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SUMMARY

Benchmarking FLOWTRAN, Version 16.2, with an Onset of Significant
Voiding (OSV) criterion against measured Onset of Flow Instability
(OFI) data from the 1988-89 Columbia University downflow tests has
shown that FLOWTRAN with OSV is a conservative OFI predictor.
Calculated limiting flow rates based on the SRS OSV criterion were
always higher than the measured flow rates at OFI. This work
supplements recent FLOWTRAN benchmarking against 1963
downflow tests at Columbia University and 1988 downflow tests at
the SRL Heat Transfer Laboratory. These studies provide confidence
that using FLOWTRAN with an OSV based criterion for SRS reactor
limits analyses will generate operating limits that are conservative
with respect to OFI, the criterion selected to prevent fuel damage.

The OSV based limit criterion used for benchmarking against the
1988-89 Columbia data and in SRS limits analyses is a constant
Stanton number 0.00455 for all Peclet numbers. This SRS working
criterion was derived from the Saha-Zuber correlation. The Stanton
number value is a conservative bound on the Saha-Zuber correlation
for Peclet numbers greater than 70,000.

In analyzing the 1988-89 Columbia data, FLOWTRAN was used to
model the fluid flow pressure drop versus the flow rate for a range
of tube diameters and heat fluxes. FLOWTRAN's calculated pressure
drops were in good agreement with the measured pressure drops for
single-phase flow. Because FLOWTRAN is a single-phase code, it
cannot calculate two-phase pressure drop below the OSV flow rate.

1. INTRODUCTION

Reactor power and flow transient mathematical modeling is
necessary to determine maximum safe operating limits for SRS
reactors. These limits ensure that if a postulated accident were to
occur, the reactor would shut down safely without damage to the fuel
assemblies. The FLOWTRAN computer code, Version 16.2, [1] models
an individual assembly's thermal-hydraulic behavior and can
d.::termine the operating power limits for transients in which the
« ssemblies are filled with liquid water coolant. Operating limits are
st to prevent Onset of Flow Instability (OFI) in every core assembly
for the most restrictive flow or reactivity induced accident. OFI is
currently prevented by setting the limit based on a calculated Onset



of Significant Void (OSV) criterion which is a precursor to OFI.
FLOWTRAN uses the SRS Working Criterion with a constant Stanton
number 0.00455 for all Peclet numbers [1,2,3] to determine a
conservative OFI operating limit.

The SRS FLOWTRAN Flow Instability benchmark program objective is
to demonstrate that FLOWTRAN with the SRS OSV Working Criterion
(St=0.00455) 1is a conservative OFI predictor. Previously,
FLOWTRAN's validity in SRS reactor application was demonstrated by
benchmarking FLOWTRAN with experimental results [4,5]. Reference
4 presents FLOWTRAN benchmarking with 1963 Columbia University
FI test data for multiple channel tests with typical full power
operating flows and heat fluxes. This test rig also had a mockup of a
bottom endfitting. FLOWTRAN calculated the flow and energy splits
among the channels as well as pressure and temperature
distributions. FLOWTRAN also conservatively calculated the onset of
flow instability through use of the SRS OSV criterion. The tests in
Reference 5 were conducted at the Savannah River Heat Transfer
Laberatory and focused on downflow for low Peclet numbers (30,000
- 80,000). The FLOWTRAN SRS OSV Working Criterion conservatively
calculated OFI for these conditions.

During 1988 and 1989 significant OFI test results were obtained by
the Columbia University Heat Transfer Research Facility in an
ongoing test program. These OFI test data covered a wide range of
parameters: Peclet number (160,000 - 800,000), Heat Flux (0.0 - 1.0
MBtu/hr-ft2), and L/D ratio (128 - 267). The range of Peclet
numbers for SRS fuel assembly flow channels for normal and
simulated accident conditions is 200,000 to 800,000. The heat fluxes
at the surface of the fuel assembly at the proposed restart power
level (~1200 MW) are below 0.5 MBtu/hr-ft2. The L/D ratios for the
SRS fuel assembly flow channels are 300-485 and are higher than
those for the test rigs. Stenton numbers at OFI increase with L/D for
both the 1988-89 and the earlier 1963 Columbia University tests.

This report benchmarks FLOWTRAN with these new OFI results and
provides further confidence that FLOWTRAN with an OSV based limit
criterion will calculate conservative SRS reactor power limits with
respect to OFI.
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2. TEST FACILITY

A brief discussion of the Columbia University single-tube OFI tests
follows. The detailed description of these tests is given in the
Columbia University test reports [6,7].

2.1 TEST LOOP

Figure 1 presents the test loop schematic. The following components
comprise the test loop:

+ A 100 gallon hot water heater to supply deionized water to the
pump;

» A recirculating pump capable of supplying 260 gpm to the test
section;

e A single tube test section;

+ Two heat exchangers to remove energy from the water before it
returns to the 100 gallon water tank;

L)

A bypass loop to direct excess flow from the test section.

2.2 TEST SECTION

The test section is 10.5 feet long (Figure 2). The heated test section
is an 8 foot length of tubing. Upstream and downstream of the
heated section is a 1.5 foot copper section which serves as a
connector to the power system. The power input to the test section
is a DC electric generator which supplies up to 240 volts and
approximately 6000 amps or 1.5 MW to the test section. This energy
source can generate a 1.0 MBtu/hr-ft2 surface heat flux in the
various diameter test sections selected for this program. Table 1
presents the single tube geometry.



SINGLE TUBE TEST FACILITY
COLUMBIA UNIVERSITY

FIGURE 1. TEST LOOP SCHEMATIC
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Table 1

SINGLE TUBE GEOMETRY ‘

Test Test Section Material OD (in) ID (in) Heated Length (in) )

| | »
2.1 4.745-0028 304 type SS 0.8759 0.7516 96
4 4.620-0011 Inconel 600 0.7482 0.6125 96
7 4.620-0011 304 type SS 0.7485 0.6000 96
9 4.370-0031 Inconel 600 0.4970  0.3590 06

2.3 INSTRUMENTATION

The test instruments are presented in Figure 2. The loop
instrumentation is used primarily to operate the loop and establish
the test section conditions, The test section instrumentation provides
the required test data, namely pressure drop and tube wall
temperature. Figure 2 shows the test section thermocouple, pressure
tap, and flowmeter locations.

Prior to installation in the test section each instrument was
calibrated. Those instruments which provide data necessary for test
analysis were calibrated to NIST (National Institute of Standards and
Technology) standards. Instruments which were included as
backups to primary instruments (e.g. the orifice plate) or were
required for loop operation were calibrated but are not traceable to
NIST standards.

2.4 TEST PROCEDURE

The test procedure is summarized here. The detailed test procedure
description is given in Reference 6.

1. The test engineer conducts instrumentation performance
reliability checks and a heat balance check.

2. The test engineer establishes the test loop conditions, i.e. test
section power, inlet temperature, exit pressure, and initial flow rate.

3. The measured parameters, including the loop operating and
test section conditions, are recorded in the HP-1000 computer when

o e R a g LY I R TR e PRI IR T e e S e gy
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the loop control parameters are within the deviation limits (Table 3)
and the loop is at steady state.

4. The test engineer plots the measured pressure drop versus
flow rate on graph paper.

5. The test engineer reduces the inlet flow and repeats Step 4
until the pressure drop increases.

6. The test engineer increases the test section flow rate and
repeats Step 4 until the test section is in single-phase liquid flow.

7. The test engineer may rerun the checkpoint condition to ensure
the test section integrity. The checkpoint conditions are 64.7 psia
exit pressure, 77 F inlet temperature, and 600,000 Btu/hr-ft2 heat
flux.

2.5 DATA REDUCTION

The HP-1000 computer records data at 400 channels per second.
During the test the loop parameters are presented on several panels,
and the test section data are displayed on a CRT. = The data
acquisition system records data both in input voltage (raw data) and
engineering units, The engineering units are calculated from
calibration data for each instrument. Both raw voltage data and
engineering unit data are saved.

