton propagation 11 or opitical switching in

a glass. 12'13,14 As the nanosecond phenomena, a high-power soliton gen-

eration in a ceramic 15 may be simulated using our model. These should

be studied extensively because of its importance in their applications to

optical microelectronics, communication engineering, and electrical engi-

neering.

II. THEORETICAL REVIEW AND SIMULATION MODEL

A. Nonlinear Lorentz Computational Model

Let us describe in detail the mathematical method to model the non-

linear Lorentz computational model here. Microscopically, the simplest

dielectric material can be considered as an isotropic and locally uniform

collection of a large number of electric dipoles with the eigen frequency wo

for the oscillating electric field. We, therefore, assume in our model that

a large number of electric dipoles are uniformly distributed in the sys-

tem, where the ions are assumed fixed spatially and the electrons oscillate

around the ions.

The motion of the electrons in the presence of an electric field E and

a magnetic field B is given by 5

dxj _
dt - v j,
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dvj / \

= - [E+_j×B)- _o_fj(xj- x0j)-rovj,dt m

fj= 1+ 53 w°---_(xj-xoj).(xj-x0j) (1)
Cm 2

where xj and v j are the position and the velocity of the j-th electron,

xj0 is its equilibrium position, Fo is a small friction coefficient, ti3 is a

numerical constant for the cubic nonlinearity for the dielectric media, and

Cm is the velocity used for normalization and its definition will appear

after Eq. (3). In the present one-dimensional limit, Eq. (1) agrees with

earlier results. 1

In the case of (53< 0, Eq. (1) is unstable for a large wave amplitude.

In order to stabilize the equation of motion, fj is approximated by

fj=(_3r+

[ _3 w02 1(1-53_)exp (1_53_) Cm2 (xj-xoj)'(xj-xoj) , (2)

for a negative 53 where (_3r is a non-negative numerical constant less than

unity. For a small displacement, Eq. (2) is reduced to Eq. (1).

Equation (1) is finite-differenced by the leapfrog scheme and solved

self-consistently together with Maxwell's equations 6'7 for the electric and

magneteic fields. Writing E = E T+E L and B = B T, Maxwell's equations

are given by

cOBT
VxE T--

Ot '



V × S T -- 1 cgE T jT
-cm 2 0t +#o ,

V.EL= p,
go

V.Br=0. (3)

Here cm is tn. speed of light in a dielectric in the case of the infinitely-high

frequency,

C
a m

where c is the speed of light in vacuum and em is the dielectric con-

stant relative to vacuum representing the effects of contribution from the

dipoles with eign frequencies much higher than those in the system. The

upperscripts T and L indicate the transverse and longitudinal compo-

nents of a vector Q satisfying

v.QT:0,

VxQL:0.

The current and charge densities J and p are given by

N

J = _ -e vj_(x- xj)+ ,1_,,
j=l

N

P = E e [-e(x - xj) + 6(x - xj0)], (4)
j--1

where N is the total number of the dipoles in the system and J ext is an

external current to inject an electromagnetic wave into the system.
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B. Fresnel's formula for the case of the normal incidence

We assume that the boundary between vacuum and a dielectric medium

is planar and located at x - XB. Let a linearly polarized monochromatic

plane wave with frequency w coming from the left-side space x < x B im-

pinge upon this boundary. In the case of the one-dimensional simulation

studied here, we can treat only the normal incidence. For the solution of

this boundary-value problem, we need to consider three waves, an inci-

dent wave, a refracted wave, and a reflected wave, whose complex electric

amplitude are denoted by A, B, and C, respectively. We get the resulting

superposition of the incident and reflected waves in vacuum denoted by

a subscript v and the refracted wave in the dielectric medium denoted by

a subscript d as

Ezv = {A exp[+ikv(x - xB)] + C exp[-ikv(x - XB)]} exp(--i_t),

Ezd = S exp[+ikd(x - XB)] exp(--iwt), (5)

where their wave numbers kv and kd are related to the refractive index n

by

kd (6)
k--_= n.

