‘ ‘ 005/5'/9///‘/0 79 - 5

DOE/ER/14079--15
DE92 016283

LD

A Dip-Dependent Divergence

e

Correction

Francesca Fazzari

-— Master of Science Thesis —
Geophysical Engineering

DISCLAIMER

an account of work sponsored by an agency of the United States
ited States Government nor any agency thereof, nor any of their
express or implied, or assumes any legal liability or responsi-
or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-
or service by trade name, tratlemark,

ence herein to any specific commercial product, process,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any sgency thereof.

This report was prepared as
Government. Neither the Un
employees, makes any warranty,
bility for the accuracy, completeness,

Center for Wave Phenomena
Colorado School of Mines

Golden, Colorado 80401 |
(303) 273-3557 MASTER

o

e ey RN R PP T E R I T
A e FL SR u,,f‘\J'».--,,'f‘\‘(t,A‘il 10 Uit A,




ABSTRACT

A divergence correction is conventionally applied to zero-offset data in an effort to
preserve amplitude information. The conventional divergence correction compensates
for the geometrical spreading of a point source in a horizontally layered medium where
velocity varies with depth only. The dip-dependent divergence correction extends the
conventional correction for improved amplitude processing of dipping beds.

The dip-dependent divergence correction is computed by dynamic ray tracing,
and applied to stacked data using a dip decomposition technique. This correction
decreases amplitudes relative to the conventional correction for steep dips and late
times. In a data example from the Gulf of Mexico, the conventional correction over-
amplified the reflection off a salt dome flank by a factor of 1.6.

High amplitudes near salt flanks are also associated with the presence of hydrocar-
bons. Applying the dip-dependent divergence correction ensures that ‘bright spots’
are not due to over-amplification of steep dips by the conventional correction.

In areas like the Gulf of Mexico, where the velocity function varies primarily with
depth, and steep beds are commonplace, the dip-dependent divergence correction is
an inexpensive way to imprcve the amplitude information in seismic images.



]

Fazzars Divergence Correction

INTRODUCTION

Divergence correction is applied to compensate for the decay in amplitude due
to the geometrical spreading of the wavefront generated by a scismic source. One
purpose of the dip-dependent divergence correction is to compensate for the geo-
metrical spreading along a normal-incidence raypath to a dipping reflector. As well,
dip-dependent divergence correction is designed to render zero-offset data consistent
with the exploding reflector model (Loewenthal, et al., 1976). After dip-dependent
divergence-correction and migration with an exploding reflector scheme, amplitudes
are more interpretable in terms of the interface reflection coeflicients.

Consider the geometrical spreading along a raypath that corresponds to a partic-
ular seismic event in either zero-offset, or finite offset data. The divergence correction
for a particular reflection depends upon the location of the subsurface reflection point
relative to the source location, and upon the velocity function of the overburden.

Conventional and Dip-dependent Divergence Correction

For zero-offset reflections from horizontal beds in a v(z) medium, where the veloc-
ity v varies only with depth z, the reflection point depends on the vertical traveltime
of the seismic energy and the velocity of the medium. Traveltime and velocity there-
fore determine the zero-offset divergence correction for horizontal reflectors. Newman
(1973) derived this correction — vigt/vo, where ¢ is the two-way vertical traveltime
to the reflector, vy is the velocity at the surface, and vrms is the root-mean-square
average velocity along the vertical path between surface and reflectos.

Newman also derived the divergence correction for finite-offset reflections from
horizontal reflectors in a v(z) medium. Two-point ray tracing is not necessary to
compute this offset-dependent divergence correction. To see this, consider a raypath
associated with a finite-offset reflection from a horizontal bed. This raypath is sym-
metrical; i.e., incident and reflected raypaths are characterized by a single value of
the horizontal slowness (reflection slope), which is constant along a ray in a v(2)
medium. As well, the traveltime of each raypath is equal to one-half the reflection
time. Both horizontal slowness (reflection slope) and traveltime are obtainable from
the finite-offset reflection which corresponds to this raypath. Given horizontal slow-
ness and traveltime, a ray may be traced through the v(z) medium, and thus the
location of the reflection point and the divergence correction may be determined,
without requiring two-point ray tracing.

For media with dipping and curved interfaces, other authors (e.g., Cerveny and
Ravindra, 1971; Cerveny, et al., 1977) have employed asymptotic ray theory to deter-
mine a general expression for the wave amplitude, including the divergence term.
Cerveny, et al., described how to evaluate this divergence correction in the ray-
centered coordinate system using the dynamic ray tracing equations. The divergence
correction for dipping and curved interfaces is computed by tracing rays through
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the medium, and solving the dynamic ray tracing equations at every ray-centered
coordinate.

The finite-offset divergence correction for a reflection from a dipping reflector in
-a v(z) medium is therefore determined by tracing both incident and reflected rays.
A finite-offset raypath to a dipping reflector is not symmetrical. Horizontal slowness
and traveltime along the incident raypath to a reflection point on a dipping reflector
differ from those along the reflected raypath. Traveltime along incident and reflected
raypaths cannot be determined directly from the reflection time of the corresponding
event. Two-point ray tracing is required to determine these traveltimes, as well as the
horizontal slownesses of the incident and reflected raypaths. Once these quantities
have been computed, the divergence correction for reflections from dipping beds in
finite-offset data may be computed as described by Cerveny, et al.

In this thesis, I use the dynamic ray tracing equations to determine the zero-offset
divergence correction for any reflector in a medium where velocity varies with depth
only. For stacked data, the dip-dependent divergence correction is applied without the
computational cost of two-point ray tracing. To see this, consider a raypath normally
incident to a reflection point. This raypath is characterized by a single value of the
horizontal slowness (reflection slope) and a single traveltime, which is one-half of the
reflection time of the corresponding zero-offset event. From the reflection time and
reflection slope of this event, the normal-incidence ray may be traced. The zero-offset
divergence correction may therefore be determined without two-point ray tracing.

Exploding Reflector Migration

After stack and divergence correction, seismic data are migrated. When diver-
gence correction is applied, amplitudes of zero-offset dipping reflections are properly
processed for amplitude decay due to geometrical spreading and should become more
interpretable in terms of the interface reflection coefficients. This improvement in am-
plitude processing, however, is often negated by subsequent application of a migration
scheme.,

For migration processes based on the exploding reflectors concept (Loewenthal,
et al., 1976), amplitude errors arise from two sources: incorrect treatment of the
amplitude term in the solution to the acoustic wave equation, and differences between
the assumed exploding reflector data and the actual stacked data. For example, the
commonly used phase-shift migration (Gazdag, 1978) is based on a solution to the
wave equation that includes no amplitude term at all. Reverse time migration (Baysal,
et al., 1983), however, correctly processes the amplitudes for an exploding reflector
source by simply running the acoustic wave equation backwards in time.

The amplitude error associated with reverse time migration results from the differ-
ence between exploding reflector and zero-offset data. The dip-dependent divergence
~orrection is designed to compensate for this difference.
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Exploding Reflector Correction

In the exploding reflector model, every interface reflection point in the subsurface
explodes simultaneously, with source strength proportional to the reflection coefficient
at that point. Consider a curved exploding reflector (Figure 1). When every surface
element along that reflector explodes at the same time, this gencrates a wavefield
that travels from the reflector up to the receiver. The raypaths perpendicular to
the upgoing wavefield are identical to the reflected, upgoing segments of the normal-

incidence raypaths.

F1G. 1. Curved reflector with structure that approximates a salt flank. An exploding
reflector raypath is indicated by the single arrow, and a normal-incidence raypath by
the double arrows.

The amplitudes in zero-offset data ZO will be diminished by geometrical spread-
ing GSyown along the raypath from source to reflection point as well as geometrical
spreading G Sy, along the raypath from reflection point to receiver,

Z0 & GSown X GSup.

The amplitudes in exploding reflector data FR decay due to geometrical spreading
G'S,p only along the raypath from reflection point to receiver,

ER x GS,.

To account for the difference between exploding reflector and zero-offset data, the di-
vergence correction must multiply zero-offset data by the reciprccal of the geometrical
spreading GSyoun along the raypath from source to reflector.

