d Image Management

e, Suite 1100

Association for Information an

Avenu

Silver Spring, Maryland 20910
301/587-8202

1100 Wayne

Centimeter

100 11 12 13 14 15 mm

9

8

2 3

1

25

22

I
l

28

Il
2
f

2
£

ol o o
s

)
)
| F5)
[ FF)
[

10

|

Inches

18

.
I

e
Ee—]
—_—

14

I

125

I

0
\\\.\\ ,,/// <&
\\.\ /,// %%@AW%%
\3 WA AR <
L G A
2 X
\\
%\
/\No% .//
VSl
| \\7/ %&Ws@ £
W o //9@%@
& /3







| Con-941/42- -9

Y LA-UR-94-1470

Los Alamos National Laberatory Is operated by the Universitv ur California for the United States Depariment of Energy under contract W-7405-ENG-36

tme: A LAGRANGIAN PARTICLE METHOD FOR THE
SIMULATION OF DENSE PARTICULATE FLOWS

AUTHOR(S): M(alcolm) J. Andrews, Texas A&M
D. A. J. Baillergeau, Ecole Polytechnique
P(eter) J. O’Rourke, T-3

summeDTO:  ASME Winter Meeting, Chicago, Illinois, November 6-9, 1994

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,
mendation, or favoring by the United States Government or any agency thercof. The views

and opinions of authors expressed hercin do not necessarily state or reflect those of the

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
United States Government or any agency thereof.

By acceptance of this article, the pubiisher recognizes that the U.S. Government retains a nonexclusive, royalty-free licensa 1o publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Govemment purposes.

The Los Alamos National Lzboratory requusts that the publisher identity this article as work performed under the auspices of the U.S. Department of Energy.

L OIS A U 21[AN©S Los Alamos National Laboratory

Los Alamos, New Mexico 87545

Fy@ A o
o P
i dnidwren ¢

DASTRIBUTION OF THIS DOCE@&

KR!

FORM NO. 836 R4
ST. NO. 2629 5/81




A LAGRANGIAN PARTICLE METHOD FOR THE SIMULATION
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ABSTRACT

A new approach to the simulation of multi-phase dense
particulate flows has been developed based on taking the best of
Eulerian/Eulerian and Eulerian/Lagrangian formulations. This new
approach uses a modem Particle-In-Cell method that has been
extended to multi-phase flows. The method uses accurate mappings
from Lagrangian particles to and from Eulerian space so that
continuum intergranular stress formulations can be incorporated in
the modeling. The result is a new model that can handle particulate
loading ranging from dense to dilute, a distribution of particle sizes,
and a range of particulate materials. This paper dcscribes the new
method and results from a one-dimensional implementation. The
Lagrangian particulate formulation is well suited for a massively
parallel environment, with a coupled high speed calculation of the
underlying Eulerian gas phase governing equations. The new
simulation method has important applications in Fluidized Bed
Combustion, Catalytic Cracking processes and many other granular
flows. Exwension of the method to two- and three-dimensional flows

with parallel computation means that we can offer a comprehensive
methodology for dense granular flows,

NOMENCLATURE

A Particle acceleration, equation (4)

D  Drag function, equation (16)

] Interaction between particles, equation (15)
P Mean gas pressure

S(x) Linear interpolation function, equation (24)
T Slope function, equation (31)

s Solid phase distribution function

'3 Gravitational acceleration

up  Gas velocity

4g  Mass average solid velocity

Vp  Solid particle velocity

Ar  Numerical time step

Ar  Numerical cell size

€ Gas void fraction

U] Solid void fraction

8o  Initial solid void fraction

Pe  Gas density (mass of gas per unit gas volume)
Ps

T

Solid (particle) density
Solid stress
Superscrints
n Evaluated at time nAL
Subscripts
P Particle
s Solids.
8 Gas.
i Cell center index.
i+1/2 Cell index of right face.
INTRODUCTION

Modeling of two-phase particulate flows may be divided into
Locally Homogenous Flow (LHF) models, and Separated Flow (SF)
models. In homogeneous flow systems the two components of the
system move with the same local velocity so mixture equations can be
readily formulated. In separated flow systems the two components
have separate, but not necessarily the same, velocities that exert an
influence on one another through such terms as drag and mean gas
pressure gradient. This separated flow formulation is the more
general form and the one of interes! in this work. Kuo (1986) gives a
more complete discussion of two-phase flow models.

