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IMPULSIVE RESPONSE OF NONUNIFORM DENSITY
LIQUID IN A LATERALLY EXCITED TANK

by

Yu Tang and Y. W. Chang

ABSTRACT

A study on the impulsive component of the dynamic response of a liquid of nonuniform
density in a tank undergoing lateral base excitations is prescnfed. The system considered is a
circular cylindrical tank containing an incompressible and inviscid liquid whose density increases
with the liquid depth. The density distribution along the depth can be of any arbitrary continuous
or discontinuous function. In the analysis, the liquid field is divided into n layers. The thickness
of the liquid layers can be different, but the density of each liquid layer is considered to be
uniform and is equal to the value of the original liquid density at the mid-height of that layer.
The problem is solved by the eigenfunction expansion in conjunction with the transfer matrix
technique. The effect of the nonuniform liquid density on the impulsive component of the
dynamic response is illustrated in a numerical example in which the linear and cosine
distributions of the liquid density are assumed. The response quantities examined include the
impulsive pressure, base shear and moments. The results are presented in tabular and graphical
forms. It is found that the impulsive pressure distribution along the tank wall is not sensitive to
the detailed distribution function of the density, and the base shear and moments for the
nonuniform liquid can be estimated by assuming an equivalent uniform liquid density that
preserves the total liquid weight. The effect of tank flexibility is assessed by a simple approach

in which the response quantities for flexible tanks are evaluated by simplified equations.



L INTRODUCTION

A large number of high level waste (HLW) storage tanks at various U.S. Department of
Energy (DOE) facilities contain liquids with nonuniform density. In order to evaluate the
structural integrity of these HLW tanks under seismic events and to provide the necessary method
of analysis for the future design of the HLW tanks, it is necessary to study the dynamic behavior
of a liquid of nonuniform density subjected to ground excitations. To respond to this need
comprehensive studies on a tank containing two liquids have been performed in the past two
years by Tang and Chang at Argonne National Laboratory (ANL) [1,2,3] as the first step toward
understanding the dynamic behavior of a liquid of nonuniform density in a tank. The ground
excitations considered included both horizontal and rocking components of earthquake motions.
Both rigid and flexible tanks were studied. Recently, a study on the sloshing response of a liquid
of nonuniform density in a tank undergoing lateral base excitations has been performed by Tang
and Chang [4]. In that study, it was shown that the sloshing response in a tank containing a
liquid of nonuniform density is quite different from that of an identical tank containing uniform
density liquid. Especially, the sloshing wave height may increase significantly in tanks
containing a liquid of nonuniform density. Following that study and presented in this report is

the impulsive component of the solution to a tank containing a liquid of nonuniform density.

The objectives of this study are: (1) to develop a method of analysis for the computation
of the impulsive component of the dynamic response of a liquid of nonuniform density contained
in a tank undergoing lateral base excitations; (2) to examine the results of analysis from which
the effect of nonuniform density of the liquid on the dynamic response can be elucidated; and
(3) to propose a simple approach with which this effect can be evaluated cost-effectively for the
preliminary design. In the analysis, the liquid field is divided into n layers along its height.
These liquid layers may have different thickness, but the liquid density of each layer is assumed
to be uniform and its value is taken to be the value of the original density at the mid-height of
that layer. The eigenfunction expansion in combination with the transfer matrix technique is
employed to solve the problem. The response quantities examined include the impulsive
hydrodynamic pressure, base shear and moments at sections immediately above and below the
tank base plate. The tank wall is assumed to be rigid. The effect of the flexibility of the tank



wall is assessed by a simple approached in which simplified equations for evaluating the dynamic
response are proposed. For preliminary designs, this simple approach is very cost-effective.

IL. SYSTEM DESCRIPTION

The tank-liquid system investigated is shown in Fig. 1. It is a ground-supported upright
circular cylindrical tank of radius R filled with a nonuniform liquid to a height of H. The 'density
of the liquid is assumed to have a minimum value, denoted by p,, at the top of the liquid surface.
The liquid density is assumed to increase monotonically with the increase of the liquid depth and
reaches a maximum value, denoted by py, at the bottom of the liquid. The tank is assumed to
be rigid and clamped to a rigid base. The liquid is considered to be incompressible and inviscid.
The response of the liquid is assumed to be linear. The cylindrical coordinate system, r, 6, and
z, is employed for the study with the origin defined at the center of the tank base where 8 = 0

is assumed to be the direction of the seismic excitation. The lateral excitation considered herein

is denoted by %(t). The temporal variation of %(t) can be of any arbitrary function.
II. APPROACH AND SOLUTIONS