This defines the dip-dependent divergence correction. It corrects for geometrical
spreading along the downgoing normal-incidence raypath to a reflection point on a
dipping reflector. After dip-dependent divergence correction, the amplitudes of zero-
offset data conform to the exploding reflector model. Thus migration schemes based
on this model will migrate dipping reflections without introducing amplitude error.
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Note that the dip-dependent divergence correction preserves the amplitude in-
formation in the stack. Both the divergence correction and the exploding reflector
migration that it complements are based on the assumption that reflections in the
stack correspond to normal-incidence raypaths. Reflections from dipping beds require
NMO and DMO processing before stack for that assumption to remain valid. Any
amplitude errors introduced by pre-stack processing or the stacking process itself will
be propagated by dip-dependent divergence correction and migration.

The poststack dip-dependent divergence correction is comparable to Newman’s
divergence correction. However, the conventional correction accounts for both down-
going and upgoing geometrical spreading. For comparison with the dip-dependent
correction, the conventional correction is modified to account for geometrical spread-
ing only from source to reflection point. Whereas the dip-dependent divergence cor-
rection properly compensates for point source spreading in reflections from dipping
beds, the modified conventional correction over-amplifies reflections from dipping
beds. (See the section on Divergence Correction Ratio, p. 19.)

In this thesis, I show how to derive the poststack dip-dependent divergence cor-
rection, and discuss its computer ir~vlementation. I show the results of applying the
dip-dependent correction for a synthetic data example, and for a field data example
from the Gulf of Mexico.
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DERIVATION OF THE AMPLITUDE CORRECTION FACTOR

Divergence is one factor in the amplitude term of the ray series solution to the
wave equation. The dip-dependent divergence correction is the inverse of this factor.
The amplitude term varies depending on whether the constant density or constant
impedance acoustic wave equation is used. I review the derivation of the amplitude
term (e.g., Bleistein, 1984; Aki and Richards, 1980) from the transport equation
for both constant density and constant impedance cases, because reverse time ex-
ploding reflector migrations implement either the constant density or the constant
impedance acoustic wave equation. I show how the dynamic ray tracing equations
are used to compute the divergence (e.g., Cerveny and Hron, 1980; Hubral, 1983), and
the dip-dependent divergence correction. For horizontal reflectors, I show that the
dip-dependent correction reduces to the conventional divergence correction, v?,,,t/vo
(Newman, 1973). Finally, 1 discuss the factor by which the constant density am-
plitude differs from the constant impedance amplitude, and its implications for the
dip-dependent divergence correction.

The Transport Equation and the Eikonal Equation

Divergence correction in this thesis is based on traveltimes and amplitudes com-
puted along a ray. Upon substitution of the ray series solution into the constant
density acoustic wave equation (e.g., Cerveny and Ravindra, 1971), traveltime and
amplitude are solutions of separate equations, the eikonal equation (1) and the trans-
port equation (2), respectively. For a medium where velocity varies with depth z
only, the eikonal and the leading order transport equations are

Vi(x) - Vi(x) 551:) =0, (1)
2VE(x) - VAg(x) + Ao(x)V?t(x) = 0. (2)

Both traveltime t along a ray and the leading order amplitude Ay are functions of
the three-dimensional Cartesian position vector x. The eikonal equation relates the
traveltime gradient V¢, which points in the direction of the ray, to the velocity function
v(2).

The solution to the transport equation (2) describes the leading-order amplitude
Ag. The ray series solution to the wave equation is an infinite series in inverse powers
of frequency w. For seismic data with three-dimensional geometrical spreading losses,
the series may be approximated by the leading order term, which is the coefficient of
the zeroth inverse power of frequency, 1/w®. When the velocity gradient is small with
respect to the frequency (e.g., Cerveny and Ravindra, 1971, p. 22-23), the leading
order term dominates the ray series. This condition is generally satisfied in reflection
seismic data.

If the constant impedance acoustic wave equation for a v(z) medium is used,
substitution of the ray series solution results in an additional term in the transport
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equation. The eikonal and the leading-order transport equations resulting from the
constant impedance acoustic wave equation are

Vi(x) - V#(x) - -&% = 0; (3)
2VH(x) - VAp(x) + Ag(x)V2H(x) + [/::)(S)] Vu(z) - Vi(x) = 0. (4)

The Ray Tracing Equations

The solution to the eikonal equation determines the position of a ray as a function
of traveltime along the ray and initial direction of the ray. The three dimensional
slowness vector p is defined such that

§
v(z)’

where § denotes a unit vector pointing in the direction of the ray. The magnitude p
of the slowness vector p is thus equal to 1/v(z).

Vi(x) = p(x) = p8 =

The eikonal equation (1) involves the dot product of the gradient of traveltime
t, and is non-linear in t. A standard approach to solving such non-linear partial
differential equations is the method of characteristics (e.g., Bleistein, 1984, p. 1-18).
Applying the method of characteristics to the eikonal equation yields the ray tracing

equations
dei _pi  dpi _10p (5)
dt ~ p?’ dt ~ pox;’

where the subscript ¢ refers to one of the three Cartesian coordinate directions
(z1,29, 23). Using equations (5), rays may be traced through the v(z) medium.

Solution of the Transport Equation

The left-hand side of the transport equation (2) is equivalent to the divergence of
A2Wt. Integrating both sides of this equation over a volume V' and applying Gauss’s
law, f, V. f dV = [;f-8dS, yields

/S A2Vt -8)dS = 0, (6)

where 8 now denotes the normal to the surface S, and dS is a differential surface
element. For S equal to the surface of a ray tube, every differential surface element
dS has a unit normal either parallel or perpendicular to V.

Traveltime t along the ray is used to track the ray’s propagation and describe the
ray tube. Consider a central ray and a family of nearby rays. The endpoints of the

6
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family of rays at ¢, sweep out some surface area S;. At a later ¢y, the same family of
nearby rays will sweep out a different surface area Sp, because the distance between
the nearby rays changes as the rays propagate through the medium. The two surfaces
S; and Sy, and the cylindrical surface that connects them define the ray tube.

The surfaces S; and S, have unit normals § parallel to Vt. For the family of
nearby rays that define the sides of the ray tube, every element of surface area on the
cylindrical surface is tangent to the direction of the central ray. Consequently, the
unit normal at every point on the cylindrical surface is perpendicular to Vt.

In the integration of equation (6) over the ray tube, only the surfaces 57 and S,
contribute. The dot product V¢ - § has magnitude |Vt| = v=!(z), but opposite sign,
for S; and S;. At S;,the surface normal § is antiparallel to the ray direction Vi,
while at Sy the two vectors are parallel. In the limit as the ray tube collapses to the
central ray, S; and S, are equal to the differential surface elements dS; and dSj, and
the integral (6) equals the integral over the surface areas at t; and ty:

A3dS,  AMS, _

V1 V2

dSl (%)
A2 —_— Al ;23‘2‘\/1,: (7)

Ay and A; denote the leading order amplitudes at times ¢, and ¢, along a central ray.
vy is the velocity at depth z5 corresponding to time tp, and v; is defined analogously.
Recall that the ray has travelled farther at ¢, than at ¢;.

0,

The ratio of differential areas in equation (7) defines the geometrical spreading.
For reasons discussed in Appendix A, I will refer to the velocity ratio term as the
transmission factor. The amplitude Aj is thus the product of A;, the geometrical
spreading factor G'S, and the transmission factor T

Ay = A XGSxT, (8)
where
_fdsi o [
GS—\/—dSQ’ T = o

Equation (7) is the solution to the transport equation (2) resulting from the con-
stant density acoustic wave equation. Following the discussion above, the solution
to the transport equation (4) resulting from the constant impedance acoustic wave
equation may be derived.

The left-hand side of the transport equation (4) is equivalent to the divergence of
AZvVt. Applying Gauss’s law to both sides of equation (4) and integrating over a
ray tube as in the above discussion yields

A?vldSl _ A%?)gdSz
™! Uy

=0,



Fazzari Divergence Correction

dS,
Ay = Ay ZITS-;-—AIXGS’ (9)
where the terms in equation (9) are defined as in equation (7). The solution to the

transport equation (4) resulting from the constant impedance acoustic wave equation
contains only the ratio of cross-sectional areas y/dS;/dS,, and no transmission factor.

To determine the amplitude at any point along a central ray, requires an expression
for the geometrical spreading G'S in terms of traveltime (or distance) along a ray, and
for the amplitude term of constant density wave equation (7), the transmission factor
must be evaluated as well. From the ray tracing equations, the Cartesian coordinates
of any point along a central ray may be determined and the transmission factor
computed.

