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DECENTRALIZED CONTROL OF UNCERTAIN SYSTEMS VIA SENSITMTY
MODELS

D. A. Schoenwald O. ()z_ner
Instrumentation and Controls Division Department of Electrical Engineering

Oak Ridge National Laboratory _ The Ohio State Uajversity
P. O. Box 2009 2015 Nell Avenue

Oak Ridge, TN 37831-8066 Columbus, OH 43210-1272

Abstract In this paper, decentralized sensitivity models are
suggested for robust optimal control of certain classes

In this paper, we present a decentralized strategy for of linear systems. Ultimately, the importance of this

optimal control of interconnected systems exhibiting paper is to show that any control law that utilizes
parametric uncertainty. First, we demonstrate that sensitivity functions (e.g. adaptive or optimal con-
sensitivity models for linear interconnected systeme trol laws) can be done in a decentralized framework.
can be generated st each subsystem using only locally Thus, the results of this paper could be very practical
available information. Second, we present an optimal provided one wishes to employ control laws that make
control law that incorporates sensitivity functions in use of sensitivity functions.

the feedback path. The control scheme is completely
decentralized and is proposed as a means of making
the closed loop system less sensitive to parameter de- II. Decentralized Sensitivity Models
viations. Finally, we give an example of an intercon-
nected system and show how this control strategy is

Consider two interconnected MIMO linear systems.

implemented. The outputs, l_, are of dimension pi, i - 1, 2. The in-
puts, U_, are of dimension m_. The unknown parame-

L Introduction ter vectors, c_, _, 7_, are of dimensions n_, r_, and q_,
respectively. The transfer matrices, Qi, Wi, Wij, are
of compatible dimensions. Ali vectors and matrices

The use of sensitivity functions in control theory are functions of the Laplace Transform complex vari-
to make the closed loop system less susceptible to able, s. The transfer matrices, Q_, represent dynamic

changes in plant parameters has been studied for eev- feedback from the outputs to the inputs. The transfer
eral decades. In particular, methods of generating matrices, Wij, represent coupling terms between the
sensitivity functions such that they can be utilized subsystems. The transfer matrices, Wt, represent the
on-line in a control system have been extensively re- primary dynamics between plant inputs Ui and plant
searched. Sensitivity models are a means of generat- outputs Y_.

ing these sensitivity functions from the nominal plant The block transfer matrix of the entire system can
model. However, very little effort has been epent in be obtained by writing input-output relationships as

generating sensitivity models for coupled subsystems follows
in a decentralized manner.

As an additional tool for decentralized control, it YI - WI(UI - QIYI) + W21(U_ - Q2Y2) (I)
is of interest to determine the feasibility of generat- Y_ = W_(U_ - Q_Y2) + Wx2(UI - QxYI). (2)

ing these models using only local signals for inter-
connected systems. That is, we wish to investigate Letting
the possibility that the ith subsystem's output sen- A1 = I + W1QI - W21Q2[I + W_Q_]-IWI_(_I (3)
sitivity function can he generated using only plant
signals from the ith subsystem. This is important if A: - I + W_Q2 - Wx2Qx[l + WIQI]-IW_IQ2(4)
one wants to use sensitivity functions in a decentral- where I is the identity matrix, we obtain the input-

ized control environment. For instance, one could use output description of the system (after some algebraic
dc_entralized sensitivity functions for self-tuning con- manipulation)

trol (tuning the gains of a control law when some of

- the plant parametem are unknown) as is done in the [Y, ] [Fll FI, I[U11 (5)work of Hung [2]. Y_ -- F_ F_

* Managed by Martin Marietta Energy
Systems, Inc., for the U.S. Department
of Energy under contract DE-AC05-840R21400.



with index consists of a sum of N local cost criterions where
N is the number of subsystems.