Mathematical models of separated particulate two phase flow
have been either a8 Lagrangiar description for the particulaie phase
and a Eulerian continuum description for the gas phase, or a Eulerian
continuum description for both phases. The Lagrangian/Eulerian
description is well suited for disperse particulate flows with
particulate void fractions of up to about 5%, typical applications are
sprays, Andrews and Bracco (1991), and Andrews (1993). When the
particulate void fractions are above 5%, the particle collision
frequency is high and cannot not be realistically resolved with a
Lagrangian collision calculation.



The continuum Eulerian/Eulerian formulation is most appropriate
for particulate void fractions above 5%. Under these circumstances
the particulate phase is treated as a fluid with mixture properties and
collisions handled by intergranular stress terms expressed through
continuum spatial gradiests, Gidaspow (1986). Such a formulation
works well when the panticulate size Jisuibution is monotonic.
However, when a particle size distribution is modeled, equations must
be introduced to follow the movement of the different particle sizes in
the flow. Thus, many equations may need to be ar ied that require
additional storage and an unnecessary calculation for panicle
distribution concentrations where there may be no particles of that
size, Rizk (1993).

Here we present a numerical simulation procedure for multi-phase
flows that consisienly blends Lagrangian/Eulerian and
Eulerian/Eulerian methods. The computation of Lagrangian panicie
coefficients is well suited o a massively parallel environment. We
start by presenting the governing equations of two phase flow and
then a one-dimensional implementation of the simulation procedure.
Three validation calculations then follow that demonstrasz the
methodology. The paper closes with conclusions and refersaces.

FORMULATION

Our interest is in fluidized beds with a two-phase flow comprising
solid particles moving in a gas phase. The gas phase is considered to
be & continuum. The major problem is to describe the interaction
between the solid particles and the gas. In the following section
governing equations are developed based on an approach that can
handle flows with a wide range of particle sizes. However, this
approach introduces difficulties with particle-particle interactions, so
we introduce averaging procedures to obtain a panticulate phase
continuum formulation for which we have taken the empirical
relations of Gidsapow (1986).

Goveming equations of the gas phase

The gas is perfect and with constant entropy. o p/p; = constant
and inviscid (gas viscosity is reintroduced when gas-particle drag is
considered). The gas continuity equaLon is:

i;_?!l"v"(w'!‘):o (l)
where € is the gas void fraction, p_ is the gas density (based on mass
of gas per unit gas volume), and y, is the gas velocity. The gas
momentum equation is:

3ep, u,)
—%—LW,-(EO,!.!.)=-GV,P-£-9,€§ @
where P is the gas pressure, g gravity, and F the momentum

exchange between gas and particulate phases.

Goveming equations of the solid phase

Evolution of the solid phase distribution function f(x, v. m 1) is
govemed by:

951'1+v‘-(g)+v,.w)=o &)

where 4 is the particle acceleration, ¥ is the position of the panticle, y
is the particle velocity, m is particle mass, and ¢ is time. In the present
work we have assumed the solid phase density and particle density
are the same, but this is not an intrinsic limitation of the method.

The expression for A is:

eoboy s vt

where D is a drag function described laler and depends on the local
particle Reynolds number. The second term in equation (4) accounts
for the mean gas pressure gradient, the third term is gravity, and the
last term, [, represents the interaction between particles.

