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Abstract distributed memory. For the very same reason, the PRAM is
considered as highly theoretical, and the task of emulating

We present a work-optimal randomized algorithm for simu- the PRAM on more realistic models has attracted consider-
luting a shared memory machine (PRAM) on an optical com- able attention; emulations may enable automatic mapping
munication parallel computer (ocPc). The ocPc model is of PRAM algorithms to weaker models, as well as a better
motivated by the potential of optical communication for par- understanding of the relative power of different models. In-
ailel computation. The memory of an ocPc is divided into deed, many emulations of the PRAM on bounded degree net-
modules, one module per processor. Each memory module works were introduced (see, e.g., [1, 33, 34, 20, 29] or [21]
only services a request on a timestep if it receives exactly for a survey).
one memory request. In this paper, we present a simulation of an EREW PRAM

Our algorithm simulates each step of an n lg lg n-processor on the ocPc. In particular, we present a randomized simu-
EREW PRAM on an n-processor OCPC in O(lg lg n) expected lation of an n lg lg n processor EREW PRAM on an n processor
delay. (The probability that the delay is longer than this is ocPc in which, with high probability, each step of the PrtaM
at most n -_ for any constant c_.) The best previous simu- requires O(lglg n) steps on the ocPc. 1 Our simulation is
lation, due to Valiant, required O(lg n) expected delay, work optimal, to within a constant factor.

Our results are closely related to previous work on the
1 Introduction well studied distributed memory machine (DMM) which con-

sists of n processors and n memory modules connected via
The huge bandwidth of the optical medium makes it possi- a complete network of communication. Each processor can

" ble to use optics to build communication networks of very access any module in constant time, and each module can
high degree. The possibility of using such communication service at most one memory request (read or write) at any
networks in paraJlel computing was first studied by An- time. The DMM is thus a weaker model than the shared
derson and Miller [2] who introduced the ocPc model: In memory PRAM, in that the memory address space is par-
an n-processor completely connected Optical Communication _itioned into modules with a restricted access imposed on
Parallel Computer (n-ocPc) n processors with local mere- them. We remark that there are several variants of DMM

ory are connected by a complete network. A computation models differing in their contention rules.
on this computer consists of a sequence of communication Quite a few papers have studied the emulation of a PRAM

step_. Duriag each communication step each processor can on various DMM models [28, 31, 18, 35, 6, 17, 7]. Karp et
perform some loca, computation and then send one message M. [17] present O(lg lg n) expe':ted delay simulations of var-
to any other processor. If a processor is sent a single message ious types of PRAM on a CRCW DMM ill which each memory
during a communication step then it receives this message module allows concurrent read or write access to at most one
successfully, but if it is sent more than one message then the of its memory locations during any step. Dietzfelbinger and
transmissions are garbled and it receives none of them. Meyer auf der Heide improve upon this paper by presenting

While the ocec seems a reasonable model for optical an O(lglg n) expected delay simulation of an ErtnW PRAM
computers, it has not been used as a programming model to on the (weaker) c-collision DMM in which any memory rood-
date. The PRAM model, on the other hand, has beetl exten- ule that receives c or fewer read or write requests serves all
sively used for parallel algorithmic design (e.g., [16, 19, 30]. of them. Although Dietzfelbinger and Meyer auf der Heide
The convenience of programming on the PRAM is largely require c > 3 for their ana:.ysis to work, they report that
due to the fact that the programmer does not have to spec- experiments show that c = 2 works as well. The 1-collision
ify interprocessor communication or to allocate storage in a DMM is equivalent to the ocPc.

Our result improves on the result of [7] in two ways.
*This work was perfor_ned at Sandia National Laboratories and First, it is work-optimal. Second, it works for tile ocPC (or

was supported by the U.S. Department of Energy under contract DF_,-
- AC04-76DP00789. 1-collision DMM). The previous best known work-optimal

simulation of a .r'rtAMon the ocPc is an O(lg n) delay sim-
ulation of Valiant [36].

1We will refer to the time required to simulate one pram step as
the delay of the simulation.
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1.1 Related work DMM. The simulation in [7] circumvents tile need for using ::
the crtcw PRAM perfect hashing by an elegant use of an ideaThe OCPC model Ttle ocPc model was first introduced
from Upfal and Wigderson [35].

by Anderson and Miller [2], and has been studied by Valiant
[36], Eshaghian [8], Ger6b-Graus and Tsantilas [9], Gerbessi-
otis and Valiant [10], Goldberg, Jerrum, Leighton and Rao 1.2 Overview of the algorithm

[14], and Goldberg, Jerrum and MacKenzie [15]. The fen- Our simulation algorithm incorporates techniques and ideas ;_-
sibility of the ocPc from an engineering point of view is from the simulation algorithms of [17, 7], as well as from the ;_
discussed in [2, 9]. See also the survey paper of McColl [26] h-relation routing algorithm of [14], as follows.
and the references therein.

The simulation in [7] uses three hash functions to map ,
each memory cell of the Em_w PR.AMto t_tree processors (and

Computing h-relation on the OCPC A fundamental prob- memory cells) in the DMM. A write on an Eru_w memory cell
lem that deals with contention resolution on the ocPc is that is implemented by writing a value and a time stamp to at
of realizing an h-relation. In this problem, each processor least two out of the three associated DMM memory cells.
has at most h messages to send and at most h messages to A read of an CREW memory cell is implemented by read-
receive. Following Anderson and Miller [2], Valiant [36], and ing two out of three of the memory cells and choosing the
Ger6b-Graus and Tsantilas [9], Goldberg et ed. [14] solved value with the most recent time stamp. Dietzfelbinger and
the problem in time O(h + lg lg n) for an n-processor ocPc. Meyer auf der Heide's proof that their simulation requires
A lower bound of _(x/I_ expected time was recently only O(lg lg n) delay on a 3-coUision DMM relies on the fact
obtained by Goldberg, Jerrum, and MacKenzie [15]. that, given a randomly generated tripartite hypergraph on _:

3n nodes with en edges, one can, with high probability,, re- '

