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DECENTRALIZED CONTROL OF UNCERTAIN SYSTEMS VIA SENSITIVITY
MODELS

D. A. Schoenwald
Instrumentation and Controls Division
Oak Ridge National Laboratory*

P. O. Box 2009
Oak Ridge, TN 37831-8066

Abstract

In this paper, we present a decentralized strategy for
optimal control of interconnected systems exhibiting
parametric uncertainty. First, we demonstrate that
gensitivity models for linear interconnected systems
can be generated at each subsystem using only locally
available information. Second, we present an optimal
control law that incorporates sensitivity functions in
the feedback path. The control scheme is completely
decentralized and is proposed as a means of making
the closed loop system less sensitive to parameter de-
viations. Finally, we give an example of an intercon-
nected system and show how this control strategy is
implemented.

I. Introduction

The use of sensitivity functions in control theory
to make the closed loop system less susceptible to
changes in plant parameters has been studied for sev-
eral decades. In particular, methods of generating
sensitivity functions such that they can be utilized
on-line in a control system have been extensively re-
searched. Sensitivity models are a means of generat-
ing these sensitivity functions from the nominal plant
model. However, very little effort has been spent in
generating sensitivity models for coupled subsystems
in a decentralized manner.

As an additional tool for decentralized control, it
is of interest to determine the feasibility of generat-
ing these models using only local signals for inter-
connected systems. That is, we wish to investigate
the possibility that the ith subsystem’s output sen-
sitivity function can be generated using only plant
signals from the ith subsystem. This is important if
one wants to use sensitivity functions in a decentral-
ized control environment. For instance, one could use
decentralized sensitivity functions for self-tuning con-
trol (tuning the gains of a control law when some of
the plant parameters are unknown) as is done in the
work of Hung [2].
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In this paper, decentralized sensitivity models are
suggested for robust optimal control of certain classes
of linear systems. Ultimately, the importance of this
paper is to show that any control law that utilizes
sensitivity functions (e.g. adaptive or optimal con-
trol laws) can be done in a decentralized framework.
Thus, the results of this paper could be very practical
provided one wishes to employ control laws that make
use of sensitivity functions.

II. Decentralised Sensitivity Models

Consider two interconnected MIMO linear systems.
The outputs, Y;, are of dimension p;, i = 1,2. The in-
puts, U;, are of dimension m;. The unknown parame-
ter vectors, a;, fi, 7, are of dimensions n;, r;, and ¢,
respectively. The transfer matrices, Q;, Wi, W;;, are
of compatible dimensions. All vectors and matrices
are functions of the Laplace Transform complex vari-
able, s. The transfer matrices, Q;, represent dynamic
feedback from the outputs to the inputs. The transfer
matrices, W;;, represent coupling terms between the
subsystems. The transfer matrices, Wj, represent the
primary dynamics between plant inputs U; and plant
outputs Y;.

The block transfer matrix of the entire system can
be obtained by writing input-output relationships as
follows

Y, = Wi(Ui - @iY1) + Wa(Uz - Q2Y3) (1)
Y, = Wi(Us —QsYs) +Wia(Uy — Qi1h). (2)

Ay = T+WiQ1—WauQall + WaQs] ' W12Q1 (3)
Ay = I+ W3Qy—Wia@ill+ WiQi] ' Wn Qa2 (4)
where I is the identity matrix, we obtain the input-

output description of the system (after some algebraic
manipulation)

[%]=[5 2% ®



with

Fiu = AW —WanQa(l + WaQa) 'Whi] (8)
Fi; = Arl[Wn - WaQ:a(I + W?Q?)_IWQ] (7)
Fa A;l[Wm - WiaQ: (I + WlQl)_lwﬂ (8)
Fin = A7 Wa-WuQi(I+WiQ) 'Wal. (9)

We are interested in output sensitivity vectors of the
system with respect to the unknown parameter vec-
tors, a;, fi, and ;. It is sufficient to study eensitivity
vectors of the first subsystem since the two subsys-
tems are symmetric as is easily observed.

We proceed with the sensitivity of Y; with respect
to a; which begins by utilizing (1)

8Y; 8F; oF
1 _ 9y o 13

(_9-(;1-; - 801.‘ 801.' U: (10)

where ay; is the ith component of the unknown pa-
rameter vector. Continuing with the analysis, one
obtains

0F; _ &8Q

which leads to

8Y; o

50—:" = —Fu'gaq—::(FnUl + Fi3U7) . (12)

Noting that the term in parentheses is merely (1), we
have the result

o o

— = —F Y] 13
day; "8ay; ! (13)
which is a completely decentralized result. The out-
put sensitivity vector depends only on the output sig-
nal itself plus some transfer matrices. The remain-
ing sensitivity functions can be obtained in a likewise
manner, but the analysis is omitted here for brevity
(see [4] for more details).

