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Abstract

We present a work-optimal randomized algorithm for simu-
lating a shared memory machine (PRAM) on an optical com-
munication parallel computer (ocpc). The ocPC model is
motivated by the potential of optical communication for par-
allel computation. The memory of an ocPC is divided into
modules, one module per processor. Each memory module
only services a request on a timestep if it receives exactly
one memory request.

Our algorithm simulates each step of an n Iglg n-processor
EREW PRAM on an n-processor OCPC in O(lglgn) expected
delay. (The probability that the delay is longer than this is
at most n~% for any constant a.) The best previous simu-
lation, due to Valiant, required ©(lg n) expected delay.

1 Introduction

The huge bandwidth of the optical medium makes it possi-
ble to use optics to build communication networks of very
high degree. The possibility of using such communication
networks in parallel computing was first studied by An-
derson and Miller [2] who introduced the ocPC model: In
an n-processor completely connected Optical Communication
Parallel Computer (n-0CPC) n processors with local mem-
ory are connected by a complete network. A computation
on this computer consists of a sequence of communication
steps. During each communication step each processor can
perform some local computation and then send one message
to any other processor. If a processor is sent a single message
during a communication step then it receives this message
successfully, but if it is sent more than one message then the
transmissions are garbled and it receives none of them.
While the ocPc seems a reasonable model for optical
computers, it has not been used as a programming model to
date. The PRAM model, on the other hand, has been exten-
sively used for parallel algorithmic design (e.g., {16, 19, 30].
The convenience of programming on the PRAM is largely
due to the fact that the programmer does not have to spec-
ify interprocessor communication or to allocate storage in a

*This work was perforrned at Sandia National Laboratories and
was supported by the U.5. Department of Energy under contract DE-
AC04-76DP00789.
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distributed memory. For the very same reason, the PRAM is
considered as highly theoretical, and the task of emulating
the PRAM on more realistic models has attracted consider-
able attention; emulations may enable automatic mapping
of PRAM algorithms to weaker models, as well as a better
understanding of the relative power of different models. In-
deed, many emulations of the PRAM on bounded degree net-
works were introduced (see, e.g., {1, 33, 34, 20, 29] or [21]
for a survey).

In this paper, we present a simulation of an EREW PRAM
on the ocpc. In particular, we present a randomized simu-
lation of an nlglg n processor EREW PRAM on an n processor
ocpc in which, with high probability, each step of the PRAM
requires O(lglg n) steps on the ocpc.! Our simulation is
work optimal, to within a constant factor.

Our results are closely related to previous work on the
well studied distributed memory machine (DMM) which con-
sists of n processors and n memory modules connected via
a complete network of cormmunication. Each processor can
access any module in constant time, and each module can
service al most one memory request (read or write) at any
time. The DMM is thus a weaker model than the shared
memory PRAM, in that the memory address space is par-
titioned into modules with a restricted access imposed on
them. We remark that there are several variants of bMM
models differing in their contention rules.

Quite a few papers have studied the emulation of a PRAM
on various DMM models {28, 31, 18, 35, 6, 17, 7]. Karp et
al. [17] present O(lglg n) expected delay simulations of var-
ious types of PRAM on a CRCW DMM in which each memory
module allows concurrent read or write access to at most one
of its memory locations during any step. Dietzfelbinger and
Meyer auf der Heide improve upon this paper by presenting
an O(lglgn) expected delay simulation of an EREW PRAM
on the (weaker) c-collision DMM in which any memory mod-
ule that receives ¢ or fewer read or write requests serves all
of them. Although Dietzfelbinger and Meyer auf der Heide
require ¢ > 3 for their anaiysis to work, they report that
experiments show that ¢ = 2 works as well. The 1-collision
DMM is equivalent to the ocpc.

Our result improves on the result of {7] in two ways.
First, it is work-optimal. Second, it works for the ocpc (or
1-collision DMM). The previous best known work-optimal
simulation of a PRAM on the ocpc is an O(lg n) delay sim-
ulation of Valiant [36].

Iwe will refer to the time required to simulate one pram step as

the delay of the simulation.
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1.1 Related work

The OCPC model The ocpc model was first introduced
by Anderson and Miller [2], and has been studied by Valiant
(36], Eshaghian [8], Geréb-Graus and Tsantilas [9], Gerbessi-
otis and Valiant [10]}, Goldberg, Jerrum, Leighton and Rao
{14], and Goldberg, Jerrum and MacKenzie {15]. The fea-
sibility of the ocPc from an engineering point of view is
discussed in [2, 9). See also the survey paper of McColl [26]
and the references therein.

Computing h-relation on the OCPC A fundamental prob-
lem that deals with contention resolution on the ocpcCis that
of realizing an h-relation. In this problem, each processor
has at most h messages to send and at most k messages to
receive. Following Anderson and Miller [2], Valiant [36], and
Geréb-Graus and Tsantilas {9], Goldberg et al. [14] solved
the problem in time O(% +lglgn) for an n-processor ocpc.
A lower bound of {2(\/Iglgn) expected time was recently
obtained by Goldberg, Jerrum, and MacKenzie [15].

Simulating PRAM on OCPCs Valiant described a simu-
lation of an EREW PRAM on an OCPC in [36]. More specifi-
cally, Valiant gave a constant delay simulation of a Bulk Syn-
chronous Parallel (BsP) computer on the ocpc (there called
the s*PRAM), and also gave an O(lgn) randomized simula-
tion of an n lg n-processor EREW PRAM on an n-processor BSP
computer. A simpler simulation with delay O(lgnlglgn)
was given by GerélL-Graus and Tsantilas {9]. Valiant’s re-
sult is the best previously known simulation of a PRAM on
the ocpc.

Independently of our work, MacKenzie, Plaxton and Ra-
jaraman [24], and Meyer auf der Heide, Scheiderler and
Stemann [23] have shown how to simulate a n processor
EREW PRAM on an n-processor OCPC. Both simulations have
O(lglgn) expected delay. However, neither simulation is
work-optimal, and both simulations require n*) storage at
each processor.

Simulating PRAMs on DMMs Mehlhorn and Vishkin 28]
used a (g n/ lg lg n)-universal class of hash functions to achieve
a simple simulation of a CRCW PRAM on a CRCW DMM with
expected delay O(lgn/lglgn). An n-processor CRCW PRAM
can be simulated on an n-processor EREW DMM in O(lgn)
expected delay using techniques from [36]. The work of this
simulation is thus a ©(lgn) factor away from optimality.
The best work-optimal simulation of a PRAM on an EREW
DMM has delay O(n®) [20].