Simulating PRAM on OCPCs Valiant described a simu- move all the nodes in the hypergraph using the following y
lation of an EREW PRAM Oil an OCPC in [36]. More specifi- process.
cally, Valiant gave a constant delay simulation of a Bulk Syn- Repeat O(lg lg n) times:
chronous Parallel (ssP) computer on the ocPc (there called 1. Remove all of the nodes with degree at most 3.
the S*PRAM), and also gave an O(lg n) randomized simula-

tion of an n lg n-processor E_w PRAM on an n-processor BSP 2. Remove all resulting trivial hyperedges (hyperedges in
computer. A simpler simulation with delay O(lg nlglg n) which only one incident node remains.)
was given by Ger6b-Graus and Tsantilas [9]. Valiant's re-
sult is the best previously known simulation of a PRAM on Each hyperedge corresponds to a read or write of a PRAM
the ocPc. memory location: The three vertices correspond to the three

Independently of our work, MacKenzie, Plaxton and Ra- processors in the DMM associated with that memory loca-
jaraman [24], and Meyer auf der Heide, Scheiderler and tion. Thus, one step of an en node EREW PRAM is imple-
Stemann [23] have shown how to simulate a n processor mented by using the process above to deliver at least two
EREW PRAM on an n-processor OCPC. Both simulations have out of three of the messages associated with each memory
®(lg lg n) expected delay. However, neither simulation is request.
work-optimal, and both simulations require nn(1) storage at Since we are simulating an n lg lg n processor PRAM on an
each processor, n-node ocPc, we must simultaneously implement the pro-

cess above for O(lglg n) 3n-node hypergraphs using only n

Simulating PRAMs on DMMs Mehlhorn and Vishkin [28] processors. To do this, we start by sparsifying all of the
used a (lg n/lg lg n)-universal class of hash functions to achieve hypergraphs using ideas from the (lg lg n)-relation routing
a simple simulation of a crtcw PrtAM on a crtcw DMM with algorithm in [14]. That is, we route all but O(n/lg c n) mes-

sages and we ensure that at most one undelivered message
expected delay O(lgn/lglgn). An n-processor crtcw PI:tAM remains at any processor. Even so, implementing the pro-
can be simulated on an n-processor ErtEW DMM in O(lgn)
expected delay using techniques from [36]. The work of this cess above in parallel could still require I'_(lg lg n) time steps
simulation is thus a O(lgn) factor away from optimality, per iteration since each destination may participate in asmany as (lg lgn/¢) different hypergraphs. Thus, we must
The best work-optimal simulation of a PRAM on an ErU_W also "copy" each destination in such a manner that each
DMM has delay O(n _) [20]. message can locate the appropriate copy of its destination.

Recently, Karp, Luby and Meyer auf der Heide [17] pre- We then perform the process in each hypergraph, ensuring
seated a simulation of an n-processor crtcw PRAM on an that the process delivers at most a constant number of mes-
a-processor cP.CW DMM with O(lglg n) delay. They also sages to each copy of a destination. After that, the messages
pree;ented a work-optimal simulation of an (n lg lg n lg* n)-
processor EREW PRAM on an n-processor crtcw DMM in can be sequentially forwarded to their true destinations in
O(n lg lg n lg* n) expected delay, and a nearly work-optimal O(lg lg n) time.

We remark that, in fact, we cannot directly perform the
simulation of an nlglg n processor CRCW PI:tAM on an n-
processor CI_CWDMM with the same delay. Subsequently, Di- process above on any of the O(lglg n) hypergraphs since

our processors can only receive one message in a time step
etzfelbinger and Meyer auf der Heide [7] presented a simpli- whereas the processors in [7] can receive three messages in
fled (non-optimal) simulation of an n-processor ErtEW PP_AM a time step. The details of our solution to this problem can
on an n-processor DMM with O(lg lg n) expected delay. The be found in the technical sections.
simulation in [17] introduces a powerful technique that in-
corporates the use of two or three hash functions to map the
memory address space into the memory modules, combined 1.3 Paper outline

with the use of a crtcw PrtAM algorithm for perfect ha.shing. We proceed in Eection 2 with a high level description of
It heavily uses the concurrent read capability of the cP_CW our simulation. In Section 3, we present our algor;.thm in
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detM1 and prove correctness. In Section 4 we deal with the cessors 1.... , n'/2. We will also allocate its processors
evaluation of the hash function that maps the virtual shared n'/2 .... , n', as follows. For each outstanding memory
memory to the memory modules, request (i.e., for each memory request which has the

property that at most one of its three messages was

2 The Simulation delivered during the previous procedure), we will allo-
cate lg2 n' processors. These lg2 n' processors will do

Our objective is to show how to simulate one step of an the book-keeping concerning the request in the lg 2 n'
n lglg n processor Ertl_w PrtAM in O(lglg n) time-steps on copies of the sub-problem. Each message will know
an n processor ocPc. Our simulation follows [7] in using the identity of the processors responsible for the book-
the following idea from [35]. The memory of the PRAM is keeping concerning its memory re_quest.
hashed using three hash functions, hi, h2, and ha. Thus,
each memory cell of the PrtAM is stored in three memory • Route messages for each sub-problem• In each
cells of the ocPc. To write memory cell x, a processor of copy of each sub-problem we route messages accord-
the ocPc sends a message to at least two of the processors in ing to the c2-collision access schedule from Section 3
{hi(x) h2(x) ha(x)} The message contains the new value of [7]. Dietzfelbinger and Meyer auf der Heide prove' ' " that with high probability e_h sub-problem is "good"
for cell x and also a time stamp. To read memory cell x, (this term will be defined later on). We will prove that
a processor p of the ocPc sends a message to at least two if a sub-problem is good then for any particular mere-
of the processors in {ha(x),h2(x),h3(x)}. Each of these two
processors sends p the value that it has for cell x and also its ory request in any particular copy of the sub'problem,the probability that the memory request is satisfied in
time stamp for cell x. Processor p uses the value with the the c2-collision access schedule routing is at least 1/2.
later time step. The hash functions ha, h2, and h3 are chosen Also, no destination in any copy of any sub-problem--d ;

from the the "highly" universal family RA,,., from [17], which receives more than a constant number (3c2) of mes-
guarantees random-like behavior, sages during the c2-coUision access schedule routing.