3. TEST MATRIX

The test matrix parameters (Table 2) were designed to cover SRS
reactor normal operating and hypothetical accident conditions, which
can range from 68 - 113 F inlet temperature and 200,000 - 800,000
Peclet number. A demand curve is the frictional pressure drop
across a heated flow channel plotted versus the flow rate and is
obtained by fixing the heat flux, inlet temperature and exit pressure,
and then varying the inlet flow rate. The onset of flow instability is
determined from the demand curve where the pressure drop is a
minimum with respect to the flow rate. The test parameters were
controlled within a narrow band (Table 3) to define the demand
curve accurately.
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TEST MATRIX
HEAT FLUX EXIT PRESSURE INLET TEMPERATURE
BTU/HR-FT2 PSIA F
0 34.7 64.7 77 121
400,000 34.7 64.7 77 121
600,000 34.7 64.7 77 121
800,000 34.7 64.7 717 121
1,000,000 34.7 64.7 77 121
Table 3
MEASUREMENT DEVIATION LIMITS
DURING PRESSURE DROP MEASUREMENT
PARAMETERS DEVIATION LIMIT
Heat Flux 1%
Exit Pressure 1 psia
Inlet Temperature 1 F
4. DATA ANALYSIS

Data analysis covers the measured pressure drop, FLOWTRAN
pressure drop calculations, measured OFI flow rate, and FLOWTRAN
OSV flow rate calculations. The analysis has two major parts. The
first part establishes that the FLOWTRAN code effectively models
thermal-hydraulic flow through the heated tubes. This is achieved
by determining two modeling parameters, the surface wall absolute
roughness and the heated wall correction correlation exponent. A
FLOWTRAN model for the test rig uses these input parameters to
calculate pressure drops for comparison with the experimentally
measured demand curve for single-phase flow. The second part user
a FLOWTRAN model with SRS Working Criterion (St=0.00455) to
calculate an OSV point for comparison with the measired OFI point
for a given heat flux, inlet temperature, and exit pressure. An



uncertainty analysis is also presented to quantify and establish
FLOWTRAN with OSV as a conservative OFI predictor.

FLOWTRAN models the test section between the two pressure tap
locations (Figure 3) using 58 total nodes in three sections (Appendix
D, Figure D-1). Appendix D presents a sample FLOWTRAN input file.
4.1 MEASURED PRESSURE DROP

Figure 3 diagrams the pressure drop measurement between two
pressure tap locations. The pressure drop calculation method is:

DP, = P1'- P2 (1)

PI' = Pl + REL. (2)
144 g,

P2 = P2 (3)
L

DP,_ =Pl +-22-._p (4)
144 g,

Equation 4 is used to calculate the measured pressure drop DPm(psi)
at test conditions. P1 and P2 are the static pressures shown in
Figure 3 and are calculated in psia by FLOWTRAN. The water density
in the pressure transducer line is p and is set at 62.248 lbm/ft3 for
an assumed 77 F test room temperature. The room temperature
uncertainty is taken as *10 F. L is the pressure tap separation in
feet, and g/(144gc) is the gravitational conversion factor to psi.

4.2 MODELING FLOWTRAN PRESSURE DROP

FLOWTRAN uses the traditional hydraulic fluid friction factor and
velocity power law relationship [1] to calculate single-phase pressure
drop. Because the velocity is directly derived from the measured
flow rate, benchmarking FLOWTRAN's pressure drop calculations is
primarily validating the friction factor determination. FLOWTRAN
uses the Moody equation [9] to calculate the friction factor [8]. The
Moody equation, like other well-established friction factor equations

9
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FIGURE 3. PRESSURE DROP MEASUREMENT
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[10], is a function of the absolute wall roughness, the tube inner
diameter, and the Reynolds number (Re). Other well-established
equations [10] tend to calculate values about 3% high for higt flow
rates (Re > 1,000,000), be slightly low for low flow rates (Re <
100,000), and be in very good agreement for medium flow rates.
The Moody equation can be expected to follow this pattern [1]. Based
upon this behavior, criteria were established for benchmarking
FLOWTRAN calculations versus measured data for unheated and
heated tests.

Criteria for the unheated runs in order of importance are:

1. good agreement for medium flows (100,000 < Re <1,000,000),
2. agreement within 3% for high flows (Re > 1,000,000),

3. calculations slightly lower for low flows (Re < 100,000).

Criteria for the heated runs in order of importance are:

1. good agreement for medium flows (100,000 < Re <1,000,000),
2. agreement within 6% for high flows (Re > 1,000,000),

3. calculations slightly lower for low flows (Re < 100,000).

A 3% error band is expected for high flow rates from the friction
factor equation. An additional 3% was allowed for calculating
FLOWTRAN high flow pressure drops, making an adjusted 6% total
error band for Criterion 2. This additional band accounts for the
heated wall effect correlation being an approximate correction.

The wall surface roughness and the heated wall correction exponent
are input parameters to FLOWTRAN that directly impact the friction
factor calculation. The following subsections discuss establishing
these parameters for the tubes used by Columbia University.

4.2.1 SURFACE WALL ROUGHNESS

The standard wall surface roughness for a pipe or tube can be
obtained within a certain range from hydraulic handbook charts. A
more precise value can be determined through direct measurement
or calculation from the experimentally determined fluid flow friction
factor obtained from unheated test data (no heated wall effect). The
unheated pressure drop data were analyzed for each tube to
determine the tube wall friction factor for each datum point. The
surface roughness was calculated for each friction factor determined
from experimental data, using the Moody friction factor formula

11



contained within FLOWTRAN. All values agreed with the handbook
value range [11]. The roughnesses for the unheated test runs were
also calculated using other established friction factor equations [10]
and fell within the same range as the Moody roughnesses.

For each individual tube a surface roughness range was selected
from its calculated values. Different values within this range were
tried in the Moody equation to find an agreement between calculated
and measured friction factors that satisfied the criteria for unheated
runs. The final roughness value was verified when the FLOWTRAN
calculations agreed with the unheated measured pressure drops per
the unheated run criteria. Figure 4 compares the calculated
FLOWTRAN pressure drops with the measured pressure drops for all
the unheated test runs. Agreement is good for the entire data range
for all tubes. The FLOWTRAN calculations for all tubes met all three
criteria. This established that the FLOWTRAN pressure drop
calculations matched the experimental isothermal hydraulic baseline.
Table 4 lists each individual tube's wall surface roughness used to
calculate the pressure drops in Figure 4. The FLOWTRAN, or Moody,
equation produced better agreement with the measured data friction
factors than did the other friction factor equations. All heated test
run FLOWTRAN calculations used the roughness factors in Table 4.

Table 4

WALL SURFACE ROUGHNESS
USED IN FLOWTRAN CALCULATION

Test # Test Section # Wall Roughness (in)

2.1 4.745-0028 6.0x10-3
4 4.620-0011 2.5x10-3
7 4.620-0018S 4.5x10-3
9 4.370-0031 1.2x10-4

4.2.2 HEATED WALL EFFECT

FLOWTRAN uses the following correlation to account for the friction
factor change due to the heated wall effect

12
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where

f, = friction factor evaluated at the bulk fluid temperature
P, = heated perimeter

P, = wetted perimeter

W, = dynamic viscosity evaluated at the wall temperature
Hp = bulk fluid dynamic viscosity

n= an input that varies with diameter.