Recently, Karp, Luby and Meyer auf der Heide [17] pre-
sented a simulation of an n-processor CRCW PRAM on an
n-processor CRCW DMM with O(lglgn) delay. They also
presented a work-optimal simulation of an (nlglgnlg* n)-
processor EREW PRAM on an n-processor CRCW DMM in
O(nlglgnlg® n) expected delay, and a nearly work-optimal
simulation of an nlglgn processor CRCW PRAM on an n-
processor CRCW DMM with the same delay. Subsequently, Di-
etzfelbinger and Meyer auf der Heide [7] presented a simpli-
fied (non-optimal) simulation of an n-processor EREW PRAM
on an n-processor DMM vwith O(lglg n) expected delay. The
simulation in [17] introduces a powerful technique that in-
corporates the use of two or three hash functions to map the
memory address space into the memory modules, combined
with the use of a CRCw PRAM algorithm for perfect hashing.
[t heavily uses the concurrent read capability of the crcw

DMM. The simulation in [7] circumvents the need for using
the cRcW PRAM perfect hashing by an elegant use of an idea
from Upfal and Wigderson {35].

1.2 Overview of the algorithm

Our simulation algorithm incorporates techniques and ideas
from the simulation algorithms of {17, 7], as well as from the
h-relation routing algorithm of [14], as follows.

The simulation in [7] uses three hash functions to map
each memory cell of the EREW PRAM to three processors (and
memory cells) in the DMM. A write on an EREW memory cell
is implemented by writing a value and a time stamp to at
least two out of the three associated DMM memory cells.
A read of an EREW memory cell is implemented by read-
ing two out of three of the memory cells and choosing the
value with the most recent time stamp. Dietzfelbinger and
Meyer auf der Heide’s proof that their simulation requires
only O(lglgn) delay on a 3-collision DMM relies on the fact
that, given a randomly generated tripartite hypergraph on
3n nodes with en edges, one can, with high probability, re-
move all the nodes in the hypergraph using the following
process.

Repeat O(lglg n) times:

1. Remove all of the nodes with degree at most 3.

2. Remove all resulting trivial hyperedges (hyperedges in
which only one incident node remains.)

Each hyperedge corresponds to a read or write of a PRAM
memory location: The three vertices correspond to the three
processors in the DMM associated with that memory loca-
tion. Thus, one step of an ern node EREW PRAM is imple-
mented by using the process above to deliver at least two
out of three of the messages associated with each memory
request.

Since we are simulating an nlglgn processor PRAM on an
n-node OCPC, we must simultaneously implement the pro-
cess above for O(lglg rn) 3n-node hypergraphs using only n
processors. To do this, we start by sparsifying all of the
hypergraphs using ideas from the (Iglg n)-relation routing
algorithm in [14]. That is, we route all but O(n/lg° n) mes-
sages and we ensure that at most one undelivered message
remains at any processor. Even so, implementing the pro-
cess above in parallel could still require Q(lglg n) time steps
per iteration since each destination may participate in as
many as (lglgn/e) different hypergraphs. Thus, we must
also “copy” each destination in such a manner that each
message can locate the appropriate copy of its destination.
We then perforin the process in each hypergraph, ensuring
that the process delivers at most a constant number of mes-
sages to each copy of a destination. After that, the messages
can be sequentially forwarded to their true destinations in
O(lglgn) time.

We remark that, in fact, we cannot directly perform the
process above on any of the O(lglgn) hypergraphs since
our processors can only receive one message in a time step
whereas the processors in [7] can receive three messages in
a time step. The details of our solution to this problem can
be found in the technical sections.

1.3 Paper outline

We proceed in Section 2 with a high level description of

our simulation. In Section 3, we present our algorithm in
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detail and prove correctness. In Section 4 we deal with the
evaluation of the hash function that maps the virtual shared
memory to the memory modules.

2 The Simulation

Our objective is to show how to simulate one step of an
nlglgn processor EREW PRAM in O(lglgn) time-steps on
an n processor OCPC. Our simulation follows {7] in using
the following idea from [35]. The memory of the PRAM is
hashed using three hash functions, Ay, hz, and hs. Thus,
each memory cell of the PRAM is stored in three memory
cells of the ocpc. To write memory cell =, a processor of
the OCPC sends a message to at least two of the processors in
{kh1(z), h2(z), ha(z)}. The message contains the new value
for cell z and also a time stamp. To read memory cell z,
a processor p of the OCPC sends a message to at least two
of the processors in {h1(z), ha(z), ha(z)}. Each of these two
processors sends p the value that it has for cell z and also its
time stamp for cell £. Processor p uses the value with the
later time step. The hash functions hq, hg, and hj are chosen

from the the “highly” universal family R,,1 n from [17], which
guarantees random-like behavior.

Each ocpc processor will simulate lglg n PRAM proces-
sors. Thus, at the start of a PRAM step, each of the ocpc
processors will wish to access up to lglg n cells of the PRAM
memory. Each processor uses hi, h2 and h; to obtain the
three destinations where each memory cell is stored. Thus,
each OCPC processor wants to send messages to up to 31glgn
destinations. Our objective is to deliver at least two of the
messages associated with every request.

As in [14], we will divide the processors of the ocpc
into target groups of size k& = lg°n. We will also divide the
nlglg n memory requests into lglg n/e groups of en requests
each for a sufficiently small constant e. We will refer to
the set of messages associated with a particular group of
memory requests as a “group of messages”. The messages
will be delivered using the following procedures:

¢ Thinning and deliver to target groups. Initially,
the number of messages destined for any given target
group may be as high as 4klglg n. (We will show that,
with high probability, it is no larger than this.) We will
use techniques from [14] to route the messages to their
target groups. With high probability when this pro-
cedure is finished every message will be in the target
group of its destination. Furthermore, each processor
will have at most one message left to send. For a suf-
ficiently large constant c2, we will allocate a contigu-
ous block of ¢z processors from the target group to
each unfinished destination for that destination. All
senders will know which processors are allocated for
their destination. For a sufficiently large constant ¢,
we will ensure that for any of the lglgn/e groups of
messages, with high probability, all but O(n27c1'8'87)
of the messages in the group will be delivered to their
final destinations.