It is useful to show that Lagrangian and Eulerian descriptions of
the solid phase are equivalent except for terms that are intrinsic 10
each formulation. To obtain average variables for an Eulerian
formulation that will depend only on g and 1, we integrate equation
(3) over y and m, having multiplied by m or my (o give the mass or
momentum equations. For the mass:

L_{ %{-+mvl~(gj)+mv!-w)} dvdm =0 (s
The mass m of each particle is constant so equation (5) may be
rewritten as:

S

;)

37( L_mfd\_rdm)+v‘ -(L_my‘dgdm)=0 ©6)
Defining 8p, = L_ mfdydm, 9 is the mass fraction of the solid phase
and saisfies O+e=], p, the solid phase density, and

0p,u, =L_ myfdvdm, where g is the mass average solid velocity.
Equation (6) may be written in the more familiar form:

The momentum equation is:

‘-(Op,u)=0 N

1]
——t

I {mz%{+sz.-(zf)+me, w)} dyim=0 (&)

or for each velocity component i:

d d
L_{mv, -3-:&--& my, 5:‘-1-(v,j')<lunvi -T(A‘f)} dvim=0 (9)
Since y is the space of velocities we may write the first term as:

¥ A6p,u,)

L_mv, 5 ddm === (10)
with u_ the i* component of . The second term in equation (9) may
be written as:

9 d
Joam, 5. = 3a Uata0,) +

3 (an
* L_mf(\’. )(v, Mvdm

where v, =v,-u,, and v,=v ~u, are local particle velocity

fluctuations around the average velocity. The third term in equation

(9) may be written as:

3 L)
L_mv, -—;-(fA,) dvdm = J;_-aTl(mv,]Al)dgdm - -
[ _(mpA) dvdm

ve



Using Gauss's theorem, the first term of the right-hand side is zero
because f = 0 for small and large v. The final solid phase momentum
equation is:

2 (6p.)+ 7, (Bp,0.) =

-9, [mflv, -u, )y, -u) dudm+ |_mfA, dvim

Insenting the expression (4) for A ‘we obtain tor the mean gas
pressure gradient and gravilational terms:
- _mf9,Pdydm = -69 P and [ _gmfdwm=tp,g (14
e -2
For the interaction term we take the empirical formula proposed

(13)

by Gidaspow of j mf 1 dvdm =V ¢, where © is the solid suess. In

our Lagrangian formulation, as a first approximation, we take [ as
independent of size and velocity giving:

L::.%—Vlt (15

s
For the drag function we use the expression of ORourke (1981):

D=C,39-Ll'-!'—-gd (16)

o
bt 2 ]u -vlr
with C4=%4-(e“°+£-g-—e""). and R, = p"‘"‘ 2 In
¢ ]

the limit of small solid frictions this formulation reduces to the
expressions proposed by Putnam (1961) for solid spheres. The e!
dependence corresponds with that found in the experiments of
Richardson (1954).

The first term on the right-hand side of equation (13) does not
appear in many formulations of particle continuum equations. In the
present formulation this additional term arises as a kinematic stress
that considers local particle velocity fluctuations around the average
velocity.

In one-dimension the resulting governing equations for the gas
phase continuity and momentum are:

3e,) 3ep,u,)

— =0

at ox

2
a(ep‘u,)+3(6§,u;) =_e_a£_ an
x

ot
I.,. me(m.‘u‘ - v’!)(u' -, )dvdm - p.e8

The solid phase Eulerian governing equations are:

Aep,) , Aopm.)

=Tl

at ox
Aep.w,) Aspul) op
T o o PP (18)

or
L_me(m,‘u‘ - V,D( u, = v, )dvdm -

V! 'Imf(v’l _uu)(!’ _!,) dkdm—op‘g_%::_

Following Gidaspow (1986) we lake %wmgf;. where the

modulus of elasticity is given by:

AT
Gle)=< =10 14 witha=-876andB=543  (19)

The equations that describe individual particle motion are:

ax,

ot =% 20)
ov 1P | &t
5= Dumle v,y =)= 8- 50055

The continuum, equation (18) , and Lagrangian-particle, equation
(19), formulations for the solid phase illustrate the two approaches (o
modeling two-phase flows. Empirical expressions for the solids
stresses are easy o incorporate in the continuum formulation, but to
eliminate the distribution function, f, which we do not solve, the
kinematic stress term of equation (18) is ignored and the drag term is
simplified by assuming particles of a single size and velocity.
However, the Lagrangian formulation accounts for the effects of a
distribution of sizes and velocities but further assumptions must be
made to relate solids stress 1o the collisional force on an individual
particle. When detailed theories have been developed that give the
average collisional force on a particle as a function of velocity and
size, this information can be incorporated into the Lagrangian
formulation, thereby providing a more detailed and fundamental
approach to computing solids sress.