Exponent values between 0.14 and 0.35 were tried to optimize the
agreement between calculated and measured pressure drop. It was

" 7"

found that the optimum "n" value increases as the diameter
increases. Shown below are the optimum "n" values for the tubes
and maximum difference between calculated and measured pressure

drops for high flow rates:

ID(in) 0.359 0.600 0.6125 0.7516
n 0.12 0.20 0.21 0.22
Max. Diff. 5% 5% 5% 5%

The optimum values produced excellent agreement for low to
medium flow rates (1.5 to 2 times the OFI flow) and agreement
within 5% for high flow rates for all heat fluxes. Criteria 1 and 2
were met for all heat fluxes. Criterion 3 was not applicable above 0.4
MB tu/hr-ft? because the Reynolds number condition occurred below
the OSV flow rates. While all three criteria are important in
matching isothermal data, only Criteria 1 and 2 are important for
heated runs because the OSV flows occur in the low flow range.
These exponents satisfied the criteria for heated runs and were used
for pressure drop calculations in Appendix B and FLOWTRAN OSV
flow rate calculations in Table 5.

The hydraulic diameters for the annular SRS fuel assembly channels
range from 0.3" to 0.5". Therefore, the 0.36" and 0.60" ID single
tubes are appropriate for modeling SRS reactor channels under the
assumption that the thermal hydraulic behavior scales as the
hydraulic diameter. Based on these "n" values determined

14
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experimentally, "0.14" would be a reasonable exponent value for an
SRS fuel assembly.

4.3 CALCULATED AND MEASURED PRESSURE DROPS

The agreement between FLOWTRAN calculated and measured
pressure drops depends upon the heat flux and tube diameter.
FLOWTRAN, Version 16.2, is a single-phase code. Beyond the onset
of nucleate boiling (ONB) there are two-phase effects due to the
bubbles at the heated surfaces and in the bulk fluid. FLOWTRAN,
V.rsion 16.2, is applicable for a heated channel up to OSV if the
additional resistance due to the bubbles is not a significant
contributor to the total pressure drop. FLOWTRAN, Version 16.2, is
benchmarked up to OSV conditions, since SRS limit calculations are
based upon OSV criterion. Figure 5 shows FLOWTRAN calculated
pressure drops versus measured pressure drops for all heated runs.

‘Appendix A contains all the test run demand curves with

corresponding FLOWTRAN pressure drops and OSV points. Appendix
B lists test run data and the calculated and measured pressure drops.

For the smallest tube diameter, 0.359", the agreement is excellent for
all flow rates above the OSV flow rate for all heat fluxes. For the
larger tube diameters, 0.600", 0.6125", and 0.7516", the agreement is
good for low to medium flow rates (1.5 to 2 times OFI flow rate). For
these larger tubes the pressure drops across the channel around the
OSV flow range are low (2 to 5 psi), and the agreement between
measured and FLOWTRAN calculated pressure drops is not good for
high heat flux cases (0.8 and 1.0 MBtu/hr-ft?). For flow rates higher
than two times the OFI flow rate, the FLOWTRAN calculated pressure
drops are higher than the measured values, but the difference is less
than 5% for all heat fluxes.

Stanton and Peclet number calculations require the saturation
temperature at the exit pressure. The exit pressure was kept
constant during each experimental run. Since FLOWTRAN calculates
absolute pressure from the bottom node to the top node,
FLOWTRAN's exit pressure will always be the correct experimental
pressure. Therefore, Stanton and Peclet number calculations are not
affected by any pressure drop disagreement.

The difference between the FLOWTRAN calculated and measured
pressure drops around OSV is attributed to two-phase effects due to
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bubbles along the heated surface and in the bulk fluid for peints
beyond ONB. The standard FLOWTRAN code, Version 16.2, does not
model the acceleration pressure drop and the two-phase multiplier
effect. To 1improve agreement between measurement and
calculation, a modified FLOWTRAN code called UNCERT, Version 16-
1A, [14,15] which includes models for these effects, was used to
calculate selected cases as outlined in Appendix C.

The models in UNCERT had very little impact on the pressure drop -
calculations up to OSV for large tubes at high heat fluxes and thus
did not give the anticipated improvement between measured and
calculated pressure drops. The conclusion drawn from these
comparisons is that the VOID model in UNCERT, which incorporates
the acceleration pressure drop and the two-phase multiplier, needs
to be improved. However, it is important to put this observed
difference between test data and FLOWTRAN calculations in context
for application to SRS assembly limit calculations. Where there were
obvious differences between the measured and calculated pressure
drops, those tests had low total pressure drops (2 to 5 psi) across the
tube's heated length and high heat fluxes (0.8 and 1.0 MBtu/hr-ft2).
In the SRS reactors the channel pressure drops will be larger and the
heat fluxes at the restart power levels will be less than 0.5 MBtu/hr-
ft2. For these conditions the void effect contribution up to OSV, the
limit calculations end point, is small. This is substantiated by the test
data for the smallest diameter tube, 0.359". For all the 0.359" tube
OSV conditions FLOWTRAN accurately calculated the pressure drop.
For this tube the two-phase contribution was relatively small
compared to the total pressure drops, as in a reactor assembly.

The overall assessment is that FLOWTRAN accurately calculates
single-phase pressure drop given the proper roughness and "n" value
and can be used to model a reactor assembly pressure drop for OSV
conditions.

4.4 OSV CRITERION

FLOWTRAN uses the SRS OSV Working Criterion, St=0.00455, for all
Peclet numbers to calculate a limiting flow. The logic is that if the
flow calculated by FLOWTRAN with the OSV based limit criterion is
greater than the observed flow at the point of OFI, then FLOWTRAN
with an OSV based limit criterion is a conservative predictor of OFI.

19



The SRS OSV Working Criterion is expressed in terms of the Peclet
(Pe), and Stanton (St) numbers as

pe = S De% (6)
ky ,

St = d = 0.00455 (7)

G Cp (Ts - Tb) , :
where

q = heat flux o

De = equivalent hydraulic diameter

ky = liquid thermal conductivity

Ts; = saturated temperature for exit pressure

Ty = bulk fluid temperature

¢p = liquid heat capacity

‘G = mass flux,

4.5 MEASURED OFI CONDITIONS DETERMINATION

The OFI condition is determined from a demand curve (pressure
drop vs. flow rate) which is obtained from tests by measuring the
pressure drop versus flow rate at constant power, inlet temperature
and exit pressure. For convenience, a demand curve is named a test
run and each individual point (pressure drop vs, flow rate) within a
demand curve is called a test point. The variations of the test
parameters (i.e. power, inlet temperature and exit pressure) within a
test run were very small as shown in Table 3. The measured OFI
conditions were determined by averaging all data points for each test
parameter within a test run. The test data variations within a test
run are included in the uncertainty analysis. Table 5 shows the
measured OFI conditions.

4.6 MEASURED OFI FLOW DETERMINATION
The flow rate at the onset of flow instability (OFI) is derived from

the test data. The measured OFI flow rate is the minimum point on
the pressure drop versus flow rate demand curve. The approach

20



B

used to determine the minimum point (OFI flow rate) was to curve
fit sufficient data points around the minimum pressure drop area to
establish a demand curve minimum. For some runs engineering
judgment was used to omit spurious points to improve the curve fit.
Thus, the curve fitting technique complemented with engineering
judgment determined the measured OFI flow rate from the demand
curve. The actual OFI point may differ from the minimum in the
curve derived from the data. This difference is due to error in the
test data flow measurements and error in the curve fitting.  This
uncertainty was estimated for each set of test data based on the
spacing of data points and the slope of the curve in the vicinity of the
OFI point. A £2.5% OFI flow rate uncertainty was selected to account
for all inherent curve fit uncertainties for all four test diameters.
Table 5 shows the measured OFI flow rates.