The boundary conditions for E. and B_ = 1/_zOE_/Ox derived from

Eq. (3) require

A+C=B,
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and

A - C = ---ka B = -nB. (7)
kv

The ratios of the reflected and the refracted wave amplitudes to the in-

cident wave amplitude are given by

C 1-n

A l+n
B 2

= l+n" (8)

C. Dispersion relation in the nonlinear dielectric medium

In the non-conducting material, imagine that the electric field E is

imposed on the electron charge -e. This charge is displaced from the

ionic charge +e in the direction opposite to the electric field E. We

can assume the ionic charge +e which carries the ionic mass M to be

stationary. Thus an electric dipole moment (+e,-e) is directed parallel

to E and so the polarization vector P is given by

P= -ndes, (9)

where s is the moment arm vector and nd is the number of the electrons

per unit volume. The electric displacement D is given by

D = ¢m¢0E + P. (10)



In this case, the current in Maxwell's equation, Eq. (3), is restricted to

only the poralization current as

a=P. (11)

For the transverse electric field E T which satisfies V. E T - 0, we get

V2ET 1 _']T
c2 = #o _T. (12 /

Assuming a linearly polarized wave with the frequency w,

E_T= E(x)exp(-iwt), E_T= EvT = O, (13)

we find the following Duffing's second order ordinary differential

equation, 16

e

+w02z + auz 3 = -- E(x)exp(iwt), (14)
m

where aa = 5a_oo4/cm 2. When the wave amplitude E is small but finite,

an approximate solution 3 is given by

z(t) = zl exp(iwt) + z3 exp(i3wt), (15)

where

e /_(x)[1_ 3e2 aaE2(x) ]
Zl "- ....

m wo2 - w2 4 m 2 (cO02 --W2) 3

aa 2(x)
z3 = 4 m 2 (9w 2 - wo2)(wo 2 - w2) a" (16)



Let us assume that the friction coefficient Fo is sufficiently small. Sub-

stituting s = z and E T =/_(x)i to Eq. (14) in the presence of a cubic

nonlinearity (_3 _=0) for the transverse electromagnetic wave/_z, we get

the following nonlinear differential equation,

d 2 _j2

- Cry2_02-- _02-- i_ro 1- _ _a m cm (_o2_ _o2)3E_, (17)

where Wp is the plasma frequency defined by wv = (nde2/e.om) 1/2.

Assuming a plane wave E(x) = E exp(+ikx), we get 1

[ ( ]= am + wo2 _ _- iwFo 1- -_ 53 -'--mc,n (wo-_ : w2) 3 . (18)

Averaging this spatially, we obtain the nonlinear dielectric constant

relative to vacuum, _(w):

ck)
e(_)=u2 = -- =_ + _(1/(_)+_(_(_)E_, (19)

_2

where the linear and nonlinear susceptibilities X(1)(w) and X(3)(c_) are

given by

2

COP
X(11(w) = _° 2 _ w2 _ iwFo

)X (3)(cd) _ 3 _3 (e ego 2 2 2s \__ (_o__ _1_. (20)
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The nonlinear refractive index can be approximated by

n(w, E 2) = n0(w) + n2 E 2, (21)

where

no = em + _(1)(W) ,

X(3) (22)n2 --
2no

The second term of the righthand side of Eq. (21) represents the high-

frequency Kerr effect so that the balance between the nonlinearity and the

linear dispersive properties in this wave dispersion equation may account

for propagation of the envelope soliton. 11

The change of wavelength, AA, scales with the wave amplitude E as

AA = Amn2E 2, (23)

where A,_ = 27rcm/w.

III. SIMULATION RESULTS

Two examples have been considered for the steady state wave propa-

gation using the model: the first one concerns with the phenomenon in a

linear dielectric material placed in vacuum and the second for a uniform

dielectric medium with cubic nonlinearity. While Eq. (1) is valid in three
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dimensions, for simplicity only a one-dimensional model was considered,

in which all the electromagnetic fields vary with x only.

