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Abstract

Given multiple images of the surface of the earth
from dual-band infrared sensors, our system fuses in-
formation from the sensors to reduce the effects of clut-
ter and improve the ability to detect buried or surface
target sites. Supervised learning pattern classifiers (in-
cluding neural networks) are used. We present results
of ezperiments to detect buried land mines from real
data, and evaluate the usefulness of fusing information
from multiple sensor types. The novelty of the work
lies mostly in the combination of the algorithms and
their application to the very important and currently
unsolved problem of detecting buried land mines from
an airborne standoff platform.

1 Introduction

The goal of this work is to detect and locate buried
and surface objects, given multiple registered images
of regions of the earth, obtained from a suite of var-
ious remote sensors. Past research has shown that it
is extremely difficult to distinguish objects of interest
from background clutter in images obtained from a
single sensor. It is hypothesized, however, that infor-
mation fused from a suite of various sensors is likely to
provide better detection reliability, because the suite
of sensors detects a variety of physical properties that
are more separable in feature space. The materials
surrounding the objects of interest can include natu-
ral materials (soil, rocks, foliage, water, holes made
by animals and natural processes, etc.%‘ and artifacts

objects made of metal, plastic and other materials).

he sensor suite currently includes two infrared sen-
sors (5 micron and 10 micron wavelengths) and one
ground penetrating radar (GPR) of the pulsed syn-
thetic aperture type. The detection system uses ad-
vanced algorithms from the areas of automatic target
recognition (ATR), computer vision, signal and image
processing, and information fusion. The system uses
both physical principles and image processing for im-
age interpretation.

This work is application research in progress. The
individual algorithms used are advanced, but mostly
known, and the novelty of the work lies in the com-
bination of the algorithms and their application to
the very difficult and important problem of detecting
buried land mines. To date, no successful operational
system exists for airborne standoff mine detection. At
the current time, our data set is limited, in that we

have a small sample size. Our experience with GPR is
preliminary at this time, so this paper focuses on the
fusion of images from dual-band infrared sensors.

2 Experiments and Measurements

Our data were measured at the Lawrence Livermore
National Laboratory. The soil is California adobe clay,
densely populated with assorted sizes of gravel. Six
months ago, eighteen roughly identical, 1- foot diam-
eter holes were dug in three 16 ft. by 16 ft. clay pits.
One of two kinds of objects (plastic-cased mine surro-
gates and metal-cased mine surrogates) was placed at
the same depth in each of nine holes. One additional
pit contained surface mines. All holes were refilled.
Tailings or spoils consisting of small clay clods, and
1/2 to 1 1/2 inch rocks surround some of the holes.

he test pits are viewed by infrared sensors mounted
on a 40-foot tower adjacent to the pits. The eigh-
teen holes are easily visible on site, but the IR image
resolution prevents human visual identification of the
precise hole locations. The IR images of the mines
are often much larger than the actual holes, because
they indicate the disturbed soil from the tailings or
adjacent ground. oo

3 Data Fusion and Automatic Target
Recognition

We use a supervised learning pattern recognition
approach to detecting the metal and plastic land mines
buried in soil. The overall process is depicted in Fig. 1
and consists of four main parts: Preprocessing, feature
extraction, feature selection, and classification. These
parts are used in a two step process to classify a subim-
age. The first step, referred to as feature selection, de-
termines the features of sub-images which result in the
greatest separability between the classes. The second
step, image labeling, uses the selected features and the
decisions from a pattern classifier to label the regions
in the image which are likely to correspond to buried
mines. We process images using a SUN Sparc 2 and
the VISION software package written at LLNL (the
primary author is Jose E. Hernandez). VISION is an
object-oriented package, and it runs under Franz Al-
legro CL, which implements the Common Lisp Object
System (CLOS).
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3.1 Image Preprocessing

Registration: The multiple images of the scenes
do not, in general, superimpose correctly, due to fun-
damental sensor differences (scalings, fields of view,
etc.) and sensor geometric distortion (barrel distor-
tion, etc.). We manually identify fiducial markers on
the ground to be used as control points for a perspec-
tive warping algorithm, which performs translation,
rotation, scaling and perspective corrections to the im-
ages [1]. We obtain an ensemble of corrected images
which can then be processed pixel-wise with the as-
surance that pixels in the various images correspond
very closely with same point on the surface.

Normalization: The images are normalized with
respect to the background by subtracting the mean
of the background from the images and dividing this
result by the standard deviation of the background.

Tile Cutting: We use ground truth information
about the test site to manually cut out tiles containing
sub-images of mines, filled holes, clutter, background,
fiducial markers, and surface mines. These sub-images
then become the samples used for pattern classifica-

tion.