4,7 PECLET AND STANTON NUMBER CALCULATION

For each heated test run the Peclet and Stanton numbers at OFI
conditions were calculated by an external FORTRAN computer
program. ‘The source listing for this computer program,
ENBALSTPE.FOR, is given in Appendix E. For each test run the
average power, inlet temperature, and exit pressure were calculated
from all the data points. These averages, the OFI determined outlet
temperature, and the corresponding OFI flow rate were inputs to the
program. The measured outlet temperature at the OFI flow rate was
determined by plotting the measured outlet temperatures versus the
flow rate to OFI flow rate ratio. Figure 6 shows one such measured
OFI temperature determination. The OFI outlet temperature was
taken where the flow rate ratio equaled one. The program calculated
the saturation temperature for the exit pressure using FLOWTRAN's
correlation for T, as a function of pressure. The physical property
correlations required to calculate Stanton and Peclet numbers were
obtained from the FLOWTRAN manual [1]. The Peclet and Stanton
numbers for the exit node were calculated using these temperatures
and the OFI flow rates. The OFI flow rates, measured outlet
temperatures, Peclet and Stanton numbers are shown in Table 5.
The graphical presentation of Stanton numbers versus Peclet
numbers at OFI along with their uncertainties are shown in Figure 7.

The L/D ratios for the SRS reactor heated channels are 300-485.
Figure 8 presents Stanton numbers at OFI for different test
conditions (inlet temperatures, exit pressures, and heat fluxes) from

21
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Stantoni Number

STANTON NUMBER AT OFl POINTS
COLUMBIA UNIVERSITY 1963 TWO-CHANNEL DATA
AND 1988-89 SINGLE TUBE DATA *
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FIGURE 8. STANTON NUMBER AT OFI VERSUS L/D
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the 1988-89 tests and 1963 Columbia tests [4] plotied against L/D
and shows the trend that Stanton number increases with L/D. The
OFI data from 1988-89 and 1963 Columbia University tests and SRS
HTL test [5] are shown in Figure 9. This figure shows that the
Stanton numbers are greater than 0.00455 for all Peclet numbers
(20,000 to 800,000). The range of Peclet numbers for the SRS
reactor channels for normal and simulated accident conditions is
200,000 to 800,000. The SRS reactor channel heat fluxes at the
proposed restart power level (~1200 MW) are below 0.5 MBtu/hr-ft2,
Figures 7 and 8 show that the SRS Working Criterion, S5t=0.00455, is a
conservative OFI predictor for the SRS reactor fuel assemblies at the
reactor restart power level.

4.8 FLOWTRAN OSYV FLOW CALCULATIONS

OSV flow rates were calculated by FLOWTRAN for the SRS Working
Criterion (St = 0.00455) using average powers, inlet temperatures,
and exit pressures. Table 5 shows the FLOWTRAN input data used to
calculate the OSV flow rates as well as the calculated OSV flow rates.
Figures A-9 to A-51 present the FLOWTRAN calculated OSV flow
rates. The column RATIO in Table 5 represents the calculated OSV
flow rate for St = 0.00455 divided by the measured OFI flow rate.
Table 5 shows that the FLOWTRAN onset of significant voiding (OSV)
calculations for St = 0.00455 are conservative OFI predictors because
RATIO > 1.0 for all test cases.

4.9 UNCERTAINTY ANALYSIS

The uncertainties in the Peclet and Stanton numbers at the measured
OFI conditions and the pressure drops were calculated from the
uncertainties for both experimentally measured quantities and
physical properties. Table 6 presents a measurement uncertainties
example; all experimental uncertainties are presented in Columbia
University's report, Section 4.2 [7]. Table 7 shows the test section
geometry and water physical properties uncertainties. Uncertainties
in all other experimental parameters are calculated from these
uncertainties using a root sum of squares formula. Equations 8 - 13
were used in an external FORTRAN program to calculate the Peclet
and Stanton number uncertainties at OFI.  The program source
listing, UNCERSTPE.FOR, is given in Appendix E.
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Table 6
MEASUREMENT UNCERTAINTIES

Uncertainty Analysis Sample:
Test #4, 0.6125" ID tube

Measurement Range of Accuracy of DAS Digitizing
Measurement Instrument (End to End) Error*
(% of reading)

P Inlet (PTI1) 200 psi 0.112% of F.S. 0.304% 0.200psi
P Outlet (PTO1) 200 psi 0.112% of F.S. 0.304% 0.200 psi
DP (DT1) 15 psid 0.112% of F.S. 0.304% 0.015 psid
T Inlet (TRTI1) 360 F 025 F 0.005% 0.500 F

T Outlet (TRTO1) 360 F 025 F 0.005% 0.500 F
Flow Rate (FTI2) 60 gpm 0.5106% of F.S. 0.200% 0.060 gpm
Current 10000 amp 0.10% of reading 0.304% 10 amp
Voltage 200 volt 0.050% of reading 0.304% 0.200 volt

¢ Error in multiplexer digitizer is 0.005 volts for signal voltage range of 5.00 volts,
which corresponds to the full range of measurement.

Total Uncertainty:
Total Unceriainty is calculated based on Kline & McClinteck procedure [13]

Example: If the DT1 reading is 1 psid,
Overnsll accuracy of the DP (DT1)
=SQRT((15 psid*0.112%)**2+(1 psid*0.304%)*>2+(0.015 psid)**2)
=0,0227 paid
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Table 7

TEST SECTION GEOMETRY AND WATER PROPERTIES UNCERTAINTIES

Inner Diameter! +0.005 in.’ +0.0015 in.®

Heated Length! | +0.038 in.

Pressure Tap Separation! +0.058 in.

Water Plysical Properties? Acp/cp, Ak/k, Ap/p=£0.1%
Aplpy = +0.14%*

Saturation Temperature? AT, = +0.024 C

Exit Temperature? AT,=%18F

! Columbia University measurement uncertainty

2 Correlation uncertainties per FLOWTRAN manual

3 Measured outlet temperature uncertainty

4 Used in the pressure drop uncertainty estimation.
Water temperature inside pressure transducer line
assumed as 77+10 F.

5 Tests 2.1,4,7; 6 Test 9
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The measured outlet temperature, T,, and its uncertainty are
required for Equations 11 and 12. Since the temperature at the OFI
flow rate is not directly measured, its uncertainty value must cover
temperature measurement uncertainties in the demand curve and
curve fitting regression error. The data regression error is
insignificant (see Figure 6). Columbia University [7] reported the
maximum measured outlet temperature uncertainty as +0.6 F. Thus,
a lower uncertainty bound would be +0.6 F. This uncertainty was
judged to be too low, because the outlet temperature was measured
below the end of the heater tube. Below the heated section vapor
bubbles should collapse. The collapse of the bubbles should raise the
bulk fluid temperature about 0.5 F. Therefore, the bulk temperature
at the measurement location should be slightly higher than the
temperature at the OFI location. Considering all these factors, £1.8 F
was selected for the measured outlet temperature uncertainty at OFI
and was judged to be conservative.

The experimental uncertainties formulae are:
Pressure Drop:

From Equation 4 the pressure drop uncertainty can be expressed as

A(DPp) =+ \/ [A(DP,)I” +[ {’ 43 Ig‘c ]2{[%‘3‘]2 * [%]2} (8)

b

where

A(DP,,) = uncertainty in pressure drop between the pressure taps

A(DP_) = uncertainty in measurement pressure drop between the taps.
Peclet Number:

Equation 8 for the Peclet number can be expressed in terms of the
measured parameter Q, the volumetric flow rate, as

Pe = M (9)

Rkae .
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Using Equation 10, the Peclet number uncértainty can be expressed as

2 )) 2 2
() (5- ()
APe=j:‘Pe (D )+(?)4(Cp)+ e + Q (10)

€

Stanton Number:

Equation 11 for the Stanton number is derived from Equation 6 in
terms of the measured parameters volumetrlc flow rate and ~power
in the following form

w D,
_ 4 h (1
Qpcy (Te-Ty) |

where

h = heated length

w = power

Q = volumetric flow rate.