In the simulations discussed in the following, we have introduced a

characteristic frequency WN and a grid length A, which are used for the

normalization of the simulation parameters, and they are used to scale

the simulation results to those in various cases.

For simplicity, let us assume ¢,_ -- 1.0. As typical examples, we

assume WN -- 1014 rad/s in the optical engineering applications and

0._N "-- 10 10 rad/s in the electrical engineering applications. The vac-

uum wavelengths for the pumping frequency a; = 2.0 WN used in this

work become Av - 9.425 #m and Av - 94.25 mm. The speed of light

c - 3 x lOSm/s corresponds to 20.0 wgA in the simulation and so its

wavelength A_ is 62.83 A, which means A = 0.15 #m and A = 1.5 mm,

respectively. By using different characteristic frequency 03g and era, a

different dielectric material can be studied.

The length of the one-dimensional system, L, is taken 2048 spatial

grids, L -- 2048A. The absorbing boundary condition 1T is imposed on

the electromagnetic waves so that they are damped away in the ramp

regions at the left and right edges (0 <_ x < L/8 and 7L/8 <_ x <_ L)

by means of ramp functions. The eigen frequency w0 and the plasma

frequency Wp were chosen to be 4.0 wg and 4.62 wg and the friction F0

was chosen to be 2.0 x 10 -5 wg for the examples given here. This means
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_(0) = 2.33 and the refractive index n calculated from Eq. (19) is 1.667

for the wave frequency w - 2.0 wg. The linear complex relative dielectric

constant _ vs w for this dielectric medium is shown in Fig. 1.

The total number of the dipoles in the system is 25,600. The normalized

time step wgAt is chosen to be 0.04.

As a method of the spatial interpolation for charge and current sharing

and the field-quantity interpolation, the linear spline has been used. To

calculate the field quantity, 6'7 we use the fast Fourier transformation

(FFT) method with the k-space smoothing using the Gaussian filter with

its radius R - A.

A. Reflection and refraction at the boundary

We first demonstrate the accuracy of the model by simulating the wave

refraction and reflection at the planar interface between vacuum and the

dielectric medium. Shown in Fig. 2(a) is the instantaneous plot of Ez vs

x for the steady state wave propagation, where an electromagnetic wave

with its frequency of w = 2.0 WN is excited in vacuum a_ x = L/8 by an

oscillating current Jz = Jo e-i"n, where J0 is the current amplitude and

is held constant in time. The linear dielectric media is located between

x = L/2 and x = 15L/16 (53 = 0).

Figures 2(5) and (c) are the interferograms Ezs(x) and Ezc(x) between
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Ez and the wave source signal._ sin(wt) and cos(wt) calculated byIs

Ez_(t, x) 2 .ft
= E_(t',x) sin(_t')dt',

MT _ .-MT

E_(t, x) 2 _t
= E_(t', x) cos(wt')dt', (24)

MT -MT

where T = 2r/w and M is a positive intger (M = 20). Substituting the

first and second equations of Eq. (5) into the first equation of Eq. (24), we

get Ezs(t,x) = (A + C)cos(kvx + ¢_s) and Ezs(t,x) = B cos(kdx + Cd_),

respectively. From Fig. 2(b), we can see that the first condition of the

boundary conditon Eq. (7) exactly holds. Substitution of the first and

second equations of Eq. (5) into the second equation of Eq. (24) yields

Ezc(t,x) = (A - C)cos(kvx + ¢_c) and Ezc(t,x) = Bcos(kdx + Cd_).

Measuring A, B, and C from Figs. 2(b) and (c) and substituing these

values into Eq. (8), we get the value of the refractive index, nd -- 1.66.

In the dielectric region, the wavelength becomes shorter compared with

that in the vacuum region. The wavelengths in vacuum and in the

dielectric in the uniform space are calculated to be )_ = 62.83A and

_d --" 37.69A, respectively.