The Geometrical Spreading Term

The product of initial amplitude and geometrical spreading may be written as
the Jacobian of the transformation from Cartesian coordinates to ray coordinates
(Bleistein, 1984, p. 260-270).

A\/dsl—\/ 1
Wds, ~ VI, )

where the Jacobian J(s,7;,72) of the transformation between Cartesian and ray co-
ordinates is defined by

O(ry, T2, T3)
8(3, M, 72)
Ray coordinates are described by distance s along a ray, the ray’s initial polar angle
71, and its initial azimuthal angle v9. Figure 2 illustrates the angular variables v, and

V2.

The Jacobian J(s,71,72) measures the geometrical spreading due to a point source
when the energy has travelled through the medium without reflection or refraction
from an interface. The Jacobian J(s,v1,72) reduces to the product of two independent
components: an in-plane component, and an out-of-plane component(e.g., Cerveny
and Hron, 1980; Bleistein, 1986), when the point source amplitude is recorded on a
seismic line oriented in the direction of geologic dip.

’](55711 72) =

Recorded data from such a line corresponds to rays with initial direction parallel
to the seismic line. It is convenient to orient the Cartesian system so that the seismic
line lies along the z; =z axis. Initial direction parallel to the z axis is thus equivalent
to 72 = 0. Rays characterized by 7, =0 are constrained to travel within the in-plane
depth slice beneath the seismic line. A depth slice perpendicular to the seismic line
lies in the out-of-plane direction.

For a seismic line at the surface of a v(z) medium oriented in the direction of
geologic dip, the three-dimensional Jacobian J(s,7v1,72) is the product of the in-
plane component Jj evaluated at 7, = 0, and the out-of-plane component o. The

8
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X2
. 72 vt
e ; x:
i

V Xq

Fi1G. 2. 7, and 7, are defined with respect to a central ray shot from the origin of a
Cartesian coordinate system (zy, 22, .I';S

three-dimensional spreading is therefore

[ 1
J(s,71,72) a J JII(S,"Yl,Vz:O) U(S,’h).

The Jacobian Jj describes a coordinate transformation from the in-plane dimensions
©, z, where depth z=ux3, to two-dimensional ray coordinates s, (72=0)

oz, 2)
3(3a 71)
Jj| is computed using the dynamic ray tracing equations, as described in the following
section.

Ji =

Dynamic Ray Tracing Equations

Consider an in-plane raypath from shotpoint to subsurface reflection point (see
Figure 3). The equations of dynamic ray tracing are based on the ray-centered co-
ordinate system. In ray-centered coordinates, every point along a central ray has
direction vector s and normal n. s and n define an orthogonal coordinate system at
every point along the central ray. s has magnitude s equal to the distance travelled
along the ray. The magnitude n of n is equal to the distance between the central ray
(with angle ;) and a nearby ray (with angle y; + dv1), when s is held fixed. The
relationship of n to s is derived by expanding the eikonal equation about the central
ray in the (s,n) coordinate system {Cerveny, 1981a)

dn dpp, _ Unn

ds ds 0
These are the equations of dynamic ray tracing. p, is the component of the slowness
in the direction of the normal, and v ,, is the second derivative of velocity with respect
to n.

(10)

= UPn,
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Fic. 3. The normal distance n at some distance s along the ray between a ray
with take-off angle 4; and a nearby ray with take-off angle v, + dv;. The initial
normal distance is measured when the distance travelled along the ray is equal to
unity. As both normal distances become small, the normal at s is approximated by
the differential dn, and the initial normal distance by 1 - dv;, (Cerveny, 1981b). The

ratio dv;/dn is simply the ratio of the initial spreading to the spreading at distance
s.

Equations (10) also describe the 2-D Jacobian J). Jj(s,71) is related to the Ja-
cobian of the transformation between Cartesian and ray-centered coordinates J(s,n)
by the factor dn/dy

|, 2)| _ on|d(s,2)

Ji(s,m) = s, m)| 0 |8(s,n)
_On (
= 6’71 J(s,n). \].1)

As the ray tube collapses to the central ray, J(s,n) approaches one (Cerveny, 1981b)
and Jy(s,71) reduces to
on
Ji(s,7) = —. 12
| I(&m) = 5~ (12)
On/3v, is evaluated by taking the partial derivative of the dynamic ray tracing
equations (10) with respect to ;. Define ¢ and p (Cerveny, 1981b) so that

oo
T O T om’

In these new variables, the in-plane Jacobian Jj(s,v;) is now simply ¢. The derivative
of equations (10) with respect to 7; is

dg _ dp _ Van

s P LT Tl (13)

At s=0, the nearby rays have not diverged from the central ray, and the in-plane
spreading q(s = 0) equals zero. For a source at the surface z = 0, where velocity

10
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is vg, initially, the partial derivative of normal slowness p, with respect to 7 is
proportional to 1/vs. The constant of proportionality is determined by the angle
between the nearby rays and the central ray. For convenience, that constant is set to
unity and p(s=0) = 1/v.

For a velocity function which varies with depth 2z only, v, is equal to v,,.p2v?,
where v, is the second derivative of velocity with respect to depth z, and p, is the
horizontal * component of the slowness 1/v(z) at any point along a raypath. Initially
Pz = siny; /vg. The dynamic ray tracing equations for the in-plane Jacobian g are

— = up, = = —V;:; P q (14)

In-plane and OQut-of-plane Spreading

The in-plane Jacobian ¢ is described t.v equations (14). When p in equations (14)
is a constant, and equal to its initial value of 1/vg, the equation for g describes the
out-of-plane spreading o(s,~;) (Bleistein, 1986)

do v

o 2= e 15

i (15)
where initially ¢ = 0. Like ¢, 0 depends on the velocity along the path of the
central ray, where the central ray is defined by a particular initial azimuthal angle
~1. Horizontal slowness p, may be used to characterize a central ray instead of the
angle ~;, becanse p, is constant in a v(z) medium, and p;(s=0) = siny, /vy. Instead
of o(s,m), the equivalent o(s,p,) is used to describe the out-of plane spreading.

The dynamic ray tracing equations for the in-plane component of the spreading g
and the out-of-plane component o are

do v

ds vo’
dg dp 9
ds P ds e le

The preduct of initial amplitude and geometrical spreading may now be writtes

A \[z?_” B
! dS'Z J(Sa7la72)’
1

= Vg (16)

where both o and ¢ are functions of distance s along a ray, and the horizontal com-
ponent of the slowness p,. Note that ¢ and ¢ depend on velocity along the raypath.
Velocity is a function of depth z; it may be computed at any point along the raypath

11



A A O RS . N i

Fazzari Divergence Correction -

from the ray tracing equations (5), which are differential equations in traveltime t
along the ray. I use the relation ds = vdt to rewrite equations (14) in terms of the
differential dt

do v?

T (7)
dq .2 dp N 2
- = UP il A AR (18)

where o(t=0)0, ¢(t=0) = 0, and p(t=0) = 1/vp.

Amplitude Correction

The constant density wave equation amplitude is given by equation (8). It is the
product of initial amplitude, geometrical spreading G'S, and transmission T'. These
quantities may be computed at any point along a ray using equations (18), (17), and
the ray tracing equations (5). The initial velocity in the transmission factor is vy,
for I have assumed the point source was located at the surface z =0. The velocity
at some later time corresponding to depth z may be expressed as v(z), where the
mapping 2= 2(t,p,) is implicit. The amplitude at depth z is therefore

N 1 v(z)
Al peiv) = \/U(t,px;v)q(t,p.;v) \/:o ' (19)

The amplitude correction D for a point source located at the surface, where am-
plitudes are observec at depth z is simply the reciprocal of the right hand siae of
equation (19)

D(t,peiv) = \/au,pz;mq(t,px;v)\/%. (20)

The correction D is the dip-dependent divergence correction; it has an in-plane
spreading component /G, and an out-of-plane spreading component V0. The trans-

mission correction 4/vp/v(z) is included in the dip-dependent divergence correction
for the solution to the constant density acoustic wave equation (7), but not for the
solution to the constant impedance acoustic wave equation (9).

The dip-dependent divergence correction D without transmission factor may be
compared to the conventional divergence correction vigt' /ve (Newman, 1973), where
t' is reflection time. For rays normally incident upon a reflector, the reflector dip is
equal to the angle 6 between the ray and the vertical 2 axis. Because the horizontal
slowness p, at any point along a ray is given by sin8(z)/v(z), for horizontal reflectors,
p. = 0. The dip-dependent divergence correction D at p, = 0 is

D(t,0;v) = /o (t, pe; v)q(t, 0; ). (21)

12
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When p, is zero, p in equation (18) is a constant, equal to its initial value 1/vp.