Using Equation 11, the Stanton number uncertainty can be expressed
as

2 2 21 aTaT (4D, Y
aw ), [ 8% |, (), [2Q ) (_]+ CL
ASl=:tSl\/[(—w:V-)+[“g"] (p ) ( Q )}+ (T."To)z * D, ( h ) (12)
The parameter Aw in Equation 12 is given by

Aw=i¢\/Aw,2n+Aw3 (13)

’

where

Awp, = measurement power uncertainty

)]

Aw, = standard deviation of the power within a test run.
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5. CONCLUSIONS

1. FLOWTRAN accurately modeled the pressure drop for single-
phase flow in both heated and unheated tubes with the proper input
values for the wall absolute roughness and the heated wall effect
correlation exponent. For a tube with a hydraulic diameter similar to
that of an SRS reactor channel, pressure drops calculated by
FLOWTRAN agree closely with the measured pressure drops up to
OSV, since the two-phase contribution is relatively small compared to
the total channel pressure drop. For larger tubes at high heat fluxes
the total pressure drop is low, and the two-phase contributions are
much more significant. Consequently, the agreement between
measured and FLOWTRAN calculated pressure drops near OSV is not
good.

2. For all the current Columbia University OFI tests, the FLOWTRAN
calculated flows at OSV, based on the SRS working criterion,
St=0.00455, were lower than the flows at which the test rigs went
into flow instability. This substantiated St=0.00455 as a conservative
predictor of OFI in FLOWTRAN for the range of test conditions: Peclet
numbers between 100,000 and 300,000 and surface heat fluxes up
to 1 MBtu/hr-ft2,
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APPENDIX - A

" PRESSURE DROP COMPARIS('N GRAPHS

This appendix contains 51 figures which present graphical
representation of pressure drop versus flow rate for the test cases.
Figures A-1 through A-8 are the comparisons of measured and
FLOWTRAN calculated pressure drops for cold test cases. Figures A-9
through A-51 show measured and FLOWTRAN calculated pressure
drops, the measured OFI flow range, and the FLOWTRAN calculated
OSV flow rates for St=0.00455. The figures show the measured
pressure drop points with their associated flow and pressure drop
uncertainties. In this appendix, the figure caption "INC" denotes
inconel 600 and "SS" denotes 304 type stainless steel. The following
are the figure numbers associated with the test conditions.

Figure Test Run - Heat Flux. Inlet Temp Exit Pres
MBtu/hr-ft2 F Psia

FIGURE A-1 359" tube base run 1 0.0 77 64.7
FIGURE A-2 359" tube base run 2 0.0 122 64.7
FIGURE A-3  .600" tube base run1 0.0 77 64.7
FIGURE A-4 .600" tube base run 2 0.0 121 64.7
FIGURE A-5 6125" tube base run'1 0.0 77 64.7
FIGURE A-6 .6125" tube base run 2 0.0 121 64.7
FIGURE A-7 .7516" tube base run 1  0.001 77 64.7
FIGURE A-8 .7516" tube base run 2 0.0 121 64.7
FIGURE A-9 9 - 01 0.4 77 34.7
FIGURE A-10 9 - 02 0.8 77 34.7
FIGURE A-11 9 - 03 0.4 122 34.7
FIGURE A-12 9 -04 0.8 122 34.7
FIGURE A-13 9 - 05 0.4 77 64.7
FIGURE A-14 9 - 06 0.6 77 64.7
- FIGURE A-15 9 - 07 0.8 77 64.7
FIGURE A-16 9 - 08 1.0 77 64.7
FIGURE A-17 9 - 09 0.4 122 64.7
FIGURE A-18 9 - 10 0.8 122 64.7
FIGURE A-19 7 - 01 0.4 77 64.7
FIGURE A-20 7 - 02 0.8 77 64.7
FIGURE A-21 7 - 03 0.4 121 64.7
FIGURE A-22 7 - 04 0.8 121 64.7
FIGURE A-23 4 - 01 0.4 77 34.7



Figure | Test Run Heat Flux Inlet Temp Exit Pres

MBtu/hr-ft2 F Psia

FIGURE A-24 4 - 02 0.6 77 34.7
FIGURE A-25 4 - 03 0.8 77 : 34.7
FIGURE A-26 4 - 04 1.0 77 34.7
FIGURE A-27 4 - 05 0.4 121 . 34.7
FIGURE A-28 4 - 06 0.6 121 34.7
FIGURE A-29 4 - (07 0.8 121 34.7
FIGURE A-30 4 - 08 1.0 121 34.7
- FIGURE A-31 4 - 09 0.4 77 64.7
FIGURE A-32 4 - 10 0.6 77 64.7
FIGURE A-33 4 - 11 0.8 77 64.7
FIGURE A-34 4 - 12 1.0. 77 64.7
FIGURE A-35 4 - 13 0.4 121 - 64.7
FIGURE A-36 4 - 14 0.6 121 64.7
FIGURE A-37 4 - 15 0.8 121 64.7
FIGURE A-38 4 - 16 1.0 121 64.7
FIGURE A-39 2.1-01 0.8 77 34.7
FIGURE A-40 2.1-02 1.0 77 34.7
FIGURE A-41 2.1-03 0.4 121 34.7
FIGURE A-42 2.1-04 - 0.6 121 34.7
'FIGURE A-43 2.1-05 0.8 121 34.7
FIGURE A-44 2.1-06 1.0 121 34.7
FIGURE A-45 2.1-07 0.6 77 64.7
FIGURE A-46 2.1-08 0.8 77 64.7
FIGURE A-47 2.1-09 1.0 77 64.7
FIGURE A-48 2.1-10 0.4 121 64.7
FIGURE A-49 2.1-11 0.6 121 64.7
FIGURE A-50 2.1-12 0.8 121 64.7
FIGURE A-51 2.1-13 1.0 121 64.7



MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP

INC TUBE 1D=0.359" . UNIFORM FLUX=0.0 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA

80

o Measured
FLOWTRAN Calculated

60

40

Pressure Drop (psid)

20 4

2 4 6 8 10 12 14 16

Flow Rate (gpm)

FIGURE A-1. 0.359" TUBE BASE RUN 1



MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP
INC TUBE 1D=0.359" ; UNIFORM FLUX=0.0 MBTU/HR-FT2

Pressure Drep (psid)

INLET TEMP=122 F ; EXIT PRES=64.7 PSIA

80 =
o Measured

J e 2| OWTRAN Calculated
60 =
40 -
20 +

01

0 N — e T S st ! S

2 4 6 8 10 12 14 16

Flow Rate (gpm)

FIGURE A-2. 0.359" TUBE BASE RUN 2
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MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP
SS TUBE 1D=0.600" ; UNIFORM FLUX=0.0 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA

25

o Measured
FLOWTRAN Calculated

20 +

15

10 4

Pressure Drop (psid)

35
Flow Rate (gpm)

FIGURE A-3. 0.600" TUBE BASE RUN 1
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MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP
SS TUBE 1D=0.600" ; UNIFORM FLUX=0.0 MBTU/HR-FT2
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

20

L] Measured
FLOWTRAN Calculated

10

Pressure Drop (psid)

30 35

Flow Rate (gpm)

FIGURE A-4. 0.600" TUBE BASE RUN 2



MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP
INC TUBE iD=0.6125" ; UNIFORM FLUX=0.0 MBTU/HR-FT2

Pressure Drop (psid)

INLET TEMP=77 F ; EXIT PRES=64.7 PSIA

20

(] Measured
FLOWTRAN Calculated

15

10 +

0 5 10 15 20 25 30 35

Flow Rate (gpm)

FIGURE A-5. 0.6125" TUBE BASE RUN 1



MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP
INC TUBE ID=0.6125" ; UNIFORM FLUX=0.0 MBTU/HR-FT2

Pressure Drop (psid)

INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

20

=d Measured
FLOWTRAN Calculated

15 4

10 -

0 5 10 15 20 25 30 35

Flow Rate (gpm)

FIGURE A-6. 0.6125" TUBE BASE RUN 2



MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP
SS TUBE ID=0.7516" ; UNIFORM FLUX=0.001 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA

12
bt Measured DP
10 = FLOWTRAN Calcuiated
)
o 8-
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Q 6 -
Q
| =3
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7] 4
Q
o
o. 4
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0 AN SR A R I N A R S R S e S e
0 5 10 15 20 25 30 35 40 45

Flow Rate (gpm)

FIGURE A-7. 0.7516" TUBE BASE RUN 1
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MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP
SS TUBE 1ID=0.7516" ; UNIFORM FLUX=0.0 MBTU/HR-FT2
INLET TEMP=121 F ; EXIT PRES=64.7 -PSIA

Pressure Drop (psid)

12

10 -

W Measured

mmee FLOWTRAN Calculated

M | v 1 v 1 v 1 v L) M 1 v ] v 1

5 10 15 20 25 30 35 40 45
Flow Rate (gpm)

FIGURE A-8. 0.7516" TUBE BASE RUN 2



INC TUBE ID=0.359" ; UNIFORM FLUX=0.4 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA

70
60 - FLOWTRAN Calculated
| =memwm  Measured OFI Flow
¥ gqd v Calc OSV Flow St=.00455
(7]
a Measured
S 40 -
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a
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0 3 ll 1 1) v ¥ ] T B
2 4 6 8 10 12 14 16
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FIGURE A-9. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 9 - 01



Pressure Drop (psid)

INC TUBE 1D=0.359" ; UNIFORM FLUX=0.8 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA

60

FLOWTRAN Calculated
ERDEEIR Measured OFI Flow Rate
07 ceeee Calc OSV Flow St=.00455
= Measured o

40

30 -

20 - """‘ .
]
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10 v L T . |

6 8 10 12 14

Flow Rate (gpm)

FIGURE A-10. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 9 - 02



INC TUBE 1D=0.359" ; UNIFORM FLUX=0.4 MBTU/HR-FT2
INLET TEMP=122 F ; EXIT PRES=34.7 PSIA

Pressure Drop (psid)

70 -
Emm—s  Measured OF| Flow
E e [T Calc OSV Flow St=.00455
FLOWTRAN Calculated

50 - H={  Measured
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Flow Rate (gpm)

FIGURE A-11. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 9 - 03



INC TUBE 1D=0.359" ; UNIFORM FLUX=0.8 MBTU/HR-FT2
INLET TEMP=122 F ; EXIT PRES;-.-3477 PSIA

Pressure Drop (psid)
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FIGURE A-12. MEASURED DATA AND FLOWTRAN PREDICTIONS

FOR TEST RUN 9 - 04



INC TUBE 1D=0.359" ; UNIFORM FLUX=0.4 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA

80
70 - FLOWTRAN Calculated
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o 604 ==---- Calc OSV Flow St=.00455
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FIGURE A-13. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 9 - 05



INC TUBE 1D=0.359" ; UNIFORM FLUX=0.6 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA

Pressure Drop (psid)
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FIGURE A-14. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 9 - 06
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INC TUBE 1D=0.359" ; UNIFORM FLUX=0.8 MBTUJ/HR-FT2
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA
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FIGURE A-15. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 9 - 07



INC TUBE 1D=0.359" ; UNIFORM FLUX=1.0 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA
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FIGURE A-16. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 9 - 08



INC TUBE 1D=0.359" ; UNIFORM FLUX=0.4 MBTU/HR-FT2
INLET TEMP=122 F ; EXIT PRES=64.7 PSIA
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aEEEmEN  Measured OFI Flow
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FIGURE A-17. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 9 - 09



INC TUBE ID=0.359" ; UNIFORM FLUX=0.8 MBTU/HR-FT2
INLET TEMP=122 F ; EXIT PRES=64.7 PSIA
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FIGURE A-18. MEASURED DATA AND FLOWTRAN PREDICTIONS

FOR TESTRUN 9 - 10



SS TUBE 1D=0.600" ; UNIFORM FLUX=0.4 MBTU/HR-FT2

Pressure Drop (psid)

INLET TEMP=77 F ; EXIT PRES=64.7 PSIA
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FIGURE A-19. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 7 - 01




SS TUBE ID=0.600" ; UNIFORM FLUX=0.8 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA

Pressure Drop (psid)
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FIGURE A-20. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 7 - 02



SS TUBE ID=0.600" ; UNIFORM FLUX=0.4 MBTU/HR-FT2
INLET TEMP=121 F ; EXIT PRES=64.7 -PSIA

Pressure Drop (psid)
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FIGURE A-21. MEASURED DATA AND FLOWTRAN PREDICTIONS

FOR TESTRUN 7 - 03
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SS TUBE ID=0.600" ; UNIFORM FLUX=0.8 MBTU/HR-FT2
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA
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FIGURE A-22. MEASURED DATA AND FLOWTRAN PREDICTIONS

FOR TESTRUN 7 - 04
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INC TUBE 1D=0.6125" ; UNIFORM FLUX=0.4 MBTU/HR-FT2
'"NLET TEMP=77 F ; EXIT PRES=34.7 PSIA
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FIGURE A-23. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 01
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INC TUBE 1D=0.6125" ; UNIFORM FLUX=0.6 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA
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FIGURE A-24. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 02
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INC TUBE 1D=0.6125" ; UNIFORM FLUX=0.8 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA
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FIGURE A-25. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 03
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FIGURE A-26. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 04
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FIGURE A-27. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 05
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FIGURE A-28. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 06
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FIGURE A-25. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 07
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FIGURE A-30. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 08
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FIGURE A-31. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 09
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FIGURE A-32. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 10
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FIGURE A-33. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 11
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FIGURE A-34. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 12
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FIGURE A-35. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 13
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FIGURE A-36. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 14
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FIGURE A-37. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 15
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FIGURE A-38. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 4 - 16
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FIGURE A-39. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 01
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FIGURE A-40. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 02

A~-42



SS TUBE ID=0.7516" ; UNIFORM FLUX=0.4 MBTU/HR-FT2
INLET TEMP=121 F ; EXIT PRES=34.7 PSIA

10 ‘ <
e FLOWTRAN Calculated
| R  \easured OFI Flow
~==m=== Calc OSV Flow St=.00455

8 - - Measured

Pressure Di'op (psid)

i v Ll o I

10 15 20 25 30 35 40

Flow Rate (gpm)

FIGURE A-41. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 03
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FIGURE A-42. MEASURED DATA AND FLOWTRAN PREDICTIONS

FOR TEST RUN 2.1 - 04
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FIGURE A-43. MEASURED DATA AND FLOWTR /x\N PREDICTIONS
FOR TEST RUN 2.1 - 05
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FIGURE A-44. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 06
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FIGURE A-45. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 07
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FIGURE A-46. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 08
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FIGURE A-47. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 09
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FIGURE A-48. MEASURED DATA AND FLOWTRAN PRENICTIONS
FOR TEST RUN 2.1 - 10
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FIGURE A-49. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 11
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FIGURE A-50. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 12
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FIGURE A-51. MEASURED DATA AND FLOWTRAN PREDICTIONS
FOR TEST RUN 2.1 - 13
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APPENDIX - B

INDIVIDUAL TEST POINT CONDITIONS

This appendix contains the table for individual test point conditions.
The table presents power, heat flux, exit pressure, inlet temperature,
flow rate, measured pressure drop, FLOWTRAN calculated pressure
drop, and the percent difference between FLOWTRAN calculated and
measured pressure drops for all data points for all test runs. The
data points that correspond to each test run are listed in Table 5.