Each ocPc processor will simulate lg lg n PRAM proces-
sors. Thus, at the start of a PRAM step, each of the ocPc • Combining problem copies and combining sub-
processors will wish to access up to lg lg n cells of the PRAM problems. In this procedure we identify a subset S
memory. Each processor uses ha, h2 and h3 to obtain the of the set of messages that were delivered by the vat-
three destinations where each memory cell is stored. Thus, ious copies of the c2-collision access schedule routing
each ocPc processor wants to send messages to up to 3 lg lg n procedure. The messages in S are chosen in such a way
destinations. Our objective is to deliver at least two of the that every processor is the destination of O(lglg n)
messages associated with every request, messages in S. We show that with high probability

As in [14], we will divide the processors of the ocPc every memory request in every sub-problem that was
into target, groups of size k = lg c n. We will also divide the created in the "divide into sub-problems and dupli-
n lg lg n memory requests into lg lg ale groups of e.n requests cate" procedure will be satisfied if the messages in S
each for a sufficiently small constant e. We will refer to are delivered. We deliver the messages in S using the
the set of messages associated with a particular group of routing algorithm in [14].
memory requests as a "group of messages". The messages

will be delivered using the following procedures: 3 Simulation details and analysis

• Thinning and deliver to target groups. Initially, Before giving the details and analysis we define the class of
the number of messages destined for any given target _d j
group may be as high as 4k lg lg n. (We will show that, hash functions R_,n being used and describe its properties
with high probability, it is no larger than this.) We will that are used in the analysis. In the subsequent subsections
use techniques from [14] to route the messages to their we will give the details of each of the procedures described

in the previous section.target groups. With high probability when this pro-
cedure is finished every message will be in the target
group of its destination. Furthermore, each processor 3.1 The hash functions
will have at most one message left to send. For a suf-
ficiently large constant c2, we will allocate a contigu- The class R_,, is taken from [17] and is defined as follows.

--_ J Rm,, is a combina-ous block of c2 processors from the target group to Definition of R_,n: A function from--aj
each unfinished destination for that destination. All tion of functions taken from several classes. Carter and Weg-
senders will know which processors are allocated for man [4] introduced Hm,,_C_{h:a [1,.. ., m] _ [1,.. . ,hi}, the
their destination. For a sufficiently large constant cl, class of functions f(z) rood n where f is a polynomial of de-
we will ensure that for any of the lg lg n/e groups of gree d- 1 over L,,. Siegel [31] introduced a class of functions

messages, with high probability, all but O(n2 -_ ls_s'_) H,j,,_ C {h: [a,...,n j] ---, [1,...,n]}. (More details on this
of the messages in the group will be delivered to their class are given in Section 4.1.) To choose a random hash

_-=d_
final destinations, function h from Rm,,_, one first chooses

• Divide into sub-problems and duplicate. We d
, A function f, chosen uniformly at random from Hm,v_now divide the ocPc into lglgn/¢ sub-ocvcs, each

with n_ = he lglg n processors. Each sub-ocPc will
, A function r, chosen uniformly at random from H,j,,

work on the sub-problem of delivering the messages
corresponding to a particular group of messages. For
each sub-ocPc we now make lg2 n' copies of the rel- • A function s, chosen uniformly at random from H_.,_j
evant sub-problem, all of which will reside in its pro-
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* x/_-[integers ax,..., av_, each of which is chosen uni- Proof. Consider a target group 7' and for each i in tile
formly at random from tile range [1 .... , n]. range 1 < i < 3nlglg n let x, be a random variable that is 1

if the ith message has a destination in T and 0 otherwise.
The function tt is defined by h(z) = (r(s(:c))+al(_)) rood 7t. Let X = )-_i x,. Clearly, tile probability that any given z,

Property 3.1 Let g be an arbitrary constant andlet j be islisk/n, soE(X)=3kiglgn. By Property 3.1 ofthe h_hfunctions, the x,s are v/-n-wise independent (with high prob-
large enough relative to g. Let S C [1,..., m], n < IsI _< ability), so using a limited independence Chernoff bound
n11/1° Let R,_3,n(s ) be the restriction of -R_J,, induced by (Theorem 1 of [32]), we find that Pr(X >_ E(X)(a + 1/3)) _<

fixing s E H,_,nj. If s is chosen uniformly at random from e -_(x)/2r This probability is sufficiently small that we can

Itl,,.... s then s is "I-perfect" with probability at least 1 -n -t. sum the failure probability over the tar_tet, groups. "
--a j In order to continue with the proof of Lemma 3.1 we need

If s is "I.perfect" then R,,'_,n(s) is (1, v/'n-)-universal, some notation. For every target group T let S(T) denote
the set containing all senders that have messages destined

Proof. See [17]. " for target group T. We will say that a sender is bad if it
has some message that has the same destination as at least

Property 3.2 Let t be an arbitrary constant and let d be h other messages. We will use the following lemma.
large enough relative to g. Let ,5' C [1,...,m], n _< ISl <_
n _a/_° Let f be drawn randomly from Ham,v-ft. Then with Lemrna 3.3 With probability at least 1- n-" ([or any con-
probability at least 1 - n -t every set f-_( i) n S has size at stant a) every set S(T) contains at most k / (2h [Ca lg lg n])
most21Sl/v_. bad senders.

Proof. See [17]. , Proof. This proof is similar to the proof of Claim 2 in [14].
We include it here for completeness and also to demonstrate

ProperLy 3.3 Let g be an arbitrary constant and let d and how the limited independence is handled. Let h_ = h/2.
j be large enough relative to t. Let S C [1,...,m], n _< For a given target group T let M(S(T)) denote the set of

ISl < naa/a°. Let Z be a subset of [1,...,n] and let i be messages that are sent by senders in S(T). We will say
an integer in [1,... v/_']. Suppose that /3 < rift. Let h that a message is externally bad with respect to a target

' - group 7' if the message has the same destination as at least
be chosen randomly from -_dJn. (That is, let f, r, s, and h' other messages that are not sent from senders in S(T).
at .... , av_ be chosen as described above.) The probability We will say that a message is internally bad with respect to
that/3 or more members of S n f-1 (i) are mapped to Z by h a target, group T if it has the same destination as at least

is at most 2n -e + (21s_x/'ff) (1_) _ h,' other messages that are sent from senders in S(T). Wewish to prove that with probability at least 1 -n -_ at most
k/(2h2[calglgn]) of the messages in M(S(T)) are either

Proof. By Property 3.2, with probability at least 1- externally or internally bad.
n -t every set f-_(i) n S has size at most 21SI/v/-ff. By First we consider externally bad messages. We will say
Property 3.1, with probability at least 1 - n -t, the hash that a processor P is externally crowded with respect to a
destinations are v/-n-wise independent. • target group T if there are at least h_messages whick are not

in M(S(T)) and have destination P. A set of b members of
3.2 Thinning and deliver to target groups a target group are all externally crowded only if at least bh'

messages have destinations in the set. Property 3.1 of the
We start out by running the "thinning" procedure from [14], hash functions tells us that the destinations of the messages
which is based on the algorithm of Anderson and Miller [2]. are V_-wise independent. Therefore, a_slong as b <_ x/-n/h'
The procedure runs for O(lg lg n) steps. During each step the probability that there is a set of b members of a target
each sender chooses a message uniformly at random from group that are all externally crowded is at most n -_ (for
the set of messages that it has not yet sent successfully and any constant a) 2, plus
it sends the message to its destination with a certain prob-