3.2 Feature Extraction

Given preprocessed sub-images, we compute a vec-
tor of statistical features from the pixel values in the
sub-images. Typical features include amplitude his-
togram features and texture features [2, 3]. Currently,
we use only the amplitude histogram features (mean,
standard deviation, skewness, kurtosis, energy and en-

tropy).

3.3 Feature Selection

An important goal is to select the subset of features
that contribute most to correct classification. First,
we wish to minimize the computational complexity
of our processing algorithms, so they can eventually
be implemented in “real time.” Second, we wish to
determine which sensors are the most important for
classification. By rank ordering the features accord-
ing to their importance for classification, are able to
eliminate from consideration sensors which do not con-
tribute significantly. Feature selection is typically ac-
complished by computing a distance measure which is
the sum of probabilistic distances between all pair-wise
combinations of classes [3,4]. Commonly used algo-
rithms include Branch and Bound, Sequential Forward
Selection, and Sequential Backward Selection [3,4].

For our initial problem, e chose to use probability
of detecticn as the feature selection criterion. Our fea-
ture vectors are of length twelve, because we use six
histogram features per sensor and we use two sensors.
This means there are only 4095 (2!2 — 1) possible fea-
ture subsets, so we used a “brute force” search of all
combinations to see which subset provided the maxi-
mum probability of detection.

3.4 Classification

In our studies, we have used a variety of classifiers,
including the nearest neighbor classifier {4], the back-
propagation neural network [5], and the probabilistic
neural network [6]. Because we have a small sample

Table 1: Features selection results.

Probability

Time Probability of
of “Optimal” of False
Day feature set detection alarm

stand. dev. (long)

Day skewness Slong) 91.67 1.12

kurtosis (long) (22/24) (2/178)
mean (short)

mean (long) 100.0 0.00

Night | stand. dev. (long) (21.21) (0.172)

size, we use the “hold one out” method for training
and testing.

4 Supervised Learning Results—Mines

vs. Background

In this experiment, we define a two-class problem.
The first class (called “Mines”) corresponds to buried
mines and filled holes. Both have similar IR charac-
teristics, because IR detects surface effects, and both
have disturbed soil. The second class (called “No
Mines”) corresponds to background, clutter, fiducial
markers, and surface mines (only buried mines were
of interest in these tests). Image tiles were hand se-
lected as described in section 3.0. Additionally, day-
time and nighttime images were processed in an at-

tempt to determine whether the time of day affected

the probability of detecting mines.

For the daytime images, 24 “mine” samples and 178
“no mine” samples were used. For the nighttime im-
ages, 21 “mine” samples and 172 “no mine” samples
were used. The samples are of size 21 by 21 pixels.
These samples were then run through the feature se-
lection and classification process using the “hold one
out” technique, and the probability of detection was
computed for each of the 4095 possible feature sets.
Table 1 summarizes the results. -

The probability of detection is high and the prob-
ability of false alarm is low, indicating very successful
classification. The night-time measurements provided
better performance, as expected. Previous research [7-
9] shows that night-time IR measurements generally
have higher signal-to-noise ratio than daytime mea-
surements.

Image Labeling Results: The next step is to
perform the classification using the features specified
in the previous section over the entire image. For this
process, a feature vector was generated for subimages
centered at every pixel in the image and classified.
The result is an image with “mine” and “no mine”
pixels marked. The images produced by this process
are shown in Figs. 2 and 3 for daytime and nighttime
images, respectively. These figures show the results
of processing only one image, but it should be noted
that all the images produced similar results. In these
images, the square outline in the long and short wave-
length images indicate where “mines” actually exist,
and the white regions in the labeled image indicate
were the classifier selected “mine” pixels. The other




noticeable circular areas of the image which appear at
regular intervals are fiducial marks which were used in
the image pre-processing.

These results appear very good, especially for the
night time images. The classifier detected all the
mines accurately. The results for the daytime image
are also very good, however slight inaccuracies do ex-
ist. One reason for these may be the fact that there
tends to be more thermal clutter during the daytime
than at night. Fortunately, the mislabeled regions
in the daytime images are small, and may be elimi-
nated by a rule-based process (using shape and size
constraints).

5 Supervised Learning Results— Mul-
tiple Class Problems

In this experiment, we investigated multiple-class
problems, in which the classes are defined as follows:
Class BG: Background, Class 0: Filled hole, Class I:
Plastic Mine, Class 2: Metal Mine, and Class M:
Mixed,plastic or metal mine (union of the two sets).
One concern might be that the classifier might tend
to see all objects as either a hole or not a hole. If that
were true, then it’s discrimination capability would be
limited. To test our concerns, we designed computer
experiments in which we ask the classifier to detect
the differences among the classes listed above. Fig-
ure 4 shows the IR images used in the experiments.