Flow rates and measured pressure drops are associated with their
measurement uncertainties. A significant amount of void is present
in the flow channel if the flow rate is lower than the FLOWTRAN
calculated OSV flow rate at St=0.00455. FLOWTRAN code is not
designed to handle pressure drops. for two-phase flows. The
difference between measured and FLOWTRAN calculated pressure
drops is not meaningful for flow rates lower than the FLOWTRAN
calculated OSV flow rate at St=0.00455. These cases are shown as

" okkxkk U in column "Difference"”. o
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APPENDIX - C

SAMPLE PRESSURE DROP COMPARISONS USING VOID MODEL

UNCERT is a modified version of FLOWTRAN which includes
acceleration pressure drop and two-phase multiplier effect to
calculate the pressure drop This appendix contains a few sample
comparisons among measured, FLOWTRAN calculated, and UNCERT
calculated pressure drops. Appendix B presents the comparison
between measured and FLOWTRAN calculated pressure drops. The
figures in Appendix B show that for large tube diameters, 0.600",
0.6125", and 0.7516", the agreement between measured and
FLOWTRAN calculated pressure drops is not good around OSV regions
for high heat flux cases (0.8 and 1.0 MBtu/hr-ft2). Severai cases with
the worst agreement between measured and FLOWTRAN calculated
pressure drops were chosen for these tubes to demonstrate UNCERT
pressure drop calculations. Since FLOWTRAN accurately calculated
pressure drops up to OSV for the 0.359" tube for all heat fluxes,
there were not any sample cases selected for this tube.

For these large tubes the pressure drops around OSV flow range are
low (2 to 5 psi), and the two-phase contribution to the total pressure
drop is significant. FLOWTRAN is a single-phase code, so its
calculated pressure drops are low for these cases. The figures in this
appendix show that UNCERT does not give anticipated improved
agreement. The VOID model in UNCERT with the two-phase frictional
multiplier and acceleration pressure drop needs revision to improve
the agreement between measured and calculated pressure drops for
large diameter tubes at high heat fluxes. As discussed in section 4.3,
the acceleration pressure drop and the two-phase multiplier are not
important to the total channel pressure drop calculation in SRS fuel
assemblies.
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Pressure Drop (psid)

SS TUBE [D=0.600" ; UNIFORM FLUX=0.8 MBTU/HR-FT2
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

20
a Measured
18 - e UNCERT Calculated
; = £l OWTRAN Calculated

16 ey Calc OSV FIOW St=0.00455
14 -

12 4

10

8 e

6

4 =

2 T v ! '

10 15 20 25 30 35

Flow R'ate (gpm)

FIGURE C-1. MEASURED DATA, FLOWTRAN, AND UNCERT
PREDICTIONS - SAMPLE 1
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INC TUBE iD=0.6125" ; UNIFORM FLUX=0.8 MBTU/HR-FT2
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

18
1 o Measured
16 ® UNCERT Calculated
=m | OWTRAN Calculated
wmwn Galc QSV Flow St=0.00455

o~ 14 -
3
7]
a
=~ 12 -
a.
o
p ¥
Q 104
@
5
b 8 -
w0
o
| =
o. 6 -

1

4 -
2 Y T Y T v ! v ! v
10 15 20 25 30 35

Flow Rate (gpm)

FIGURE C-2. MEASURED DATA, FLOWTRAN, AND UNCERT
PREDICTIONS - SAMPLE 2



INC TUBE ID=0.6125" ; UNIFORM Fl UX=1.0 MBTU/HR-FT2

Pressure Drop (psid)

INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

] 0  Measured
4 ® UNCERT Calcuiated
16 - w—me FL OWTRAN Calculated
) e Calc OSV Flow St=0.00455
14 -
]
12 y
4
o
10 1
8 -
6 ‘E e §
1 i
: !
4 y Y r i v T v r .
10 15 20 25 30 35

Flow Rate (gpm)

FIGURE C-3. MEASURED DATA, FLOWTRAN, AND UNCERT
PREDICTIONS - SAMPLE 3
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SS TUBE ID=0.7516" ; UNIFORM FLUX=0.8 MBTU/HR-FT2
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

10
9 - o Measured ‘ o
. ® UNCERT Calculated
8 - we FLOWTRAN Calculated
) s Calc OSV Flow St=0.00455
= ‘
a 7
o 6
o)
Q -
o S
B
3 .
2 4 8
Lo
* 3] ogpo
‘w
2 - i
i
H
:
1 Y T ¥ 1 Y T v T Y T T
15 20 25 30 35 40 45

Flow Rate (gpm)

FIGURE C-4. MEASURED DATA, FLOWTRAN, AND UNCERT
PREDICTIONS - SAMPLE 4
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Pressure Drop (psid)

SS TUBE 1D=0.7516" ; UNIFORM FLUX=1.0 MBTU/HR-FT2
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA

11
j 0 Measured
10 e UNCERT Calculated /o
== FLOWTRAN Calculated
97 wme Calc OSV Flow St=0.00455
8
o
7 -
6 -
5 -
4
3 v = T T T T T L] T T
20 25 30 35 40 45

Flow Rate (gpm)

FIGURE C-5. MEASURED DATA, FLOWTRAN, AND UNCERT
PREDICTIONS - SAMPLE 5
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APPENDIX - D

SAMPLE FLOWTRAN INPUT

This appendix contains a FLOWTRAN model test section node
diagram. FLOWTRAN models the test section between the pressure
taps which is 100.5 inches. The 96 inch heated length is divided into
48 equally spaced axial nodes. The 2.25 inch length bounding the
heated length at each end is divided into 5 axial nodes. The details
are shown in Figure D-1. '

This appendix also contains a sample FLOWTRAN input file for the
OSV calculation for St=0.00455. FLOWTRAN iterates to calculate the
power needed to achieve OSV for a particular flow rate. Different
flow rate inputs are used to reiterate the OSV flow rate for a given
power, inlet temperature, and exit pressure until the calculated
power agrees with the given power. Chapter 5, Reference 1, is a
guide to prepare the FLOWTRAN input deck.



As 96" - HEATED CHAWNEL LENGTH
B: 100.5" - FRICTIOMAL CHANMEL LENGTH
C: 105° - TOTAL CORE LENGTH
D: 105.35" - TOTAL MODEL LENGTH
: 2.425" - TOP/BOTTOM FORM LENGTA
F: 0.175" - TOP/BOTTOM SETUP LENGTH

TOP
Node
& ¢+ % 0.025" !
¥ 0.05" 2
z 0.05" __ 3
0.05" 4
2.25"
L [
A
2.25"
48
J_,’-"”J..m
v — e
2.25" 58
v
&
2.25"
o.ns'___ 35
E 0.05" 36
] 0.05" 57
& } 0.025" 38

BOTTOM

FIGURE D-1. FLOWTRAN MODEL NODES
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/COLUMBIA .6125 PW 0.22409 MW P64.7 T77F FW GPM OSV V16.1/
/RUN TIME (SEC), NZONE, TMIN, TIME ZONE DATA/
0 1 00
1.0 1
/IPRTF, IPRTS, IPRTP, IDMPS, IBALN, ICRIT, IPRTSS/
1 1
100 1 1 1 0 0 !
/CRITERIA CHECKING FLAGS: ONB, TSAT, CHF, OSV/
O 0 0 1 0
[TOLERANCES, ITERATIONS, AND INITIAL POWER/
1.0D-5 20 0.22409
1.0D-5 50
1.OD-5 50
/FLUID ITERATIONS, TOLERANCES, AND OPTIONS/
0 100 1.0D-6
0 100 1.0D-6
r 11 2 1 1 1 11
1
/POWER ARRAY PARAMETERS/
5 2 1
2 2 2 2 2 2 2 2 2 2 2
/MA MCYLIN ICENT AND NCELLS/
1 1 0
4 50 4
/RADIAL CELLS AND SUBCHANNELS/
5
1
/SURFACE CHECK FLAGS/
0 1 0
/CYLINDER #1/
1.0 1
0 00 00
483 3 3 3 3
0.6125
0.63964
0.66678
0.69392
0.72106
0.7482
[FLUID GEOMETRIC DATA SET/
105.0000 96.00000 4.500000 4.675000 1.000000
0.254647029 0.294647029
1.0
1.0
0.294647029
0.6125
0.
0.
0.
2.5000000000000000E-05
1 0.00368309 0.29464704 0.000 1.0 0.0
1 0.00736618 0.29464704 0.025 0.0 0.0