Next we solve the equations of the Lagrangian-panticle
formulation. The gas-phase equations (17) are solved on a Eulerian
grid. We do not directly solve the coupled equations of the particle
and gas phases because this would involve a computationally costly
iterative, implicit solution for the velocity of each particle. Instead,
we interpolate the particle properties to the grid and solve implicit
approximations to the particle continuum equations and gas phase
equations on the grid. Terms needed to update particle properties,
such as the local gas velocity and pressure gradient, are interpolated
back to each particle and used in a final explicit calculation of particle
velocities and positions.

NUMERICAL SOLUTION OF THE GOVERNING
EQUATIONS

Next we develop a finite difference method for the gas phase, and
then the solid particle phase is described with computational particles
that each represent several real particles. We use a PIC method,
Harlow (1964), however partcle quantities are accuralely
interpolated onto the numerical grid to introduce average quantities
for use in evaluating the solids stress. We then solve the joverning
equations using these quantities and map back to the ndividual
particle quantities. These forward and backward interpolations
between discrete and continuous representations of particle exchange
terms allows flexibility to choose the most appropriate mathematical
formulation. We retain numerical accuracy by using second order
accurate interpolations.

Figure 1 shows the computational. A staggered formulation of
velocities and scalars is used, with cell index i defined at the cell
center, and i+% at the right-hand cell face. The superscript '’ refers
to the value at the n* time step, nAz.

Each particle p represents N, real particles with mass m,, velocity

v, and position x,. The equations (20) are numerically represented
as:
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Figure 1. Numerical grid and definitions.
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where Df is the drag function evaluated at tme v, and 8, is an

approximation of the solid void fraction described below.

To evaluate solid phase continuum interaction terms, such as the
last term of equation (22), we next develop a solid phase continuity
equation. The solid phase void fraction in cell i is defined as:

1 m
f =Y S(x°)—LN 23
en AX; |('xp) P, ’ )

where for non boundary cells §, is a linear interpolation function,
shown in figure 2, fori#1 or i # N, V., is the number of cells)
then:

X=X

f x,sSxsyx
Ax

S(0=) xy-x (24)

x SxSx;
AI ' i+l

| 0 f x<x_, ofr x>x,
wliere x; is the x position of the center of the cell i.
For the lower boundary cell at i = 1, as shown in figure 3, we

use:

1 0<sxsx

= - (25)
Si(x) =1 HoX o x,SxSx,

{ 0o & x>x
For the last cell boundary ati = Ncey

cell face i-%4 cell face i+}4

Ax

Figure 2. Linear interpolation function for domain cells.

MULLLILLLLN

cell 9t
Figure 3. Linear interpolation function at the first cell.

X=Xy .
_—'—Ax € xy_ SxSx,,
Sva(2) =1 1 f xy SxSx, (26)
| 0 f x<xy,

where x,, is the x position of the end of the domain. The choice for
S, and S, is made to ensure Y. S,(x) = 1 for all values of x.