III. Decentralized Optimal Control via
Sensitivity Functions

It is now of interest to apply the above decentral-
ized sensitivity models to performance issues associ-
ated with decentralized control. In particular, we con-
cern ourselves with locally optimal control laws which
include sensitivity functions in the feedback loop as
a means of desensitizing the system from parameter
variations. The framework pursued here is that of lin-
ear subsystems with linear couplings similar to that of
[5) but utilizing sensitivity functions to address para-
metric uncertainty in an optimal manner. A version of
the centralized case appears in [1]. The performance

index consists of a sum of N local cost criterions where
N is the number of subsystems.
Formally, we have

N
z; = Ai(ai)zi + ZA.',‘Z,‘ + Bjui, i=1,...,N (14)
.
with z; € R™, u; € R™, and a; € Ry, where a; are
the vectors of unknown parameters. It is desired to
minimize the quadratic cost criterion

N oo
;o= Y [ G Qu+ ol R (15)
i=1 Y0
N
+ 3 M A )t (16)
i=1

via local state feedback where Q;,Si; are positive
semidefinite matrices, R; are positive definite matri-
ces, and \;; = '07?; la;=a= are the sensitivity vec-
tors associated with the ith subsystem with af the
nominal parameter values. As was demonstrated in
the previous section, the cross-sensitivity functions
Xij,J # i can be generated at the ith subsystem with
only local information needed.

The sensitivity models are described by the follow-
ing linear time-invariant differential equations

. HA; N

i = 5;::.-+A.-/\‘-.-+§A.',-,\.-,- (17)
i

Aij = A,‘)«.‘,'-i-ZAng.} (18)

A=l
k#j

which again demonstrate the decentralized nature of
pensitivity models for the system (14). Define the
augmented state vector

£ = [T A5T)T (19)
w.rhich leads to the full augmented state space descrip-
tion

i= Az + A+ Bu (20)
where z = [#] - ~-i'mT, A = block-diag [A"l . -/Lv],
A, = [jij], j # i, B = block-diag [él -~-I§N], and
w=[ul ok,

The performance criterion (16) can be re-expressed
in these new coordinates as

N oo
J= ):/o (s7 Qi + T Riwy) dt (21)
i=1

where §; = block-diag[Q; Sii Si;]. This is written in
the full state space as



'J = /0 = (iTés + u"Ru) dt (22)

where @ = block-diag [Q-l QN] and R =
block-diag [R; - - - Rn]. Note that Q and R will be poe-
itive semidefinite and positive definite, respectively, if
Q:,Sij and R; are positive semidefinite and positive
definite, respectively.

It is assumed that the decoupled subsystems

= Ai+ Bu (23)

are controllable, i.e., (A, B) are a controllable pair.
Thus, the cost criterion (22) can be minimized by
solving the linear quadratic regulator separately for
each subsystem. That is, let

u=—-Kz (24)

where K = block-diag[Ky---Kn]. These K; are
computed by solving the algebraic Riccati equation

ATP+PA-PBRI'BTP+Q=0 (25)

for the unique positive definite matrix P =
b.lock-diag[Plu-PN]. Because of the structure of
A, B,Q, R, the solution P will automatically be in
this block-diagonal form.

ith Subsystem N

ii, ij Sensitivity | Myyo Mg
Models

LQR Law

Figure 1: Decentralized optimal control with sen-
sitivity models.

The control law (24) is completely decentralized,
u = —K;%;, which means that each subsystem can be
regulated with only locally available information even
in the presence of parametric uncertainty. Indeed, it is
the use of locally generated sensitivity functions that
sets this strategy apart from others. Fig. 1 illustrates
this method.

IV. Example

We consider a system consisting of two inverted
penduli coupled by a spring subject to twe indepen-
dent torque inputs as shown in Fig. 2. Physically,
this system is analogous to two one-link manipulators
joined together by a string, cable, or other spring-like
medium. The deflections from vertical are assumed
to be small enough such that the gravity term can be
linearized. The equations of motion are [5]

me36, = mgli8, — ka(61 — 6;) + u (26)
m£§93 = mgl30; - ka’(ez - 91) + uj

where all parameters are defined in Fig. 2 except
for g which is the gravitational constant. The state
vector is chosen as z; = (8;,6;)7, the input vector
is u= (ul,ug)T, and the uncertain parameters are
a; = "- These parameters physically represent the
squares of the natural frequencies of oscillation of the
decoupled penduli. We assume some uncertainty from
their nominal values.

a
ST T FT 777 T/
Figure 2: Inverted penduli coupled by a spring.