¢ Divide into sub-problems and duplicate. We
now divide the ocpcC into lglgn/e sub-ocpcs, each
with »’ = ne/lglgn processors, Each sub-ocpc will
work on the sub-problem of delivering the messages
corresponding to a particular group of messages. For
each sub-0CcPC we now make lgZn’ copies of the rel-
evant sub-problem, all of which will reside in its pro-

cessors 1,...,n'/2. We will also allocate its processors
n'/2,...,n', as follows. For each outstanding memory
request (i.e., for each memory request which has the
property that at most one of its three messages was
delivered durmg the previous procedure) we will allo-
cate 1g® n' processors. These lg?n’ processors will do
the book-keeping concerning the request in the lg* n'
copies of the sub-problem. Each message will know
the identity of the processors responsible for the book-
keeping concerning its memory r_e%u_est.

¢ Route messages for each sub-problem. In each
copy of each sub-problem we route messages accord-
ing to the cz-collision access schedule from Section 3
of {7]. Dietzfelbinger and Meyer auf der Heide prove
that with high probability each sub-problem is “good”
(this term will be defined later on). We will prove that
if a sub-problem is good then for any particular mem-
ory request in any particular copy of the sub-problem,
the probability that the memory request is satisfied in
the cp-collision access schedule routing is at least 1/2.
Also, no destination in any copy of any sub-problem
receives more than a constant number (3¢z) of mes-
sages during the cz-collision access schedule routing.

¢ Combining problem copies and combining sub-
problems. In this procedure we identify a subset S
of the set of messages that were delivered by the var-
ious copies of the cz-collision access schedule routing
procedure. The messages in S are chosen in such a way
that every processor is the destination of O(lglgn)
messages in S. We show that with high probability
every memory request in every sub-problem that was
created in the “divide into sub-problems and dupli-
cate” procedure will be satisfied if the messages in S
are delivered. We deliver the messages in S using the
routing algorithm in [14].

3 Simulation details and analysis

Before giving the detalls and analysis we define the class of

hash functions Rm n being used and describe its properties
that are used in the analysis. In the subsequent subsections
we will give the details of each of the procedures described
in the previous section.

3.1 The hash functions

The class Rm , 1s taken from [17] and is defined as follows.

Definition of R(.i,;f,,: A function from an’" is a combina-
tion of functions taken from several classes. Carter and Weg-
man [4] introduced H3 , C {h: [1,... ym] = [1,...,n]}, the
class of functions f(z) mod n where f is a polynomial of de-
gree d—1 over Z,,. Siegel [31] introduced a class of functions
Hn, n S {h [ ,...,nJ] — [1,...,n]}. (More details on this
class are given in Section 4.1.) To choose a random hash

. B
function h from Rm{,,, one first chooses
¢ A function f, chosen uniformly at random from H::“‘/,—l
e A function 7, chosen uniformly at randomn from ﬁn,'n

o A function s, chosen uniformly at random from 11,1" i



e /7 integers ay,...,a g, each of which is chosen uni-
formly at random from the range [1....,n].

The function h is defined by k(z) = (r(s(z)) +as(z)) mod n.

Property 3.1 Let € be an arbitrary constant and let 3 be
large enough relative to £. Let S C [1,...,m], n < |S| <
11/10 B g pdy

n . Let Ry .(8) be the restriction of R, induced by

fizing 8 € H}n i -
1
Il'm‘nl

If s ta “I-perfect” then ﬁz;{n(s) is (1, /n)-universal.

If s 1s chosen uniformly at random from
then s is “I-perfect” with probability at least 1 —n~".

Proof.  See [17]. L

Property 3.2 Let £ be an arbitrary constant and let d be
large enough relative to £. Let S C [1,...,m], n < |S] <

nt10  Let f be drawn randomly from H:M/,—l. Then with

probability at least 1 — n~¢ every set f~'(1) N S has size at
most 2|S|//n.

Proof.  See [17]. .

Property 3.3 Let £ be an arbitrary constant and let d and
g be large enough relative to £. Let S C [1,...,m], n <
1S] < w1, Let Z be a subset of [1,...,n) and let i be
an integer in [1,...,/n]. Suppose that B < /n. Let h

be chosen randomly from —anj,, (That 1s, let f, r, 3, and
at,... a5 be chosen as described above.) The probability
that B or more members of SN0 f (i) are mapped to Z by h

is at most 2n~% + (2|5|ﬁ/\/71) (l—[—l “

n !

Proof. By Property 3.2, with probability at least 1 —
n~! every set f~'(i) N S has size at most 2|S|/y/n. By
Property 3.1, with probability at least 1 — n™%, the hash
destinations are y/n-wise independent. ]

3.2 Thinning and deliver to target groups

We start out by running the “thinning” procedure from [14],
which is based on the algorithm of Anderson and Miller [2}.
The procedure runs for O(lglg n) steps. During each step
each sender chooses a message uniformly at random {from
the set of messages that it has not yet sent successfully and
it sends the message to its destination with a certain prob-
ability. Let h = 32¢lglgn. We prove the following lemma.

Lemma 3.1 With probability at least 1 —2n™ (for any con-
stant o), after the thinning procedure from [14] terminates,
there are at most k/h{calglgn] undclivered messages des-
tined for any particular target group. (c3 is a constant which
must be sufficiently large; it is the constant ca from [14].)

The proof of Lemma 3.1 will use the following lemma.
Lemma 3.2 With probability at 'east 1 = n™" (for any con-

stanl o), each targel group of size k is the destination of at
most 4k g lg n messages.

Proof.  Consider a target group 1" and for cach i in the
range 1 <7 < 3nlglgn let z, be a random variable that is 1
if the ith message has a destination in 7" and 0 otherwise.
Let X = Z‘ z,. Clearly, the probability that any given gz,
is 1is k/n, so B(X) = 3klglgn. By Property 3.1 of the hash
functions, the zs are /n-wise independent (with high prob-
ability), so using a limited independence Chernoff bound
(Theorem 1 of [32]), we find that Pr(X > E(X)(14+1/3)) <
¢~ E(X)/27  This probability is sufficiently small that we can
sum the failure probability over the target groups. ]

In oxder to continue with the proof of Lemma 3.1 we need
some notation. For every target group T let S(T) denote
the set containing all senders that have messages destined
for target group T. We will say that a sender is bad if it
has some message that has the same destination as at least
h other messages. We will use the following lemma.

Lemma 3.3 With probability at least 1 —n ™ (for any con-
stant ) every set S(T') contains at most k/(2h*[c3lglgn])
bad senders.

