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Abstract
In this paper, we consider sparse Cholesky factorization on a multiprocessor system that possesses a globally 

shared memory. Our algorithm is a parallel version of a serial blocked left-looking factorization algorithm described 
in [12,17]. Unlike previous parallel left-looking algorithms, the new algorithm uses a matrix-matrix multiplication 
operation to implement its computationally intensive primitives. Consequently, careful implementation of these 
primitives enables extensive reuse of data in cache for most realistic problems, and thus reduces the volume of traffic 
to and from main memory. Reducing memory traffic is crucial on many shared-memory multiprocessors because the 
interconnect to main memory is often a serious bottleneck. We shall compare the performance of the parallel blocked 
algorithm with an earlier parallel left-looking algorithm studied in [13].

1 Introduction
In this paper we introduce a simple parallel blocked sparse Cholesky algorithm designed for shared-memory multipro­
cessors with a modest number of processors. The algorithm is particularly appropriate for shared-memory multipro­
cessors that:

• are based on one of the fast new microprocessors which rely heavily on the reuse of data in cache to achieve high 
computational rates, and/or

• do not have a data bus that is capable of meeting near-peak demand from all processors at once.

The rapid increase in computational speeds seen in recent years has not been matched by commensurate increases in 
data access speeds. Consequently, in many instances data bandwidth is the critical resource that limits performance. In 
particular, many current and forthcoming shared-memory multiprocessors have at least one of the two characteristics 
listed above. It appears moreover that this state of affairs will continue for some time to come.

The parallel factorization algorithm described in this paper is based on a sequential left-looking blocked sparse 
Cholesky factorization algorithm studied by Ng and Peyton [12] and Rothberg and Gupta [17]. The basic task around 
which the algorithm is built is a supemode block column task, which computes all the columns belonging to a particular 
supemode. (A supemode is a set of contiguous factor columns that share the same external sparsity structure.) The 
supernode block column task is organized around computational primitives that update every member of one set of 
columns with a multiple of each member of another set of columns. The matrix-matrix multiplication operation used 
to implement these primitives enables the reuse of “local data”, thereby reducing data traffic to and from more distant 
parts of the memory hierarchy.

Straightforward parallelization of this sequential method unfortunately does not immediately lead to an efficient 
parallel method. The supemode block column task results in a parallel task granularity that is far too large during the 
middle and later portions of the computation to keep the processors busy and the load evenly balanced, even when the 
number of processors is quite small. We thus split the columns of each supernode into subsets of contiguous columns, 
which we shall call panels. The block column task upon which our parallel algorithm is based is the computation of 
all columns that belong to a particular panel. In selecting the panels, our goal is to include enough columns in each 
to maintain good data reuse and low bus traffic, while avoiding the inclusion of too many columns, which leads to 
deteriorating performance due to loss of concurrency in the computation.

Section 2 briefly discusses background material and previous work in this area. Section 3 contains an informal 
discussion of the parallel panel-based sparse Cholesky factorization algorithm. Timing results on an SGI 4D/380 are 
presented in Section 4. Finally, Section 5 contains a few concluding remarks.



2 Background and previous work

Let ^4 be a symmetric positive definite matrix. The Cholesky factor of A, denoted by L, is a lower triangular matrix 
whose main diagonal is positive and for which A — LLT. When A is sparse, fill occurs during the factorization; 
that is, some of the zero elements in A will become nonzero elements in L. In order to reduce time and storage
requirements, only the nonzero positions of L are stored and operated on during sparse Cholesky factorization. 
Techniques for accomplishing this task and for reducing fill have been studied extensively (see [9] for details). In this 
paper we restrict our attention to the numerical factorization phase. We assume that the preprocessing steps, such as 
reordering to reduce fill and symbolic factorization to set up the compact data structure for X, have been performed. 
Details on the preprocessing can also be found in [9].