The dynamic ray tracing equatic s (18) for g and p reduce to a single equation,

dq 2 _ 1 o

— = pyv° = —v°. 22

dt Po Vo (22)
Equation (22) is identical to equation (17), the differential equation for 0. The
solution of equations (17) for o, and also ¢, may be written in integral form
Uzq:i try%ﬂ:%ﬂ'it.‘

v Jo Vg

Substituting these results into equation (21), the divergence correction for horizontal
reflectors is therefore

2

Vimst

D(t,0;v) = -1, (23)
Vo

st

2’00 '

Because equatior: (23) depends on traveltime t along the raypath to the reflection
point, it is actually half of the conventional correction. The conventional correction
is p. oportional to two-way rcflection time, or twice the traveltime to the reflection
point for a normal-incidence raypath.

Transmission Factor

The dip-dependent divergence correction is applied to correct zero-offset data so
that amplitudes are consistent with the exploding reflector model. The combination
of dip-dependent divergence correction followed by migration, will improve the di-
agnostic value of the amplitude information in the stack. As discussed previously,
the migration process must treat amplitudes in accordance with the acoustic wave
equation, as does reverse time migration. If the migration scheme is based on the
constant density acoustic wave equation, amplitudes after divergence correction will
be consistent with exploding reflector data, only if the transmission factor is included.
To see this, compare a zero-offset amplitude associated with a particular reflection
point to the exploding reflector amplitude associated with the same point.

In its most general form, the constan. dinsity amplitude, equation (8), is the
product of initial amplitude A;, geomeurica! epreading GS, and transmission factor

T
A2=A,><GS><T=GS><1/§3,
1

where A, is the amplitude at some depth zy, vy is the velocity at depth z3, and v is
the initial velocity. For a zero-offset reflection from a reflector at depth z where the
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velocity is v(z), amplitude is proportional to

A x GSypun X 9—(-7—2 X (8, X o
Vo v(2)

& GSdown X GSup-

The recorded amplitude A is the product of geometrical spreading GSgon along the
downgoing raypath, the downgoing transmission y/v(z)/vy, where vy is the velocity
at the surface, geometrical spreading GS,, along the upgoing raypath, and upgoing
transinission y/vg/v(z). The transmission factor is equal to unity along the normal-
incidence raypath that originates from and returns to the source depth z2=0. If that
same reflector at depth 2 was an exploding reflector, then the recorded amplitude
would be proportional to

o(z)’

So thLat zero-offset amplitudes are consistent with exploding reflector amplitudes, the
dip-dependent divergence correction D must correct for both geometrical spreading
and the transmission factor along the downgoing normal-incidence raypath
1 1 [ v
D = = = X 0,
GSgown X \/v(z)/vo G Sdown v(2)

A Gsupx\/—”ﬁ-

Reverse time migration based on the constant density acoustic wave equation will
account for transmission and geometrical spreading while running the wave equation
backwards in time. For an event recorded from a reflector at depth z, the reverse
time migration will back out the upgoing divergence GS,,, as well as the upgoing

transmission /vp/v(z). However, zero offset amplitudes do not include the factor

vo/v(z). The dip-dependent divergence correction must multiply zero-offset ampli-

tudes by the transmission factor 4/vp/v(2), so that the migration scheme processes
amplitudes correctly.

To properly process amplitudes, reverse time migration schemes that rely on
the constant density acoustic wave equation must include the transmission factor
\/;J; /u(z) with the dip-dependent divergence correction. If, however, the migration is
based on the non-reflecting or constant-impedance acoustic wave equation (Baysal,
et al., 1984), the transmission factor drops out of the amplitude as in equation (9).
Constant impedance amplitude A4, at depth 2, depends only on initial amplitude A;
and geometrical spreading GS

A2=A1 X GS

Only spreading correction is required to make zero-offset amplitudes consistent with
the exploding reflector model. For reverse time migrations that use the non-reflecting

14
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wave equation, such as the migration applied in the data examples (the section on
Results, p. 27), the transmission factor y/vs/v(z) should not be included.
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IMPLEMENTATION

In this section, I discuss the computational methods used to implement the posi-
stack dip-dependent divergence correction. The differential equations (18) and (17)
that determine components o and ¢ of this correction are solved numerically using
finite differences. o, ¢, and the divergence correction are determined for the range of
reflection slopes and reflection times found in the recorded data. I then describe the
dip-decomposition technique used to apply the dip-dependent divergence correction
to zero-offset data.

The dip-dependent divergence correction corrects for the amplitude loss due to
geometrical spreading along the raypath from source to reflection point. The dip-
dependent divergence correction, without the transmission factor is

D(t,pe;v) = /o (t, pe; v)q(t, pa; V),
where o and ¢ are defined by the differential equations (17) and (18). By solving these

equations for o and ¢, the dip-dependent divergence correction can be tabulated for
all downgoing traveltimes ¢ and all horizontal slownesses p,.

To apply the dip-dependent divergence correction to stacked data, it must be
tabulated not as a function of downgoing traveltime and horizontal slowness, but as a
function of two-way reflection time and reflection slope of zero-offset data. By halving
the interval-velocity function v, the divergence correction to the reflection point is
computed for all reflection times t. Horizontal slowness p, = sin6(z)/v(z), where 6
is the angle between the ray, and the vertical 2 axis is equal to one-half the reflection
slope on a zero-offset section. Again, by halving the velocity, the dip-dependent
divergence correction for the normal-incidence raypath from source to reflector can
be tabulated for all reflection slopes p,. For a given zero-offset section, values of p,
range from 0 to the maximum reflection slope, 2/vp.

Numerical Solution for ¢ and ¢

The fizite difference solution to the equations for ¢ and ¢ marches forward in
reflection time ¢, for all possible values of the reflection slope p,. Recall that for a
v(z) medium, the horizontal slowness is a constant along the ray. For a particular
reflection slope p,, marching forward in reflection time is equivalent to tracing normal-
incidence rays to reflectors of different dip and depth.

The forward difference approximation to o, >quation (17), results in
A,
o/t =0l + . iiat)?,
0

where o7 represents o(jAt;v), 0¥ =0, and At is the time sampling interval. Implicit
in the notation v(jAt), is a mapping from reflection time ¢ to depth z. This mapping
is given by the ray equation (5) for depth 2

dz P 9

— o =9 Iz 24

@ pRepr P (2
16
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where p, is the vertical component of the slowness 1/v(2). When p, = 0, p, = 1/v(2),
the right side of equation (24) reduces to v(z), and reflection time t along the ray
is equivalent to vertical time 7, which is used as the independent variable in seismic
field velocities.

The forward finite difference approximations to equations (18) deliver values that
oscillate in an unphysical manner when the curvature of the velocity function v,
changes sign rapidly. I removed this instability by using a simple implicit scheme, the
Crank-Nicholson approximation (e.g., Press, et al., 1988, p. 658-661). Applying this
scheme to the equations for p and ¢ yields two equations with two unknowns, p/+!
and ¢/t1;

et = (@en
pr-y = () (Bt + Big),
where ¢° = 0 and p® = 1/vp, and the variables A7, and B’ are defined by
Al = (), B =w, p2.

Solving for p/+! and ¢/t! yields

o o2 (2 ],

a \ 2
pHl = Py (A gipini| € (At [B7+! + B7),
o 2 a \ 2

where « is defined by

2
a = 1+ (%»t-) Al pitl

Dip-decomposition

From the finite difference solutions for o and ¢, the dip-dependent divergence
correction ,/0q is tabulated for all reflection times and all reflection slopes. The
dip-dependent divergence correction is equivalent to a time-varying dip filter because
of its simultaneous dependence on reflection slope and reflection time. Although
dip-dependent processing is most easily implemented in the frequency-wavenumber
domain, the time-dependent attributes of the table cannot be considered once the
2-D Fourier transform is made. To apply the divergence correction, I use a dip-
decomposition technique similar to Jakubowicz’s (1990) method for efficient DMO.
For each reflection slope p, and time ¢, the dip-dependent divergence correction is
applied in the wavenumber-time domain. The dip-filtered data are then transformed
to the wavenumber-frequency domain. In this domain, only the frequencies near
the wavenumber-slope ratio w = k/p, are included in the divergence-corrected data
B(z,t). The dip-decomposition algorithm is summarized below:
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Zero B(k,w)
Fourier transform the stacked data a(z,t) to A(k,1)
For all wavenumbers & {
For all slopes p, {
Apply the divergence correction for all times ¢ so that:
s(k,t) = D(p,,t) x A(k,t)
Fourier transform s(k,t) to S(k,w)
For all frequencies w near k/p. {
Add S(k,w) to the output B(k,w)
}

}
}
Inverse Fourier transform B(k,w) to give the divergence-corrected data b(z,t).
The dip-decomposition algorithin efficiently applies the dip-dependent divergence cor-
rection to stacked data. For example, applying the dip-dependent divergence correc-
tion to a stacked data set of 800 traces, each with 750 time samples, took 1 minute
and 20 s on an IBM RS/6000. Compare this time to the migration time - 90 minutes,
using a time-wavenumber ¢ —k migration process (Hale, 1991). The dip-dependent
divergence correction required only 1.5 % of the migration time.

