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SYNOPSIS

Molten silicates are ordered solutions which can not be well represented by the usual polynomial
representation of deviations from ideal solution behavior (i.e. excess free energies of mixing).
An adaptation of quasichemical theory which is capable of describing the properties of ordered
solutions represents the measured properties of binary silicates over broad ranges of composition
and temperature. For simple silicates such as the MgO-FeO-SiOy ternary system, in which
silica is the only acid component, a combining rule generally leads to good predictions of ternary
(and probably higher order) solutions from those of the binaries. In basic solutions, these
predictions are consistent with those of the conformal ionic solution theory. Our results indicate
that our approach could provide a potentially powerful tool for representing and predicting the
properties of multicomponent molien silicates.

KEY WORDS: Molten silicates, solution theory, solution thermodynamics, MgO-FeO, MgO-
Si0p, FeO-Si0p, MgO-FeO-5i07

INTRODUCTION

The thermodynamic properties of ordered solutions such as liquid silicates can not be well
represented over wide ranges of temperature and composition with the standard polynomial
expressions for the the excess free energies of mixing. In highly ordered binary solutions there is
a tendency for the enthalpies of mixing versus concentration curves to be “V" shaped and for the
total entropies of mixing to be "m" shaped. These char~cteristics require one to represent the
properties of silicates with equations which will have these characteristic properties for strongly
interacting binary pairs (e.g., Nap0O-SiO7) but which will reduce to the polynomial representaion
for weakly interacting binary pairs [11, [2], [3], [4]. In this paper, we discuss a modification of
quasichemical theory which has these characteristics and which has been specifically adapted for
use with silicates. Our purpose is to illustrate the significance of this approach which allows one
to (a) represent the properties of binary silicate systems over wide ranges of temperature and
composition with a relatively small number of parameters (less than seven) and (b) predict the
properties of multicomponent silicates from those of the corresponding binaries when silica is the
only acid component. Such predictions are based on a combining rule which has been shown to
be consistent with the predictions of the conformal ionic solution theory in basic silicate solutions

[4], [], [6].

The importance of properly representing ordering (and association) has been amply illustrated for
phase relations in 1onic systems {5], [6], where the influence of non-random mixing on phase
diagrams is often significant. For example, without taking ordering (or association) into account,
one would incorrectly predict ternary miscibility gaps in the LiF-KCl quasi-binary system [5] and
in basic compositions of e.g., the NapO-FeO-SiO7 system. Phase diagrams are sensitive not only
to the absolute values of the free energies of mixing but also to their concentration derivatives.

The outline of this paper is as follows: This INTRODUCTION will be followed by a section on
QUASICHEMICAL EQUATIONS which describes the basis for our calculations, followed by a
section on a new analysis of the MgO-FeO and MgO-SiOp BINARY SYSTEMS to illustrate the
methods and the types of data which go into the calculation of the energy parameters in the
quasichemical equations. In a section on TERNARY SYSTEMS, the results of a calculation of
the ternary system FeO-MgO-SiO; will be presented to illustrate the predictive capability of our
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meihods. A final CONCLUSION scetion follows.



QUASICHEMICAL EQUATIONS

The quasichemical theory [7], is a well known approximation for the solution chemistry of binary

and higher order systems which, for very negative values of the energy of interaction of two of

the components, has the characteristic properties of ordered solutions. If one considers a simple
binary mixture of the two pure liquids, A and B, the theory focusses on the energy change for
making some A-B bonds in the mixture by the loss of A-A and B-B bonds in the original pure
liquids. For silica.cs, these bonds are between next nearest neighbor pairs.

A-A + B-B 2 A-B (1)

If this energy change is very negative relative to -RT, then the mixture will be ordered. In a
general sense, one can consider this energy change to be temperature dependent and represented
by (w-nT). If the total number of atoms of A or B is designated as np and np then the mole
fractions of A and B are Xp=np/(np+ng) and Xg=npg/(np +nR). One also defines the number
of A-A, B-B and A-B bonds, npa, ngp and nap and generally, for simplicity, the coordination
of the atoms is taken as a constant, Z. Thus Znp = 2npA + nAp and Zng = 2ngg + nAR and
the bond fractions Xj; are defined as Xjj = nij/(nAA+NBB+NnAR). In order for the entropy of
mixing of a perfectly ordered solution fo have the expected value of zero, one must choose an
unrealistic value of Z=2. With these definitions, one calculates a bond equilibrium constant

XABZ/(XAAXBR) = 4exp[-2(w-1T)/RT] (2)
an enthalpy of mixing
AH = XpABw/2 (3)
a non-configurational entropy of mixing, AS™¢
ASNC = X Apn/2 (4)

and the configurational entropy, ASS, is given by

ASC = -R(XAInX A +XgInXp)

+RIXAAINXAA/XA2) +XBBIN(XBB/XB?) +XABIN(XAB/2XAXB)]

Although these equations reproduce the properties of ordered liquids, they must be adapted to the
properties of silicates. For example, the quasichemical theory is symmetric and the composition
of maximum ordering (i.e., the composition of the minima in the total entropy and enthalpy of
mixing for a strongly ordered AB pair is at Xo = Xp = 0.5 whereas in silicates such as in, e.g.,
the CaO-SiOp system, it is expected at Xcag = 2/3. In order to accomplish this, the
concentration scale is altered from mole fractions to equivalent fractions (e.g., YCa0 =
“CaO/(I‘CaO+2“tSiO2)) and component "coordination numbers" boZ and bgZ are chosen to
provide a value of the entropy of mixing very close to zero for a perfectly ordered binary mixture
at the most ordered composition. For self consistency, Z=2 and bgjpp was always taken to be
1.3374 and CaO, FeO, MgO etc. were taken to be half that value, so that the ratio bpo/bp was
also equal to the ratio of the number of equivalents per mole. Thus, equations (3), (4) and (5)
were modified by multiplying the r.h.s. of Eqs. (3) and (4) and the last term on the r.h.s. of Eq.
(5) by bpAX A +bpXPB and substituting the equivalent fractions Y and Yp for XA and X§j in Eq.
(2) and 1n the last term in brackets in Eq.(5).