Lemma 3.1 With probability at least 1-2n .... (for any con- • b bh'

slant ¢._), after the thinning procedure from [I4] terminates, We can use Stirling's approximation to show that for b =

there are: at most k/h[e:_ Ig lg n] undclivered messages des- k/h '6 this quantity is at, most (n/k)2 -k/h'_ Therefore, with
tined for any particular target group. (c3 is a constant which
must be sufficiently large; it is the cor_star:t c'2 from [14]. ) probability at least l-n -__-(n/k)2 -k/h'5 every target group

has at most k/h m processors which are externally crowded

The proof of I,emma3.1 will use the following lemma, with respect the T. Suppose that this is the case. Then
tilt: prol_ability that a message in M(S(T)) chooses a desti-

Lemma 3.2 With probability at I,.'astl-rt-" (for arty con- nation which is externally crowded with respect to 7' is at
startt a'), each tarftet group of .size k is the desti_atiota of at most h '-_ and the expected number of messages in M(S(7"))
most 4k lg lg n rues.sages, that choose a destination which is externally crowded with

respect to 7' is at most M(S(I_))/h 'c_. Property 3.1 of the
hash functions tells us that the destinations of the messages

2By LemH-,a 3,2, rt-'" is an Upl_er bound on the probability th;_t

more than 4klglgn messages are d_.,stin,__d for any target group



are vGT-wise independent (with high probability). Hence, or more members of M(S(T)) change destination is at most

,,,e cat, use a limited independence Chernoff bound from (_,,,g,gn/C;r,(_') _Theorenl 1 of [32] to show that with probability at least '2n-"_ + _ j \ '" / This probability is suf-
1 - exp(-IM(S(T))l/(12 × h'6)) at most 2 IM(S(T))I/h '6 ficiently small a-s long as the constant 73 is sufficiently large.
messages in M(S(T)) choose at destination which is exter- So suppose that at most fl members of M(S(T)) change des-
nally crowded with respect to T. Note thatt as long as n is tination. Each of those may make at most h' + 1 members
sufficiently large then 21M(S(T))I/h_ < k/(4h=[calglgn]), of M(S(T)) become internally bad. Therefore, if we change
Also, a.s long as [M(S(T))[ > k/(4h2[ealglgn]) and the one ai we change Y by at most fl(h' + 1). Therefore, by
constant c (in the definition of k) is sufficiently large, the Theorem 3.1 the probability that Y > k/(4h2[c31glgn]) is

sun, of (n/k)2 -klh'5 and (n/k)exp(-IM(S(T))l/(12 xh'6)) at most ._ .

We now consider internally bad messages. We start by ,_ k E(Y)
calculating an upper bound on the probability that a rues- 2 exp lg.n] 0

sage is internally bad. Lemma 3.2 us high
probability at most 4k lg lg n messages are destined for any

k (for big enough n) and, withtarget group. Thus, with high probability, at most 4k lg lg n Since E(Y) < 8h-h-r_messages in M(S(T)) are destined for the same target group
as the given messatge. Property 3.1 of the hash functions tells high probability (by Lemma 3.2), IM(S(T))I < 4k(lglg n) 2,
us that the destinations of the messages are v/n-wise inde- the probability is at most
pendent. Therefore, the probability that the given message
is internally bad is at most 2 exp(-k/(32h 4 [c3 lglgn]24(lglg n)2_2(h ' + 1)2)).

( _.,lg )(k)h' Thisquantityisatm°st ½n-O(k/n) asl°ngascissuf-
4kl n _< 2-'h ficiently large. This concludes the proof of Lemma 3.3. •

The following lemma is proved on page 19 of [14] (The
proof of the lemma uses the fact that IS(T)] < 4k lg lg n,

. So the expected number of messages in M(S(T)) which are which is true with high probability, according to L-emma 3.2.)
internally bad is at most IM(S(T))I 2-h.

In order to prove that, with high probability the number Lemma 3.4 With probability at least 1 - n -_' the number
of internally bad messages is not far from the expectation of messages destined for any target group that start at good
we will use the following theorem of McDiarmid [25]. (The senders but are not delivered during the thinning procedu,'e
inequality is a development of the "Azuma martingale in- from [14] is at most k/(2h [ca lg lgn]).
equality"; a similatr formulation was also derived by Bollobgs

as [3].) ['roof of Lem,na 3. I. We conclude that with probability at
least 1 - 2n -_ the number of undelivered messages destined

Theorem 3.1 [McDiarmid] Let zl,. •,, zn be indepen- for any given target group after the thinning procedure ter-
dent random variables, with x, taking values in a set A, for minates is at most k/(h[ca lglg n]). •
each i. Suppose that the (measurable) function J" : I-IA, --*
[{ satisfies If(g)- f(_-')l < c, whenever the vectors _. andS' After the "thinning" procedure from [14] terminates we- will use the "spreading" procedure from [14] to spread out
differ only in the ith coordinate. Let Y be the random vari- the unfinished requests so that each processor has at most
able f('_rl,..., x,_). Then for any t > 0, one unfinished message to deliver. As part of the spreading

,, procedure we will allocate one processor to do the book-
t'r(IY-E(Y)I > t) < 2ext,(-2t'_/_,=lc_). keeping associated with each memory request and we ,,'ill

ensure that all messages associated with the request know
If tile hash functions hq, h2, and ha were chosen uni- the identity of this processor. During this procedure of our

formly at random from the set of functions from [1 .... , rn] to simulation the three messages associated with a request may
[I,..., n], the application of the bounded differences inequal- be sent to various processors but they will keep the book-
ity would be straightforward. We would take ,as the random keeping processor informed about their whereabouts.
variable z, tile destination of the ith message in M(S(T)). After the "spreading", we will use the "deliver to target
We would let Y be the random variable denoting the num- groups" procedure from [14] to deliver the rest of the mes-
ber of internally bad messages in M(S(T)). If we change sages to their target groups in O(lg lg n) steps. With prob-
the value of one of the z,s the value of Y would change by ability at lea.st 1 - n -'_ (for any constant c_) every message
at most h' + I. Plugging these values into the inequality, we will be ill its target group at the end of the "deliver to tar-
would get a sufficiently small failure probability, get. group" procedure. Furthermore, each sender will have at

