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Abstract

In this paper, we consider sparse Cholesky factorization on a multiprocessor system that possesses a globally
shared memory. Our algorithm is a parallel version of a serial blocked left-looking factorization algorithm described
in [12,17]. Unlike previous parallel left-looking algorithms, the new algorithm uses a matrix-matrix multiplication
operation to implement its computationally intensive primitives. Consequently, careful implementation of these
primitives enables extensive reuse of data in cache for most realistic problems; and thus reduces the volume of traffic
to and from main memory. Reducing memory traffic is crucial on many shared-memory multiprocessors because the
interconnect to main memory is often a serious bottleneck. We shall compare the performance of the parallel blocked
algorithm with an earlier parallel left-looking algorithm studied in {13].

1 Introduction

In this paper we introduce a simple parallel blocked sparse Cholesky algorithm designed for shared-memory multipro-
cessors with a modest number of processors. The algorithm is particularly appropriate for shared-memory multipro-
cessors that:

¢ are based on one of the fast new microprocessors which rely heavily on the reuse of data in cache to achieve high
computational rates, and/or

¢ do not have a data bus that is capable of meeting near-peak demand from all processors at once.

The rapid increase in computational speeds seen in recent years has not been matched by commensurate increases in
data access speeds. Consequently, in many instances data bandwidth is the critical resource that limits performance. In
particular, many current and forthcoming shared-memory multiprocessors have at least one of the two characteristics
listed above. It appears moreover that this state of affairs will continue for some time to come.

The parallel factorization algorithm described in this paper is based on a sequential left-looking blocked sparse
Cholesky factorization algorithm studied by Ng and Peyton [12] and Rothberg and Gupta [17]. The basic task around
which the algorithm is built is a supernode block column task, which computes all the columns belonging to a particular
supernode. (A supernode is a set of contiguous factor columns that share the same external sparsity structure.) The
supernode block column task is organized around computational primitives that update every member of one set of
columns with a multiple of each member of another set of columns. The matrix-matrix multiplication operation used
to implement these primitives enables the reuse of “local data”, thereby reducing data traffic to and from more distant
parts of the memory hierarchy.

Straightforward parallelization of this sequential method unfortunately does not immediately lead to an efficient
parallel method. The supernode block column task results in a parallel task granularity that is far too large during the
middle and later portions of the computation to keep the processors busy and the load evenly balanced, even when the
number of processors is quite small. We thus split the columns of each supernode into subsets of contiguous columns,
which we shall call panels. The block column task upon which our parallel algorithm is based is the computation of
all columns that belong to a particular panel. In selecting the panels, our goal is to include enough columns in each
to maintain good data reuse and low bus traffic, while avoiding the inclusion of too many columns, which leads to
deteriorating performance due to loss of concurrency in the computation.

Section 2 briefly discusses background material and previous work in this area. Section 3 contains an informal
discussion of the parallel panel-based sparse Cholesky factorization algorithm. Timing results on an SGI 4D/380 are
presented in Section 4. Finally, Section 5 contains a few concluding remarks.



2 Background and previous work

Let A be a symmetric positive definite matrix. The Cholesky factor of 4, denoted by L, is a lower triangular matrix
whose main diagonal is positive and for which A = LLT. When A is sparse, fill occurs during the factorization;
that is, some of the zero elements in A will become nonzero elements in L. In order to reduce time and storage
requirements, only the nonzero positions of L are stored and operated on during sparse Cholesky factorization.
Techniques for accomplishing this task and for reducing fill have been studied extensively (see [9] for details). In this
paper we restrict our attention to the numerical factorization phase. We assume that the preprocessing steps, such as
reordering to reduce fill and symbolic factorization to set up the compact data structure for L, have been performed.
Details on the preprocessing can also be found in [9].

2.1 Sequential left-looking sparse Cholesky algorithms

Column-oriented, left-looking, sparse Cholesky: The standard column-oriented, left-locking, sparse Cholesky
algorithm is widely used in many sparse matrix packages, such as SPARSPAK [5]. When column L, ; is to be
computed, the algorithm first modifies column A, ; with multiples of previous columns of L, namely those columns
L, for which 1 < k € j—1 and L;x # 0; it then scales the modified column to obtain L, ;. Welet emod(j, k) denote
the operation of updating column A, ; with a multiple of the appropriate entries of L, k, and we let ediv(7) denote
the final scaling operation. Thus we can write the column task T'col(7) as

Teol(j) := {emod(j,k) | k < j and L;i # 0} U {cdiv(j)}.

We shall refer to this algorithm as the col-col algorithm.

Supernodal sparse Cholesky: For many realistic problems, especially those from structural analysis applications,
the fill generated during the factorization creates groups of contiguous columns that share the same sparsity structure.
A group of such columns is referred to as a supernode. The reader should consult [11,14] for a detailed description
of various supernode partitions. The first reference also presents an efficient algorithm for generating a superncde
partition.