In addition, the quasichemical theory is based on the commonly used assumption that pair bond
energies are additive and are all the same for each of the different A-A, B-B and A-B pairs. Real
systems can be much betfer represented by configuration dependent energies. However, early
attempts to represent bond energies in this manner were far too complex and, consequently, we



substituted concentration dependent energies by representing w and n in Eq.(2) by a polynomial in
powers of the equivalent fraction of silica. Although recent progress has been made in deducing
suitable equations for configuration dependent energies, this development requires considerably
more work.

BINARY SYSTEMS

We will illustrate the methods used to perform calculations [8] for one ternary system, the MgO-
FeO-SiOp system, and in this section, we will exhibit some of the calculations for two of the
three subsidiary binary systems, MgO-FeO, and MgO-SiO7 [9], [10]. The results of such
calculations are the primary input for the prediction of the solution properties of the ternary
system.

In the most recent work on the FeO-MgO system [11], [12], the oxygen potentials in the binary
solid solutions have been remeasured [12] and the resultant activities of FeO and the earlier
solidus data [13] have been shown to be well represented by one parameter in a regular solution
model for the solid [9, 10]

gE(sol) = 10175Xpe0XMgo Jmol’! (6)
and by a value of w = 3347 ] mol™! for the binary liquid in the quasichemical model.

The data for the binary MgO-SiO7 system have been used to perform an optimized simultaneous
analysis of all the data for this binary using the quasichemical equations {8], [9], 10]. This
includes liquidus data [14], [15], [16], miscibility gap data [17], [18], [19], activities of MgO
and SiOp [20], [21], [22], and data on the free energy functions and enthalpies of formation at
298 K of the binary compounds [23], [24]. Not all these data were self consistent. As a result,
an assessment of the data was made and based on more recent work [16], the reports of solid
solutions of silica in periclase and periclase in forsterite [15], were discounted. The careful work
of Hageman and Oonk [19], on the miscibility gap was given precedence in this analysis. The
result was a total of three terms in the polynomial for w and two terms in the polynomial for 7.
These parameters were obtained by a non-linear least squares technique which we developed [8].

A test of the self consistency of our equations in representing data over a wide range of
temperatures and compositions is to reverse the optimization procedure so as to back calculate the
input data. For the data on activities and free energies (and enthalpies) of formation of
compounds, the calculated values were well within the uncertainties in the measurements.
Because liquidus temperatures are extremely sensitive to very small errors in these last quantities,
we changed the enthalpies of formation at 298 K of Mg)5104 and MgSiO3 [23], by -3206 and
453 Jmol™* respectively in order to reproduce the measured melting or peritectic points. These
changes are well within the known uncertainties in AH%gg [24].

The calculated phase diagram exhibited in Figure 1 is in good agreement with the measured data
also shown in the Figure and illustrates the ability of our equations to represent data in such
ordered systems. A similar optimization was performed on data for the FeO-SiO7 system. This
general capability for representing the thermodynamic properties of such binary ordered solutions
is an important prerequisite for any useful method for representing and predicting the properties
of multicomponent silicates.

TERNARY SYSTEMS

In this section we will discuss the method for calculating the properties of the relatively simple
ternary systems in which the only "acidic" component is silica and in which the basic components
are monovalent or divalent oxides. For such systems, a relatively simple asymmetric combining
rule generally leads to good predictions of the solution properties of ternary systems (and
presumably higher order systems) which in basic compositions are consistent with the predictions
of the conformal ionic solution theory [3], {4], [5], [6]. For most other systems (e.g. the CaO-
Alp03-8i07 system), ternary correction terms were needed to represent the properties accurately.



The asymmetric combining rule is very simply stated in words. If one considers a ternary system
A-B-C in which silica is component C, then the interaction "energy" terms (w-nT) for each of the
binary pairs AC or BC are only a function of YC in the ternary and are independent of the
variable YA at constant values of Y. In addition, the interaction energy term for the AB pair
for any one value of YA/(YA+YB) Is the same as ‘the corresponding value in the binary system
AB. With this approximation substituted into the quasichemical equations for ternary systems
[31, [4], we have shown that (a) The solution properties of ternary (and presumably higher order)
systems in which silica is the only acid component are predicted a priori solely from the binary
properties. For example, activities of components and phase diagrams were correctly predicted
within the uncertainties in the measurements. (b) An important property related to association
and ordering is predicted in basic solutions. Without this property, one would incorectly predict
miscibility gaps in e.g., quasi binary systems such as FeO-NagSiO4, MnO-NagSiO4 and FeO-
CapSiO4. To illustrate the predictions of the asymmetric approximation we give the calculated
phase diagram of the ternary MgO-FeO-SiO system in Figure 2 which is in excellent agreement
with measurements.

CONCLUSIONS

Modified quasichemical equations can be used to predict the properties of simple ternary (and
presumably higher order) silicate systems from those of the subsidiary binaries. For more
complex silicates, ternary interaction terms are necessary to describe ternary properties. The
properties of multicomponent silicates can be predicted from the properties of the lower order
binary or ternary systems. Further studies are needed to test the utility of these predictions which
could provide a potem1ally powerful tool for representing and predicting the properties of
multicomponent molien silicate systems. We have already optimized and evaluated a large
number of binary and ternary systems and performed calculations for multicomponent systems
[91, [10], [25].
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