However, since hi, h_, and ha are in fact drawn from the most 2 undelivered messages to send and (by lmmina 3.3),
family 7_<a the r.is are not independent so we cannot ap- the number of unfinished messages in a target group will be-_m ill , .

ply' Tlleorem 3.1 to them. Ii_stead, we' follow the approach less than k. At this point we can sort the messages in the
used in the proof of l,emnla 6.1 in [17]. Consider the in- target groups by destination. After th(:sorting, each sender
dependent random variables at ..... av47. As before, let }'" will have at most one message 1o send.
be a random variable denoting the n,_mber of internally bad \Ve now wish to allocate a contiguous Iflock of c2 proces-
messages in M(5;(7')). Let Z be the sc't of all destinations of sors from the appropriate target group to each unlinished
messages in M(S(7')). ('File size of Z is at most IM(S(7'))I, destination (for a sufficiently large constant e2). We. wish to
which is at most 4k(lglgn) _ (with high probability), by do theallocalion in such a way that all senders know which
Lemma 3.2.) Suppose that we change one of the a,s. By processors are allocated for lh,.ir destination. We do this as
Property 3.3 of the hash functions, the l,robatfility that 13 follows. If a d_.stination is lh,. d¢:slination of fewer thatt c:,



i , j ,

requests we simply deliver them. Otherwise, we allocate c2 3.3 Divide into sub-problems and duplicate
processors for tile destination. The processors allocated will
be the first c2 processors with requests for that destination. Our goal is to divide the ocPC into lg lg n/e sub-ocPcs, each

At this point we wish to send all but O(n2 -ctlglg'_) of of which has n' = ne/lglgn processors. Each sub-ocPC will
the messages in any group to their final destinations. We work on the sub-problem of defivering the messages corre-
will say that a message is bad if its destination is also the sponding to a particular group of messages. For each sub-
destination of at least cl lg lg n other messages. We will use ocPc we wish to make Ig2(n ') copies of the relevant sub-
the following lemma, problem, all of which will reside in its processors 1,..., n'/2. .

We will use an approximate compaction tool to divide

Lemma 3.5 With probability at least 1 - n -_ (for any con- the problem into sub-problems and to make copies of the _:
stant (_) at most O(n2 -c' is lg n) of the messages in any group problem. (For similar tools see [5, 13; __].). Given -+_=¢'
of messages are bad. ® an n-ocPc in which at most s senders each 'have one ,

message to send, _

Proof. This proof is similar to the second part of the proof • a set of 15s receivers which is known to all of th e senders, '
of Lemma 3.3. By Property 3.1 of the hash functions, the
destinations are V/-_-wise independent with high probability, the (s, t5) approximate compaction problem is to deliver all .'.
In this case, the probability that a given message is bad is of the messages to the set of receivers in such a way that

each receiver receives at most one message.
at most (3ntglS_)n-_llgtgn By Stirling's approximation,_ Iglg The following lemma is from [14].

this is at most (3e/ca)C_ lg ig n which is at most 2 -_ lglg n for Lemma 3,6 For any positive constant ol there is a positive
cl _>6e. Therefore, the expected number of bad messages
in a group is at most ¢n2 -_11g_s- constant ca such that the (s, re3 lglgn]) approximate corn-

We now use Theorem 3.1 (the bounded differences in- paction problem can be solved in O(lglgn) communication
equality) to prove that with high probability the number of steps with failure probability at most a -v; + s -_
bad messages in a group is not much more than the expec- We proved in the previous subsection that, with high
tation, probability, when the "thinning and deliver to target groups"

As in the case of Lemma 3.3, the bounded differences procedure terminates, the number of undelivered messages
inequality would be straightforward if the hash functions h_, is at most 3n lg lg n2 -'_ lgIs n. Furthermore, every message
h2, and h3 were chosen uniformly at random from the set is in the target group of its destination and each processor

' of functions from [1.... , m] to [1,..., n]. We would take as will have at most one message left to send.
the random variable xi the destination of the ith message The number of unfinished target groups is at most the
and we would let Y be the random variable denoting the number of unfinished messages, which is at most
number of bad messages. If we change the value of one of
the z,s the value of Y would change by at most C1 lglg n+ 1. 3nlg lgn2 -q zgisn < n'/(2 lg2(n')k2[c3 lglg n])

Therefore, we would obtain the following inequality, for a sufficiently large cl. Therefore, with high probabil-
ity (by Lemma 3.6), we can compact one message from the
first processor in each unfinished target group to the first

Pr(Y > 2E) _<2exp(-2E2/(¢n(cl lglgn + 1)2)). n'/(21g2(n')k 2) processors in the n-ocPc. Having done that,
we can copy each of the t,nfinished target groups to one of

However, since h_, h2, and ha are in fact drawn from the first n'/(21g2(n')k) target groups in the n-ocec. Next,--d .?

the family R_,n, we again follow the approach used in the we can use doubling to make lg2(n _) copies of each unfin-
proof of Lemma 6.1 in [17]. Consider the independent ran- ished target group. All of these copies will reside in the first
dora variables al,..., av/_. Let Y be a random variable n'/(2k) target groups in the n-ocpc.
denoting the number of bad messages. If we change the At this point, the entire problem is copied lg2(n ') times
value of one of the sis then, with high probability at most into the first n'/(2k) target groups in the n-ocPC. These
6n lg lg n/v/-ff messages get new destinations. (This follows n'/(2k) target groups will form the first half of the processors
from Property 3.2 of the hash functions.) Each new desti- in the first n'-processor sub-ocPc. Our objective is to use
nation could cause at most cl lg lg n + 1 messages to become the first sub-ocPc to solve the sub-problem of delivering the
bad. Thus, changing one of the a,s could change Y by at messages in the first group of messages. The sub-ocPc will
most 6v/_lg lg n(cl lg lg n + 1). So, by the bounded differ- do this by simply ignoring all messages that are not in the
ences inequality, first group of messages.

