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Numerical Studies on the Electromagnetic Properties

of the Nonlinear Lorentz Computational Model for the Dielectric Media
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ABSTRACT
We study linear and nonlinear properties of a new computer simulation
model developed to study the propagation of electromagnetic waves in a
dielectric medium in the linear and nonlinear regimes. The model is
constructed by combining a microscopic model used in the semi-classical
approximation for the dielectric media and the particle model developed
for the plasma simulations. It is shown tha. the model may be useful for

studying linear and nonlinear wave propagation in the dielectric media.
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I. INTRODUCTION

A new computer simulation model,! called the nonlinear Lorentz Com-
putational model, has recently been proposed to study electromagnetic
wave propagation in linear and nonlinear dispersive solid-state media.

The original Lorentz model of the atom, which treats the atom as a
harmonic oscillator, provides a very good description of the linear elec-
tromagnetic properties of the dielectric media.?

In order to model the response of a nonlinear dielectric medium, a
semi-classical model3-* is used to represent the electrical behavior of the
nonlinear dispersive solid-state media. To include a nonlinearity arising
from the intrinsic quantum effects, this model is constructed by extending
the Lorentz model for the dielectric media? so that the electrons in the

atom are allowed to include a nonlinear restoring force.

It is well known that, according to the quantum-mechanical theory
of the nonlinear susceptibility, each atom possesses many energy eigen
values and has more than one resonance frequency. Since the present
model allows only one resonance frequency for each atom, it provides a
good model for only the cases in which all wave frequencies of interest are
off-resonant or well seperated from the resonance frequency. Nonetheless,

many useful applications are expected to exist even in these limited cases.

The details of the model differ depending upon whether or not the
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medium possesses an inversion symmetry. The tensor properties of the
susceptibility cannot be specified unless the internal symmetries of the
medium are completely known. One of the most important cases is that
of a material which is isotropic and centrosymmetric.®> Examples of such
materials are liquids, gases, amorphous solids such as glass, and even
many crystals displaying inversion symmetry. In this paper, we focus
our attention on these cases and find that such medium induces a cubic
nonlinear contribution to the polarization which causes the third order

susceptibility in terms of the electric field.

To numerically solve both Maxwell’s equations for the fields and the
equation of motion for many charged particles or dipoles self-consistently,
the model is constructed by adopting the numerical techniques which have
been developed in the electromagnetic particle simulation of plasmas.%”’
Here only the equation of motion for charged particle is modified from
that in the original particle simulation model for free electrons and ions in
order to represent the linear and the nonlinear properties of the dispersive

solid-state media.

Another approach to simulate wave propagation in linear and nonlin-
ear dielectric materials is to use the finite-difference method in the time
domain in which Maxwell’s equations are solved directly together with
linear and nonlinear susceptibilities given as frequency-dependent func-

tions a priori.*®:10



Our nonlinear Lorentz Computational model differs physically and nu-
merically from this model. We may apply our model to study the fem-

tosecond phenomena such as soliton propagation'!

or opitical switching in
a glass.!213:14 Ag the nanosecond phenomena, a high-power soliton gen-
eration in a ceramic'® may be simulated using our model. These should
be studied extensively because of its importance in their applications to

optical microelectronics, communication engineering, and electrical engi-

neering.
II. THEORETICAL REVIEW AND SIMULATION MODEL

A. Nonlinear Lorentz Computational Model

Let us describe in detail the mathematical method to model the non-
linear Lorentz computational model here. Microscopically, the simplest
dielectric material can be considered as an isotropic and locally uniform
collection of a large number of electric dipoles with the eigen frequency wy
for the oscillating electric field. We, therefore, assume in our model that
a large number of electric dipoles are uniformly distributed in the sys-
tem, where the ions are assumed fixed spatially and the electrons oscillate
around the ions.

The motion of the electrons in the presence of an electric field E and

a magnetic field B is given by?®



dv,; e . -
_Zit—]: — —n—%(E-{'VjXB)“WOij(Xj—XOj)—"lovja
w02
fj = 1+ 53 -C—-E (Xj — Xoj) . (Xj - ij) N (1)

where x; and v; are the position and the velocity of the j-th electron,
Xjo is its equilibrium position, I'g is a small friction coeflicient, 63 is a
numerical constant for the cubic nonlinearity for the dielectric media, and
cm is the velocity used for normalization and its definition will appear
after Eq. (3). In the present one-dimensional limit, Eq. (1) agrees with
earlier results.!

In the case of 83 < 0, Eq. (1) is unstable for a large wave amplitude.