Proof.  This proof is similar to the proof of Claim 2 in [14].
We include it here for completeness and also to demonstrate
how the limited independence is handled. Let h' = h/2.
For a given target group T let M(S(T)) denote the set of
messages that are sent by senders in S(7'). We will say
that a message is externally bad with respect to a target
group 7' if the message has the same destination as at least
k' other messages that are not sent from senders in S(T).
We will say that a message is internally bad with respect to
a target group 7' if it has the same destination as at least
h' other messages that are sent from senders in S(T). We
wish to prove that with probability at least 1 —n™% at most
k[/(2h*[cslglg n]) of the messages in M(S(T)) are either
externally or internally bad.

First we consider externally bad messages. We will say
that a processor P is externally crowded with respect to a
target group T if there are at least b’ messages whick are not
in M(S(T)) and have destination P. A set of b members of
a target group are all externally crowded only if at least bk’
messages have destinations in the set. Property 3.1 of the
hash functions tells us that the destinations of the messages
are \/n-wise independent. Therefore, as long as b < /n/h'
the probability that there is a set of 5 members of a target
group that are all externally crowded is at most n=% (for
any constant «)?, plus

(71) kY [dklglgn (b)bh'
k/\ b bh' k '

We can use Stirling’s approximation to show that for b =

. . . - IR’ m .
k/R'® this quantity is at most (n/k)2— kit ° T'herefore, with
15

probability at lcast 1—-n™" —(n/k)'l‘k/" every target group
has at most k/h'® processors which are externally crowded
with respect the T. Suppose that this is the case. Then
the probability that a message in M(5(T)) chooses a desti-
nation which is externally crowded with respect to 7' is at
wost 1’7 and the expected number of messages in M (S(T))
that choose a destination which is externally crowded with
respect to 1" is at most M(S(1))/h®. Property 3.1 of the
hash functions tells us that the destinations of the messages

2By Lemma 3.2, n™" is an upper bound on the probability that

more than 4k Iglg n messages are destined for any target group



are y/n-wise independent (with high probability). Hence,
we can unse a limited independence Chernofl bound from
Theorem 1 of [32] to show that with probability at least
1 — exp(=|M(S(T)} /(12 x h'®)) at most 2|M(S(T))|/h"
messages in M(S(T)) choose a destination which is exter-
nally crowded with respect to T. Note that as long as n is
sufficiently large then 2| M (S(T))|/h" < k/(4h*[calglg n]).
Also, as long as |[M(S(T))| > k/(4h%[cs lglgn]) and the
constant ¢ (in the definition of k) is sufficiently large, the
sum of (n/k)275/""* and (n/k) exp(=|M (S(T))|/ (12x h'®))
is at most n”%.

We now consider internally bad messages. We start by
calculating an upper bound on the probability that a mes-
sage is internally bad. Lemma 3.2 tells us that with high
probability at most 4k lglg n messages are destined for any
target group. Thus, with high probability, at most 4klglgn
messages in M{S(T")) are destined for the same target group
as the given message. Property 3.1 of the hash functions tells
us that the destinations of the messages are \/n-wise inde-
pendent. Therefore, the probability that the given message
is internally bad is at most

4klglgn (l W “h
( h! >E) =2

So the expected number of messages in M (S(T')) which are
internally bad is at most |M(S(T))|2™".

In order to prove that with high probability the number
of internally bad messages is not far from the expectation
we will use the following theorem of McDiarmid (25]. (The
inequality is a development of the “Azuma martingale in-
equality”; a similar formulation was also derived by Bollobds
as [3].)

Theorem 3.1 [McDiarmid] Let z1,...,zn be indepen-
dent random variables, with z, taking values in a set A, for
each i. Suppose that the (measurable) function f : HA, —
R satisfies | f(Z) — f(F')| < ¢i whenever the vectorsT and T’
differ only in the ith coordinate. Let Y be the random vari-
able f(r1,...,zn). Then for any t >0,

Pr(lY —E(Y)| > 1) < 2exp (-2 /30 ).

If the hash functions hi, h2, and h3 were chosen uni-
formly at random from the set of functions from {1,...,m] to
{1,...,n}, the application of the bounded differences inequal-
ity would be straightforward. We would take as the random
variable z, the destination of the ith message in M(S(T)).
We would let Y be the random variable denoting the num-
ber of internally bad messages in M(S(T)). If we change
the value of one of the ;s the value of Y would change by
at most h’' + 1. Plugging these values into the inequality, we
would get a sufficiently small failure probability.

However, since hy, hy, and hz are in fact drawn from the

. —d.J .
family R, ,,, the r;s are not independent so we cannot ap-
ply Theorem 3.1 to them. lunstead, we follow the approach
used in the proof of Lemma 6.1 in [17). Consider the in-
dependent random variables ay,...,a ;. As before, let ¥
be a random variable denoting the number of internally bad
messages in M{S(T)). Let Z be the set of all destinations of
messages in M (S(71)). (The size of Z is at most [M(S(1))],
which is at most 4k(lglgn)? (with high probability), by
Lemma 3.2.) Suppose that we change one of the ais. By
Property 3.3 of the hash functions, the probability that 3

or more mewmbers of M(S(T)) change destination is at most
9 2 ﬁ IS Al IRl T
anT 4 (“"'5 ‘Sﬂ"/‘/’T) (5—'5('—57'\5—'11—) . This probability is suf-

ficiently small as long as the constant 7 is sufficiently large.
So suppose that at most 8 members of M(S(T)) change des-
tination. Each of those may make at most k' + 1 members
of M(S(T)) become internally bad. Therefore, if we change
one a; we change Y by at most A(h' + 1). Therefore, by
Theorem 3.1 the probability that Y > k/(4h?®[cslglg n)) is
at most 3 -

' 2
—Z(WFJ%W‘E(Y))

(1M (S(T))] B2(k' +1)%)

2exp

Since E(Y) < Wﬁm (for big enough n) and, with

high probability (by Lemma 3.2), M (S(T))| < 4k(lglg n)?,
the probability is at most

2 exp(—k/(32h*[cs lg lg n]*4(lg lg n)2 B2 (R + 1))

This quantity is at most n ™% (k/n) as long as c is suf-
ficiently large. This concludes the proof of Lemma 3.3. =
The following lemma is proved on page 19 of [14] (The
proof of the lemma uses the fact that |[S(T)| < 4klglgn,
which is true with high probability, according to Lemma 3.2.)

Lemma 3.4 With probability at least 1 — n~=% the number
of messages destined for any target group that start at good
senders but are not delivered during the thinning procedure
from [14] is at most k/(2k{calglgn]).

Proof of Lemma 3.1.  We conclude that with probability at
least 1 —2n~° the number of undelivered messages destined
for any given target group after the thinning procedure ter-
minates is at most k/(h{cslglgnl). .