Our studies indicate that given images from a single
IR sensor, mines and filled holes cannot be separated
by human eye or by a neural network. The goal of this
test is to see if the multiple classes can be separated
using two IR bands and two different classifiers; the
probabilistic neural network (PNN) and the k-nearest
neighbor (kNN) classifier. The PNN converges to the
Bayes optimal classifier as the sample size becomes
large. The kNN classifier is simple, accurate and com-
monly used, so it Erovides us with a benchmark for
comparison. We also used a backpropagation neural
network (BPNN), but we did not show its results, be-
cause in many cases, it did not converge well.

We used the processing method described in sec-
tion 3.0, except that after doing feature selection, we
decided to use all of the histogram features for both
IR bands. The results are summarized in Table 2.The
PNN performs very well, without the false minima
problem of the BPNN. PNN also outperforms kNN,
in general, for this problem. Both PNN and kNN out-
perform human visual inspection.

Observations: (1) The four class problem shown
in Table 2 indicates that given dual-band IR measure-
ments, the classifiers can detect the differences among
plastic mines, metal mines and holes. (2) Compar-
ing the four class problem with the three class prob-
lem, we see that when the plastic and metal mines are
mixed (three class problem) the classifiers have more
difficulty separating the classes than when the classes
contain clearly different objects (four class problem).
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Figure 2: Daytime IR images of the clay pit used in
Section 4. The bottom image is from the long wave-
length (10 micron) sensor. The center image is from
the short wavelength $5 micron) sensor. The squares
indicate ground truth for the locations of buried metal
mines and filled holes. The uppermost image is the
labeled image, showing regions classified as a mine.
The vertical and horizontal lines are artifacts from the
scanning process used to publish the images in this pa-
per.



Table 2: PNN and kNN performance on six features from dual-band IR imagery of Clay (see Fig. 4).

Tile PNN NN ~Tile
kind | BG 0 1 2 M 01 2 M py size
BG 47 1 0 0 - 08 0 0 - 08
0 0 16 1 1 - . 12 3 2 - .67
1 0 0 6 0 - 4 2 0 - .33f40x40
2 0O 0 0 12 - 2 0 10 - .83
BG 47 I - -0 I - -0 398
0 0 16 - - 2 13 - - 4 72
M| o 2 - - 16 4 - - 14 T8
BG 4 0 0 0 - 0 0 0 - 10
0 1 11 3 3 - 1 3 3 - .67
1 1 4 1 1 - 3 2 1 - 33§ 20x20
2 0 1 0 11 - 2 0 10 - .83
BG 48 0 - -0 0 - - 0 T0
0 1 12 - - 5 3 - - 4 7
M 0 2 - - 16 6 - - 12 .67
6 Ground Penetrating Radar and  References

Other Sensors

We have preliminary resuits with ground penetrat-
ing radar (GPR) of the pulsed, synthetic aperture
type, operating in the 200 MHz to 1 GHz range with
two dipole antennas. It viewed our test pits from
about 14 ft. elevation and 19 degrees look angle from
horizontal. As expected, the GPR images show strong
signatures of metal mines, but very weak or nonexis-
tent signatures of plastic mines. The sample size is ex-
tremely small, so we choose to not report the specifics
of the preliminary results at this time. However, we
are encouraged by the fact that for metal mines in
some scenarios, while the IR images are weak and in-
distinguishable by eye from background and clutter,
the GPR images are very strong. We are therefore
hopeful that the ATR system using fused IR and GPR
images will outperform the system using IR images
only. Future work will include investigating the use of
surface measurements from visible, laser reflectance,
near IR and UV sensors to help separate surface ef-
fects from the effects of buried objects.

7 Discussion

Supervised learning pattern recognition techniques
perform well in detecting buried land mines from fused
dual-band IR images. Future work includes the ac-
quisition of a much larger data set, including IR and
GPR 1neasurements. We also plan to further incor-
porate image segmentation algorithms and rule-based
processing into the preprocessing step, and use tex-
ture features. Real-time implementations and system
integration for airborne platforms will follow.
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Figure 3: Nighttime IR images of the clay pit used in
Section 4. The bottom image is from the long wave-
length (10 micron) sensor. The center image is from
the short wavelength (5 micron) sensor. The squares
indicate ground truth for the location of buried metal
mines and filled holes. The uppermost image is the
labeled image, showing regions classified as a mire.
The vertical and horizontal lines are artifacts from the
scanning process used to publish the images in this pa-

per.

Figure 4: IR images of three clay pits used in three-
and four-class PNN and kNN classification. The
dark squares mark the locations of the nine buried
mines. The nine other light, bright, circular spots are
filled holes. The dark spots in the corners of images
are the fiducials used to register images. The other
smaller dark marks arranged in geometrical patterns
are markers. The images are day, long wavelength
images. Short wavelength images look similar, as do
night images.
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