To include the transmission factor in the algorithm described above, use the ray
tracing equations (5) to compute y/vo/v(2) at every point along the downgoing ray-
path as a function of reflection time and reflection slope. Then apply the full ampli-
tude correction for both geometrical spreading and the transmission factor in place
of the divergence correction. Given a velocity function that varies with depth and
stacked data, the dip-decomposition algorithm is an efficient way to implement the
dip-dependent amplitude correction.

18
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DIVERGENCE CORRECTION RATIO

The importance of the dip-dependent divergence correction is evaluated by com-
paring amplitudes after conventional divergence correction to amplitudes after dip-
dependent correction. For comparison, the conventional correction has been adjusted
by a factor of two to correct for geometrical spreading only along the raypath to the
reflection point. The dip-dependent divergence correction is compared to the con-
ventional correction in contour plots of the ratio of conventional to dip-dependent
correction. These contours show that the conventional divergence correction over-
amplifies dipping reflections, and that the importance of dip-dependent divergence
correction depends on reflection slope, reflection time, velocity function, and whether

or not the transmission factor \/ vo/v(z) is required.

Horizontal and Dipping Reflectors

For interval-velocity functions that increase with depth, the geometrical spreading
correction is largest for energy that travels the farthest and penetrates most deeply
into the medium; i.e., at large times and at small values of horizontal slowness (re-
flection slope), where the direction of propagation is nearly vertical.

®,

F1G. 4. A shaliow, overhung reflector and a deep, nearly horizontal reflector in a
medium where the velocity increases with depth. The reflection times of the two
normal-incidence raypaths are equal. The divergence correction is greater for the
nearly horizontal reflector than for the dipping refiector.

Consider a dipping reflector and a nearly horizontal reflector in a medium where
the velocity increases monotonically with depth (Figure 4). If the reflection times
to these reflectors along the normal-incidence raypaths are the same, the dipping
reflector must be shallower than the nearly horizontal reflector. The velocity along
the normal-incidence raypath to the dipping reflector is therefore less than that for
the nearly horizontal reflector.

Recall that both components ¢ and g of the dip-dependent divergence correction
/oG depend on velocity along the raypath. From the differential equations (17)
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and (18), it is seen that ¢ and ¢ at a particular point on a raypath depend on the
integral of the velocity squared along the raypath with respect to the traveltime to
that point. For a normal-incidence ray that remains at shallow zones characterized
by small velocities, such as the ray to the dipping reflector in Figure 1, the dip-
dependent divergence correction will be smaller than for a normal-incidence ray that
travels through deeper zones characterized by higher velocities; i.c., the ray to the
nearly horizontal reflector in Figure 4. Thus, for fixed reflection time, the divergence
correction decreases as reflector dip, or reflection slope increases. The maximum value
of the divergence correction occurs for zero reflection slope or for horizontal reflectors,
where the conventional divergence correction véyst/vp is valid.

Comparing dip-dependent to conventional correction, the difference between cor-
rections increases with traveltime in a medium where the velocity increases mono-
tonically with depth. Consider two normal-incidence raypaths with the same small
reflection time to a dipping and a horizontal reflector. For early reflection times,
both the dipping and horizontal reflector must be located at shallow depths, and the
deeper zones with higher velocities encountered by the ray to the horizontal reflector
have velocities not very different from those that characterize the shallow ray to the
dipping reflector. The difference between divergence corrections along those shallow
raypaths is small. At late reflection times, however, the reflectors may be located at
very different depths. For these late times, the raypath to the horizontal reflector
travels through zones with much higher velocities than those along the raypath to
the dipping reflector.

Figure 5a shows contours of the ratio of conventional divergence correction to
dip-dependent divergence correction, as a function of reflection time and slope for the
velocity function v = 1.5 + 0.6z. These contours indicate the amount of amplitude
error when the conventional divergence correction is applied to an event with a par-
ticular reflection slope and reflection time. From the above discussion, contours with
large ratios, where the conventional divergence correction differs greatly from the dip-
dependent correction, should correspond to large dips or large reflection slopes and
late times.

In Figure 5a, conventional divergence correction exaggerates amplitudes by less
than three percent for events whose reflection slope and reflection time fall above
the contour labeled 1.03. For events that fall on the 2.25 contour, the conventional
correction over-amplifies those events by approximately 125 percent. The amount of
over-amplification after conventional divergence correction increases with reflection
slope and reflection time.

Figure 5b corresponds to Figure 5a, but the ratio of divergence corrections is ex-
pressed as a function of reflector dip and vertical time. Whereas Figure 5a indicates
the amount of over-amplification after conventional correction on a zero-offset section,
Figure 5b shows amplitude error after conventional correction for a migrated section.
For the velocity function v = 1.5 + 0.6z, the conventional divergence correction ex-
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F1G. 5. (a) Contours of the ratio of conventional to dip-dependent divergence correc-
tion as a function of reflection slope and reflection time, in a medium with velocity
function v = 1.5+0.62 km/s. For events in a stacked section with reflection slopes and
times that fall along a given contour, such as the 1.75 contour, the conventional cor-
rection over-amplifies dipping events by a factor of 1.75. (b) Corresponding contours

as a function of reflector dip and vertical (migrated) time.
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aggerates amplitudes by less than three percent for reflectors dipping at less than 20
degrees. Note that error increases with dip.

The error contours of Figure 5b converge at the bottom of the figure. The contours
are bounded by the largest possible dips from which a normal-incidence ray in the
v = 1.5+ 0.62 medium can be reflected and recorded within the maximum recording
time of 7 s.

Velocity Gradient

Figure 5 describes the amplitude error that results from applying the conventional
divergence correction to dipping reflectors for a medium with velocity function v =
1.5+ 0.6z. If the velocity gradient is increased, the amplitude error in cenventionally
corrected data will become significant at smaller reflection slopes and earlier times.
In other words, the amplitude error contours will migrate to the left, as in Figure 6a,
where the velocity function equals 1.5 + 0.92. The error contours in Figure 6b reach
later vertical (migrated) times than those in Figure 5b. This is because within the
maximum recording time of 7 s, a normal-incidence ray in a medium with a high
velocity gradient will reach greater depths and larger migrated times than a normal-
incidence ray in a medium with a smaller velocity gradient.

A large velocity gradient will increase the velocity along a normal-incidence ray-
path, and thus magnify the ratio of conventional to dip-dependent divergence cor-
rection. Similarly, a small velocity gradient will diminish the difference between
conventional and dip-dependent divergence correction. This is the case for the Gulf
of Mexico velocity function. (See the section on Results, p. 27.)

Velocity Curvature

The dip-dependent divergence corrections depends on the curvature v,, of the
velocity function as well as the velocity gradient. For a velocity function with changes
in the curvature v, (Figure 7a), the contours of amplitude error after conventional
divergence correction (Figure 7c) are twisted relative to the smooth contours of a
velocity function with zero curvature (Figure 5a). Note that the velocity function used
in Figure 5a has constant gradient with respect to depth 2, and thus zero curvature.