Supernodes have been used to organize left- and right-looking sparse Cholesky factorization algorithms around
matrix-vector or matrix-matrix operations that reduce memory traffic, thereby making more efficient use of vector
registers [3,4] or cache [1,16]. The role of supernodes in improving sparse Cholesky factorization algorithms is well
documented [1,3,4,7,16,19)].

Let K = {p,p+1,...,p+ ¢q} denote a supernode in L. These columns have a dense diagonal block and have
identical column structure below row p + ¢. Because the external sparsity pattern is shared by all columns in K, any
column A, ; (7 > p+ q) will be modified by either all columns of K or no columns of K. (Throughout, supernodes
will be denoted by bold-faced capital letters.) In the supernodal Cholesky factorization algorithm, the basic task
around which the algorithm is organized is again Tcol(j). However, the primitive at the heart of the column task
Tecol(f) is no longer emod(j, k). Instead, the new computationally-intensive primitives are cmod(j, K), j ¢ K, which
modifies column § with a multiple of each column in the supernode K, and emod(j, J), j € J, which modifies column
J with a multiple of each column k € J for which k¥ < j. We shall refer to this formulation of left-looking sparse
Cholesky factorization as the sup-col algorithm. Careful implementation of these primitives can significantly reduce
memory traffic and indirect addressing. The emod(j, J) operation is implemented as a dense matriz-vector product
and is accumulated directly into factor storage for the target column L. ;; the emod(j, K) update first accumulates a
dense matrix-vector product into a small work vector, after which the accumulated column update is applied to the
target column L, ; using a single column operation that requires indirect addressing. In both cases the outer loop of
the matrix-vector multiplication is unrolled to reduce memory traffic [6].

Block sparse Cholesky: Rothberg and Gupta [17] and Ng and Peyton [12] have investigated a left-looking block
Cholesky algorithm first suggested in [4]. The basic task around which the computation is organized is a block column
task that consists of computing every column of L in a particular supernode. More precisely, the basic task is given
by

Tsup(J) :={Tcol(j)| j € T},
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where J is a supernode of L. This algorithm preserves all of the performance enhancements incorporated into the
sup-col algorithm and enables new improvements in performance as well. The block column task Tsup(J) is organized
around the following computational primitives. The smod(J, K) primitive, J # K, modifies with a multiple of each
column of the supernode K every column of the supernode J that receives updates from K. After all such ezternal
updates to J have been computed by the smod(J, K) primitive, the Chol(J) primitive performs all the internal
updates and the column scaling operations needed to complete the computation of the columns of J. At the heart of
these primitives is a dense matriz-matriz product that, when carefully implemented, permits extensive reuse of data in
cache memory (see [12,17] for details). Many of the algorithms incorporated into the LAPACK linear algebra software
package [2] are also organized in this fashion for similar reasons. We shall refer to the block sparse Cholesky algorithm
as the sup-sup algorithm.

2.2 Parallel implementation techniques

Parallel versions of two of these sequential algorithms have been explored previously. In [8], George et al. introduced
a parallel col-col algorithm for shared-memory multiprocessors. Their algorithm is a straightforward parallel im-
plementation of the sequential col-col algorithm found in [9]. Ng and Peyton [13] used the same straightforward
approach to produce a parallel version of the sup~col algorithm. We shall use the same techniques to implement a
parallel block algorithm.

These parallel algorithms maintain a pool of column tasks, and the assignment of column tasks to processors is
dynamic: when a processor completes one column task, it immediately seeks another column task from the pool
This approach is particularly appropriate for a shared-memory multiprocessor system with a fast bus, and as might
be expected it typically achieves good load balance. The instructions that manipulate the lists of updating columus
(supernodes) needed by the parallel col-col (sup~col) algorithm form a critical section in the code, access to which
is limited by means of standard “lock” and “unlock” synchronization primitives. For a more complete discussion of
the implementation details, the reader should consult [8,13)].

In a series of studies, Rothberg and Gupta [15,16,17,18] have looked into many of the issues and techniques needed
to implement sparse Cholesky factorization algorithms on modern workstations. Their work establishes the importance
of using blocked algorithms to fully exploit the memory hierarchy of these machines, including those with multiple
processors. In the next section, we discuss a parallel left-looking sparse Cholesky algorithm that is appropriate for
this class of machines.

3 A parallel blocked sparse Cholesky algorithm

For most realistic problems, the work required to compute Tsup(J) for each supernode J increases dramatically as
the computation proceeds. As a result, straightforward parallelization of the sup-sup algorithm leads to an extremely
inefficient parallel algorithm due to its coarse granularity, particularly in the middle and later stages of the computation.
A simple and natural way to solve this problem is to split each supernode J into sets of contiguous columns, which
we shall call panels. The task on which our parallel algorithm is based is the computation of every column of L that
belongs to a particular panel. This task will be denoted as T'pan{J), where J is a panel of contiguous columns all
belonging to the same supernode. {We shall use non-bold capital letters to denote a panel.) We shall refer to the
panel-based algorithm as the sup~pan algorithm.