2.1 Sequential left-looking sparse Cholesky algorithms
Column-oriented, left-looking, sparse Cholesky; The standard column-oriented, left-looking, sparse Cholesky 
algorithm is widely used in many sparse matrix packages, such as SPARSPAK [5]. When column is to be 
computed, the algorithm first modifies column with multiples of previous columns of X, namely those columns 
X4]fe for which 1 < fc < j - 1 and i^*. ^ 0; it then scales the modified column to obtain X»j. We let cmod(j, k) denote 
the operation of updating column A*j with a multiple of the appropriate entries of X*,*, and we let cdiv{j) denote 
the final scaling operation. Thus we can write the column task Tcol(j) as

Tcol(j) := {cmod(j, k) \ k < j and Lj^ ^ 0} U {cdiv(j)}.

We shall refer to this algorithm as the col-col algorithm.

Supernodal sparse Cholesky; For many realistic problems, especially those from structural analysis applications, 
the fill generated during the factorization creates groups of contiguous columns that share the same sparsity structure. 
A group of such columns is referred to as a supemode. The reader should consult [11,14] for a detailed description 
of various supemode partitions. The first reference also presents an efficient algorithm for generating a supemode 
partition.

Supernodes have been used to organize left- and right-looking sparse Cholesky factorization algorithms around 
matrix-vector or matrix-matrix operations that reduce memory traffic, thereby making more efficient use of vector 
registers [3,4] or cache [1,16]. The role of supernodes in improving sparse Cholesky factorization algorithms is well 
documented [1,3,4,7,16,19].

Let K = {p,p + 1,.. .,p + <?} denote a supemode in X. These columns have a dense diagonal block and have 
identical column structure below row p + q. Because the external sparsity pattern is shared by all columns in K, any 
column (j > p + q) will be modified by either all columns of K or no columns of K. (Throughout, supernodes 
will be denoted by bold-faced capital letters.) In the supernodal Cholesky factorization algorithm, the basic task 
around which the algorithm is organized is again Tcol(j). However, the primitive at the heart of the column task 
Tcol(j) is no longer cmod(j,k). Instead, the new computationally-intensive primitives are cmod(j, K), j ^ K, which 
modifies column j with a multiple of each column in the supernode K, and cmod(j, J), j e J, which modifies column 
j with a multiple of each column k £ J for which k < j. We shall refer to this formulation of left-looking sparse 
Cholesky factorization as the sup-col algorithm. Careful implementation of these primitives can significantly reduce 
memory traffic and indirect addressing. The cmod(j, J) operation is implemented as a dense matrix-vector product 
and is accumulated directly into factor storage for the target column the cmod(j,K) update first accumulates a 
dense matrix-vector product into a small work vector, after which the accumulated column update is applied to the 
target column X*j using a single column operation that requires indirect addressing. In both cases the outer loop of 
the matrix-vector multiplication is unrolled to reduce memory traffic [6].

Block sparse Cholesky; Rothberg and Gupta [17] and Ng and Peyton [12] have investigated a left-looking block 
Cholesky algorithm first suggested in [4]. The basic task around which the computation is organized is a block column 
task that consists of computing every column of X in a particular supernode. More precisely, the basic task is given
by

Tsup(J) := {Tcql(j)\j€J},



where J is a supernode of L. This algorithm preserves all of the performance enhancements incorporated into the 
sup-col algorithm and enables new improvements in performance as well. The block column task Tsup(J) is organized 
around the following computational primitives. The $mod(J,K) primitive, J ^ K, modifies with a multiple of each 
column of the supernode K every column of the supernode J that receives updates from K. After all such external 
updates to J have been computed by the smod(J^K) primitive, the Chot(J) primitive performs all the internal 
updates and the column scaling operations needed to complete the computation of the columns of J. At the heart of 
these primitives is a dense matrix-matrix product that, when carefully implemented, permits extensive reuse of data in 
cache memory (see [12,17] for details). Many of the algorithms incorporated into the LAPACK linear algebra software 
package [2] are also organized in this fashion for similar reasons. We shall refer to the block sparse Cholesky algorithm 
as the sup-sup algorithm.