The lg_(n ') copies of the entire problem can now be
Pr(Y > 2E) < copied into the remaining lg lg n/e - 1 sub-ocPcs. The jth

2exp(_2E2/(v/-_36n(lglgn)2(c_lglgn + i)2)), sub-ocec will ignore all messages that are not in the jth
group of messages.

which is sufficiently small. • Our next goal is to allocate the processors n'/2,..., n' of
Given Lemma 3.5, it suffices to route ca lg lg n messages each sub-ocPc such that for each outstanding memory re-

to each destination. This cat: be done in O(lglg n) steps quest (i.e., for each memory request which has the property
since the messages are sorted by destination. At this point that at most one of its three messages was delivered dur-
we have finished the "thinning and deliver to target groups" ing the previous procedure), we allocate lg2(n ') processors.
procedure. The book-keeping processor associated with ev- (These lg2(n ') processors will do the book-keeping concern-
cry memory request now cancels the request if at least two ing the request in the lg2(n ') copies of the sub-problem.)
of its messages were delivered. If the request is canceled The allocation can be done in the sarne way that the
then the third message is deleted, problem was split and copied because the number of re-

maining requests is at most 3n lg lg n2 -_ tglg ,_



, i

3.4 Route messages for each sub-problem In their analysis of the c2-collision access schedule rout-
ing procedure (as implemented on a c2-collision DMM), Di-

Consider a particular copy of _. particular sub-problem, etzfelbinger and Meyer auf der Heide define a hypergrapll
I,emma 3.5 tells us that with high probability at most H = (V, E) for aset of memory requests azl,...,z,,, with ver-
O(n2-C_ Igls,,) of the memory requests from the _n mem- tex set V = {vrt [ 1 < r < 3, 1 < t < n} and hyperedge set
ory requests a_ssociated with this sub-problem remain. A1- E "-" {{Vl,hl(xi),V2,h_(xi),'-_a,h3(xi)} [ 1 < i < en}.
though each processor has at most one message to send, In light of Lemma 3.7, we can view the c2-collision ac-
there is a book-keeping processor allocated to each memory cess schedule routing as a process on H. In each round,
request and each message knows the identity of its book- the process removes each node with degree at most c2 (i.e.,

keeping processor. Furthermore, there is a block of c2 con- the/-messages destined for the processg._e delivered) with
tiguous processors allocated to each unfinished destination probability at least 1/2. Then the process removes ,.-mh hy-
and each sender knows which processors are allocated to its peredge that consists of only one node (i.e., memory requests
destination. For i E {1,2, 3} we will say that a message are canceled if at le_t two of the messages associated with
is an "i-message" if it obtained its destination using hash the request are delivered).
function i. Following Dietzfelbinger and Meyer auf der Heide, we

We now route messages according to the c2-collision ac- will say that H is s-good if
cess schedule from Section 3 of Dietzfelbinger and Meyer auf
der tteide's paper [7]. Each round of the access schedule is 1. The largest connected component in H has at most
defined a.s follows, oe = oe(s)lg n nodes.

For i = 1, 2, 3: 2. Every set A C V intersects fewer than IA[ + s hyper-

a. For all destinations d in paraJlel, repeat [c2 lg(2c2)] times: edges from E in at least 2 points.

t!;ach /-message with destination d that is not already Dietzfelbinger and Meyer auf der Heide prove the fol-
waiting at one of the e2 processors allocated to d picks lowing lemma. (The proof presented in [7] is based on the
a random processor from those allocated to d and sends assumption that hi, h2, and ha are chosen uniformly at ran-
there. Each of the allocated processors will only accept dom from the set of functions from [1,..., rn] to [1,..., n].
one message. However, the lemma is also true if hi, h2, and ha are chosen

_-=-d,j
b. /:]etch destination d now checks whether there are any randomly from R,n,n.)

other i-messages destined for d (that is, whether there
are any i-messages with destination d that are not at Lemma 3.8 The probability that H is s-good is 1-O(n-').

the allocated processors). To do this, the first of the We will prove the following lemma.
c2 processors allocated to d sends to d. Also, any i-
messages with destination d that have not yet been Lemma 3.9 Suppose that H is s.good for some positive
successful in reaching one of the c2 processors a]located constant s. Then the probability that any particular memory
to d send to d. Then the first of the c2 processors request is satisfied after O(lg lg n) rounds of routing accord-
allocated to d tells d whether or not it had a collision, ing to the c2-collision access schedule is at least 1/2.

c. For each destination d, if all of the i-messages destined
for d are a.t the processors allocated to d then these Proof. Let Ht denote the hypergraph obtained by ap-
messages are delivered. Otherwise, no requests are de- plying t rounds of the e2-collision access schedule routing

process to H. Dietzfelbinger and Meyer auf der Heide have
livered, made the following observation [7].

d. 'I'he book-keeping processor associated with each mem-
ory request checks which of the messages associated Observation 3.1 IJ H is s-good and A C V is a component
with the requests were delivered. If at least 2 of the of Ht for some t >_ O, then A contains at most 31A[/(c2 -l-
messages associated with the request have been deliv- 1) -k 3s/(c2 -{-1) nodes of degree larger than c, in Hr.

ered then the request is canceled and the third message We will use the following lemma.
is deleted.

Lemrna 3.10 Suppose that H is s.good. Let r be an edge in
Note that no destination receives more than 3c2 messages a component of size g > s of Ht for some t > O. If c.2 > 23

during the c2-collision access schedule routing. We use the then with probability at least 1 - exp(-e/54) the component
following lemma: of r in Ht+I has size at most 5e/6.

Lemma 3.7 1)uring one round of the c_-collision access sched- Proof. Let b = 3(g+s)/(c2 + 1). By Observation 3.1 and
ule routing procedure any processor that is the destination of l,emma 3.7, the expected number of nodes in the component
at most c'2 i-messages gets all of the i messages with prob- of r in llt+l is at most e/2 + b/2. Using a Chernoff bound,
ability at Icast 1/2 (and norse of them with the remaining

• we see that the probability that there are at most 4/3(g/2 +
p,',,bability). Any processor that is the destination of more b/2) < ,5e/6 nodes is at least 1 - exp(-(g/2 + b/2)/27). •
thaa _'_ z-mf_ssages receives none of them. IJsing l,emma 3.10, we conclude that for some constant

c4 >_.s, with probability at least ,3/4, O(lg lg n) rounds of the
Proof. If d is the destination of at most c2 i-message's c2-collision access schedule routing procedure reduce the size
t h(ql l he I_robability that one of them fails to reach the al- of the component of a given memory request r to at most c4.
located processors in g = [c21g(2c2)] attempts is at most We conclude the proof of l,emma :3.9 by observing that as
,_(1 -- I/c2) ¢ < 1/2. " long as c2 > 3s + 2, 0(1) rounds will, with probability at

least 3/4, further reduce the component to size 1. •



3.5 Combining problem copies and combining sub-problems Proof of Lcmma 3. I I. Tile fact that (with high I)robability)
each memory request in the jth sub-prol)h.'nl will be satisfied

I,et us focus our attention on the jth sub-problen_. Let Sj if the messages in ,5'j are delivered follows from Lemma 3.12
be the set of messages that were in tim sub-problem when and from Observatiton 3.2. To see that each processor is

,t I

it was created, l,et 5a be the subset containing all messages the destination of at most 27c2 messages in Sj note that a
in ,5'_ that are delivered in at least lg2(n')/9 copies of the message is a member of Sj only if it is delivered in at least
c2-collision access schedule routing procedure.

