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A thickness-shear mode (TSM) resonator typically consists of a thin disk of AT-cut

quartz with circular electrodes patterned on both sides (Fig. 1). An RF voltage applied between

these electrodes excites a shear mode mechanical resonance when the excitation frequency

matches the crystal resonant frequency. When the TSM resonator is operated in contact with

a liquid, the shear motion of the surface generates motion in the contacting liquid. The liquid

velocity field, Vx(y), can be determined by solving the one-dimensional Navier-Stokes equation

[1]:
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where p and 11are the liquid density and shear viscosity, respectively. The solution to Eq. 1

is [1]

vx(y,t) = v_oexp(-yy) exp(flot) (2)

where Vxois the surface particle velocity, co is angular frequency and j = (-1)1/2. Eq. 2

represents a damped shear wave radiated into the contacting liquid by the oscillating resonator

surface; T is a propagation constant for this wave, determined by substituting Eq. (2) into Eq.

(1).

Liquid coupling leads to energy storage and power dissipation in the contacting liquid and
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affects resonator response. An equivalent circuit model can be used to describe both the

electrical response of the dry and the liquid-contacted resonator (Fig. 2): a "static" capacitance

Co"(includes any parasitic capacitance) in parallel with a "motional" branch (L_, C1, R1,L2, and

R2). The static capacitance arises between electrodes across the insulating quartz. The motional

impedance is due to electrical excitation of a shear-mode mechanical resonance in the

piezoelectric quartz. Liquid coupling to the surface modifies this motional impedance,

introducing a motional inductance (L2) and a resistance (R2). Electrical energy storage in L2

arises from the kinetic energy of the viscously-entrained liquid layer; power dissipation in R2

arises from the radiation of a damped shear wave into the liquid.

The motional elements, L2 and R2, are related to the real and imaginary components of

the liquid decay constant y [2]"

R2 +jX 2 _ n Nn 11y (3)
4 lC2t%Co(_q pq)v2

where n is the number of sides contacted by liquid, N is the resonatorharmonic number, Xz =

°_sL2, COsis the angular series resonant frequency, where pq,/_qand/(2 are the quartz density,

shear stiffness, and electromechanical coupling factor, respectively.

Newtonian Fluid Loading When the TSM resonator is contacted by a Newtonian fluid, for

which viscosity is constant (11- Tlo,independent of oscillation amplitude and frequency), Eqs.

1 and 2 yield y = (too/2TIo)l/2(1+j). This decay constant, with equal real and imaginary parts,

leads to a critically damped shear wave in the fluid. Substituting this y into Eq. 3, and

separating real and imaginary parts, gives the motional elements arising from Newtonian fluid

loading [3]" DISCLAIMER
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Eq. 4 indicates that the response of a smooth TSM resonator loaded by a Newtonian fluid

depends only on the product (p_) of liquid density and viscosity. Moreover, a distinguishing

feature of Newtonian fluid loading is R2 = X2.

Maxwell Fluid Loading The simplest Non-Newtonian fluid has a viscosity that varies with

frequency as

nCco)- 11° (s)
1 + j_

where TIois the low-frequency viscosity and_ is a shear relaxationtime. If the liquid is sheared

slowly (cox • 1), liquidmolecules are able to flow past one another and the fluid behaves as an

ideal Newtonian fluid with _l = TIo. If shearedrapidly (cox • 1), liquid molecules cannot flow

and strains are accommodatedelastically through molecular deformation. In a Maxwell fluid,

the relaxation time x = _o//Z, where/z is the high-frequency shear modulus for the liquid. At

high frequency, when cox• 1, Tl(¢o)=_#/(jt_), so that the Maxwell fluid behaves as all elastic

solid.

When the TSM resonator is contacted by a Maxwell fluid, with viscosity varying

according to Eq. 5, the decay constant satisfies T2= (jtop/_o)(1 +joyr). For fox ,, 1, ),matches

the Newtonian case above; for cox • 1, T = J_(P//z)1r2,representingan undamped shear wave

radiated into an elastic soiid. The motional impedance elements arising from Maxwell fluid

loading are:
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R_u)= R_N) 1+ _'_ "/ 2 . (6b)
1 + (_.,:)2 /

When ayr = 0, the Maxwell fluid behaves as a Newtonian fluid so that X2 (_ = X2(N)and R2 (M)

= R2(m, as expected. For ayr > 0, R2 (M) > X2 (M) and a Non-Newtonian response is indicated.

From Eqs. 6, the relaxation parameter ayr = c/(1 - c2) 1/2, where c = (g22 - XE2)/(R22 .-[- X22).