The liquid field is first divided into n layers as shown in Fig. 2. The thickness of the
Layer j (j = 1, 2, 3...n) is denoted by H;. The thickness of the liquid layers can be different. The
liquid density for Layer j is taken to be the value of the original liquid density at mid-height of
the layer, and it is denoted by p; It is assumed that the liquid is uniform in each layer. Thus,
the mathematical model that represents the physical system depicted in Fig. 1 has n layers of
liquids with different thickness and densities. For the convenience of derivation, a local
cylindrical coordinate system, 1, 6, 2, is introduced for the Layer j where 2 is related to z by the
equation

j-1
z=2+) Hfor0szsH (1)

k=1



Given the conditions that the liquids are incompressible and inviscid, the hydrodynamic

pressure induced at Layer j, denoted by p;, must satisfy the Laplace equation
Vip, =0 forj = 1,2 3.0 2

in the region 0 s r < R, 0 < 0 < 27, and 0 = z = H,. The liquid acceleration at an arbitrary point
in Layer j along s-direction is related to p; by

d
a,=-L B 3)
P; as
The boundary conditions are:

1. The vertical acceleration of liquid at the tank base must be zero; i.e.,

d
_a_& =0 O]
Zlye0
2. The radial acceleration of liquid adjacent to the tank wall must equal the

acceleration of the tank wall, i.e.,

9
- LB %@eos®, j=1,2.n ©)
P; ar

3. At the free surface, the boundary condition for the impulsive pressure is

Pal, .y =0 (6)



At the interface of Layers j and j+1, the boundary conditions are:

4. Continuity of the vertical acceleration, i.e.,

_1 9p

Py 9z

1 apjol

l,-l'l, pjo] az]q

%, "0

and

5. Continuity of the hydrodynamic pressure, i.e.,

piL,-H’ = p""z,“.o

@)

@)

The method of separation of variables is used to solve the differential equation (2). The
boundary conditions, Eqs. (4) (6) (7) and (8), are used to determine the eigenfunctions and

eigenvalues, and the boundary condition (5) is used to determine the integration constants.

A Eigenfuncti

The eigenfunction, denoted by ¢, for Layer j corresponding to the kth eigenvalue,

denoted by A, is given by

9 (2) = Aycos(h,z) + B,sin()z2)

)

where the proportional constants, A, and By, are related to A,,, and By,,, by the equation given

by



cos(A, H,) sin(A H))

= pgn qu

A, .
j=1l.n-1 (10)
B, - Bt gin(aH) .

cos(MH))| | By,
From Eq. (4), one obtains
By=0 forallk (11)
Equation (10) defines a relation between the proportional constants of jth layer and those
of the (j+1)th layer. By repeating application of Eq. (23) from j = 1 to j = n-1 and making use

of Eq. (11), one obtains the equation that links A, with A, and B,,. Symbolically, this equation
can be written as

Ay
B

Tll T12
TZI TZZ

A

(12)
0

ak

where the 2x2 matrix in Eq. (12) is the transfer matrix, and T,,, T,,, T,, and T, are its elements.
It can be shown that the orthogonal condition for the kth and ¢th eigenfunctions is given by

Yy .‘.:; LH’ du(z) 9(z) dz =0  fork = ¢ (13)

B.  Eigenvalues

Equation (6) requires that

A,, cos(\H,) + B,, sin(A\,H,) = 0 (14)



Substituting the constants A,, and B, in Eq. (14) with those obtained from of Eq. (12), one
obtains

Ty, cos(AH,) + T, sin(A,H,) = 0 (15)

which is the characteristic equation, and its roots are the eigenvalues.

For n = 2, it can be shown that Eq. (15) yields

cos(AH,) cos(AH,) - %:. sin(AH,) sin(\H,) = 0 (16)

which is the characteristic equation for tanks containing two liquids [5].

Then, it can be shown that the impulsive pressure, p,, that satisfies Eq. (2) takes the form
p(r6,2) =Y, C L(Mr) ¢,(z) cos® (17)
k=1

where the integration constant C; can be determined from the boundary condition defined by Eq.
(5) by making use of the eigenfunction expansion and the orthogonal condition defined by Eq.
(13). The resultant can be expressed as

p(r.8,2) = C,, (r2) (P,X(YRcos®)  j = 1..n (18)

where the function cm(;, zi) is given by

= - H : 1 Ai Il(z\r) 19
o) - x & TR TR e (19)



in which I is the modified Bessel function of the first kind and I, is its derivative; function A,

is given by

M-

4 = I,“' 9(7)dz (20)

=]

e

and I ¢J! is given by

ol =% 2 [* olz)ez @)

| §
j=1 j
1. Base Shear

After the impulsive pressure is obtained, the base shear, denoted by Q(t), is
computed from the following equation

Qo - ;: L

Rcos6dz,d8 (22)
r=R

Substituting Eq. (18) into Eq. (21) and performing the integration, one obtains Q(t) which may
be expressed as

QW =1, M X(t) (23)
in which M! = & p,R2H = the total liquid mass if the tank is filled with a liquid having a

density of p,. Since Eq. (22) involves only simple integration of the trigonometry functions, the
expression for r, is not given herein.