2.2 Parallel implementation techniques
Parallel versions of two of these sequential algorithms have been explored previously. In [8], George et al. introduced 
a parallel col-col algorithm for shared-memory multiprocessors. Their algorithm is a straightforward parallel im­
plementation of the sequential col-col algorithm found in [9]. Ng and Peyton [13] used the same straightforward 
approach to produce a parallel version of the sup-col algorithm. We shall use the same techniques to implement a 
parallel block algorithm.

These parallel algorithms maintain a pool of column tasks, and the assignment of column tasks to processors is 
dynamic: when a processor completes one column task, it immediately seeks another column task from the pool. 
This approach is particularly appropriate for a shared-memory multiprocessor system with a fast bus, and as might 
be expected it typically achieves good load balance. The instructions that manipulate the lists of updating columns 
(supernodes) needed by the parallel col-col (sup-col) algorithm form a critical section in the code, access to which 
is limited by means of standard “lock” and “unlock” synchronization primitives. For a more complete discussion of 
the implementation details, the reader should consult [8,13].

In a series of studies, Rothberg and Gupta [15,16,17,18] have looked into many of the issues and techniques needed 
to implement sparse Cholesky factorization algorithms on modern workstations. Their work establishes the importance 
of using blocked algorithms to fully exploit the memory hierarchy of these machines, including those with multiple 
processors. In the next section, we discuss a parallel left-looking sparse Cholesky algorithm that is appropriate for 
this class of machines.

3 A parallel blocked sparse Cholesky algorithm
For most realistic problems, the work required to compute Tsup(J) for each supemode J increases dramatically as 
the computation proceeds. As a result, straightforward parallelization of the sup-sup algorithm leads to an extremely 
inefficient parallel algorithm due to its coarse granularity, particularly in the middle and later stages of the computation. 
A simple and natural way to solve this problem is to split each supemode J into sets of contiguous columns, which 
we shall call panels. The task on which our parallel algorithm is based is the computation of every column of L that 
belongs to a particular panel. This task will be denoted as Tpan(J), where J is a panel of contiguous columns all 
belonging to the same supemode. (We shall use non-bold capital letters to denote a panel.) We shall refer to the 
panel-based algorithm as the sup-pan algorithm.

The block column task Tpan(J) is organized around the following three computational primitives. The xpmod(J, K) 
primitive (J % K) modifies with a multiple of each column of the supernode K every column of the panel J that 
receives updates from K. After all such external updates to J have been computed, the ipmod(J, J) primitive updates 
every column in panel J with the columns of every preceding panel in the supemode J to which J belongs. That is, 
the ipmod(J, J) primitive performs all updates to the panel J that are internal to the supemode J yet external to 
the panel J itself. The Chol(J) primitive performs all the updates internal to the panel and also the column-scaling 
operations needed to complete the computation of the columns of J. As with the primitives for the sup-sup algorithm, 
these primitives are implemented around a dense matrix-matrix product that, when carefully implemented, permits 
extensive reuse of data in cache memory.

The performance of our algorithm to a large extent depends on how the panels are selected. The trade-off between 
available concurrency and data latency can perhaps be best illustrated by looking at the two extreme panel selection 
strategies. Consider first the case where each panel J is as small as possible, that is, each panel J contains a single



column of L, In this case the parallel sup-pan algorithm is equivalent to the parallel sup-col algorithm studied in [13], 
and thus shares its strengths and weaknesses. This “paneling’1 exposes more parallelism than any other; it results, 
however, in the least efficient use of the cache and the global data bus. Consider now the case where each panel J is 
as large as possible, that is, each panel J is a supernode of L. In this case the parallel sup-pan algorithm is equivalent 
to the parallel sup-sup algorithm. This paneling exposes less parallelism than any other; it results, however, in the 
most efficient use of the cache and the global data bus. Clearly then we seek a paneling strategy that lies between 
these two extremes; we seek panels that are

• large enough to retain a large fraction of the data latency advantages of the parallel sup-sup algorithm, and, at 
the same time

• small enough to expose a large fraction of the concurrency available in the parallel sup-col algorithm.

