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. Abstract have a small sample size. Our experience with GPR is
Given muitipie images of the surface of the earth preliminary at this time, so this paper focuses on the

from dual-band infrared sensors, our system fuses in- fusion of images from dual-band infrared sensors.
formation from the sensors to reduce the effects of clut-
ter and improve the ability to detect buried or surface
target sites. Supervised learning pattern classifiers (in. 2 Experiments and Measurements
cluding neural networks) are used. We present results Our data were measured at the Lawrence Livermore
of ezperiments to detect buried land mines from real National Laboratory. The soil is California adobe clay,
data, and evaluate the usefulness of fusing information densely populated with assorted sizes of gravel. Six
from multiple sensor types. The novelty of the work months ago, eighteen roughly identical, 1- foot diam-
lies mostly in the combination of the algorithms and eter holes were dug in three 16 ft. by 16 ft. clay pits.
their application to the very important and currently One of two kinds of objects (plastic-cased mine surro-
unsolved problem of detecting buried land mines from gates and metal-cased mine surrogates) was placed at
an airborne standoff platform, the same depth in each of nine holes. One additional

pit contained surface mines. Ali holes were refilled.
1 Introduction Tailings or spoils consisting of small clay clods, and

The goal of this work is to detect and locate buried 1/2 to 1 1/2 inch rocks surround some of the holes.
and surface objects, given multiple registered images The test pits are viewed by infrared sensors mounted
of regions of the earth, obtained from a suite of var- on a 40-foot tower adjacent .to the pits. The eigh-
ious remote sensors. Past research has shown that it teen holes are easily visible on site, but the IR image
is extremely difficult to distinguish objects of interest resolution prevents human visual identification of the
from background clutter in images obtained from a precise hole locations. The IR images of the mines
single sensor. It is hypothesized, however, that infor- are often much larger than the actual holes, because
mation fused from a suite of various sensors is likely to they indicate the disturbed soil from the tailings or
provide better detection reliability, because the suite adjacent ground. ".'! J
of sensors detects a variety of physical properties that
are more separable in feature space. The materials

. surrounding the objects of interest can include natu- 3 Data Fusion and Automatic Target
ral materials (soil, rocks, foliage, water, holes made
by animals and natural processes, etc.) and artifacts Recognition
(objects made of metal, plastic and other materials). We use a supervised learning pattern recognition

. The sensor suite currently includes two infrared sen- approach to detecting the metal and plastic land mines
sots (5 micron and 10 micron wavelengths) and one buried in soil. The overall process is depicted in Fig. 1
ground penetrating radar (GPR) of the pulsed syn- and consists offour main parts: Preprocessing, feature
thetic aperture type. The detection system uses ad- extraction, feature selection, and classification. These
vanced algorithms from the areas of automatic target parts are used in a two step process to classify a subim-
recognition (ATR), computer vision, signal and image age. The first step, referred to as feature selection, de-
processing, and information fusion. The system uses termines the features ofsub-images which result in the
both physical principles and image processing for lm- greatest _parability between the classes. The second
age interpretation, step, image labeling, uses the selected features and the

This work is application research in progress. The decisions from a pattern classifier to label the regions
individual algorithms used are advanced, but mostly in the image which are likely to correspond to buried
known, and the novelty of the work lies in the com- mines. We process images using a SUN Sparc 2 and
bination of the algorithms and their application to the VISION software package written at LLNL (the
the very difficult and important problem of detecting primary author is Jose E. Hernandez). VISION is an
buried land mines. To date, no successful operational object-oriented package, and it runs under Franz Al-
system exists for airborne standoff mine detection. At legro CL, which implements the Common Lisp Object
the current time, our data set is limited, in that we System (CLOS).
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Figure 1: Fusion/Automatic Target Recognition Depend Heavily Upon Proper Image Representation.
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3.1 Image Preprocessing Table 1: Features selection results.
Registration: The multiple images of the scenes Probability