Note that when the c2-collision access schedule routing lg2(n')/9 copies of the c2-collision access schedule routing
procedure, tIowever we proved in the previous section thatprocedure terminates the lg2(n ') processors per memory re-

quest that were allocated in the "divide and copy" procedure each destination will receive at most 3c2 messages in each
to do book-keeping can inform all of the the messages in Sj copy of the procedure. Therefore, at..l_ost 27C2 messages
(in the first copy of the sub-problem) whether or not they that have the same destination will be included in S_. This
are in Sj. completes the proof of Lemma 3.I1. •

We will prove the following lemma.
4 Construction and evaluation of the hash function

Lemma 3.11 With probability at least 1 - n -a (for any
positive constant or) each set Sj has the following properties. In the simulation algorithm we have assumed that a hash

function h was chosen uniformly at random from the fam-

I. Each processor is the destination of at most 27c2 rues- ily R_, n and is available to every processor for constant
sages in S_. time evaluation. When concurrent-read is available in the

_. Each memory request in the jth sub.problem will be simulating model, a hash function in use can be kept in the
satisfied if the messages in Sj_ are delivered, shared memory, and be read as necessary in constant time.

The exclusive-read nature of the ocPc model, together with
i _d j

If each set S i has the properties described in Lemma 3.11 the fact that the function h C Rm,n is represented by a
(as it will, with high probability), then we can satisfy all of polynomial number of memory words, imply a more subtle
the memory requests in O(lg lg n) steps by routing the rues- situation. A straightforward implementation is to keep a

sages in S = [..J_S_. These messages form a 27c2 lg lg n/e- copy of the function h at each processor. However, this ira-
relation, so we can use the routing algorithm in [14] to route plies polynomiM overheads in both the time of preprocessing
the messages, for distributing all copies, and in the space dedicated for this

To prove Lemma 3.11 we use the following lemma and function at each processor. In the remainder of this section
the following observation, we describe an efficient implementation in which the func-

tion requires only a total of linear space, and its evaluation

Lemma 3.12 With probability at least 1 - n -_' (for any increases the simulation delay by at most a constant factor.
constant oe) every mernory request in every sub-problem is
satisfied in at least lg2(n')/3 of the lg2(n ') copies of the c2- 4.1 The hash function

--d 3

collision access schedule routing procedure. Our basic approach is: (i) replace the class R_,n with a class
whose functions h have similar properties, but can be repre-

Proof. Suppose that every sub-problem is such that the sented in O(n') space, where 1/2 < e < 1; the modified class
corresponding hypergraph is s-good. (Lemma 3.8 shows exhibits only n'-universality (rather than x/iT-universality
that this is so with high l)rot)at)ility, as long as s is cho- as in Property 3.1), but this is enough for our purpose; (ii)
sen to be sulficiently large.) Consider a particular memory make O(n 1-') copies of the selected function h; and (iii)
request in a particular sub-problem. Lemma 3.9 shows that make sure that at each simulation step the number of pro-
the probability that this request is satisfied in arty given cessors that need to read a component of h is bounded by
copy of the sub-problem is at least 1/2. A Chernoff bound O(n_-elglgn), an average of O(lglgn) per copy, thereby
shows that with probability at le,st 1 - ne -lg_(n')/s4 the enable the use of an efficient lglgn-relation algorithm for
request is satislied in at least lgz(7,')/3 copies. The lemma the read operation. (A similar approach of making dupli-
follows by snmming the failure probabilities over particular cates to reduce contention was used in [12].) To implement
memory requests. " the approach sketched above we first modify the delinition

---d 3

of R_,_,,_as follows.

Observation 3.2 If :T.1, Z2 and xa are the three messages . R_,n isir_ a memory request that is satisfied in at least g copies of Let t = j/c. The function s from the family --a j
the c2-collision access schedule routing procedure then there re-defined to be the tuple (sl ..... st), with the operation
is a pal," of messages from {xl,z2,x3} such that both of the s(z) = (s_(z) .... ,.st(z)), where s,, 1 _< i < t, are chosen
messages in the pair are satisfied in at least g/3 copies of the uniformly at random from dHm,,,,, for an appropriately large
procedure. Similarly, if xl and x2 are the two messages in constant d. Tim following lemma shows that Property 3.1
a memory request that is satisfied in at least g copies of the still holds for the new family of hash functions.
c2-coll_sion access schedule routin9 procedure then at least
one of r.1 and J:'2 is satisfied in at least el2 copies of the Lemma 4.1 Let g > 1 be arbitrary arm let d and j b_:"larqc
p,'occdu,'c, enough relative to { Let S be a sub._et of [1,.., m] (,f size

,, _<ISl < n_/a° U s is chosen randomly as described
above then Prob[s is 1-perfect on S] is at lcast 1 -_-e

/)roof. The probability that two given distinct points
a:,y (5 S will collide under ,_, i.e., that s(,) = .s(y), is at



most (2/n, _)t, since the s,'s are (2, d)-universal. The prob_- (2) Each of the n?_ outputs of (? chooses d t wdues in
bility that ,_ny pair of points from S will collide is therefore [0, .., n J - 1]. A set of n 1-2" processors is selected for
at most each given output and each processor in the set is given

(2/,,')' < the values associated with the output.
k,,/

(3) The values a_,...,a,m are generated. V/'ff sets of v/-ff
The lemma follows by taking j > t -t- 22/10. • processors are selected and each processor in a set i is

The class of functions H,_i,n from which r is taken is given the value of ai.
modified next.