Preliminary results indicate that, as long as extremely fine and extremely coarse panelings are avoided, the parallel 
sup-pan algorithm performs quite well, and moreover its performance is remarkably robust with respect to a wide range 
of paneling strategies. One reason for this state of affairs is that the marginal increases in data reuse fall off rapidly 
as the panel size increases beyond a modest number of columns. Consequently, partitioning a large supemode into 
panels, each with several columns, sacrifices a small fraction of the data-latency advantages of the sup-sup algorithm. 
Our preliminary results also indicate that for modest numbers of processors the paneling must become fairly coarse 
before we observe serious deterioration in performance due to insufficient concurrency within the computation.

In this preliminary study we use the following simple paneling strategy, which we have observed to be quite effective 
in our preliminary tests. Choose a constant panel size w, where w is a positive integer. Divide each supernode J 
into panels J of w contiguous columns, with the last panel containing anywhere from 1 to w “leftover” columns. In 
our tests we have essentially completed a parameter study on the paneling parameter ru, testing different values of w 
between 2 and 32. How best to panel the supernodes merits further study and is still under investigation.

4 Timing results
We had hoped to test the parallel sup-pan algorithm on two machines: the SGI 4D/380 and the new Cray C90. 
While we have obtained results on the SGI 4D/380, we have unfortunately been unable to gain access to a Cray C90, 
The Cray C90 is of interest to us because it can experience significant performance degradation when there is heavy 
contention for the shared memory. Our parallel sup-pan algorithm should reduce this contention, and we hope to 
study the performance of the algorithm on this machine in the near future.

The SGI 4D/380 is a high-performance multiprocessor workstation containing eight MIPS R.3Q00/R301G processors. 
New and forthcoming multiprocessor workstations, such as the SGI 4D/380, make up an important new class of 
machines, with perhaps the best overall cost/performance ratio available. The fast, relatively inexpensive, off-the- 
shelf processors used by these machines depend heavily on the reuse of data in cache for good performance. The 
relatively inexpensive data bus technology used in these machines provides far less bandwidth to main-memory than 
is typically required by an unblocked factorization algorithm such as the parallel sup-col algorithm. In consequence, 
this class of machines is an ideal target for the parallel sup-pan algorithm.

We tested the performance of our algorithm on the matrices from the Harwell-Boeing sparse matrix collection 
listed in Table 1. Some statistics for each matrix are also shown in the table. Each matrix was reordered by the 
multiple minimum degree ordering heuristic [10] before the factorization was performed.

In our tests we compared the performance of the parallel sup-col algorithm with that of the parallel sup-pan 
algorithm. We tested a set of panel widths ranging from w = 2 to tu = 32. The algorithms were coded in C and compiled 
with optimization turned on. The timing results are presented in Table 2. The table records the performance of the 
parallel sup-col (sup-pan) algorithm in terms of speed-ups relative to a fast serial implementation of the sup-col 
(sup-sup) algorithm. For the sup-pan method, we report only the best performance obtained over all panel sizes 
tested. (The performance of the parallel sup-pan algorithm was remarkably robust with respect to all but the smallest 
of the panel sizes tested.) The panel size for which the best timing was obtained is recorded in parentheses.