In order to stabilize the equation of motion, f; is approximated by

fj =63, +

(1 — é3r) exp [(1 -6363r) Z:Q (x; — Xo5) - (%5 — Xoj)} , (2)

for a negative 63 where 83, is a non-negative numerical constant less than
unity. For a small displacement, Eq. (2) is reduced to Eq. (1).

Equation (1) is finite-differenced by the leapfrog scheme and solved
self-consistently together with Maxwell’s equations®” for the electric and
magneteic fields. Writing E = ET+E% and B = B, Maxwell’s equations
are given by

oBT

T-——.__.__._
VXxE = 57



1 OET

VXBT=E-T:§—3£—+MOJT1
v.ElL=2
Eo’
v.-BT =0. (3)

Here c,, is the speed of light in a dielectric in the case of the infinitely-high

frequency,

C
c’"“\/e_;’

where ¢ is the speed of light in vacuum and ¢,, is the dielectric con-

stant relative to vacuum representing the effects of contribution from the
dipoles with eign frequencies much higher than those in the system. The
upperscripts T and L indicate the transverse and longitudinal compo-

nents of a vector Q satisfying

V'QT=03

V xQf=o.
The current and charge densities J and p are given by

N
J = Z —e v;i6(x — x;) + Jeat,

1=1
N

p=>_ e[=6(x—x;)+6(x—x)], (4)
7=1

where NV is the total number of the dipoles in the system and J.,; is an

external current to inject an electromagnetic wave into the system.
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B. Fresnel’s formula for the case of the normal incidence

We assume that the boundary between vacuum and a dielectric medium
is planar and located at x = xg. Let a linearly polarized monochromatic
plane wave with frequency w coming from the left-side space r < xp im-
pinge upon this boundary. In the case of the one-dimensional simulation
studied here, we can treat only the normal incidence. For the solution of
this boundary-value problem, we need to consider three waves, an inci-
dent wave, a refracted wave, and a reflected wave, whose complex electric
amplitude are denoted by A, B, and C, respectively. We get the resulting
superposition of the incident and reflected waves in vacuum denoted by
a subscript v and the refracted wave in the dielectric medium denoted by

a subscript d as

E., = {Aexp[+ik,(z — z)] + Cexp|—tk,(z — )]} exp(—iwt),

E.q = Bexp[+iky(z — xg)] exp(~iwt), (5)

where their wave numbers k, and k4 are related to the refractive index n

by
— =n. (6)

The boundary conditions for E, and B, = 1/wdE,/Or derived from

Eq. (3) require

A+ C =B,



and

A-C=-—B=-nB. (7)

v

The ratios of the reflected and the refracted wave amplitudes to the in-

cident wave amplitude are given by

g_ 1—-n

A 147’

B 2

Z_l-i—n (8)

C. Dispersion relation in the nonlinear dielectric medium

In the non-conducting material, imagine that the electric field E is
imposed on the electron charge —e. This charge is displaced from the
ionic charge +e in the direction opposite to the electric field E. We
can assume the ionic charge +e which carries the ionic mass M to be
stationary. Thus an electric dipole moment (+e, —e) is directed parallel

to FE and so the polarization vector P is given by

P=-nges, (9)

where s is the moment arm vector and n4 is the number of the electrons

per unit volume. The electric displacement D is given by

D =¢,60E + P. (10)



In this case, the current in Maxwell’s equation, Eq. (3), is restricted to

only the poralization current as
J=P. (11)

For the transverse electric field ET which satisfies V - ET = 0, we get

1

V2ET - Z?,ZET = uoPT. (12)

Assuming a linearly polarized wave with the frequency w,
E.T = E(z)exp(-iwt), E,” =E,T =0, (13)

we find the following Duffing’s second order ordinary differential

equation,!®

4 wo?z+az2’ = —T—i- E(zx) exp(iwt), (14)

where a3 = 63wo?/cm?. When the wave amplitude F is small but finite,

an approximate solution?® is given by

z(t) = 2z exp(iwt) + 23 exp(i3wt), (15)
where
L e E(z) - 3 ¢ a3 E%(x)
T om owo? — w? 4m? (we? —w?)3 |’
2 B2
v z1 € a3 E*(x) (16)

T T A m? (9w? — we?)(wo? — w?)3’

9



Let us assume that the friction coefficient I'y is sufficiently small. Sub-
stituting s = z and ET = E(2)2 to Eq. (14) in the presence of a cubic
nonlinearity (63 # 0) for the transverse electromagnetic wave E., we get

the following nonlinear differential equation,

d? - w? -
—F, E, =
dx? + cz,
: ? 2\?  f? _
- 2 2 w; ' 1- 5 b3 C X0 (2) E., (17)
Cm? wo* — w* — 1wl 4 M Cpm (wo? — w?)3
where w, is the plasma frequency defined by w, = (ng4e? Jegm)V/2.