2.  Basc Moments
The base moment at a section immediately above the tank base, M(t), is obtained

by performing the following integration

Rzcos8dzd6 (24)
(L]}

MO =3 [* [*7,

=t

and the result is cast into the form

M) =r, M H £(}) (25

The base moment induced by the pressure exerted on the tank base is denoted by AM(t)
which is given by the following equation

AM() = f" L" P, r2cos0drd (26)
and may be expressed in the form as
AM(t) = Ar, M, H x(1) 27

The base moment at the section immediately below the tank base, denoted by M'(t), is
then given by the sum of Egs. (25) and (27). The result is expressed as

M) =r, M H %() | (28)

in which




’

vy, =1, + Ar, (29)
IV. NUMERICAL RESULTS

Unlike the case of tanks containing uniform density liquid where H/R is the only
parameter that controls the response, the parameters that control the response of tanks containing
a liquid of nonuniform density are H/R, p/p,, and the density variation along the liquid depth.
For the numerical study presented herein, the variation of the liquid density between p, and p,
is assumed to be either a linear or a cosine function. More precisely, if p(z) represents the
density at liquid depth of z, the linear function is given by

@ = p, + (H}; z) (P, - P) 30)

and the cosine function is given by
nz
p(2) = p, + coS(-z—ﬁ-) (P, - P,) (1)

It is important to determine the number of layers needed to approximate the liquid field
in order to get accurate results. Therefore, the study for the convergence of the numerical results

for base shear and base moments is performed first, the values of r,, r,, and ¢/ " obtained by using

different number of layers are presented in Table I for p/p, = 0.25 and Table II for p/p, = 0.5
assuming either linear or cosine variation for the liquid density. In these tables two values of
H/R, 0.5 and 3, are considered and for simplicity the thickness of the layers are taken to be the
same. As one can see from these tables that with n = 30, the results are quite accurate. Thus
all solutions presented hereinafter are obtained by using n = 30. It should be mentioned herein
that the approach presented in this report is implemented into a FORTRAN computer program
that runs on PC 486 machine, and for n = 30 the CPU time is less than three minutes.
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To study the effect of the nonuniform liquid density on the dynamic response, the
response quantities for uniform, linear and cosine liquid density functions are computed and
compared. In order to make the comparison meaningful, the total liquid mass in the tank is kept
the same. If the total liquid mass in a tank for the linear variation case is chosen to be the base
liquid mass for comparison, it can be shown that for the uniform density case the equivalent
uniform liquid density, p*, has to be

p* = .1..[1 + _pl) Py (32)

and for cosine variation case, the liquid density defined by Eq. (31) has to be multiplied by a
coefficient given by

HfealEe-92

Presented in Tables III, IV and V are the comparisons of the coefficients for the base
shear and moments for the linear, cosine and uniform variation cases. The coefficients defined
in Eqs. (32) and (33) have been applied to the results for the uniform and cosine variation cases,
respectively. Four values of H/R, 0.5, 1, 2 and 3, and three values of p/p,, 0.25, 0.5 and 0.75,
are considered in these tables. Examining these three tables, one notices that for the linear and
cosine variation cases, the response quantities are very close. This indicates that the response
is not sensitive to the detailed density variation along the depth. The difference, however, is
observed between the results for the uniform case and those of the linear and cosine cases. The
values for the base shear are larger for the uniform case than those for the linear and cosine cases
for broad tanks (H/R s 1); however, for tall tanks (H/R 2 2) the opposite trend is observed. The
values for the base moments are larger for the uniform case for all the tanks considered in
comparison with those for the linear and cosine cases. In order to gain more insight into the
problem, the impulsive pressure exerted on the tank wall for tanks with H/R = 0.5, 1, 2 and 3
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are plotted in Figs. 3, 4, 5 and 6 for the value of p/p, = 0.25 and 0.5. It is clearly shown in
these figures that the pressure for the linear and cosine cases are very close; however, the
pressure for the uniform case is larger at the upper portion and smaller in the lower portion of
the height. Therefore, the center of gravity for the enclosed area by the curve corresponding to
the uniform case is higher than those of the linear and cosine variation cases. This explains why
the moments are higher for the uniform variation case. Examining the data more critically, one
may find that the results for the uniform case are about 15% higher than those of the other two
cases. Realizing the conservatism required for design, one may conclude that the response for
tanks filled with a liquid of nonuniform density may be evaluated, at least for the preliminary
design, from the solutions for tanks filled with the equivalent uniform density liquid.