Siegel [31] defines a (p,e, d, h)-weak concentrator H as 4.3 Evaluating the hash function :_.
a bipartite graph on the sets of vertices I (inputs) and O
(outputs), where III- p, and Iol = p', that has outdegree d At each simulation step, the hash function is computed for
for each node in III, and that has, for any h inputs, edges all memory addresses in O(lglgn) time, as described next.
matching them one-by-one with some h outputs. Let S be the set of 3n lg lg n requests from [1.... inf. Recall

A (p, e, d, h )-weak concentrator H is used to construct a that h(x) = (r(s(_))+ al(_)) mod n.
function F by storing d random numbers from [0,... ,p - Each processor executes the following steps for each re-
1] at each node of O. On input i, F(i) is computed by quest x:
evaluating a polynomial hash function of degree d- 1 whose
coefficients are determined by the numbers stored at the (1) Compute sx(x),...,st(x).

neighbors of i in O. Siegel showed that the family of hash (2) Compute the names of the neighbors of (sa (x), ..., st(x))
functions F so defined is a (1, h)-universM family of hash in G.
functions mapping [0,p - l] _ [0,p - 1].

Let H be a (n ', e, d, n '')-weak concentrator. Siegel showed (3) Read the values corresponding to the neighbors of

that the Cartesian product G = H t is a (nJ,e, dt,n")-weak (Sl(27),...,$t(X)) in G.

concentrator. "the graph G can therefore be used to con- (4) Apply r to (sl(z),...,st(z)).
struct a (1, n")-wise independent family of ha_stl functions
mapping [1,...,n J] to [1.... ,n:]. (5) Compute f(z.).

The above was used by Siegel to provide a space-efficient
construction of the hash function, which turns out useful (6) Read hi(x).

for our needs. To enable approximately uniform contention (7) Compute r(s(z)) + al(x ).
distribution we will need the function to exhibit one more

property. The executions of Steps 1,4,5, and 7 are in constant time.
The following lemma of Dietzfelbinger, given in [20], is cen-

Lemma 4.2 There exists a graph H that is (n _,e, d, nd)- tral to the analysis of the other steps.
weak concentrator, and which also has the property that ev-

ery output of H has degree at most 2dn _-_2. Lemma 4.3 Let X1, ...,Xn be 0 - 1 valued, d-independent,
equidistributed random variables. Let It = E( Xi ). Then, for

Proof. We use a probabilistic construction, as given in [31] n _> d/(2p.),

for finding an (n c, _, d, n )-weak concentrator. Suppose that n
each input of It chooses its d (distinct) neighbors uniformly Prob (X, - tL) > X < cr(ntL)a/_- - )_d
at random. Siegel proves that the probability that H is not

a (n', e, d, n") weak concentrator is at most n -(¢_-_') (As
long ms e' is sufficiently sin',all.) We can now use a Chernoff where o_ is a constant that depends on d but not on n.
bound to show that the degree of each output of H is sutti-
ciently small as required. • Claim 4.4 In Step 2, with high probability, for every y in

[1, ..., n "] (i.e., for every input of H) there are at most O(n'-' lg lg n )

4.2 Constructing the hash function pairs (i, x) sttch that x C S and si(x) = y.

The graph H is built into the machine when the machine is Proof. Note that the set of values s,(x) : 1 < x _<m is d-
built. Each of the n' inputs has d neighbors. A set of n 1-_ independent. Following Kruskal, Rudolph, and Snir [20] we
processors is selected and each processor in the set is given use l,exnma 4.3. Fix a y and i and let Xb be a 0-1 random
the name of these neighbors, variable which is 1 if and only if si maps the b'th member

Recall that it may be the case that a new function needs of S to y. ILis 1/n'. Let X be ISI/n'. Then the probability

to be constructed (a "re-hash" operation), when the se- that s, maps more than 2A to y is O(n-d/2(l-_)). Choose d
letted one does not satisfy the required properties. (This large enough to surn over all i and y.
occurs with l)olynomially small probability for each parallel We conchtde that at most O(n 1-_ lg lg n) processors want
step, and with high probability after a polynomial number to read the information about input y, and so we have a "tar-
(,f steps.) A new hash function is constructed in O(lgn) get group O(lglgn) relation". The requests can tm rm_ted
sl(:l)s as follows: using [14].

(1) Construct sl, .., st and f and distribute to all proces- Claim 4.5 In Step 3, with high probability, for every output
sors. y of G there at(: at most O(n l-J' Ig lg 'n.) value_ z in .b' ._uch

tt,,t (s_(ar),...,.st(J:)) i,s a neiqhbo," of y i,= G.



Proof. Fix y = (yl,..,y,). Let Li denote the neighbors of [2] R.J. Anderson and G.L. Miller, Optical Communica-

.V, in 11. Note that IL_I_<2dn `-'_. If s(x) has a neighbor y tion for Pointer Based Algorithms, Technical Report
in (; then s,(z) is in Li, for 1 < i < t. CRI 88-14, Computer Science Department, University

of Southern California, Los Angeles, CA 90089-0782
"l'hc probability of this event is at most (2d/n'_) t. Let USA, 1988.

.¥b be a 0-1 random variable which is 1 if and only if the

b-th member x of S has s(x) mapped to y in G. Apply [3] B. Bollob£s, Martingales, Isoperimetric Inequalities
Lemma 4.3: # is at most (2d/n "2It by Lemma 4.2; let A be and Random Graphs, in Combinatorics (eds A. Ha.i- ,

[S[(2d/n'_) t. The probability that there are more than A nal, L. Lovhsz, and V. T. S6s), Colloq. Math. Soc. Jdnos
Bolyai 52 (North Holland 1988) 113-139. '_such values x is at most _n -(a/2)(a-J_). * _

Given the claim, we have a "target group O(lglg n) re- [4] J.L. Carter and M.N. Wegman, _Jniversal Classes of i
lation". The requests can be routed using [14]. Hash Functions, Journal of Computer and Systems Sci. '_.:

It remains to analyze Step 6. By Property 3.2, with ences 18 (1979) 143-154.
probability at least 1 - n -`_ each group needs to be read
by at most 6vfn'lglg n of the requests, so we have a "target [5] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik,
group 6 lg lg n relation". The requests can be routed using New Simulations between CRCW PRAMs, Proe. Foun-
[14]. dations o:f Computation Theory 7 , Lecture Notes in

Computer Science 380 (Springer-Verlag 1989) 95-104.

5 Conclusions [6] M. Dietzfelbinger and F. Meyer auf der Heide, How to
Distribute a Dictionary in a Complete Network, Pro-

In this paper we have described a work-optimal algorithm ceedings of the A CM Symposium On Theory of Com.
which simulates an n lg lg n-processor ERlgWPRAM on an n- puting 22 (1990) 117-127.
processor OCPC with O(lglg n) expected delay. The proba-
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