Assuming a plane wave E(z) = E exp(+ikz), we get!

2 2 2\ 2 E2
L R et 135, (&0 @) | ()
w wo? — w? —iwly 4 M Cm (wo? — w?)3

Averaging this spatially, we obtain the nonlinear dielectric constant

relative to vacuum, &(w):
ck\’
elw)=n? = (—;—) =em + XV (W) + x® (W) E?, (19)

where the linear and nonlinear susceptibilities x(V)(w) and x®)(w) are

given by
2
(V) = W
(@) wp? — w? —wly’
3 ewo?\? wp?
B (W)~ == 0 A 2
X' (w) 8 b3 (m Cm> (wo? — w?)4 (20)
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The nonlinear refractive index can be approximated by

n(w, E?) = ng(w) 4+ no E?, (21)
where
no = [Em +x(w) ]1/2 :
ng = g-%) : (22)

The second term of the righthand side of Eq. (21) represents the high-
frequency Kerr effect so that the balance between the nonlinearity and the
linear dispersive properties in this wave dispersion equation may account
for propagation of the envelope soliton.!!

The change of wavelength, A\, scales with the wave amplitude E as
AN = Apna E?, (23)
where \,, = 27wcp/w.

III. SIMULATION RESULTS

Two examples have been considered for the steady state wave propa-
gation using the model: the first one concerns with the phenomenon in a
linear dielectric material placed in vacuum and the second for a uniform

dielectric medium with cubic nonlinearity. While Eq. (1) is valid in three

11



dimensions, for simplicity only a one-dimensional model was considered,

in which all the electromagnetic fields vary with z only.

In the simulations discussed in the following, we have introduced a
characteristic frequency wxy and a grid length A, which are used for the
normalization of the simulation parameters, and they are used to scale

the simulation results to those in various cases.

For simplicity, let us assume &,, = 1.0. As typical examples, we
assume wy = 10 rad/s in the optical engineering applications and
wn = 1010 rad/s in the electrical engineering applications. The vac-
uum wavelengths for the pumping frequency w = 2.0 wy used in this
work become A\, = 9.425 um and A, = 94.25 mm. The speed of light
c = 3 x 108m/s corresponds to 20.0 wyA in the simulation and so its
wavelength A, is 62.83 A, which means A = 0.15 ym and A = 1.5 mm,
respectively. By using different characteristic frequency wy and €,,, a
different dielectric material can be studied.

The length of the one-dimensional system, L, is taken 2048 spatial
grids, L = 2048A. The absorbing boundary condition!? is imposed on
the electromagnetic waves so that they are damped away in the ramp
regions at the left and right edges (0 < ¢ < L/8 and 7TL/8 < z < L)
by means of ramp functions. The eigen frequency wgp and the plasma
frequency w, were chosen to be 4.0 wy and 4.62 wy and the friction I'g

was chosen to be 2.0 x 107° wy for the examples given here. This means
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(0) = 2.33 and the refractive index n calculated from Eq. (19) is 1.667
for the wave frequency w = 2.0 wy. The linear complex relative dielectric

constant € vs w for this dielectric medium is shown in Fig. 1.

The total number of the dipoles in the system is 25,600. The normalized

time step wy At is chosen to be 0.04.

As a method of the spatial interpolation for charge and current sharing
and the field-quantity interpolation, the linear spline has been used. To
calculate the field quantity,®” we use the fast Fourier transformation
(FFT) method with the k-space smoothing using the Gaussian filter with
its radius R = A.

A. Reflection and refraction at the boundary

We first demonstrate the accuracy of the model by simulating the wave
refraction and reflection at the planar interface between vacuum and the
dielectric medium. Shown in Fig. 2(a) is the instantaneous plot of E, vs
z for the steady state wave propagation, where an electromagnetic wave
with its frequency of w = 2.0 wy is excited in vacuum at ¢ = L/8 by an
oscillating current J, = Joe~**%, where Jj is the current amplitude and
is held constant in time. The linear dielectric media is located between

z=L/2 and £ = 15L/16 (63 = 0).
Figures 2(b) and (c) are the interferograms E,;(z) and E,.(x) between