do not, in general, superimpose correctly, due to fun- Time Probability ofdamental sensor differences (scalings, fields of view,
etc.) and sensor geometric distortion (barrel distor- of "Optimal" of False
tion, etc.). We manually identify fiducial markers on Day feature set detection alarm
the ground to be used as control points for a perspec- stand, dev. (long)
tive warping algorithm, which performs translation, Day skewness (long) 91.67 1.12
rotation, scaling and perspective corrections to the ira- kurtosis (long) (22/24) (2/178)
ages [1]. We obtain an ensemble of corrected images mean (short)
which can then be processed pixel-wise with the as- mean (long) 100.() 0.00
surance that p_xels in the various images correspond Night stand, dev. (long) (21.21) (0.172)

"' very closely with same point on the surface.
Normalization: The images are normalized with

respect to the background by subtracting the mean size, we use the "hold one out" method for training
"- of the background from the images and dividing this and testing.

result by the standard deviation of the background.
Tile Cutting: We use ground truth information 4 Supervised Learning Results-Mines

about the test site to manually cut out tiles containing
sub-images of mines, filled holes, clutter, background, vs. Background
fiducial markers, and surface mines. These sub-images In this experiment, we define a two-class problem.
then become the samples used for pattern classifica- The first class (called "Mines") corresponds to buriedmines and filled holes. Both have similar Ilt charac-
tion. teristics, because IR detects surface effects, and both
3.2 Feature Extraction have disturbed soil. The second class (called "No

Given preprocessed sub-images, we compute a vec- Mines") corresponds to background, clutter, fiducial
tor of statistical features from the pixel values in the markers, and surface ro'rees (only buried mines were

of interest in these tests). Image tiles were hand se-sub-images. Typical features include amplitude his-
togram features and texture features [2, 3]. Currently, lected as described in section 3.0. Additionally, day-
we use only the amplitude histogram features (mean, time and nighttime images were processed in an at-
standard deviation, skewness, kurtosis, energy and en- tempt to determine whether the time of day affected
tropy), the probability of detecting mines.

For the daytime images, 24 "mine" samples and 178
3.3 Feature Selection "no mine" samples were used. For the nighttime ira-

An important goal is to select the subset of features ages, 21 "mine" samples and"172 "no mine" samples
that contribute most to correct classification. First, were used. The samples are of size 21 by 21 pixels.
we wish to minimize the computational complexity These samples were then run through the feature se-
of our processing algorithms, so they can eventually lection and classification process using the "hold one
be implemented in "real time." Second, we wish to out" technique, and the probability of detection was
determine which sensors are the most important for computed for each of the 4095 possible feature sets.
classification. By rank ordering the features accord- Table 1 summarizes the results.
ing to their importance for classification, are able to The probability of detection is high and the prob-
eliminate from consideration sensors which do not con- ability of.false alarm is low, indicating very successful
tribute significantly. Feature selection is typically ac- classification. The night-time measurements provided
complished by computing a distance measure which is better performance, as expected. Previous research [7-

• the sum of probabilistic distances between ali pair-wise 9] shows that night-time IR measurements generally
• combinations of classes [3,4]. Commonly used algo- have higher signal-to-noise ratio than daytime mea-

rithms include Branch and Bound, Sequential Forward surements.
Selection, and Sequential Backward Selection [3,4]. Image Labeling Results: The next step is to

For our initial problem, e chose to use probability perform the classification using the features specified
of detection as the feature selection criterion. Our fea- in the previous section over the entire image. For this
ture vectors are of length twelve, because we use six process, a feature vector was generated for subimages
histogram features per sensor and we use two sensors, centered at every pixel in the image and classified.
This means there are only 4095 (212 - 1) possible fea- The result is an image with "mine" and "no mine"
ture subsets, so we used a "brute force" search of ali pixels marked. The images produced by this process
combinations to see which subset provided the maxi- are shown in Figs. 2 and 3 for daytime and nighttime
mum probability of detection, images, respectively. These figures show the results

of processing only one image, but it should be noted
3.4 Classification that ali the images produced similar results. In these

In our studies, we have used a variety of classifiers, images, the square outline in the long and short wave-
including the nearest neighbor classifier [4], the back- length images indicate where "mines" actually exist,
propagation neural network [5], and the probabilistic and the white regions in the labeled image indicate
neural network [6]. Because we have a small sample were the classifier selected "mine" pixels. The other



noticeable circular areas of the image which appear at
regular intervals are fiducial marks which were used in
the image pre-processing.