Recall that the curvature v, contributes to dip-dependent divergence correction
v/0q through the in-plane divergence factor ¢, given by equations (18). The differen-
tial equation for ¢ is coupled to p, and the derivative of p with respect to traveltime
is proportional to the curvature v ,,. Changes in curvature v, affect both magnitude
and sign of p. As the derivative of ¢ with respect to traveltime is proportional to p,
the changes in curvature v ., will retard or accelerate increments in q. Because ¢ at
a given traveltiine depends on velocity and p at earlier times along the ray, a change
in curvature at a particular depth will affect not only p and ¢ at that point along the
raypath, but also later values of p and g.
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FI1G. 6. (a) Contours of amplitude error after conventional divergence correction as
a function of reflection slope and reflection time for a medium with velocity function
v = 1.540.92 km/s. Corresponding contours as a function of reflector dip and vertical
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(migrated) time. Compare with Figure 5.
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F1G. 7. (a) Two interval velocity functions. (b) Second derivative of the velocity
function, given by the dashed line in (a), with respect to depth z as a function of
vertical time 7; i.e., v,,(7). (c) Amplitude error contours that result from applying the
conventional divergence correction for a medium described by the interval velocity,
given by the dashed line in (a). Compare the distorted contours in (c) with the
contours in Figure 5a.
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Two velocity functions are displayed in Figure 7a. The dashed line corresponds to
the velocity function v = 1.540.6z. This function is linear with depth and exponential
in vertical time; the curvature v, is zero. The velocity function described by the
solid line includes a high-velocity zone between 3 and 5 s. This high-velocity zone
introduces changes in curvature v ,,, shown in Figure 7bh. Just as velocity is given
as a function of vertical time 7, the second derivative of velocity v ,, with respect to
depth 2 is also given as a function of vertical time. The curvature v, as a function
of vertical time 7 is defined by the mapping:

v 1 /v,.\?
o) =L (22)"

For the velocity function given by the solid line in Figure 7a, there are two regions
of large change in curvature v, (7); between 2.5 and 4 s, and around 5 s. Consider
the 3% amplitude error contour of Figure 7c. The small reflection slopes that fall on
this contour correspond to nearly horizontal reflectors, with nearly vertical normal-
incidence raypaths. For these small reflection slopes, reflection time and vertical time
are similar. The 3% amplitude error contour is strongly distorted with respect to
the 3% error contour of Figure 5a between 2.5 and 4 s, and again around 5 s. This
distortion correlates to the changes in curvature near those vertical times. For large
reflection slopes and steep reflectors, the deformations in the amplitude error contours
cannot be so easily correlated to changes in v ,, as a function of vertical time.

Transmission Factor

If after dip-dependent divergence correction, the data will be migrated with an
exploding reflector migration scheme based on the constant density acoustic wave
equation, then amplitudes after divergence correction will be consistent with explod-
ing reflector data, only if the transmission factor is included.

Consider the dip-dependent divergence correction, when spreading ,/6q is mul-

tiplied by the transmission factor \/ug/v(2). For a velocity function that increases
monotonically with depth, as reflector depth increases the divergence correction in-
creases; however, the transmission factor decreases. Amplitudes are less exaggerated
after conventional correction when the transmission factor is included. With the
transmission factor, the amount of over-amplification is significant only for large re-
flection slopes or steep reflectors, and late times.

Figure 8 shows contours of the ratio of conventional divergence correction to dip-
dependent correction, when the transmission factor \/E)-/v(z) is included in both
corrections. The contours for the same values of amplitude error as in Figure 5a are
shifted to higher reflection slopes. An event with reflection slope of 0.75 s/km and
reflection time of 3.5 s falls on the 75% error contour of Figure 5a, but the 256% error
contour of Figure 8.

The amount of over-amplification for a particular event after conventional cor-
rection depends on reflection slope, reflection time, velocity, velocity curvature, and
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F1G. 8. Contours of amplitude error after conventional divergence correction, where
the transmission factor \/vo/v(z)is included. The velocity function in the medium
equals 1.5 + 0.6z km/s. Compare with Figure 5a.

whether or not the transmission factor is required. Figure 5 demonstrates that am-
plitude error increases with reflector dip and reflection slope. For large reflection
slopes, the amount of over-amplification increases with reflection time. Amplitude
error becomes significant at smaller reflection slopes and smaller reflection times if
the velocity of the medium has a large gradient, as in Figure 6a. As well, ampli-
tude error due to conventional divergence correction of a dipping event is sensitive
to changes in velocity curvature v ,,, as in Figure 7. Finally, Figure 8 demonstrated
that with the transmission factor included, the amount of over-amplification after
conventional divergence correction is decreased.
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RESULTS

In the previous chapter, the dip-dependent divergence correction was compared
to the conventional correction in contour plots of the ratio of conventional to dip-
dependent correction. In this section, I show synthetic and field data examples
of dip-dependent and conventional divergence-corrected data. Here, I compare the
dip-dependent divergence-corrected data with the conventionally corrected data by
taking the difference, i.e., subtracting the dip-dependent corrected data from the
conventionally corrected data. The significance of the dip-dependent divergence cor-
rection is apparent when the amplitude difference is plotted at the same scale as the
divergence-corrected data. ‘

The amplitude difference, as shown in Figures 12 and 16, is evaluated after
divergence-corrected data are migrated with an exploding reflector scheme. The data
examples in this chapter have been migrated with a reverse time migration based on
the censtant impedance or non-reflecting acoustic wave equation. Amplitude, given
by equation (9), in the constant impedance acoustic wave equation includes only a
spreading term and no transmission factor. Consequently, the dip-dependent diver-
gence correction applied to these data examples does not include the transmission
factor.

The examples in Figures 10 through 16 demonstrate the amplitude effect of the
dip-dependent divergence correction. In these examples, both conventional and dip-
dependent divergenze correction have been divided by the correction for zero slope
at the first time sampling interval ¢;: vig(f1)t1/vo. This ensures that divergence
correction is dimensionless, and is not a function of the units of velocity measurement.

The synthetic data were generated by a modeling program based on the 2.5-
D Kirchhoff approximation (Bleistein, 1986). This program produced a zero-offset
section, part of which is displayed in Figure 9. The data in this synthetic example as
well as the field data example were migrated using a finite difference migration scheme
(Hale, 1991). This migration process is implemented in the time-wavenumber ¢k
domain, and yields amplitudes proportional to the reflection coefficients. Reflection
coefficients of the model reflectors were constant throughout the model; within the
limits of the modeling program, this constancy is preserved in the migrated dip-
dependent divergence-corrected data of Figure 11b.

The reflection at 4.5 s with reflection slope of 0.75 s/km indicated by the arrow
in Figure 9 corresponds to the steep reflector in the migrated data, Figure 11. The
velocity function v = 1.5 4+ 0.6z was used to generate the synthetic section. For this
velocity, amplitude error after conventional correction applied to zero-offset data is
contoured in Figure 5a. Note that the dipping event at 4.5 s falls on the 2.25 contour
of Figure 5a; i.e, the conventional divergence correction will over-amplify that event
by a factor of 2.25. Figures 10a and 10b show the synthetic stack after conventional
and dip-dependent divergence correction respectively.

27



Fazzari Divergence Correction

Distance (km)
5 6 7 8 9

F1G. 9. Zero-offset synthetic data generated with interval velocity function v =
1.5 4 0.6z. No divergence correction has been applied. The amplitude error contours
are those shown in Figure 5a. The dipping event at 4.5 s has a reflection slope of 0.75
s/km. This event falls on the 2.25 contour of Figure 5a.

Figure 11 displays the divergence-corrected stacked data of Figure 10 after migra-
tion. The contours of amplitude error after conventional divergence correction and
migration are displayed as a function of reflector dip and vertical (migrated) time in
Figure 5b. At a migrated time of 2.25 s, the steeply dipping reflector is overhung by
about 7 degrecs from the vertical. For a reflector with dip of 97 degrees and a mi-
grated time of 2.25 s, Figure 5b indicates that the conventional divergence correction
has over-amplified that reflector by 2.25 times.

Amplitudes in the dip-dependent divergence-corrected data of Figure 11b corre-
spond to the interface reflection coefficients of the synthetic model, within the limits
of the modeling program. Note that amplitudes in Figure 11b are nearly constant
with a small increase in amplitude with depth. This amplitude increase with depth
is an artifact of the modeling program. Although the reflection coefficients in the
synthetic model were constant; the zero-offset amplitudes generated by the modeling
program correspond to reflection coefficients that increase slightly with depth. Conse-
quently, the dip-dependent divergence-corrected amplitude of the shallow horizontal
reflector is 5% less than that of the deeper horizontal reflector.

The difference plot in Figure 12 demonstrates that the conventional divergence
correction has exaggerated the amplitudes of dipping reflections. For nearly horizontal
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(a)

Distance (km)

(b)

F1G. 10. (a) The synthetic stack with conventional divergence correction applied.