The change of 8, over a time step is given by:

1 M
e:ol_o‘l_' 37‘-;;[8‘(,:“)-5‘(:’)]-:”' (v 1))
The following equation determines an intermediate position of a
particle:
N =x+vAr (28)
The interpolation function at x,*! is given by:

Sl = 855) 357 - 5)5(%) 29)
Combining equations (21) and (28) gives:
0t -w = (v v )Ar (30)
We define a slope function such that:

To(x) 1 f x;SxsSx, an
. =
V0 f x<x or x>x,,

Then i’%%)- may be conveniently writlen as:
9S,(x) _ 1
L ze—\T ,~T 32
ax A ( =% :o)‘) (32)



Using equations (29), (30) and (32), equation (27) is written as:

o 87 ¥6u,)|
At ox I Ax

esplen
with the following definitions:

) )y oy

A0w,) Ly 5(53)-5(%)]m,N, 4
ox | .. &% A P,
N ** t 14 ]
I e e I
» 3

The new particle velocity is calculated with equation (26) as:

TCAWENC S
o2 2]
s pAd), p& ] e

’ 1+ AD,
with:

= - \Za . ] «N,m .
8 = LTs(E g ana b= T =2T0(5) 67

i s

Where u}*' is an interpolated gas velocity given later. The terms
14

ael Lol
(3_{) and (23-) are implicit expressions using the value of
ox), ax/,
pressure P and t at time n+/ in the particle cell, and are evaluated as:
] 2 | _ ool
LA WAL AN (gg) I N
ax/, Ax ox Ax
where i, denotes the cell index such that x,_<x,<x, ;.
Substituting expression (36) into (35) gives:

’

1 MNI -
(68u,), . = 5 T~ Tor(%) |
\ 0 ) 39) i
) -.‘_(2‘3 '___1_(2:] (
oot -)-s- (2] - 5 |
1+ AD,

Equation (33) is the solid mass void fraction update ec!ua‘tion.
with mass fluxes computed with equations (34) and (39). Similarly
the particle velocities are updated with equation (36). H_owever, gas
phase terms implicitly appear in these equations and their evaluation
is described next

Gas goveming equations

Two variables, (ep, )’ and (ep,u,)’, ,, describe the gas, and the
gas continuity equation becomes:

(ep, )" ~(ep); (204 RGN

\
=0 (40)
LY Ax

where (ep,)" is a cell center variable and (ep,u, )" ,, S the mass flux

1

through the right side cell face, as shown in figure 1. The gas

momentum equation is written as:

Aol " . «
(GP,M,),,” -(Ep,u,)wﬁ +(£p,u:)l.l ~(ep,ul); R
Ar Ax (41
P:ol - PIAOI el
e LR TR
The exchange term, E,, includes the source of momentum from each
panicle given by:

E, =3 T.4(%) -D:(u.,",'-v:")+-'~(9-'3) N, (4
’ P, ox ’

This expression can be re-written with the following definitions:

el

ol i (p:u‘o):l an
Cop 27.'.,;( ;)_(";';jf:i d
(0., = (ep,) +2(ep,)f @

Equation (36) eliminates the particle velocity, v,"*!, in equation
(42) and gives an exchange term that is independent of the unknown
velocity.  The resulling expression contains only gas phase
parameters and other terms that can be computed explicidy:

e - P et

El = Cion —'L-Z;_ - Ak” (Cp.“‘ ),,‘ +

tul - tlol (44)
Bio” - DM” _ﬂ-—-—""
The explicit coefficients, A, B, C and D are given in Appendix A. It
is worth noting that the C coefficient is an approximation for 8 and so
the pressure gradient terms of equations (41) and (44) reduce to an

appropriate representation of the term in equation (2).
An explicit formulation for the gas momentum convective term

was chosen to keep the system of equations linear, this term is
calculated using an upwind procedure as:

my emt J() it m emt, >0
o Tt [ A )
u')”” 'f m",” +m‘-_” < 0
where m, =(€P,u,),:,‘ so m,, +m’ is an evaluation of the mass
flux at the point i.

The solid phase momentum flux, equation (39), can be written
as:

(ple&‘l )”K = plmlon(p.w' )‘.:; - plA‘F;“ =

P:“ - p S 1o
v

Appendix A gives the coefficients. The terms P™*' and ™' are
lineanized in terms of 6 and epgas:

(46)

= p o 2] (oo (@
but 7 = (:efe) o 8p= ‘“"’; e(ep) * (Sef;}'y (6r -07).