A Effect of Tank Flexibili

The procedure proposed herein to assess the effect of tank wall flexibility is basically an
extension of the simpie procedure presented in Ref. 6 for tanks containing a uniform liquid. The
procedure requires that the ground acceleration (t) in the rigid tank solution be replaced by the
pseudoacceleration function Ay(t) which is defined by

A = —2 L' %() exp[-tw(t-7)]sin(®(t-))dx (34)
1-¢

where @ = the fundamental circular frequency of the tank-liquid system; § = the fraction of

critical damping; and @ = mJ 1-t? . The resulting expressions for the response quantities from

the simple procedure are given as follows.

The impulsive wall pressure is expressed as

Py(8:2zpt) = Coy(R,2) Ay(1) p,RcosB (35)
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The base shear is expressed as

Q) =1, M{ A,()) (36)

and the base moments are expressed as

M@ =, M' H A, 37

and

M) =1, M HA|(®) : (38)

The maximum values of these response quantities may be obtained by replacing Ay(t) by its

spectral value.

The most crucial part of this simple procedure is the evaluation of the fundamental natural
frequency of the tank-liquid system. In this report, the simple equation presented in Ref. 3 for
estimating the fundamental frequency of tank-liquid systems for tanks containing two liquids is
extended herein to permit the consideration of the liquid density to be nonuniform. It has been
shown [3] that this simple equation yields accurate results for tanks with values of H/R in the
range between 0.25 and 1.0. This equation is based on two assumptions: (1) the effective mass
of the tank-liquid system that participates in the first mode of vibration is equal to the impulsive
component of the liquid added mass in the rigid tank, and (2) the mass of the tank wall itself is
negligible in comparison to that of the liquid.

Let the fundamental frequency of the tank-liquid system be expressed as

f=_1 ¢ |E (39)
2r HNp
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in which E = Young’s modulus of elasticity for the material of the tank wall; p = its mass
density; and ¢ = a dimensionless coefficient. Let the values of f and ¢ for a tank filled with
nonuniform liquid be designated by f* and c* and for the same tank filled with water be
designated by £, and c,; then, c* can be estimated from c, by the equations given below.

For a rigid tank filled with water, the base shear, denoted by Q,, can be expressed as [7]

Q.M = (rwnp'R’H) {()) (40)

where 1, is a dimensionless coefficient depending on the value of H/R. The quantity enclosed
by the parenthesis in Eq. (40) is the so-called liquid added mass. So, based on the assumptions
mentioned above the stiffness of the tank, denoted by k,, for the first mode of vibration is then
given by

k, = (r,,up,R’H) (2xf, ) (41)

2

= (r'np'R’H) % J_—%'

For the same tank filled with a nonuniform liquid, the liquid added mass can be identified from
Eq. (23). Itis r,p,*R2H. So, the fundamental frequency, f*, can be computed from the

equation given by

go = L k | @2)
2= j (r,p,xR?H)
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Substituting Eq. (41) into Eq. (42), one obtains the equation that relates ¢* with c,, which is given

by
cr =c, |xPw 43)
rlpb

Extensive numerical data for the value of r, and c, for steel tanks filled with water have been
reported in Refs. 7 and 8.

V.  CONCLUSIONS

An analytical method for computing the dynamic response to earthquakes for tanks filled
with a liquid of nonuniform density is presented. The response quantities examined include the
impulsive component of the hydrodynamic pressure, base shear and moments. Unlike the cases
of tanks containing a liquid of uniform density in which the response is controlled by one
parameter, H/R, the response of tanks containing a liquid of nonuniform density is controlled by
the parameters, H/R, p/p,, and the density variation along the liquid depth. In the study
presented herein, the variation functions are assumed to be either a linear or a cosine function.
The results show that the response is not sensitive to the detailed density variation along the
liquid depth. This study also shows that the response for tanks filled with a liquid of nonuniform
density may be estimated by assuming that tank is filled with an equivalent uniform density
liquid in which the equivalent uniform density is determined such that the total liquid mass is
kept the same. Finally, a simple equation is derived for estimating the fundamental natural
frequency of the tank-liquid system, and simple approach for computing the response quantities
for flexible tanks is proposed.
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Table I. Convergence Table of Base Shear and Moments for p/p, = 0.25
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Table II. Convergence Table of Base Shear and Moments for p/p, = 0.5
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Table III. Comparison of Base Shear Coefficient, r,

Table IV. Comparison of Base Shear Coefficient, r,

Table V. Comparison of Base Shear Coefficient, r,
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