(b) With dip-dependent divergence correction applied. The amplitudes of the steep
reflection are stronger in the conventionally corrected data.
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(b)

Fic. 11. (a) Migration of conventionally divergence-corrected data. (b) Migration
of dip-dependent divergence-corrected data. Compare the amplitudes of the steep
reflector.
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Distance (km)
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F1G. 12. The post-migration difference: conventionally corrected amplitudes minus
dip-dependent divergence-corrected amplitudes.

reflectors, the dip-dependent divergence correction and the conventional divergence
correction have the same action.

The dip-dependent divergence correction is applied to a Gulf of Mexico seismic
line. In the Gulf of Mexico, an interval velocity function that varies with depth
is a good approximation to the velocity of sediments through which seismic waves
propagate. The arrow on the stacked data, Figure 13a, points to the salt flank
reflection, with a reflection slope of 0.98 s/km at a time of about 3.5 s. This event
falls on the 1.6 contour of Figure 14a. The conventionally corrected amplitudes along
the salt flank are thus over-amplified by 60 percent.

In Figure 15, I compare the migrated conventionally corrected field data to the mi-
grated dip-dependent divergence-corrected field data. As for the synthetic example,
amplitudes of migrated reflections from the steep beds are brighter on the conven-
tionally ccrrected data, although the difference as shown in Figure 16 is more subtle
here.

Figure 16 shows that the conventional correction has also over-amplified the dip-
ping interface at the crown of the salt dome, about 1.7 s. These interfaces dip at
an angle of about 45 degrees, and from Figure 14b, the conventional correction will
have over-amplified these reflections by a factor of about 1.1. Because this reflector
has a relatively high amplitude, its small 10% error in amplitude after conventional
correction shows on the difference plot of Figure 16.
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F1Gg. 13. (a) A part of the field data stack without divergence correction showing
the dipping events that correspond to the salt flank. The dipping event at 3.5s has a
reflection slope of 0.98 s/km. This event falls on the 1.6 contour of Figure 14a. (b)
Interval velocity used to migrate the field data.
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(b)

FiG. 14. (a) Contours of the ratio of conventional to dip-dependent divergence
correction as a function of reflection slope and reflection time. (b) Corresponding
contours as a function of reflector dip and vertical time. The velocity model is shown
in Figure 13b.
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Distahce (km)

Fic. 15. (a) Migration of conventionally divergence-corrected data. (b) Migrated
data with amplitudes adjusted by the dip-dependent divergence correction.
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Distance (km)
1 2 3

4

F1G. 16. The post-migration difference: conventionally corrected amplitudes minus
dip-dependent divergence-corrected amplitudes.

The velocity increase in the Gulf of Mexico data is less rapid here than in the
synthetic model studied above, therefore the amplitude difference in Figure 16 is less
dramatic than for the synthetic example. In this medium, the conventional divergence
correction is valid over a larger range of dips and traveltimes. As before, the dip-
dependent divergence correction has decreased the amplitudes of dipping beds relative
to the conventional divergence correction, and the amount of over-amplification after
conventional correction increases with reflector dip.
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CONCLUSION

The poststack dip-dependent divergence correction compensates for amplitude
decay due to geometrical spreading in a v(z) medium. It is designed to correct the
zero-offset amplitudes of a 2-D seismic line oriented in the direction of geological dip.
After application of the dip-dependent divergence correction, amplitudes in zero-offset
data will be consistent with the exploding reflector model. If an exploding reflector
migration that treats amplitudes in accordance with the acoustic wave equation,
i.e., reverse time migration, is then applied to the divergence-corrected data, then
the migrated amplitudes will be more interpretable in terms of interface reflection
coefficients, than if the conventional divergence correction had been applied.

The error in amplitude due to the conventional divergence correction is most
significant for events with large reflection slope at late times. For the field data
example from the Gulf of Mexico shown in the previous section, the conventional
divergence correction over-amplified dipping events by as much as 60 percent.

The dip-cependent divergence correction improves the amplitude processing of
dipping reflectors in a medium where the velocity varies only with depth. Gulf of
Mexico data, which often contain steep reflectors and where the velocity profiles have
little lateral variation, are particularly suited for the application of this correction.

For dipping beds with large reflection coefficients, the difference in amplitude
after dip-dependent divergence correction may be dramatic. Where the conventional
correction would introduce ‘bright spots’ in such beds, amplitudes in the migrated
dip-dependent divergence-corrected data are more closely related to the interface
reflection coefficients. Note that for dipping beds that do contain ‘bright spots’,
dip-dependent divergence correction preserves the relative brightness.

Although the dip-dependent divergence correction has been applied to 2D zero-
offset sections in this thesis; it is a simple matter to extend the correction for 3D data
sets. Just as the downward continuation operator is extended to 3D migration schemes
by considering the magnitude of the horizontal wavenumber, the dip-dependent di-
vergence correction may be extended to 3D by replacing the horizontal slowness p, in
the = direction with the magnitude of the horizontal slowness vector 4/p? -+ p2, where
Py is the horizontal slowness in the y direction.

To correct for dip-dependent divergence in finite-offset data, the dip-dependent
correction must compensate for geometrical spreading along both the raypath from
shot to reflection point and along the raypath from reflection point to receiver. As
discnssed in the introduction, such a divergence correction would require two-point
ray tracing to determine the traveltimes and horizontal slownesses of the incident
and reflected rays associated with each finite-offset reflection. Furthermore, while
the divergence correction for the incident raypath may be tabulated as a function of
horizontal slowness, and traveltime; the divergence correction for the reflected raypath
must be tabulated for every reflection point, horizontal slowness, and traveltime.
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Clearly, dip-dependent divergence correction for finite-offset data would be an
expensive process in terms of the ray tracing necessary to determine the reflection
point and the appropriate divergence correction for every finite-offset reflection from
that point. The finite-offset dip-dependent divergence correction and its implemen-
tation require further study; however, I expect that the amplitude effects of the dip-
dependent divergence correction applied to finite-offset data, which are subsequently
stacked, will not differ significantly from those of the poststack divergence correction.

To see this, consider a dipping reflector in a constant velocity medium, with
velocity vy. The divergence correction along the incident raypath will equal the total
distance along that raypath: wvt;, where t; is the traveltime to the reflection point.
Similarly, the divergence correction for the reflected raypath will be vgt,, where t,
is the traveltime to the reflection point. The total divergence correction will equal
vo(t: + tr) = vot, where t is the reflection time. Except for a factor of two to account
for the exploding reflector model, this divergence correction vyt is identical to the
poststack divergence correction for a constant velocity medium. Admittedly, the
divergence correction is more complicated for a v(z) medium; however, the averaging
effect seen in the constant velocity case will also occur in the v(z) medium; and
consequently, I do not expect a significant improvement in-amplitude processing to
result from extending the dip-dependent divergence correction to finite-offset data.

37



Fazzari Divergence Correction

Acknowledgments

I thank my advisor, Dr. Dave Hale, for suggesting this thesis tOpl(, and for pro-
viding me with invaluable guidance and assistance.

The financial support of this project is provided by the Consomum Project on
Seismic Inverse Methods for Complex Structures at the Center for Wave Phenomena
(CWP), at the Colorado School of Mines. I thank my fellow researchers in CWP for
their encouragement and helpful discussions.

This project is also supported by the United States Department of Energy, grant
number DE-FG02-89ER14079. (This support does not constitute an endorsement by
DOE of the views expressed in this paper.)

38



20N D DO P 1 Y O S o i .

Fazzar Divergence Correction

References

AKki, K., and Richards, P., 1980, Quantitative seismology: Vol 1, W.H. Freeman and
Company.

Baysal, E., Kosloff, D, aand Sherwood, J., 1983, Reverse time migration: Geophysics,
48, 1514-1524.

Baysal, E., Kosloff, D, and Sherwood, J., 1984, A two-way non-reflecting wave equa-
tion: Geophysics, 49, 132-141.

Bleistein, N., 1986, Two-and-one-half dimensional in-plane wave propagation: Geo-
phys. Prosp., 34, 686-703.

Bleistein, N., 1984, Mathematical methods for wave phenomena: Academic Press,
Inc.

Cerveny, V., 1981a, Ray tracing in a vicinity of a central ray: Stanford Exploration
Project, 28, 39-48.