Fll = A'_[WI - W_IQ2(I + W2Q2)-'WI_] (6) Formally, we have

F12 = Ai"l[W21- W21Q2(I + W2Q2)-1W2] (7) Iv

f_l = A_I[WI2- WI2Ql(I + WIQ1)-IW1] (S) _, = A,(a,)z, + ZA'izl . B,u,, i = 1,...,N (14)

F2_ = A_'I[W2 - WI2QI(I + W1Q1)-Iwal] . (9) j#_

We are interested in output sensitivity vectors of the with zi E R _', ui E Rm', and ai E Rp, where ai are

system with respect to the unknown parameter vec- the vectors of unknown parameters. It is desired to
tots, o_, _i, and 7i. lt is sufficient to study sensitivity minimize the quadratic cost criterion

vectorsof the firstsubsystemsincethe two subsys- _' oo

tents are symmetric as is easily observed, j = _/, (zTQizi + uT/_ui (15)We proceed with the sensitivity of YI with respect _=1
to al which begins by utilizing (1) N

_ __ DFI2u + ZA_SiJA'j)dt (16)
OY1 OF11Ul + _ 2 (10) i=1Oal_- Oali

via local state feedback where Qi,S_j sre positive
where ali is the ith component of the unknown pa- semidefinite matrices, R_ are positive definite matri-

rameter vector. Continuing with the analysis, one cea, and Aij = _sa, ]a,=a'_ are the sensitivity, vec-
obtains tots associated with the ith subsystem with a i the

OF12 _QI FI_ (11) nominal parameter values. As was demonstrated in
=-Fll @ali the previous section, the cross-sensitivity functions

A_j, j ¢ i can be generated at the ith subsystem with
which leads to only local information needed.

The sensitivity models are described by the follow-
OY1 -Ell oQ1 (FllV1 F12Uu) (12)
Ool--_"= _ + " ing linear time-invariant differential equations

N

OA_ (17)Noting that the term in parentheses is merely (1), we A_i = _z_ + A_Ai_ "+__AijA_j
have the result Oa_ ,#=1

j#i

= _Y1 (13) (18)

which is a completely decentralized result. The out- *#:

put sensitivity vector depends only on the output sig- which again demonstrate the decentralized nature of
nal itself plus some transfer matrices. The remain- sensitivity models for the system (14). Define the

ing sensitivity functions can be obtained in a likewise augmented state vector
manner, but the sualysis is omitted here for brevity

(see [41 for more details). _, .- [zT ,_ )_T]T , (19)

which leads to the full augmented state space descrip-
tion

]:II. Decentralized Optimal Control via
Sensitivity Functions z = A_ + Acz +/_u (20)

where _ = [_ .. "_T] T .4 = block-diag IAn.. "ANl

ized sensitivity models to performance issues associ- Ac = A_j , J ¢ i, /) = block-cling /_... ]_/v , and
ated with decentralized control. In particular, we con- u = IUS... u_].
cern ourselves with locally optimal control laws which The performance criterion (16) can be re-expressed

include sensitivity functions in the feedback loop as in these new coordinates as
a means of desensitizing the system from parameter N oo

variations. The framework pursued here is that oflin- J = Z f0 (_Qi_, + u_R_u,)dt (21)ear subsystems with linear couplings similar to that of i=_

[5] but utilizing sensitivity functions to address para-
metric uncertainty in an optimal manner. A version of where (_i = block-cling [Qi Sii Si1]. This is written in
the centralized case appears in [1]. The performance the full state space as



f0=- a (22) iv. E,-mple

where {_ = block-diag[Q,...QN] and R = We consider a system consisting of two invertedpenduli coupled by a spring subject to two indepen-
block-diag IRl "" RN]. Note that _ and R will be pos- dent torque inputs as shown in Fig. 2. Physically,
itive semidefinite and positive definite, respectively, if this system is analogous to two one-link manipulators
Qi,S 0 and R/ are po&tire semidefinite and positive joined together by a string, cable, or other spring-like
definite, respectively, medium. The deflections frorr/vertical are assumed

lt is assumed that the decoupled subsystems to be small enough such that the gravity term can be
linearized. The equations of motion are [5]