13



E, and the wave source signals sin(wt) and cos(wt) calculated by?!8

t
E. (t,z) = -]\—}f_/t o E.(t', z)sin(wt")dt',

t
E.(t,z) = Mz? /t | E(t\3)costwt )t (24)

where T = 27 /w and M is a positive intger (M = 20). Substituting the
first and second equations of Eq. (5) into the first equation of Eq. (24), we
get E,5(t,x) = (A+ C)cos(kyx + ¢ys) and E,s(t,x) = B cos(kqx + das),
respectively. From Fig. 2(b), we can see that the first condition of the
boundary conditon Eq. (7) exactly holds. Substitution of the first and
second equations of Eq. (5) into the second equation of Eq. (24) yields
E..(t,x) = (A — C)cos(k,x + ¢yc) and E,.(t,z) = Bcos(kqr + dgc).
Measuring A, B, and C from Figs. 2(b) and (c) and substituing these
values into Eq. (8), we get the value of the refractive index, nqy = 1.66.

In the dielectric region, the wavelength becomes shorter compared with
that in the vacuum region. The wavelengths in vacuum and in the
dielectric in the uniform space are calculated to be A\, = 62.83A and
Ag = 37.69A, respectively.

We have calculated the interferograms between the electric field E, and
the pump wave signal J, = Joe~**! in the complex function. Figure 2(d)
is the wave number spectrum calculated over the space between x = L/8
and z = 7TL/8, where a negative wave number in the figure corresponds

to a negative phase velocity. Here, we can measure the wave numbers and

14



convert it to the wavelength quite accurately. The digital measurement
of the wavelength may cause to produce error of the order of or less than
1 part in 1,000. The electromagnetic wave is refracted and reflected at
the left edge of the dielectric. There is no reflection at the right edge,
because it is embedded in the wave absorbing region or the ramp region.!”
The right, middle, and left peaks correspond to the refracted, incident,
and reflected waves, respectively. The wavelengths in vacuum and in the
dielectric are measured to be A\, = 62.52A and \; = 38.13A, respectively.
Major part of the small discrepancy between the theoretically calculated
values and the measured values may be attributed to the effects of the
finite-sized gird!® and of the finite size of the simulation system, because

the theory assume the gridless and the infinite space.

When we changed the position of the right boundary slightly or place
the dielectric medium between x = L/2 and £ = 7L/8 which was also
a left edge of the right absorption region, we found a slightly different
result: The fourth small peak is accompanied on the left side of the
third peak as a result of reflection of the right boundary of the dielectric
medium. The wavelengths in vacuum and in the dielectric are measured

to be A\, = 63.09A and Ay = 38.18A, respectively.

The energies associated with the incident, reflected, and refracted
waves may be proportional to their peak amplitude times its base width

in Fig. 2(c). Their measured ratio are 1.0 : 0.05 : 0.74, which can be

15



compared with A% : C?: B2 = 1.0:0.06 : 0.56 calculated from Eq. (8).

B. Measurement of the cubic order nonlinearities

In this case the dielectric medium is assumed to be placed between
r = L/16 and * = 15L/16 and to have cubic nonlinearities of 63 =
+2.2 x 108 or 63 = —2.2 x 10%. For negative §3 we assume &3, = 0 in
Eq. (2). An electromagnetic wave with its frequency of w = 2.0 wy is
excited at x = L/8 in the dielectric medium by an oscillating current
J, = Joe~**. This system can be considered to be a uniform nonlinear
dielectric medium except for in the ramp regions (0 < z < L/8 and
7TL/8 < xz < L) located at the egdes of the system. In other words, we
create the numerical illusion of an infinite space by this artificial boundary
damping the electromagnetic wave numerically.

To confirm the relation Eq. (23), we have carried out many runs, chang-
ing the magnitude of the wave source current and its sign of 3. Among
these runs, two typical runs are shown here: one is a run with the weak
wave excitation in the dielectric with 83 = +2.2 x 108 and the other is a
run with the strong wave excitation in the dielectric with 63 = —2.2 x 10°.

Figure (3) shows the instantaneous magnitudes of E, vs x for the weak
and strong wave excitaions. In the case of the weak wave excitation,
almost coherent wave is seen to be excited, while in the case of the strong

wave excitation some noises are seen to be mixed with the coherent wave.
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Figure (4) shows their interferograms E, (t,z) for both runs. Some
nonlinear coherent modes with longer wavelengths appear in the strong
excitation and so the wave amplitude is modulated spatially. The phe-
nomenon of this self-phase modulation may be practically important,
because it may be applied to a kind of the nonlinear optical switching.!4
Time-averaging eliminates its noise from the instantaneous wave form
and thus clearer sinusoidal wave form is seen in Fig. 4(a) than that in
Fig. 3(a).