Cerveny, V., 1981b, Computation of geometrical spreading by dynamic ray tracing:
Stanford Exploration Project, 28, 49-59.

Cerveny, V., and Hron, F., 1980, Ray series method and dynamic ray tracing system
for three-dimensional inhomogeneous media: Bul. Seis. Soc., 70, 47-77.

Cerveny, V., and Ravindra R., 1971, Theory of seismic head waves: University of
Toronto Press.

Cerveny, V., Molotkov, I. A., and Psenéik, I., 1977, Ray method in seismology:
Univerzita Karlova Praha,

Gazdag, J., 1978, Wave equation migration with the phase shift method: Geophysics,
43, 1342-1351.

Hubral, P., 1983, Computing true amplitude reflections in a laterally inhomogenous
earth: Geophysics, 48, 1051--1062.

Jakubowicz, H., 1990, A simple efficient method of dip-moveout correction: Geophys.
Prosp., 38, 221-245.

Loewenthal, D., Lu, L., Robertson, R., and Sherwood, J., 1976, The wave equation
applied to migration: Geophys. Prosp., 24, 380-399.

Newman, P., 1973, Divergence effects in a layered earth: Geophysics, 38, 481-488.

Press, W., Flannery, B., Teukolsky S., and Vetterling, 1988, Numerical Recipes in
C: Cambridge University Press.

Towne, D. H., 1967, Wave Phenomena: Addison-Wesley Publishing Company.



Wil

L i

Fazzar: Divergence Correction -

Appendix A

THE TRANSMISSION FACTOR

In this appendix, I justify my identification of the velocity ratio {/ue/vy as the
transmission factor. Transmission coefficients and amplitude losses due to transmis-
sion are defined in a medium with interfaces across which the velocity function v(z)
changes discontinucusly. However, the dip-dependent divergence correction was de-
rived for a continuous medium. Strictly speaking, no amplitude losses due to trans-
mission may occur in the continuous model used for the dip-dependent divergence
correction. However, the continuous v(z) medium where velocity v varies with depth
z only may be modelled by a series of constant velocity horizontal layers in the limit,
as the change in velocity between the layers goes to zero. I consider the amplitude
change across a single interface in the layered medium. Across this interface, velocity
changes from v; to vo. For the limit in which the discrete medium with transmission
effects equals the continous medium, I show that the change in amplitude across this

interface is independent of angle of incidence and is simply y/vo/v;.
The amplitude change across any interface is the product of incident amplitude,

transmission coefficient of the interface, and change in geometrical spreading of the
ray tube across the interface. First consider the transmission coefficient.

Transmission

The transmission coefficient (Towne, 1967, p. 411-417) across a single horizontal
interface for an acoustic plane wave travelling in a constant density medium is
2vg cos 6,

T= vy cos B + vy cosfy’ (A-1)

The subscript 1 refers to quantities in the incident layer and 2 refers to quantities in
the refracted layer. The angles 6; and 0, are, respectively, the angles of incidence and
transmission with respect to the normal to the interface; see Figure A-1. The change
in velocity Av between the layers is defined by

Av = vy — ). (A-2)

Similarly the change in angle A6 between the layers is defined by
Af = 02 - 01. (A'3)

To evaluate the transmission coefficient in the limit as Av goes to zero, expand v,
and cosfy in terms of Av, vy, Af and cos§;. From equation (A-2), vy = v + Av.
The Taylor series expansion of cosfy gives the two-term approximation

cosf, =~ cosf + Ab(—sinb,). (A-4)
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D V1

e v2

8,

F1G. A-1. Transmission across a single interface in a discretized v(2) medium. The
ray tube is shown incident on and refracted from the interface. The spreading, or
breadth of the ray tube is measured along the perpendicular line that connects the
exterior rays of the ray tube. 7 is the horizontal width of the raytube along the
interface. The two angles marked in gray are equal to 6;, the angle made by the
normal to the incident wavefront with respect to the vertical. Similarly, the two
angles marked in black are equal to ;.

No further terms in the expansion are necessary, because Af is of order Av, as shown
below. Angles of incidence and refraction are related to velocity by Snell’s law

sinf;  sinfy

5] )

Replacing sin 6y by the first two terms of its Taylor series expansion yields

sinf; _ sinf; + Ab(cos 61)
v v+ Av '

Multiplication by vo/siné; gives

v 1+%£ ~ 1+ A8(cot ), (A-5)

U1 1

from which it follows that A
N —;}—gtan 0. (A-6)
1

For 6; < /2, Af is thus proportional to Av. As Av approaches zero, so does Af, at
the same rate.

Using equation (A-4) in the expression for transmission coefficient and substituting
for v, yields

2(vy + Av)cos b,
(v1 + Av)cos by + vy (cos 0, — Afsinb,)’
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Dividing both numerator and denominator by 2v; cos8; gives
14+ Av/v
11+ Av/v) + 3(1 — Aftan6))

1+ Av/v
1+ (A'U/?'Ul) - (AGtan01/2)'

I'I'\

R

The transmission coefficient can be written as (1 + Av/v;)(1 + z)~! where z is equal
to the sum of the Av and Af terms. In the limit as Av and consequently A6 go to
zero, x < 1 and

(14 2)*~1+az. (A-7)

With the approximation of equation (A-7), the transmission coefficient is thus

T ~ (1+é3)_> 1__A__zi+'_A€ta,n01
(% 2'1)1 2
Av  AfOtan6,
—_— o —— A-8
1+ 2’01 t 2 ! ( )

when terms of higher order than Av are neglected. Applying equation (A-7) a second
time, the transmission coefficient may be rewritten as a square root

T

R

1/2
(1+é2+AmeJ . (A-9)

This result for the transmission coefficients is equivalent to the expansion of
\/vg/vl\/cos 6,/ cos 8y, also in the limit as Av goes to zero. To see this, start with

vg\/ cos ~ (v1 + Av)cos b, 1/2
v V cosfly vi{cos8; — Afsinb;) '

Dividing both numerator and denominator on the right side by v; cosf; yields

/cosol - 14 Av/y 1/2
cosf, ~ \1-— Aftané,

1/2

g[@+£%ﬂ+&ﬂw&ﬂ (A-10)
(51
1/2
o (1+%—2+A8tam‘)1) . (A-11)
vy

The approximation of equation (A-7) was used to obtain (A-10), and terms of higher
order than Av were neglected to obtain (A-11).
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The right side of equation (A-11) is identical to that of equation (A-9). Therefore
the transmission coefficient for a wavefront incident upon a horizontal boundary in
the limit as the velocity difference Av goes to zero is

vy [cos ()T
v B[ a2

Note that for normal-incidence, ; = 6, = 0, and the transmission coeflicient T
reduces to /va/v.

Spreading

The change in spreading of a ray tube across an interface is also angularly depen-
dent. Figure A-1 relates the spreading d.S; of the incident ray tube, to the spreading
dS, of the refracted ray tube. The breadth of the ray tube is defined by the angle
§ and horizontal width of the ray tube along the interface, r. Thus the breadth
(perpendicular width) of the incident ray tube is

dS| = rcosb;.
Similarly, the breadth of the transmitted ray tube is
dSy = rcosfy

Eliminating r from these equations yields

@ _ cos O,
dSl - COSOl.

(A-13)

The ratio of refracted to incident breadth defines the change in geometrical spreading
across an interface. Note that this accounts for only a part of the divergence; because
geometrical spreading also occurs as the ray tube travels within the constant velocity
layers.

The amplitude Ay of the refracted ray tube is the product of the incident am-
plitude A;, the change in geometrical spreading, and the transmission coefficient.
The change in geometrical spreading across the interface is given by equation (A-13).
Equation (A-12) describes the transmission coefficient. If A; is the amplitude just
above a horizontal interface, then the amplitude Ay just below the interface is:

dSs
= A ”——-—
As 1 X dS] x T
cosfly [vp ‘/E!Osal
= Ayl —2.[2
cosfy | v; Y cosfs
A2, (A-14)
v
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The change in amplitude across a single interface is equal to the normal-incidence

transmission coefficient /vy /v;, what I have called the transmission factor. For many
layers, the change in amplitude across the layer interfaces is

N ARt

Both the transmission coefficient and the discontinuity in the spreading across an
interface are functions of the angle of incidence. As equation (A-14) illustrates, this

angular dependence cancels across an interface, thus leaving only y/v2/v;, or the more

general /v(z)/v, as the transmission factor.
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