After the “thinning” procedure from [14] terminates we
will use the “spreading” procedure from {14] to spread out
the unfinished requests so that each processor has at most
one unfinished message to deliver. As part of the spreading
procedure we will allocate one processor to do the book-
keeping associated with each memory request and we will
ensure that all messages associated with the request know
the identity of this processor. During this procedure of our
simulation the three messages associated with a request may
be sent to various processors but they will keep the book-
keeping processor informed about their whereabouts.

After the “spreading”, we will use the “deliver to target
groups” procedure from [14] to deliver the rest of the mes-
sages to their target groups in O(lglg n) steps. With prob-
ability at least 1 —n™" (for any constant a) every message
will be in its target group at the end of the “deliver to tar-
get group” procedure. Furthermore, each sender will have at
most 2 undelivered messages to send and (by Lemma 3.3),
the number of unfinished messages in a target group will be
less than k. At this point we can sort the messages in the
target groups by destination. After the sorting, each sender
will have at most one message to send.

We now wish to allocate a contiguous block of ¢z proces-
sors from the appropriate target group to each unfinished
destination (for a sufliciently large constant cz). We wish to
do the allocation in such a way that all senders know which
processors are allocated for their destination. We do this as
follows. If a destination is the destination of fewer than o2



requests we simply deliver them. Otherwise, we allocate ¢
processors for the destination. The processors allocated will
be the first c2 processors with requests for that destination.

At this point we wish to send all but O(n2~ 1’818 ") of
the messages in any group to their final destinations. We
will say that a message is bad if its destination is also the
destination of at least ¢; lglg n other messages. We will use
the following lemma.

Lemma 3.5 With probability at least 1 —n™" (for any con-

stant ) at most O(n2~°1'818 ™) of the messages in any group
of messages are bad.

Proof.  This proof is similar to the second part of the proof
of Lemma 3.3. By Property 3.1 of the hash functions, the
destinations are +/n-wise independent with high probability.
In this case, the probability that a given message is bad is

at most (i:‘,‘:}::)n‘” lelsn By Stirling’s approximation,

this is at most (3e/c; ) '8'8 ™ which is at most 27! '8¢ " for
c1 2> 6e. Therefore, the expected number of bad messages
in a group is at most en2 1181817

We now use Theorem 3.1 (the bounded differences in-
equality) to prove that with high probability the number of
bad messages in a group is not much more than the expec-
tation.

As in the case of Lemma 3.3, the bounded differences
inequality would be straightforward if the hash functions A1,
h2, and h3 were chosen uniformly at random from the set
of functions from {1,...,m] to [1,...,n]. We would take as
the random variable z: the destination of the ith message
and we would let Y be the random variable denoting the
number of bad messages. If we change the value of one of
the zs the value of Y would change by at most ¢; lglg n+1.
Therefore, we would obtain the following inequality.

Pr(Y > 2E) < 2exp(—2E%/(en(c1 lglg n + 1)%)).

However, since hy, hz, and hz are in fact drawn from

the family Eiﬁn, we again follow the approach used in the
proof of Lemma 6.1 in [17]. Consider the independent ran-
dom variables ar,...,a 75 Let Y be a random variable
denoting the number of bad messages. If we change the
value of one of the ais then, with high probability at most
6nlglgn/4/n messages get new destinations. (This follows
from Property 3.2 of the hash functions.) Each new desti-
nation could cause at most ¢; Iglg n+ 1 messages to become
bad. Thus, changing one of the a;s could change Y by at
most 6/nlglgn(cilglgn + 1). So, by the bounded differ-
ences inequality,

Pr(Y > 2E) <
2exp(—2E7/(v/n36n(lglgn)?(c lglg n + 1)%)),

which is sufficiently small. .

Given Lemma 3.5, it suffices to route c1lg lg n messages
to each destination. This can be done in O(lglgn) steps
since the messages are sorted by destination. At this point
we have finished the “thinning and deliver to target groups”
procedure. The book-keeping processor associated with ev-
ery memory request now cancels the request if at least two
of its messages were delivered. If the request is canceled
then the third message is deleted.

3.3 Divide into sub-problems and duplicate

Our goal is to divide the ocpc into Iglg n/e sub-ocrcs, each
of which has n' = ne/lglgn processors. Each sub-ocpc will
work on the sub-problem of delivering the messages corre-
sponding to a particular group of messages. For each sub-
0CPC we wish to make lg?(n') copies of the relevant sub-
problem, all of which will reside in its processors 1,...,n’/2.

We will use an approximate compaction tool to divide
the problem into sub-problems and to make copies of the
problem. (For similar tools see [5, 13, 28].). Given

¢ an n-OCPC in which at most s senders each ha,ve one
message to send,

¢ aset of B3 receivers which is known to all of the senders,

the (s, B) approzimate compaction problem is to deliver all
of the messages to the set of receivers in such a way that
each receiver receives at most one message.

The following lemma is from [14].

Lemma 3.6 For any positive constant a there is a positive
constant cs such that the (s,[calglgn]) approzimate com-
paction problem can be solved in O(lglg n) communication
steps with failure probability at most a" V4 s

We proved in the previous subsection that, with high
probability, when the “thinning and deliver to target groups”
procedure terminates, the number of undelivered messages
is at most 3nlglgn2 1’8", Furthermore, every message
is in the target group of its destmatlon and each processor
will have at most one message left to send.

The number of unfinished target groups is at most the
number of unfinished messages, which is at most

3nlglgn2= 18" < n'/(21g% (n')k?[cs lglg n])

for a sufficiently large ¢;. Therefore, with high probabil-
ity (by Lemma 3.6), we can compact one message from the
first processor in each unfinished target group to the first
n'/(21g?(n')k?) processors in the n-ocpc. Having done that,
we can copy each of the vnfinished target groups to one o{
the first n'/(21g*(n')k) target groups in the n-ocpc. Next,
we can use doubling to make lg?(n’) copies of each unfin-
ished target group. All of these copies will reside in the first
n'/(2k) target groups in the n-ocpc.

At this point, the entire problem is copied lg?(n’) times
into the first n'/(2k) target groups in the n-ocpc. These
n'/(2k) target groups will form the first half of the processors
in the first n'-processor sub-ocpc. Qur objective is to use
the first sub-0CPC to solve the sub-problem of delivering the
messages in the first group of messages. The sub-ocpc will
do this by simply ignoring all messages that are not in the
first group of messages.

The 1g?(n') copies of the entire problem can now be
copied into the remaining lglgn/e — 1 sub-ocpcs. The jth
sub-ocpc will ignore all messages that are not in the jth
group of messages.