We have calculated the interferograms between the electric field E_ and

the pump wave signal Jz = Jo e-i"n in the complex function. Figure 2(d)

is the wave number spectrum calculated over the space between x = L/8

and x = 7L/8, where a negative wave number in the figure corresponds

to a negative phase velocity. Here, we can measure the wave numbers and
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convert it to the wavelength quite accurately. The digital measurement

of the wavelength may cause to produce error of the order of or less than

1 part in 1,000. The electromagnetic wave is refracted and reflected at

the left edge of the dielectric. There is no reflection at the right edge,

because it is embedded in the wave absorbing region or the ramp region. 17

The right, middle, and left peaks correspond to the refracted, incident,

and reflected waves, respectively. The wavelengths in vacuum and in the

dielectric are measured to be Av = 62.52A and £d = 38.13A, respectively.

Major part of the small discrepancy between the theoretically calculated

values and the measured values may be attributed to the effects of the

finite-sized gird 19 and of the finite size of the simulation system, because

the theory assume the gridless and the infinite space.

When we changed the position of the right boundary slightly or place

the dielectric medium between x = L/2 and x - 7L/8 which was also

a left edge of the right absorption region, we found a slightly different

result: The fourth small peak is accompanied on the left side of the

third peak as a result of reflection of the right boundary of the dielectric

medium. The wavelengths in vacuum and in the dielectric are measured

to be Av - 63.09A and _d _" 38.18A, respectively.

The energies associated with the incident, reflected, and refracted

waves may be proportional to their peak amplitude times its base width

in Fig. 2(c). Their measured ratio are 1.0 : 0.05 : 0.74, which can be
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compared with A 2 • C 2 • B 2 = 1.0" 0.06" 0.56 calculated from Eq. (8).

B. Measurement of the cubic order nonlinearities

In this case the dielectric medium is assumed to be placed between

x = L/16 and x - 15L/16 and to have cubic nonlinearities of 53 =

+2.2 × 106 or 53 = --2.2 × 10 6. For negative 53 we assume 53r -- 0 in

Eq. (2). An electromagnetic wave with its frequency of w - 2.0 WN is

excited at x = L/8 in the dielectric medium by an oscillating current

Jz = Joe -i''t. This system can be considered to be a uniform nonlinear

dielectric medium except for in the ramp regions (0 <_ x <_ L/8 and

7L/8 <_x < L) located at the egdes of the system. In other words, we

create the numerical illusion of an infinite space by this artificial boundary

damping the electromagnetic wave numerically.

To confirm the relation Eq. (23), we have carried out many runs, chang-

ing the magnitude of the wave source current and its sign of 53. Among

these runs, two typical runs are shown here: one is a run with the weak

wave excitation in the dielectric with 53 _--- +2.2 × 10 6 and the other is a

run with the strong wave excitation in the dielectric with 53 = -2.2 × 106.

Figure (3) shows the instantaneous magnitudes of Ez vs x for the weak

and strong wave excitaions. In the case of the weak wave excitation,

almost coherent wave is seen to be excited, while in the case of the strong

wave excitation some noises are seen to be mixed with the coherent wave.
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Figure (4) shows their interferograms Ezs(t,x) for both runs. Some

nonlinear coherent modes with longer wavelengths appear in the strong

excitation and so the wave amplitude is modulated spatially. The phe-

nomenon of this self-phase modulation may be practically important,

because it may be applied to a kind of the nonlinear optical switching. 14

Time-averaging eliminates its noise from the instantaneous wave form

and thus clearer sinusoidal wave form is seen in Fig. 4(a) than that in

Fig. 3(a).

Figure (5) shows their corresponding wave number spectra. In the weak

excitation, only a single peaked mode is seen and so its wave number can

be measured quite accurately. In the strong excitation, on the other hand,

the spectrum is split into three peaks and therefore the measurement of

the wave number becomes impossible.

Figure (6) shows the frequency spectra at x _ L/4. In the strong

wave excitation, a small peak with frequency of _ _ 1.7w0 appears due

to the nonlinearity. This mode may be accountable for the noises seen in

Fig. 3(b), which shows the instantaneous plot Ez vs x.