+ + h. (23)

are controllable, i.e., (A,/_) are a controllable pair. ntt_01 = rngttOl- ka2(01- 02)+ ul (26)
Thus, the cost criterion (22) can be minimized by m/_#2 = mgt202- ka2(O_- 01)+ u2

solving the linear quadratic regulator separately for where ali parameters are defined in Fig. 2 except
each subsystem. That is, let for g which is the gravitational constant. The state

u =-Ki (24) vector is chosen as zl = (01,01)T, the input vector
irl U -" (Ul,U2) T, and the uncertain parameters are

where K - block-diag [K1..-KN]. These Ki are ai = _. These parameters physically represent the
computed by solving the algebraic Riccati equation iquares of the natural frequencies of oscillation of the

decoupled penduli. We a_ume some uncertainty from
_T p + p_ _ pftR-l_T p + _ - 0 (25) their nominal values.

m I

for the unique po6itive definite matrix P = IlUl_ I_ mblock-diag [PI"" PA']. Because of the structure of

.4,/_,0, R, the solution P will automatically he in II //- ]u2_

this block-diagonal form. 101_// I_ /

u > ithSubsystcm ._xi _//// /

Figure 2: Inverted penduli coupled by a spring.

ii, ij Seasitivity _'_, _'tj
Models - Utilizing (17)-(18), the sensitivity vectors

[001I 0 '11 0 zt+ a_-_ 0 All

t [oo1LQRLaw. + _ 0 A12

sitivity models, a_- _ 0 Al2+ _t°' 0

The control law (24) is completely decentralized, A21 [ 0 11 I 0 O]
= o_ A21+ ko2 0 A22

ou = -KiWi, which means that each subsystem can be a_ - t

in the presence of parametricuncertainty. Indeed, it is A_2 = 0 0 ko:' A2_
the use of locally generated sensitivity functions that 1 0 ta + a_ - _ 0

setsthisthismethod.Strategyapart from others. Fig. I illustrates + I.[_0 00aiA21

are generated. The augmented state vector i is
formed as follows



£ - [z_ A_l A_2 z_ A_2A_I]T (28) introduced. In fact, even with no uncertainty in the
parameters,one ofthe cloeedlooppolesisattheori-

which is12thorder.We chooseka2= IN.m, rrd_t= ginonce thecouplingmatrixisincluded.As theun-

Ikg.m_,rrd]= 0.Skg.m2,a_'= _ = I_, and a_ = certaintyisincreasedthispolemove, furtherintothe

a_ - 2_ righthalfplane.But forboth casesofuncertainty(0,f2 w

The quadraticco,tcriterionischo6ensuchthatdl 20%),the higherorderdesignwithsensitivityrood-

statesand sensitivityfunctionsareweightedequally, elsm_int_dnsclosedloopstability.The pricepaidis

i.e., ¢_ is a 12x12 identity matrix. Likewise, R is a_- a higher order system, but the gait, is a significant
lected to be a 2x2 identity matrix. Analysis simulated amount of stability robustness with respect to para-
on MATLAB solves the Riccati equation (25) and ira- metric uncertainty. Of course, it must be noted that
plements the decentralized control strategy of the last the true optimal cost jo will be infinite for ali three
section. For comparison purposes, a decentralized de- cases for the lower order design whereas it remains
sign is carried out on the same system without using finite for the higher order design.
sensitivity models. That is, the nominal parameter Finally, some comments are in order concerning the
values were taken as exact in the control design. The relationship of the above problem to the question of
uncertainties tested were 10% and 20%, respectively, trazmient stability in power systems. The above sys-
i.e., the true values were cq = 1.1, c_2 = 2.2, and tem is mathematically similar (though not exact) to a
c_1 = 1.2, ct2 = 2.4 for the two simulation runs. For two-machine swing equation model of a power system.
both designs, the controllability assumption is saris- The equations for a single machine are quite similar to
fled. that of a simple pendulum as noted in [3]. Adding a

second machine results in coupling close to the spring
connection in the above exsanph. The forces exertedTable 1: Closed loop poles of simulation runs

with no uncertainty, on the penduli correspond to the electrical power de-
No .¢a.idVit I model , Sea,ltivit7 m.odel' livered by the machines. Thus, some transient stabil-

.0._33_l.ass ity results can be studied from this example, however.0.s66_o.s .o._0.s.2
so i._.,co,,._,o,. .1._, ._.sT,, ._.o_ in a real_tic setting, constraints would have to be im-

-1.414 -0,33'4"j 1.20_
._._s_o,_ posed on the inputs to the machines.
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