Utilizing (17)-(18), the sensitivity vectors

. [ 0 1
An = Lg g]n"'[a'f—%"é- 0]'\”
. [ o 0],\
A = P ¢ e l]/\xa+[ ko’ 0]'\1(27)
| o3-25 0 s 0
Ay = noka’ 1]/\21+[12’ 0]/\22
_al—m—i’; 0 m 0
dag = _(1) g]”"’[a?—oﬁ’z (1]]4\22
. [ o 0],\
L%’ o | An

are generated. The augmented state vector Z is
formed as follows



v

- T
z= [‘1T Xfx '\'xrz 3;' '\3‘2 '\;‘1] (28)

which is 12th order. We choose ka®? = IN-m, mf} =
lkg-m?, mé = 0.5kgm?, o} = £ = 135, and af =
f; =2%.

The quadratic cost criterion is chosen such that all
states and sensitivity functions are weighted equally,
i.e., Q is a 12x12 identity matrix. Likewise, R is se-
lected to be a 2x2 identity matrix. Analysis simulated
on MATLAB solves the Riccati equation (25) and im-
plements the decentralized control strategy of the last
section. For comparison purposes, a decentralized de-
sign is carried out on the same system without using
sensitivity models. That is, the nominal parameter
values were taken as exact in the control design. The
uncertainties tested were 10% and 20%, respectively,
i.e., the true values were oy = 1.1, a3 = 2.2, and
a; = 1.2, ag = 2.4 for the two simulation runs. For
both designs, the controllability assumption is satis-
fied.

Table 1: Closed loop poles of simulation runs
with no uncertainty.

No sensitivity model | Sensitivity model
0.233%)1.258
-0.866£j0.5 -0.9244j0.582
No intercoanections -1.414 -1.876, .1.058
-1.414 -0.23+j1.206
1,196 j0.41
.1.79, -1.038
-2.957%)1.%2
-1.116%j1.207 -0.534j1.724
Iaterconnections .2.329 -0.1364j1.259
0.0 -0.1824}1.04
-0.224)0.301
-1.18940.003

Table 2: Closed loop poles of simulation runs
with 20% uncertainty.

No sensitivity model Sensitivity model

0.244)1.459

0.109 -0.1734j0.841

No isterconnections -1.84 -3.7386, -3.707
0.13% -0.2814j1.563

.2.963 .0.11340.908

-1.186 -1.187

-3.45%)0.95%9

-3.11¢ -0.1834j1.784

Iaterconnections 0.601 -0.1884j1.341
-0.871 -0.083£j0.979

1177 -0.1631j0.669

.1.18840.001

The results are summarized in Tables 1-2. The first
column of numbers of each table represent the closed
loop poles for the 4th order decentralized design with-
out sensitivity models. The second column of num-
bers of each table represent the closed loop poles for
the 12th order decentralized design with sensitivity
models. The first row of each table corresponds to
the case of ignoring the interconnection terms whereas
the second row includes these terms in the closed loop
analysis. The results show that the lower order design
without sensitivity models fails to stabilize the closed
loop system once inaccuracies in the parameters are

introduced. In fact, even with no uncertainty in the
parameters, one of the closed loop poles is at the ori-
gin once the coupling matrix is included. As the un-
certainty is increased this pole moves further into the
right half plane. But for both cases of uncertainty (0,
20%), the higher order design with sensitivity mod-
els maintains closed loop stability. The price paid is
a higher order systemn, but the gaiu is a significant
amount of stability robustness with respect to para-
metric uncertainty. Of course, it must be noted that
the true optimal cost J° will be infinite for all three
cases for the lower order design whereas it remains
finite for the higher order design.

Finally, some comments are in order concerning the
relationship of the above problem to the question of
transient stability in power systems. The above sys-
tem is mathematically similar (though not exact) to a
two-machine swing equation model of a power system.
The equations for a single machine are quite similar to
that of a simple pendulum as noted in [3]. Adding a
second machine results in coupling close to the spring
connection in the above example. The forces exerted
on the penduli correspond to the electrical power de-
livered by the machines. Thus, some transient stabil-
ity results can be studied from this example, however
in a reahstic sctting, constraints would have to be im-
posed on the inputs to the machines.
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