V] a‘ Y L14 (]
Similady ' =1 +( 50—) (e -87) (48)

We now have all the necessary evaluations. The final four

Eulerian equations are summarized as:
(epl )‘,M - (Gp, )T + a(ep:“a )|
At 6x

(epna“:).‘” "(ep:&‘:),_” =0
Ax

+
L.vhﬂl (49)

(50)

(q’, ):.‘ ‘(eP ). . (Eplut ):;L-(ep,u, ),.; =0
Ax

),
At

(L
(eplsu:),-.” = A‘Aio)‘(epg“,),.” - A‘pu E'K -

P:ol - i _ tf:l _taol
Con BT

(sh

(sp,u.):il—(EP,“, ).'ﬁ_ + (EP,“: ):ﬂ -
A1 Ax

1 _ pl
_’}_:..L.Z;ﬁ:_ = A.’on(wnul)

(eppsy);

ael

o + (52)

BT s -( ).
—"‘——'—M €0,).48

where the solid continuity equation is writien in terms of 6p, for
consistency with the gas phase continuity equations. The (luxes
6p,Su, and ep,u,. and the pressure and stress terms use the

linearized forms of equations (47) and (48).

Bh” - Dlon

Equations (49) 1o (52) are a set of linear equations relating the
varisbles 6p,, €p,, 8p,5u,, and ep,u,. The parameters A, B, C. D,
E. and F are explicilly calculated. Equations (51) and (52) are
rewritten as linear functions of 8p, and ep, and substituted into
equations (49) and (50). Tae results are two equations per node

relating (6p,)"" and (ep,):’l to their neighbors and themselves. A
Conjugate Residual method has been used to solve this linear
equation set. The n+1 values for 6p, and ep, are then substituted
into equation (52) to give ep,u, and u,. Equation (37) is then used

to update the particle velocities. '

The cell-particle coefficients A to F are well suited to a mvely
parallel computation where each particle is assigned an individual
processor.

TEST PROBLEMS

Three test problems are described and solved. Each problem uses
a low particle Reynolds number so that in the first two problems the
computed solutions can be compared with analytical ones. The third
problem uses two particle sizes in a slug deposition problem that
demonstrates the power of the new method. Prior to these three test
problems we performed two simple checks. The first check used no
particles and zero gravity, and the second check used 2ero gravity
and initially stationary particles. The first check ensured no spurious
sources were intoduced. The second check was to see if the position
of the particles changed over time. If they did, it implicd that the
interpolation procedure was incorrecly spreading errors. Both
checks were successful and led to the following more elaborate tests.

In this problem we compute the {wee-fall of a single particle
starting from rest. Table 1 describes the test conditions and physical
parameters. The test parameters are in SI units with values chosen
for convenient non-dimensionalization, and to give a low particle
Reynolds number of 0.01. At this low Reynolds number the drag
term reduces to Stokes drag and equation (20) may be solved to give
the particle velocity:

v, =%[Ef.p:£i}l_¢~0) with D=%EE£2- (53)

Substituting the values of Table |1 gives a free fall velocity, v, =
0.1 and a Stokes time scale I/D of 1/90. Figure 4 shows the
computed and analytical results for the development of the free fall
velocity. The particle velocity has been normalized by the analytical
free-fall velocity, voo, and time by the Stokes time scale 1/D. The
agreement is excellent and the normalized computed free fall and
analytical velocity at the end were 0986571 and 0.993261
respectively. The 0.67% error can be attributed to assumptions in

obtaining the analytical result that are not made for the computed
one.

| Gas density 1.0 kg/m3
Gas viscosity 2.0 x 10"2kg/(m s)
Solid density 103 kg/m}3
Gravity (8) 9 m/s?
Particle mass 4.18879 x 106 kg
Particle radius 103 m

| Length of domain (x14¢,) 10m
Number of cells (N-.1) 10
Simulated time (115¢,) 5.555 x 10°2s ,ie. 5/D
Time step (At) 12/ 100

Table 1. Parameters for the single particle computation.