Our next goal is to allocate the processors n’/2,...,n’ of
each sub-0cpPC such that for each outstanding memory re-
quest (i.e., for each memory request which has the property
that at most one of its three messages was delivered dur-
ing the prevxouq procedure), we allocate lg?(n') processors.
(T hese 1g%(n') processors will do the book-keeping concern-
ing the request in the lg(n') copies of the sub-problem.)

The allocation can be done in the same way that the
problem was split and copied because the number of re-
maining requests is at most 3nlglgn2-c1l8lEn,




3.4 Route messages for each sub-problem

Consider a particular copy of a particular sub-problem.
Lemma 3.5 tells us that with high probability at most
O(n2~°1'%818") of the memory requests from the en mem-
ory requests associated with this sub-problem remain. Al-
though each processor has at most one message to send,
there is a book-keeping processor allocated to each memory
request and each message knows the identity of its book-
keeping processor. Furthermore, there is a block of ¢; con-
tiguous processors allocated to each unfinished destination
and each sender knows which processors are allocated to its
destination. For t € {1,2,3} we will say that a message
is an “i-message” if it obtained its destination using hash
function 1.

We now route messages according to the ¢a-collision ac-
cess schedule from Section 3 of Dietzfelbinger and Meyer auf
der Heide’s paper [7]. Each round of the access schedule is
defined as follows.

Fori1=1,2,3:

a. For all destinations d in parallel, repeat [c21g(2cz2)] times:
Each t-message with destination d that is not already
waiting at one of the ¢z processors allocated to d picks
a random processor from those allocated to d and sends
there. Each of the allocated processors will only accept
one message.

b. BEach destination d now checks whether there are any
other i-messages destined for d (that is, whether there
are any i-messages with destination d that are not at
the allocated processors). To do this, the first of the
c2 processors allocated to d sends to d. Also, any t-
messages with destination d that have not yet been
successful in reaching one of the ¢, processors allocated
to d send to d. Then the first of the ¢z processors
allocated to d tells d whether or not it had a collision.

¢. For each destination d, if all of the i-messages destined
for d are at the processors allocated to d then these
messages are delivered. Otherwise, no requests are de-
livered.

d. The book-keeping processor associated with each mem-
ory request checks which of the messages associated
with the requests were delivered. If at least 2 of the
messages associated with the request have been deliv-
cred then the request is canceled and the third message
is deleted.

Note that no destination receives more than 3co messages
during the cg-collision access schedule routing. We use the
following lemma:

Lemma 3.7 During one round of the cz-collision access sched-

ule routing procedure any processor that is the destination of
al most ¢y 1-messages gets all of the i messages with prob-
ability at least 1/2 (and none of them with the remaining
probability). Any processor that is the destination of more
than ¢y 1-messages recetves none of them.

Proof. If d is the destination of at most cp i-messages
then the probability that one of them fails to reach the al-
located processors in € = [c2lg(2c2)] attempts is at most
el = 1/e2)" <1/2. .

In their analysis of the cp-collision access schedule rout-
ing procedure (as implemented on a cz-collision DMM), Di-
etzfelbinger and Meyer auf der Heide define a hypergraph
H = (V, E) for a set of memory requests z1,...,Zen With ver-
tex set V ={v|1 <r<3,1<t<n} and hyperedge sct
E= {{vl.hl(z‘.‘)) v2,hg(z,‘)’”3,h3(1‘,‘)} l 1 S 1 S En’}'

In light of Lemma 3.7, we can view the cz-collision ac-
cess schedule routing as a process on H. In each round,
the process removes each node with degree at most ¢ (i.e.,
the i-messages destined for the processqg are delivered) with
probability at least 1/2. Then the process removes <ch hy-
peredge that consists of only one node (i.e., memory requests
are canceled if at least two of the messages associated with
the request are delivered).

Following Dietzfelbinger and Meyer auf der Heide, we
will say that H is s-good if

1. The largest connected component in H has at most
a = a(s)lgn nodes.

2. Every set A C V intersects fewer than |A| + s hyper-
edges from E in at least 2 points.

Dietzfelbinger and Meyer auf der Heide prove the fol-
lowing lemma. (The proof presented in [7] is based on the
assumption that ki, h2, and hs are chosen uniformly at ran-
dom from the set of functions from [1,...,m] to [1,...,n].
However, the lemma is also true if hq, k2, and hj are chosen

randomly from 'Iif,,],‘)
Lemma 3.8 The probability that H is s-good is 1~O(n™*).
We will prove the following lemma.

Lemma 3.9 Suppose that H is s-good for some positive
constant s. Then the probability that any particular memory
request is satisfied after O(lglg n) rounds of routing accord-
ing to the ca-collision access schedule is at least 1/2.

Proof. Let H. denote the hypergraph obtained by ap-
plying ¢ rounds of the c;-collision access schedule routing
process to H. Dietzfelbinger and Meyer auf der Heide have
made the following observation [7].

Observation 3.1 If H is s-good and A C V i3 a component
of Hy for some t > 0, then A contains at most 3|A|/(c2 +
1) 4+ 33/(c2 + 1) nodes of degree larger than ¢, in H..

We will use the following lemma.

Lemma 3.10 Suppose that H i3 3-good. Let v be an edge in
a component of size £ > s of H, for some t > G. If c2 > 23
then with probability at least 1 — exp(—£/54) the component
of r in Hyyr has size at most 5£/6.

Proof.  Let b= 3(¢+ 8)/(ca+1). By Observation 3.1 and
L.emma 3.7, the expected number of nodes in the component
of v in Hyyq is at most £/2 +b/2. Using a Chernoff bound,
we sce that the probability that there are at most 4/3(¢/2+
b/2) < 5¢/6 nodes is at least 1 — exp(—(€/2 + b/2)/27). =

Using Lemma 3.10, we conclude that for some constant
¢y > 8, with probability at least 3/4, O(lglg n) rounds of the
c2-collision access schedule routing procedure reduce the size
of the component of a given memory request r to at most ¢s.
We conclude the proof of Lemma 3.9 by observing that as
long as ¢ > 3s + 2, O(1) rounds will, with probability at
least 3/4, further reduce the component to size 1. .



3.5 Combining problem copies and combining sub-problems

Let us focus our attention on the jth sub-problem. Let S,
be the set of messages that were in the sub-problem when
it was created. Let S'; be the subset containing all messages
in 5, that are delivered in at least lg?(n')/9 copies of the
c¢a-collision access schedule routing procedure.