The block column task T'pan(J) is organized around the following three computational primitives. The zpmod(J, K)
primitive (J ¢ K) modifies with a multiple of each column of the supernode K every column of the panel J that
receives updates from K. After all such ezternal updates to J have been computed, the ipmod(J, J) primitive updates
every column in panel J with the columns of every preceding panel in the supernode J to which J belongs. That is,
the ipmod(J, J) primitive performs all updates to the panel J that are internal to the supernode J yet external to
the panel J itself. The Chol(J) primitive performs all the updates internal to the panel and also the column-scaling
operations needed to complete the computation of the columns of J. As with the primitives for the sup-sup algorithm,
these primitives are implemented around a dense matriz-matriz product that, when carefully implemented, permits
extensive reuse of data in cache memory.

The performance of our algorithm to a large extent depends on how the panels are selected. The trade-off between
available concurrency and data latency can perhaps be best illustrated by looking at the two extreme panel selection
strategies. Consider first the case where each panel J is as small as possible, that is, each panel J contains a single



column of L. In this case the parallel sup-pan algorithm is equivalent to the parallel sup-col algorithm studied in [13],
and thus shares its strengths and weaknesses. This “paneling” exposes more parallelism than any other; it results,
however, in the least efficient use of the cache and the global data bus. Consider now the case where each panel J is
as large as possible, that is, each panel J is a supernode of L. In this case the parallel sup~pan algorithm is equivalent
to the parallel sup-sup algorithm. This paneling exposes less parallelism than any other; it results, however, in the
most efficient use of the cache and the global data bus. Clearly then we seek a paneling strategy that lies between
these two extremes; we seek panels that are

o large enough to retain a large fraction of the data latency advantages of the parallel sup-sup algorithm, and, at
the same time

e small enough to expose a large fraction of the concurrency available in the parallel sup-col algorithm.

Preliminary results indicate that, as long as extremely fine and extremely coarse panelings are avoided, the parallel
sup-pan algorithm performs quite well, and moreover its performance is remarkably robust with respect to a wide range
of paneling strategies. One reason for this state of affairs is that the marginal increases in data reuse fall off rapidly
as the panel size increases beyond a modest number of columns. Consequently, partitioning a large supernode into
panels, each with several columns, sacrifices a small fraction of the data-latency advantages of the sup-sup algorithm.
QOur preliminary results also indicate that for modest numbers of processors the paneling must become fairly coarse
before we observe serious deterioration in performance due to insufficient concurrency within the computation.

In this preliminary study we use the following simple paneling strategy, which we have observed to be quite effective
in our preliminary tests. Choose a constant panel size w, where w is a positive integer. Divide each supernode J
into panels J of w contiguous columns, with the last panel containing anywhere from 1 to w “leftover” columns. In
our tests we have essentially completed a parameter study on the paneling parameter w, testing different values of w
between 2 and 32. How best to panel the supernodes merits further study and is still under investigation.

4 Timing results

We had hoped to test the parallel sup-pan algorithm on two machines: the SGI 4D/380 and the new Cray C90.
While we have obtained results on the SGI 4D /380, we have unfortunately been unable to gain access to a Cray C90.
The Cray C90 is of interest to us because it can experience significant performance degradation when there is heavy
contention for the shared memory. Our parallel sup-pan algorithm should reduce this contention, and we hope to
study the performance of the algorithm on this machine in the near future.

The SG14D /380 is a high-performance multiprocessor workstation containing eight MIPS R3000/R3010 processors.
New and forthcoming multiprocessor workstations, such as the SGI 4D/380, make up an important new class of
machines, with perhaps the best overall cost/performance ratio available. The fast, relatively inexpensive, off-the-
shelf processors used by these machines depend heavily on the reuse of data in cache for good performance. The
relatively inexpensive data bus technology used in these machines provides far less bandwidth to main-memory than
is typically required by an unblocked factorization algorithm such as the parallel sup-col algorithm. In ccnsequence,
this class of machines is an ideal target for the parallel sup-pan algorithm.

We tested the performance of our algorithm on the matrices from the Harwell-Boeing sparse matrix collection
listed in Table 1. Some statistics for each matrix are also shown in the table. Fach matrix was reordered by the
multiple minimum degree ordering heuristic [10] before the factorization was performed.