This problem extends the single particle problem to a slug of
particles that settle under free fall. Table 2 shows the parameters for
the computation. The slug of particles is defined by placing 250
equally spaced parcels, each with 100 particles, between x = 0.6 and
08 m. A total of 25 uniformly spaced cells spanned the
computational domain of | m. Thus, cells from 16 to 20 contain S0
parcels each for a total of S000 particles per cell. The resulting wnitial
solid void fraction, 8, is 5.223575 x 10"4, This low solids void
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Figure 4. Velocity rise of 3 single particle under free-fall.

fraction was chosen so that the void fraction dependence of the drag
coefficient in equation (16) could be neglected. Adding of the mass
continuity equations for solid and gas phases and noting that net mass
flux below the slug is zero gives:
Ovp + eug = 0 (54)
Neglecting ineninl’ lerms and noting that spatial gradients are
negligible results in the following two simultaneous equations:

edP

ou
—
2 +p, ox

=-€g- DOE‘-(u, -v,)
2 82 P (55)
8 oP
6-—3-:—4-;'-3; = —Og-Ddu, -v,)
Using equation (63) and eliminating the pressure gradient gives
the following results for particle and gas velocity:

2 -
S50 T ]m ey 0
D P, e

For a single particle 8 = 0 and this result reduces to equation (53).
Figure S shows the slug of particles as a solids void fraction

normalized by 8g at a sequence of times starting with the initial

condition at the top. Figure 2 shows that the edges of the void

Gas density 1.0 kg/m3

Gas viscosity 2.0 x 10-4 kg/(m 8)
Solid density 103 kg/m3
Gravity (8) 9 m/s?

Particle mass 4.18879 x 106 kg
Particle radius 103 m

No. of particles per parcel 100

Length of domain (xjgey) 1 1.0m

Number of cells (Nroi1) 25

Simulated time (t}a¢s) 43

Time step (At) 1x103s

Table 2. Parameters for the falling slug computation.

fraction are rounded because of the linear interpolation function. The
figure shows that the slug falls at constant velocity. The free-fall
velocity from equation (65) is .0.099895, which is slightly below the
single particle velocity of -0.1 because of the ¢2 dependence. The
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Figure S. Computed solid void fraction of a falling slug of panicles.

computed particle free fall velocity was -0.09909 and in reasonable
agreement with the analytical result. Similarly, the computed gas
velocity was 5.242421 x 10-3 and in reasonable agreement with the
expected value from equation (56) of $.218 x 10°3.

The computational cell size is 0.04 and the slug velocity is close
0 0.1, so the slug traverses S computational cells every 2s.
Therefore, the void fraction plots at 0, 2 and 4 s, and at | and 3 s
should be comparable. Inspection of figure 5 reveals that, besides
the displacement, the values at time 2 and 4 seconds, and 1 and 3 s
are practically identical. A small difference can be seen between |
and 2 s and may be atuributed to the finite time rise of the slug
velocity to its free fall value. Parenthetically, this retention of solids
void fraction profile demonstrates that because of its particle nature
our multi-phase calculation procedure has low numerical diffusion.
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Figure 6. Solid void fractions and phase velocitie

The last problem combines elements of the first two but uses
equal volume fractions of two particle sizes: one with a particle radius
of 1 mm and the other 2 mm. The solid particles form a slug of
material evenly distributed between x = 0.6 m and 0.8 m. A total of
530 parcels for each particle size per cell was used with 22,500 small
particles per parcel and 2,813 large particles per parcel. These
particle and parcel specifications gave an initial void fraction of each
particle size of 0.25 and a dense region of solid particles with net void
fraction of 0.5. Table 3 presents additional details of the
computational. Figure 6 shows the initial solids void fraction, with
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s for the bi-modal slug sedimentation test problem.

the particles and gas initially stationary. The remaining lest
parameters are those of the previous two test problems and so similar

* development time scales are expected.