Note that when the c-collision access schedule routing
procedure terminates the lg®(n') processors per memory re-
quest that were allocated in the “divide and copy” procedure
to do book-keeping can inform all of the the messages in S|
(in the first copy of the sub-problem) whether or not they
are in S;.

We will prove the following lemma.

Lemma 3.11 With probability at least 1 — n™* (for any
positive constant a) each set S has the following properties.

1. Each processor is the destination of at most 27c2 mes-
sages in S]',

2. Each memory request in the jth sub-problem will be
satisfied if the messages in S; are delivered.

If each set S} has the properties described in Lemma 3.11
(as it will, with high probability), then we can satisfy all of
the memory requests in O(lglg n) steps by routing the mes-

sages in S = S!. These messages form a 27c2lglgn/e-
g

F
relation, so we can use the routing algorithm in (14] to route
the messages.

To prove Lemma 3.11 we use the following lemma and
the following observation,

Lemma 3.12 With probability at least 1 — n™% (for any
constant o) every memory request in every sub-problem is
satisfied in at least 1g%(n')/3 of the lg®(n') copies of the ca-
collision access schedule routing procedure.

Proof.  Suppose that every sub-problem is such that the
corresponding hypergraph is s-good. (Lemma 3.8 shows
that this is so with high probability, as long as s is cho-
sen to be sufficiently large.) Consider a particular memory
request in a particular sub-problem. Lemma 3.9 shows that
the probability that this request is satisfied in any given
copy of the sub-problem is at least 1/2. A Chernoff bound

shows that with probability at least 1 — ne” 187 ()/54 ype
request is satisfied in at least lg(n')/3 copies. The lemma
follows by summing the failure probabilities over particular
memory requests. L

Observation 3.2 If 1, z2 and z3 are the three messages
in a memory request that is satisfied in at least € copies of
the cz-collision access schedule routing procedure then there
s a puir of messages from {x1,z2,73} such that both of the
messages in the pair are satisfied in at least £/3 copies of the
procedure. Similarly, if r; and =, are the two messages in
« memory request that is satisfied in at least { copies of the
ca-collision access schedule routing procedure then at least
one of ry and 2 18 satisfied in at least £/2 copies of the
procedure.

Proof of Lemma 8.11.  The fact that (with high probability)
each memory request in the jth sub-problem will be satisfied
if the messages in S are delivered follows from Lemma 3.12
and from Observation 3.2. 'To sce that each processor is
the destination of at most 27¢2 messages in S; note that a
message is a member of SJ’ only if it is delivered in at least
1g(n')/9 copies of the co-collision access schedule routing
procedure. However, we proved in the previous section that
each destination will receive at most 3c2 messages in each
copy of the procedure. Therefore, at.-guost 27c2 messages
that have the same destination will be included in S!. This
completes the proof of Lemma 3.11. ]

4 Construction and evaluation of the hash function

In the simulation algorithm we have assumed that a hash
function h was chosen uniformly at random from the fam-

ily R—f,;f,, and is available to every processor for constant
time evaluation. When concurrent-read is available in the
simulating model, a hash function in use can be kept in the
shared memory, and be read as necessary in constant time.
The exclusive-read nature of the ocPc model, together with

the fact that the function & € _é:f,, is represented by a
polynomial number of memory words, imply a more subtle
situation. A straightforward implementation is to keep a
copy of the function A at each processor. However, this im-
plies polynomial overheads in both the time of preprocessing
for distributing all copies, and in the space dedicated for this
function at each processor. In the remainder of this section
we describe an efficient implementation in which the func-
tion requires only a total of linear space, and its evaluation
increases the simulation delay by at most a constant factor.

4.1 The hash function

Our basic approach is: (i) replace the class -R.:;‘Tn with a class
whose functions k have similar properties, but can be repre-
sented in O(n) space, where 1/2 < ¢ < 1; the modified class
exhibits only n-universality (rather than /m-universality
as in Property 3.1), but this is enough for our purpose; (ii)
make O(n'~¢) copies of the selected function k; and (i)
make sure that at each simulation step the number of pro-
cessors that need to read a component of kh is bounded by
O(n'~“lglgn), an average of O(lglgn) per copy, thereby
cnable the use of an efficient lglg n-relation algorithm for
the read operation. (A similar approach of making dupli-
cates to reduce contention was used in [12].) To implement
the approach sketched above we first modify the definition

of 7{_‘,17',{,1 as follows.

Let t = j/c. The function s from the family 7?,1,,]" is
re-defined to be the tuple (s1,...,s.), with the operation
s(z) = (81(x),...,8(x)), where si, 1 <1 < ¢, are chosen
uniformly at random from H,‘f,’,,., for an appropriately large
constant d. The following lemma shows that Property 3.1
still holds for the new family of hash functions.

Lemma 4.1 Let £ > 1 be arbitrary and let d and j be large
enough relative to €. Let S be a subset of [1,..,m] of siz
n < |S] < a1 If g is chosen randomly as described
above then Probls is 1-perfect on S is at least 1 —n~°,

Proof. The probability that two given distinct points
z,y € S will collide under ¢, ie., that s(z) = s(y), is at



most (2/n°)", since the 8.5 are (2, d)-universal. The proba-
bility that any pair of points from S will collide is therefore

at most
(lf‘) (2/115)t < n22/10-191-1

The lemma follows by taking j > £+ 22/10. .

The class of functions H,
modified next.

Siegel [31] defines a (p,€,d, h)-weak concentrator H as
a bipartite graph on the sets of vertices I (inputs) and O
(outputs), where || = p, and |O] = p*, that has cutdegree d
for each node in }I|, and that has, for any h inputs, edges
matching them one-by-one with some h outputs.

A (p,¢,d, h)-weak concentrator H is used to construct a
function F by storing d random numbers from [0,...,p —
1] at each node of O. On input i, F(1) is computed by
evaluating a polynomial hash function of degree d — 1 whose
coefficients are determined by the numbers stored at the
neighbors of 1 in O, Siegel showed that the family of hash
functions F so defined is a (1, h)-universal family of hash
functions mapping [0,p — 1]+~ {0,p - 1].

nin from which r is taken is
.

Let H bea (n,¢,d, n¢ )-weak concentrator. Siegel showed
that the Cartesian product G = H' is a (n’,¢, dt,n)-weak
concentrator. The graph G can therefore be used to con-
struct a (1, ne )-wise independent family of hash functions
mapping [1,...,n?] to [1,...,n7).

The above was used by Siegel to provide a space-efficient
construction of the hash function, which turns out useful
for our needs. To enable approximately uniform contention
distribution we will need the function to exhibit one more
property.