In our tests we compared the performance of the parallel sup-col algorithm with that of the parallel sup-pan
algorithm. We tested a set of panel widths ranging from w = 2 to w = 32. The algorithms were coded in C and compiled
with optimization turned on. The timing results are presented in Table 2. The table records the performance of the
parallel sup-col (sup-pan) algorithm in terms of speed-ups relative to a fast serial implementation of the sup-col
(sup-sup) algorithm. For the sup-pan method, we report only the best performance obtained over all panel sizes
tested. (The performance of the parallel sup~pan algorithm was remarkably robust with respect to all but the smallest
of the panel sizes tested.) The panel size for which the best timing was obtained is recorded in parentheses.

As observed in [12,17], the performance of the serial sup-sup algorithm is far better than that of the serial sup-col
algorithm because of reuse of the data in cache memory. In addition, the efficiencies of the parallel sup-col algorithm
range from 41-47%, while those of the parallel sup-pan algorithm range from 73-80%. It appears then that the
following two statements hold true for these algorithms on this machine:



problem n 4] 1Z]
BCSSTKI4 | 1,806 | 63,454 | 112,267
BCSSTK15 | 3,948 | 117,816 | 651,222
BCSSTK16 | 4,884 | 290,378 | 741,178
BCSSTK17 | 10,074 | 428,650 | 1,005,859
BCSSTKI18 | 11,048 | 149,090 | 662,725
BCSSTK23 | 3,134 | 45,178 | 420,311
BCSSTK25 | 15,439 | 252,241 | 1,416,568
BCSSTK29 | 13,992 | 619,488 | 1,604,796

Table 1: Test problems.

serial parallel serial parallel
sup-col sup-col sup-sup sup-~pan
problem time speed-up time speed-up
(insecs) | p=4|p=81 (insecs) | p=4 p=28
BCSSTK14 2441 2841 3.70 1.58 | 3.29 (16) | 5.27 (12)

BCSSTK15 || 38.24| 2.88| 325| 2150|354 (16) | 6.13 (12)
BCSSTK16 33.96 | 2.96| 3.72| 2046 3.49 (12) | 6.00 (12)
BCSSTK17 || 3263 | 284 3.73|  2055]3.37 (16) | 6.12 (12)
BCSSTK18 3628 | 276 | 342l 2171 3.47 (16) | 5.84 (16)
BCSSTK23 28.58 | 2.84| 3.36| 17.53]3.73 (16) | 6.37 (16)
BCSSTK25 7249 290 | 353  45.05| 3.54 (16) | 5.87 (12)
BCSSTK29 | 9823 | 2.83| 329| 59.35|3.59 (12) | 6.35 (12)

Table 2: Performance statistics on an SGI 4D /380. The numbers in parentheses record the panel size w for which the
best timing was obtained.

e The parallel sup-pan algorithm retains a large fraction of the serial sup-sup algorithm’s ability to reuse data
in cache.

o The data bus of the SGI 4D/380 is overtaxed by the parallel sup-col algorithm.

The combination of superior sequential performance and superior parallel performance makes the parallel sup~-pan
algorithm an attractive alternative on this particular multiprocessor workstation and others similar to it. Over all
the problems, the parallel sup-pan algorithm on eight processors performed from a low of 9.7 to a high of 10.9 times
faster than the sequential sup-col algorithm.

5 Concluding remarks

In this brief note we have introduced a simple parallel left-looking blocked sparse Cholesky algorithm, which we call
the parallel sup-pan algorithm. The target machine for such an algorithm is any shared-memory multiprocessor for
which the data bus is a potential bottleneck and/or the individual processors rely on extensive reuse of data in cache
for good performance. Our timing results on an SGI 4D /380 multprocessor workstation indicate that the method
performs quite well on such machines.

In future work, we hope to study the performance of this method on one of the latest vector supercomputers with
multiple processors, the Cray C90. We hope to include other machines of interest, as well. The primary goal of our
future efforts however will be to devise a simple and efficient algorithm to compute good panelings for the algorithm.
This problem is currently under study.

Finally we wish to note two other issues connected with the parallel sup-pan algorithm. First, any ordering of
the columns within a supernode leads to identical fill in the factorization. Some supernode column orderings however
are better at placing into panels those columns that are updated by many of the same supernodes. Panels with this
property better perform their role of reusing data in cache and limiting bus traffic. Second, the notion of domains
has played a significant role in parallel sparse Cholesky algorithms for distributed-memory machines. A domain is



a set of columns whose computation is an atomic task assigned to a single processor. The choice of the columns
in a domain depends on the sparsity structure of L (corresponding to a subtree of the elimination tree). The key
is that no synchronization is required when the columns of a domain are computed. To implement this technique
successfully, one must balance the reduction in synchronization overhead against the increase in grain size incurred
by the technique. Preliminary experimental results have indicated that reordering within supernodes and the use of
domains have little impact on the performance of the parallel sup-pan algorithm when the number of processors is

small.
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