Fig. 3 shows R 2 and X 2 calculated from both the Newtonian (Eq. 4) and Maxwell (Eqs.

6) fluid models vs. liquid viscosity (rio) for several values of the liquid shear parameter #. For

the Newtonian fluid, R2 (_ = X2 (_0 (dashed line) for all values of viscosity and independent of

#. For the Maxwell fluid, the resistance R2c_ and reactance X2(u) converge to the Newtonian

fluid values at low values of viscosity, where oy_• 1. At higher viscosities, where oy__>1, the

components calculated for Maxwell fluid loading diverge from those due to a Newtonian fluid:

X2(u) falls below the Newtonian prediction, while R2(m lies above.

Fig. 4 shows the variation in motional impedance components vs. temperature for a 5

MHz quartz TSM resonator immersed in a polystyrene melt (MW=2,500). Since viscosity

varies inversely with temperature, the impedance components behave much like the predictions

of Fig. 3 for the Maxwell fluid: Re > X2, with X2 exhibiting non-monotonic behavior.

Table I lists the values of R 2 and X2 obtained from resonator measurements made on

several liquids. The glycerol/water mixtures have R 2 =_ X2, giving oyr = 0 and indicating

Newtonian fluid behavior. Paraffin shows a transition from Newtonian to non-Newtonian

behavior as temperature decreases (11increases). The polystyrene and polyethylene melts have

R2 > X2 at all temperatures measured, giving a non-zero oyt value and indicating Non-
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Newtonian behavior. The data show that the relaxation time x is only significant for complex

molecules. The decrease in x with temperature is consistentwith the Maxwell model (x = 11o/#)

and can be attributed to a decrease in fluid viscosity 11o.

In conclusion, Newtonian fluids cause an equal increase in resonator motional resistance

and reactance, R2 (_0 = X2 (r0, with the response depending only on the liquid density-viscosity

product (011). Non-Newtonian fluids, as illustratedby the simple example of a Maxwell fluid,

can cause unequal increases in motional resistance and reactance. For the Maxwell fluid, R2_

> X2t_, with the relaxatiun time x proportional to the difference between R2t_ ,_ndX2t_. Early

results indicate that the TSM resonator can be used to extract properties of non-Newtonian

fluids.
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Figure Captions:

Fig. 1. Cross-sectional view of a TSM resonator with the upper surface contacted by a liquid.

Shear motion of the surface causes a thin layer of the contacting liquid to be viscously entrained.

Fig. 2. Equivalent-circuit model to describe the electrical characteristics (for 03near %) of a

TSM resonator with liquid loading.

Fig. 3. Motional impedance components R: and X z calculated from both the Newtonian (Eq. 4)

and Maxwell (Eqs. 6) fluid models vs. liquid viscosity (11o)for several values of the liquid shear

parameter Ix: (a) 3 x 10 z, (b) I x 10 s, (c) 3 x 10 a dyne/cm 2.

Fig. 4. Motional impedance components vs. temperature for a 5 MHz quartz TSM resonator

immersed in a polystyrene melt (MW=2,500).



Table I.

, ,,,, r i , , ,: , •

Temp. R2 X2 - co,L2
Liquid (o,_

('c) (k_) (1_)

H20 20 0.341 0.342 = 0

43% glycerol
20 0.717 0.718 = 0

In H20

64% glycerol
20 1.30 1.30 - 0

in H20

, ,,I,' i '" i ' , r ,, ,, ,, i ' ,a

100 0.95 1.00 = 0

60 1.43 1.45 - 0

, ,,, ,,

pm'affin 50 8.12 2.38 1.56

40 22.4 5.84 1.79

135 17.2 12.8 0.15

120 28.0 21.0 0.14

polystyrene
. ,,,, ,,,,, _

105 45.1 21.8 0.35

300 4.33 1.05 1.94

polyethylene

200 5.08 0.99 2.47
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Fig. 1. Cross-sectional view of a TSM resonator with the upper surface contacted by a liquid.
Shear motion of the surface causes a thin layer of the contacting liquid to be viscously entrained.
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Fig. 2. Equivalent-circuit model to describe the electrical characteristics (for co near (%) of a
TSM resor_tor with liq_d loading.
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Fig. 3. Motional impedance components R2and X2 calculated,from both the Newtonkm (Eq. 4)
and Maxwell (Eqs. 6) fluid models vs. liquid viscosity (11o)for several values of the liquid shear
parwneter l_: (a) 3 x 107, (b) I x 10a, (c) 3 x 10a dyne/cm 2.
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Fig. 4. Motional impedance components vs. temperature for a 5 MHz quartz TSM resoru_or :POLY2.SPW
immersed in a polystyrene melt (MW =2,500).
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