These results appear very good, especially for the
night time images. The classifier detected ali the
mines accurately. The results for the daytime image
are also very good, however slight inaccuracies do ex-
ist. One reason for these may be the fact that there
tends to be more thermal clutter duringthe daytime
than at night. Fortunately, the mislabeled regions
in the daytime images are small, and may be elimi-
nated by a rule-based process (using shape and size

"' constraints).

°

5 Supervised Learning Results- Mul-

tiple Class Problems

In this experiment, we investigated multiple-class
problems, in which the classes are defined as follows:
Class BG: Background, Class O: Filled hole, Class I:
Plastic Mine, Class I_: Metal Mine, and Class M:
Mixed,plastic or metal mine (union of the two sets).
One concern might be that the classifier might tend
to see ali objects as either a hole or not a hole. If that
were true, then it's discrimination capability would be
limited. To test our concerns, we designed computer
experiments in which we ask the classifier to detect
the differences among the classes listed above• Fig-
ure 4 shows the IR, images used in the experiments•

Our studies indicate that given images from a single
Ilq.sensor, mines and filled holes cannot be separated
by human eye or by a neural network. The goal of this
test is to see if the multiple classes can be separated
using two IR bands and two different classifiers; the
probabilistic neural network (PNN) and the k-nearest
neighbor (kNN) classifier. The PNN converges to the
Bares oi_.imal classifier as the sample size becomes
large. The kNN classifier is simple, accurate and com-
monly used, so it provides us with a benchmark for
comparison. We also used a backpropagation neural

• network (BPNN), but we did not show its results, be-
cause in many cases, it did not converge weil.

• . We used the processing method described in sec-
tion 3.0, except that after doing feature selection, we
decided to use ali of the histogram features for both
IR bands. The results are summarized in Table 2.The
PNN performs very weil, without the false minima
problem of the BPNN. PNN also outperforms kNN,
in general, for this problem. Both PNN and kNN out- Figure 2: Daytime IR images of the clay pit used in
perform human visual inspection. Section 4. The bottom image is from the long wave-

Observations: (1) The four class problem shown length (10 micron) sensor. The center image is from
in Table 2 indicates that given dual-band IR measure- the short wavelength (5 micron) sensor. The squares
ments, the classifiers can detect the differences among indicate ground truth for the l_:ations of buried metal
plastic mines, metal mines and holes. (2) Compar- mines and filled holes. The uppermost image is the
ing the four class problem with the three class prob- labeled image, showing regions classified as a mine.
lem, we see that when the plastic and metal mines are The vertical and horizontal lines are artifacts from the
mixed (three class problem) the classifiers have more ocanning process used to publish the images in this pa-
difficulty separating the classes than when the classes per.
contain clearly different objects (four class problem).



Table 2: PNN and kNN performance on six features from dual-band lR imagery of Clay (see Fig. 4).
Tile PNN NN Tile-
kind BG 0 1 2 M Pa BG 0 1 2 M Pa size
BG 47 l 0 0 - .98 ,i7 I -_1 0 - .98 "'
0 0 16 1 1 - .89 1 12 3 2 - .67
1 0 0 6 0 - 1.0 0 4 2 0 - .33 40x40
2 0 0 0 12 - 1.0 0 2 0 I0 - .83,,