As observed in [12,17], the performance of the serial sup-sup algorithm is far better than that of the serial sup-col 
algorithm because of reuse of the data in cache memory. In addition, the efficiencies of the parallel sup-col algorithm 
range from 41-47%, while those of the parallel sup-pan algorithm range from 73-80%. It appears then that the 
following two statements hold true for these algorithms on this machine:



problem n A \L\
BCSSTK14 1,806 63,454 112,267
BCSSTK15 3,948 117,816 651,222
BCSSTK16 4,884 290,378 741,178
BCSSTK17 10,974 428,650 1,005,859
BCSSTK18 11,948 149,090 662,725
BCSSTK23 3,134 45,178 420,311
BCSSTK25 15,439 252,241 1,416,568
BCSSTK29 13,992 619,488 1,694,796

Table 1: Test problems.

problem

serial 
sup-col

parallel
sup-col

serial
sup-sup

parallel
sup-pan

time 
(in secs)

speed-up time 
(in secs)

speed-up
p = 4 p = 8 p-A P ~ 8

BCSSTK14 2.44 2.84 3.70 1.58 3.29 (16) 5.27 (12)
BCSSTK15 38.24 2.88 3.25 21.50 3.54 (16) 6.13 (12)
BCSSTK16 33.96 2.96 3.72 20.46 3.49 (12) 6.00 (12)
BCSSTK17 32.63 2.84 3.73 20.55 3.37 (16) 6.12 (12)
BCSSTK18 36.28 2.76 3.42 21.71 3.47 (16) 5.84 (16)
BCSSTK23 28.58 2.84 3.36 17.53 3.73 (16) 6.37 (16)
BCSSTK25 72.49 2.90 3.53 45.05 3.54 (16) 5.87 (12)
BCSSTK29 98.23 2.83 3.29 59.35 3.59 (12) 6.35 (12)

Table 2: Performance statistics on an SGI 4D/380. The numbers in parentheses record the panel size w for which the 
best timing was obtained.

• The parallel sup-pan algorithm retains a large fraction of the serial sup-sup algorithm’s ability to reuse data 
in cache.

• The data bus of the SGI 4D/380 is overtaxed by the parallel sup-col algorithm.

The combination of superior sequential performance and superior parallel performance makes the parallel sup-pan 
algorithm an attractive alternative on this particular multiprocessor workstation and others similar to it. Over all 
the problems, the parallel sup-pan algorithm on eight processors performed from a low of 9.7 to a high of 10.9 times 
faster than the sequential sup-col algorithm.

5 Concluding remarks
In this brief note we have introduced a simple parallel left-looking blocked sparse Cholesky algorithm, which we call 
the parallel sup-pan algorithm. The target machine for such an algorithm is any shared-memory multiprocessor for 
which the data bus is a potential bottleneck and/or the individual processors rely on extensive reuse of data in cache 
for good performance. Our timing results on an SGI 4D/380 multprocessor workstation indicate that the method 
performs quite well on such machines.

In future work, we hope to study the performance of this method on one of the latest vector supercomputers with 
multiple processors, the Cray €90. We hope to include other machines of interest, as well. The primary goal of our 
future efforts however will be to devise a simple and efficient algorithm to compute good panelings for the algorithm. 
This problem is currently under study.

Finally we wish to note two other issues connected with the parallel sup-pan algorithm. First, any ordering of 
the columns within a supernode leads to identical fill in the factorization. Some supernode column orderings however 
are better at placing into panels those columns that are updated by many of the same supernodes. Panels with this 
property better perform their role of reusing data in cache and limiting bus traffic. Second, the notion of domains 
has played a significant role in parallel sparse Cholesky algorithms for distributed-memory machines. A domain is



a set of columns whose computation is an atomic task assigned to a single processor. The choice of the columns 
in a domain depends on the sparsity structure of L (corresponding to a subtree of the elimination tree). The key 
is that no synchronization is required when the columns of a domain are computed. To implement this technique 
successfully, one must balance the reduction in synchronization overhead against the increase in grain size incurred 
by the technique. Preliminary experimental results have indicated that reordering within supernodes and the use of 
domains have little impact on the performance of the parallel sup-pan algorithm when the number of processors is 
small.
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