Figure (7) shows AA vs (_3/1_31) Ez 2. The solid straight line in this

figure shows the relation of Eq. (23). The circles show the measured

values in the 16 runs. The theoretical prediction, Eq. (23), agrees with

the measured values quite well. From this figure, we can see that this

measurement method holds quite good accuracy and that difference of
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order of 1/10 grid length may be detected for wavelength deviation AA or

even better resolution may be obtained. From this measurement, we can

see that the curve slightly concaves upwards. This inclination suggests

existence of the higer order structure of nonlinearitis in the system.

IV. DISCUSSION AND CONCLUSION

While the model for the nonlinear media is assumed a simple form in

the examples given here, it can be improved further depending on the goal

of the simulations. This can be achieved by increasing the accuracy of

the model to include the detailed microscopic structures of the dielectric

media. For example, it is possible to increase the number of the species of

the harmonic oscillators. Furthermore, we may be able to include lattice

oscillations of nuclei arising from the quantum mechanical effects by in-

cluding the motion of the ions which are assumed frozen in this work. In

this way, Raman scattering may be included within the classical approx-

imation. Since our model follows the individual motion of the electrons,

the model can be used to study, for example, light amplification caused

by the population inversion. While we considered wave propagation in

a dielectric medium_ models for electromagnetic wave propagation in a

metal or in a semi-conductor can be constructed by adopting the Drude

model 2° or the free carrier model for the conducting current.
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In the case of the strong nonlinearity, the Duffing equation 16 which

governs the equation of motion of the dipole is well known to show quite

interesting phenomena such as hysteresis or chaos. We expect that these

nonlinear optical phenomena may be studied by our model. These sug-

gestions should be further investigated extensively, by comparing the sim-

ulation results with the experimental and theoretical results. This in turn

clarifies the modeling capability or "the way to improve the model.

In conclusion, we have studied the physical and computational prop-

erties of the nonlinear Lorentz computational model for the dielectric

medium. Although this study has remained within the framework of the

relatively weak nonlinear system where the small wave amplitude expan-

sion is permitted, both linear and nonlinear wave propagations have been

studied in detail and the results are found to be in good agreement with

the theoretical predictions verifying the validity of the model.
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FIGURE CAPTIONS

Fig. 1 The linear dielectric constant relative to vacuum, c(w) = 1+_(1)(w),

with tile parameters of _(0) = 2.33, c(oc) = 1.0, w0 = 4.0 WN, and

F0 = 2.0 × 10 -5 0J N.

Fig. 2 Results of the refraction and reflection at the plane boundary. The

magnitude of the clectric field is normalized by eE_/(mwN2A) • (a)

the instantaneous plot of Ez(t,x) at t = 320 _N; (b) the interfero-

gram plot of E_s(t,x) at t = 314 WN-1; (c) the interferogram plot.

of Ezc(t,x) at t = 314 _N-1; (d) the wave number spectrum of E..

at t = 314 WN -1. The abscissa m is related to the wave number

k = 2nm/L and the ordinates for Ez 2. The negative m corresponds

to the negative phase velocity.

Fig. 3 Instantaneous plot of E..(t,x) at t = 320 WN1. The magnitude

of the electric field is normalized by eE../(m_N'2A)" (a) for weak

excitation; (b) for strong excitation.

Fig. 4 Interferogram plot of E_s(t,x) at t = 314 WN -1. The magnitude

of the electric field is normalized by eE_/(m_N2A) • (a) for weak

excitation; (b) for strong excitation.

Fig. 5 Wave number spectrum of Ez at t = 314 WN-1" (a) for weak exci-

tation; (b) for strong excitation.
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Fig. 6 Wave frequency spectrum of E_ at x _ L/4: (a) for weak excitation;

(b) for strong excitation.

Fig. 7 Comparison of A)_ = )_mn2E 2 in Eq. (23) (straight line) with the

measured values of AA and E_ 2 (open circles). The abscissa and

ordinate show (53/1531) Ez 2 arid AA in unit of grid length A. The

relation of Eq. (23) is shown by the solid straight line.
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