Figure 6 shyws the computed sedimentation of the slug. The left
side of the figure shows he development of solids void fraction (void
fraction of the small particles, large particles, and total), and the right
side of the figure shows the phase velocities (gas velocity, velocity of
small particles, large particles, and mass average solids velocity).
Inspection of the solids void fraction profiles reveals, as expected,
that the small particles sediment more siowly to the bottom than the
large particles because of their higher surface to volume ratio. The



Gas density 1.0 kg/m3

Gas viscosity 2.0 x 10°2 kg/(m s)
Solid density 103 kg/m?
Gravily (g) 9 m/s?

Small particle mass 4.18879x 108 kg
Small particle radius 103 m

No. of small particles per parcel | 22,500

Large particle mass 3.35103 x 10-5 kg
Large panicle radius 2x103m

No. of large particles per parcel | 2.813

Length of domain (x1z¢r) 10m

Number of cells (N, 28

Simulated time (t)5¢,) Ss

Time step (At) 1x10-3s

Table 3. Parameters for the slug sedimentation problem.

figwe shows that a slope develops in the volume fracticn on the
bottom of the slug as the slug sediments through the gas. Test
problem 2 did not develop such a slope and the shug boundaries
remained steep and well defined. The key difference in U (wo cases
is the much larger void fraction in test problem 3. Equacion (34)
applies for test problem 2 and since there is only a small solivs void
fraction and, consequently, only a small variation, the gas velocity is
approximately constant with a small value compared with the particle
velocity. However, the solid void fraction in test problem 3 has a
rauch greater value and variation, so the gas velocity from equation
(54) is high in the regions of high solids void fraction and low in
regions of low solids void fraction. This effect is noticeable at1 =58
at the bottom of the domain where the gas velocity is much higher
than the solids velocity. The variation of gas velocity along the void
fraction profile effects the particle velocities because of drag, and
gives a higher particle ‘slocity when the gas velocity is small (ow
solids void fraction) and lower particle velocities when the gas
velocity is larse (high solids void fraction).

The right-hand side of figure 6 shows an increase of panicle
velocity with a decrease in solids void fraction. It is evident {rom the
figure that large particles fall faster than small ones and that as the
solids fall the gas rises to fill the volume. The average mass velocity
is biased toward the larger particles because each has 8 times the
mass of a small particle. This bias creates the peaks and dips in the
mass average velocity profile. Oscillations along the void fraction
profiles may be numerical or physical.

The total solids void fraction at the top of the slug (about 0.8 m)
at a time of § s contains no large particles and consequently is the
void fraction of the small particles. The small particle void fraction
value of 0.4 would appear anomalous, since this is larger than the
initial void fraction of 0.25. This sharpening of the slug boundary by
small particles can be attributed to the dependence of the particle
drag on gas void fraction, equation (16). A higher gas void fraction
results in a low drag coefficient so a particle left behind the slug in a
region of higher gas void fraction falls faster and rejoins the slug.
Thus, a sharp interface forms at the top of the siug.

CONCLUSIONS

A new methodology for simulation of multi-phase granular flows
has been presented. The method uses a combined
Lagrangian/Eulerian formulation that computes the development of
the particle distribution function with a Lagrangian technique and
accounts for continuum intergranular stress with an Euleran
formulation. An accurate mapping to and from the Lagrangian and
Eulerian grid allows the most accurate physical and numerical
formulation to be chosen. The formulation of partcle-cell
coefficients is well suited to massively parallel computation.

The methodology has been developed into a computer code for
one-dimensional problems and demonstrated on three test problems.
The first two test problems successfully compared with analytical
solutions. The second problem showed that our method also suffers
from low numerical diffusion. The third test problem showed the
sedimentation of a slug of densely packed solid particles of two sizes.
Calculated sedimentation profiles showed complex particie-gas
interactions and the formation of a well-defined interface on the high
side of the slug due to a decrease in drag coefficient. As expected,
the larger particles fell fasier and separated from the small panticles.

The three ‘est problems show that this Lagrangian/Eulerian
method works well and is suited to the simulation of mult-phase flow
problems with a wide range of particulate characteristics. The next
step is to extend the one-dimensional formulation to two-dimensions
and to investigate the use of a more fundamental approach for the
computation of solids stress.
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