BG 47 1 - - 0 .98 47 I - - 0 .98 -
0 0 16 - - 2 .89 1 13 - - 4 .72
M 0 2 - - 16 .89 0 4 - - 14 .78-- =

BG 48 0 0 0 - 1.0 48 0 0 0 - 1.0
". 0 1 11 3 3 - .61 1 11 3 3 - .67

1 1 4 1 1 - .67 0 3 2 1 - .33 20x20
2 0 1 0 II - .92 0 2 O I0 - .83

•. BG 48 0 '- - 0 1.0 48 '0 - - 0 1.0 --
0 1 12 - - 5 .67 0 13 - - 4 .72

M 0 2 - ,.,7 16 .89 0 6 . 7 - 12 .67

6 Ground Penetrating Radar and References
Other Sensors [1] G. Wolberg, Digital Image Warping, IEEE Com-

We have preliminary results with ground pen_;trat- puter Society Press, 1990.ing radar (GPR) of the pulsed, synthetic aperture
type, operating in the 200 MHz to 1 GHz range with [2] W.K. Pratt, Digital Image Processing, 2nd Edi-tion, Wiley, pp.559-561.two dipole antennas. It viewed our test pits from

about 14 ft. elevation and 19 degrees look angle from [3] R.M. Welch, K. Kuo, S.K. Sengupta , "Cloud
horizontal. As expected, the GPR images show strong and Surface Textural Features in Polar Regions",
signatures of metal mines, but very weak or nonexis- IEEE Trans. Geoscience and Remote Sensing,
tent signatures of plastic mines. The sample size is ex- vol. 28, No. 4, pp. 520-528, July 1990_
tremely small, so we choose to not report the specifics

of the preliminary results at this time. However, we [4] T.Y. Young and K.S. Fu, Handbook of Pat-
are encouraged by the fact that for metal mines in tern Recognition and Image Processing, Aca-
some scenarios, while the IR images are weak and in- demic Press, 1986.
distinguishable by eye from background and clutter,
the GPR images are very strong. We are therefore [5] R.P. Lippmann, "An Introduction to Computing
hopeful that the ATR system using fused IR and GPR with Neural Nets," IEEE ASSP Magazine, April,
images will outperform the system using IR images 1987, pp: 4-22.
only. Future work will include investigating the use of : J "IL . .

surface measurements from visible, laser reflectance, [6] D.E. Specht, "Frobabdtsttc Neural Networks,"
near IR and UV sensors to help separate surface ef- Neural Networks, Pergamon Press, Vol. 3, pp.
fects from the effects of buried objects. 109-118, 1990.

7 Discussion [7] N.K. Del Grande, G.A. Clark, P.F. Durbin,

Supervised learning pattern recognition techniques D.J. Fields, J.E. Hernandez, and R.J. Sherwood,
'" perform well in detecting buried land mines from fused "Buried Object Remote Detection Technology for

dual-band IR images. Future work includes the ac- Law Enforcement, SPIE Orlando 91 Symposium,
quisition of a much larger data set, including IR and Orlando, Florida, April 1-5, 1991.
GPR measurements. We also plan to further incor-
porate image segmentation algorithms and rule-based [8] G.A. Clark, ,I.E. Hernandez, N.K. Del Grande,

• R.J. Sherwood, S-Y Lu, and P.F. Durbin,
processing into the preprocessing step, and use tex- "Computer Vision for Locating Buried Objects,"
ture features. Real-time implementations and system Twenty-Fifth Annual Asilomar Conference on
integration for airborne platforms will follow. Signals, Systems, and Computers, Pacific Grove,
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• Figure 4: IR images of three clay pits used in three-
and four-class PNN and kNN classification. The
dark squares mark the locations of the nine buried
mines. The nine other light, bright, circular spots sre

Figure 3: Nighttime IR images of the clay pit used in filled holes. The dark spots in the corners of images
Section 4. The bottom image is from the long wave- are the fiduciais used to register images. The other
length (10 micron) sensor. The center image is from smaller dark marks arranged in geometrical patterns
the short wavelength (5 micron) sensor. The squares are markers. The images are day, long wavelength
indicate ground truth for the location of buried metal images. Short wavelength images look similar, as do
mines and filled holes. The uppermost image is the night images.
labeled image, showing regions classified as a mire.
The vertical and horizontal lines are artifacts from the
scanning process used to publish the images in this pa-
per.
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