Lemma 4.2 There ezists a graph H that is (n‘,f,d,n")-

weak concentrator, and which also has the property that ev-
2

€€

ery output of H has degree at most 2dn

Proof.
for finding an (n¢, ,d, n")~weak concentrator. Suppose that
each input of H chooses its d (distinct) neighbors uniformly
at random. Siegel proves that the probability that H is not

We use a probabilistic construction, as given in [31]

a (n,¢6,d,n) weak concentrator is at most n=(* =<, (As
long as ¢’ is sufficiently small.) We can now use a Chernofl
bound to show that the degree of each output of H is suffi-
ciently small as required. .

4.2 Constructing the hash function

The graph H is built into the machine when the machine is
built. Each of the n® inputs has d neighbors. A set of !¢
processors is selected and each processor in the set is given
the name of these neighbors.

Recall that it may be the case that a new function needs
to be constructed (a “re-hash” operation), when the se-
lected one does not satisly the required properties. (This
occurs with polynomially small probability for each parallel
step, and with high probability after a polynomial number
of steps.) A new hash function is constructed in O(lgn)
steps as follows:

(1) Construct s, ..
S0TS.

,s¢ and f and distribute to all proces-

(2) Each of the n’¢ outputs of G chooses d* values in
[0,..,n7 = 1]. A set of n' 77 processors is selected for
each given output and each processor in the set is given
the values associated with the output.

(3) The values ay,...,a s are generated. /n sets of
processors are selected and each processor in a set 1 is
given the value of a;.

4.3 Evaluating the hash function .
At each simulation step, the hash function is computed for
all memory addresses in O(lglgn) time, as described next.
Let S be the set of 3nlglg n requests from [1,..,7m]. Recall
that h(z) = (r(s(z)) + as(z)) mod n.

Each processor executes the following steps for each re-
quest z:

(1) Compute 31(x), ..., 8:(z).

(2) Compute the names of the neighbors of (31(z), ..., s¢(z))
in G.

(3) Read the values corresponding to the neighbors of
(s1(z),...,8¢(z)) in G.

(4) Apply 7 to (si(z), ..., s:(2)}).
(5) Compute f(z).

(6) Read aj(s).

(7) Compute 7(s(z)) + as(z)-

The executions of Steps 1,4,5, and 7 are in constant time.
The following lemma of Dietzfelbinger, given in [20], is cen-
tral to the analysis of the other steps.

Lemma 4.3 Let Xi,...,Xn be 0~ 1 valued, d-independent,
equidistributed random variables. Let p = E(X,). Then, for
n>d/(2pn),

n

Prob Z(X.—M)ZA <

t=1

a(np)d?
2

where a is a constant thal depends on d but not on n.

Claim 4.4 In Step 2, with high probability, for every y in
€

[1,...,n°] (i.c., for every input of H ) there are at most O(n'~*
pairs (i,z) such that £ € S and si(z) = y.

Proof.  Note that the set of values 3,(z):1 <z <mis d-
independent. Following Kruskal, Rudolph, and Snir [20] we
use Lemma 4.3. Fix a y and ¢ and let Xy be a 0-1 random
variable which is 1 if and only if 3; maps the b’th member
of Stoy. wis 1/n®. Let A be |S|/n®. Then the probability
that s; maps more than 2A to y is ()(n"d/z“‘”). Choose d
large enough to sum over all i and y. .

We conclude that at most O(n'~¢lglg n) processors want
to read the information about input y, and so we have a “tar-
get group O(lglg n) relation”. The requests can be routed
using [14).

Claim 4.5 In Step 3, with high probability, for every output
y of G there are at most O(n' € 1glg n) values = in S such
that {si1(x),...,9:(z)) 1s a neighbor of y in G.

lg lg n)




Proof. Vit ¥ = (y1,..,9:). Let L; denote the neighbors of
o in II. Note that |L;| < 2dn<=<". If 3(z) has a neighbor y
in (¢ then si(z)isin Ly, for 1 <i < ¢,

The probability of this event is at most (2d/n‘2)'. Let
Xu be a 0-1 random variable which is 1 if and only if the
b-th member z of S has s(z) mapped to y in G. Apply

Lemimna 4.3; g is at most (Zd/n‘ﬁ)' by Lemma 4.2; let A be

IS (2d/n‘2)‘. The probability that there are more than A
such values z is at most an=(4/2(1=19), .

Given the claim, we have a “target group O(lglgn) re-
lation”. The requests can be routed using [14].

It remains to analyze Step 6. By Property 3.2, with
probability at least 1 — n™® each group needs to be read
by at most 64/n Iglg n of the requests, so we have a “target
group 6lglg n relation”. The requests can be routed using
(14].

5 Conclusions

In this paper we have described a work-optimal algorithm
which simulates an nlglg n-processor EREW PRAM on an n-
processor ocPC with O(lglg n) expected delay. The proba-
bility that the delay is longer than this is at most n=? for
any constant a.

It would be interesting to determine whether this is the
fastest possible work-optimal simulation. It would also be
interesting to discover how much delay is required in order
to simulate a CRcw PRAM. We have recently derived an
algorithm that simulates an n-processor CRCW PRAM step
on an n-processor OCPC in time O(lg k 4 lglg n) with high
probability, where k is the maximum memory contention of
the cCRCW step.

The simulation algorithm assumes that k is known. This
assumption can be removed by augmenting the ocPc model
to include a single bus which can be used to synchronize all
of the processors: each processor can broadcast a ‘1’ bit and
every processor can determine whether or not any processor
is broadcasting a ‘1’ at any given time.

We note that the Ig £ term in the simulation algorithm is
provably necessary, as implied by an Q(lg k) expected time
lower bound for broadcasting the value of a bit to k proces-
sors on a QRCW PRAM (and hence on an ERcw), by Gibbons,
Matias and Ramachandran (see [12]).

Evidently, the performance of the Ckcw simulation de-
pends on the maximum contention. A model that accounts
for memory contention was recently proposed in [11]. In this
model the run time of each step is a function of the memory
contention encountered at this step. Thus, in the sub-model
of siMb-QrQW(log) PRAM, a step in which the maximum
memory contention is k is assumed to take lg k time units.

The crcw simulation implies that an n-processor SIMD-
QrQw(log) PRAM algorithm can be simulated on an n-processor
ocrc, augmented with a bus, with delay O(lglgn) with
high probability. We note that the siMmp-qrQw(log) PRAM
is strictly stronger than the EREW PRAM.
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