Figure (5) shows their corresponding wave number spectra. In the weak
excitation, only a single peaked mode is seen and so its wave number can
be measured quite accurately. In the strong excitation, on the other hand,
the spectrum is split into three peaks and therefore the measurement of
the wave number becomes impossible.

Figure (6) shows the frequency spectra at  ~ L/4. In the strong
wave excitation, a small peak with frequency of w ~ 1.7wg appears due
to the nonlinearity. This mode may be accountable for the noises seen in
Fig. 3(b), which shows the instantaneous plot E, vs .

Figure (7) shows A\ vs (83/|63]) E.2. The solid straight line in this
figure shows the relation of Eq. (23). The circles show the measured
values in the 16 runs. The theoretical prediction, Eq. (23), agrees with
the measured values quite well. From this figure, we can see that this

measurement method holds quite good accuracy and that difference of
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order of 1/10 grid length may be detected for wavelength deviation A\ or
even better resolution may be obtained. From this measurement, we can
see that the curve slightly concaves upwards. This inclination suggests

existence of the higer order structure of nonlinearitis in the system:.

IV. DISCUSSION AND CONCLUSION

While the model for the nonlinear media is assumed a simple form in
the examples given here, it can be improved further depending on the goal
of the simulations. This can be achieved by increasing the accuracy of
the model to include the detailed microscopic structures of the dielectric
media. For example, it is possible to increase the number of the species of
the harmonic oscillators. Furthermore, we may be able to include lattice
oscillations of nuclei arising from the quantum mechanical effects by in-
cluding the motion of the ions which are assumed frozen in this work. In
this way, Raman scattering may be included within the classical approx-
imation. Since our model follows the individual motion of the electrons,
the model can be used to study, for example, light amplification caused
by the population inversion. While we considered wave propagation in
a dielectric medium, models for electromagnetic wave propagation in a
metal or in a semi-conductor can be constructed by adopting the Drude

model?C or the free carrier model for the conducting current.
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In the case of the strong nonlinearity, the Duffing equation!® which
governs the equation of motion of the dipole is well known to show quite
interesting phenomena such as hysteresis or chaos. We expect that these
nonlinear optical phenomena may be studied by our model. These sug-
gestions should be further investigated extensively, by comparing the sim-
ulation results with the experimental and theoretical results. This in turn
clarifies the modeling capability or the way to improve the model.

In conclusion, we have studied the physical and computational prop-
erties of the nonlinear Lorentz computational model for the dielectric
medium. Although this study has remained within the framework of the
relatively weak nonlinear system where the small wave amplitude expan-
sion is permitted, both linear and nonlinear wave propagations have been
studied in detail and the results are found to be in good agreement with

the theoretical predictions verifying the validity of the model.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

FIGURE CAPTIONS

The linear dielectric constant relative to vacuum, e(w) = 1+x(!(w),
with the parameters of £(0) = 2.33, e(o0) = 1.0, wg = 4.0 wy, and
To=20x10"° wy.

Results of the refraction and reflection at the plane boundary. The
magnitude of the clectric field is normalized by eE,/(mwy?A): (a)
the instantaneous plot of F.(t,x) at t = 320 wy; (b) the interfero-
gram plot of E,,(t,r) at t = 314 wy~!; (¢) the interferogram plot
of E..(t,z) at t = 314 wy~!; (d) the wave number spectrum of E,
at t = 314 wy~!. The abscissa m is related to the wave number
k = 2wm/L and the ordinates for E.2. The negative m corresponds
to the negative phase velocity.

Instantaneous plot of F.(t,z) at t = 320 w;,l. The magnitude
of the electric field is normalized by eE,/(mwn24): (a) for weak
excitation; (b) for strong excitation.

Interferogram plot of E,4(t,r) at t = 314 wy~!. The magnitude
of the electric field is normalized by eE./(mwn2A): (a) for weak
excitation; (b) for strong excitation.

Wave number spectrum of E, at t = 314 wy~!: (a) for weak exci-

tation; (b) for strong excitation.
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Fig. 6 Wave frequency spectrum of E, at x ~ L/4: (a) for weak excitation;
(b) for strong excitation.

Fig. 7 Comparison of AX = \,n:E? in Eq. (23) (straight line) with the
measured values of AX and E,? (open circles). The abscissa and
ordinate show (63/|63]) E.? and A\ in unit of grid length A. The

relation of Eq. (23) is shown by the solid straight line.
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