D-3



S H VLWLV~ = hDbWWLWDW

0.01104927
0.01473236
0.01473236
0.01473236
0.01473236
0.01473236
0.01472236
0.01475.36
0.01473236
0.01473236
0.01473236
0.01104927
0.00736618
0.00368309

1.0 021
/POWER FRACTIONS/
11

1.0 0.0 0.0

0.29464704
0.29464704
0.29464704
0.29464704
0.29464704
0.29464704
0.29464704
0.29464704
0.29464704
0.29464704
0.29464704
0.29464704
0.29464704
0.29464704

0.0

/RADIAL SHAPES/

1
1

5 2

0 0 O
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0

0

0.000
0.050
0.000
0.050
0.000
0.050
0.050
0.000
0.050
0.000
0.050
0.000
0.025
0.000

1.0
0.0
1.0
0.0
1.0
0.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0

/WET TANK SHAPE POWER FRACTIONS/

0

/DRY TANK SHAPE POWER FRACTIONS/

]

[AZIMUTHAL SHAPES/

1
1

1 1
0 0 o0

1.0
1.0
/ASSEMBLY POWER TRANSIENT/

3

0. 1.000000
5. 1.000000
10.  1.000000

0

/AXIAL POWER SPLINE/

3

2
0.0 10.0

0.0 1.0
0.5 1.0

/ASSEMBLY FLOW TRANSIENT/

3

1.0 1.0
1.0
1.0
1.0

0. 9.371447699

3. 9.38000

10, 9.38000

D~4

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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/TBOT PRESS SPLINE/
3

0. 64.80596
5. 64.80595
10.  64.80595
/ASSEMBLY INLET SPLINE/
3
0. 24.95180
5. 25.00000
10.  25.00000
/TANK LEVEL SPLINE/
3
0.0 1.0
5.0 1.0
10.0 1.0

/FLUID INITIAL GUESS/
1.0

9.550 85.000 25.000
1.0
0.0D0 0.0D0 0.0D0
0.0 30.0 19.7

0.000

3.937D-5 1.0 1.0 1.0 0.7 100.0
/INITIAL SOLID TEMPERATURES/

250 250

D=5
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APPENDIX - E

COMPUTER PROGRAMS SOURCE LISTINGS

This appendix contains ENBALSTPE.FOR and UNCERSTPE.FOR
computer programs source listings. ENBALSTPE.FOR is written to
calculate Stanton and Peclet numbers at the OFI conditions.
UNCERSTPE.FOR is used to calculate Stanton and Peclet number
uncertainties. These source codes are written in VAX FORTRAN-77
and contain input/output codes specific to VAX compilers. These
source codes may not be transportable to other FORTRAN compilers.
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ENBALSTPE.FOR

This Program Calculates Outlet Temperature from an
Energy Balance, Calculates Uncertainty on the Calculated
Temperature, Calculates Peclet and Stanton Numbers

both from Measured and Calculated Outlet Temperatures,
Contribution of Each Energy Terms

The Program interactively asks one input and one output
file names \

Input File: One Input File - Free Formatted :
First record is hydraulic diameter (inch)
Each Subsequent record consists of
Flow Rate (gpm), Pressure Drop (psi),
Power (KW), Inlet Temp (F), Exit Pressure,
Measured Outlet Temp (F)

* ok ok % % o ¥ % % % R A % % * A * * F
F % o ok ok % Ok F * % % * O * * * * * *

AEAARE A AR AR R AL A AR A A A A A AR R I RAARRI R AR RAAAKR AR A Ak kAR A ARk hkxkhkHd Kk

Inlet Temperature (F)
Volumetric OFI flow rate (gpm)
Power (MW)

WKW = Power (KW)

203
4
tu

HF = Heat Flux (Btu/s-ft2)

PE = Exit Pressure (psia)

T™™ = Measured Qutlet Temperature (F)

TC = Calculated Qutlet Temperature (F)
TU = Uncertainty on Calculated Temp (F)

PEN = Peclet Number

STN = Stanton Number

DP = Pressure Drop (psi)

= Mass Velocity (lbm/s)

= Mass Flux (lbm/s-ft2)

CT = Energy Term Percent

H = Hydraulic Diameter (inch)

DIMENSION TI(30),
Q(30),
W(30),
HF (30),
PE (30),
™(30),
TC(30),
TU (30)
DIMENSION PEN(2,30),
STN (2, 30},
DP(30),
F(30),
G(30),
PCT (4, 30)

CHARACTER C(4)*8/'I ',
lo 'I
'EXTERNAL',
*MEASURED' /



[ NSRS

100
101
102

104

oo

105

oNoNe!

OO0

DATA AT,AM,AP,AK/948.056,

+ ~-0.18509,

+ 1.071122E-04,
+ 0.414252/
DATA TL,HL,PI/100.5,

+ 96.0,

+ 3.14159265/

Set up Character Variables for Reading Records

CHARACTER RECORD*80,

+ DUMMY*80,
+ OQUTFIL*25,
+ INFIL*2S

Set up Character Record Formats

FORMAT (A80)
FORMAT (A25)
FORMAT (Al)

Open OFI Input File

PRINT 104

FORMAT (' ENTER THE OFI INPUT DATA FILE NAME ? ',8§)
ACCEPT 101, INFIL

OPEN (2, FILE=INFIL, STATUS='0OLD®, ERR=995,

+ ACCESS='SEQUENTIAL', FORM='FORMATTED',
+ ORGANIZATION="'SEQUENTIAL', RECORDTYPE='VARIABLE')

Open Calculations Output File

PRINT 105

FORMAT (' ENTER THE CALCULATION RESULTS OUTPUT FILE NAME ? ', $)
ACCEPT 101, OUTFIL

OPEN (3, FILE=QUTFIL, STATUS='UNKNOWN', ERR=990,

+ ACCESS="'SEQUENTIAL', FORM='FORMATTED',
+ ORGANIZATION="'SEQUENTIAL', RECORDTYPE="'VARIABLE')

Get Hydraulic Diameter

READ (2, *) DH
CSA = (PI/4.0) * DH * DH ! CROSS SECTIONAL AREA

Get the Other Input Data

I=1

READ (2, *,END=15) Q(I), DP(I), WKW, TI(I), PE(I), TM(I)

W(I) = WKW / 1000.0 ! CONVERT TO MEGAWATT
I=1I+1

GOTO 10

NR=1-1

DO 25 I=1,NR
Calculate Inlet Density in lbm/ft3
CALL DENSITY (DENSI,TI(I)) ! CALL FOR DENSITY
Calculate Inlet Energy Equivalent

E-3



@]

aOOwan

[N
(&3]

111

112

[PEOR@N I

113

CALL HTCAP (CPI,TI(I),2) ! INLET ENERGY

F(I) = DENSI * Q(I) / 448.83 ! MASS VELOCITY (LBM/S)
Initial Outlet Temperature Guess
TOl = TI(I) + W{I) * AT / F(I)
Calculate Qutlet Density in lbm/ft3
CALL DENSITY (DENSO, TO1)

DAVE = (DENSI + DENSO) / 2.0

DEND = 1.0/DENSI**2 - 1,0/DENSO**2

CALL FOR DENSITY
AVERAGE DENSITY
DENSITY DIFFERENCE

1

!

!
CKE = AK * (F(I)/CSA)**2 * DEND ! KINETIC ENERGY
CPE = AP * TL ! POTENTIAL ENERGY
CME = AM * DP(I) / DAVE ! MECHANICAIL ENERGY
CTE = AT * W(I) / F(I) ! THERMAL ENERGY
DES = CTE + CKE + CPE + CME ! DIFF, ENERGY SUM

Calculate Outlet Energy Equivalent
CALL HTCAP (CPO, TO1, 2)

DCP CPO - CPX

CPA = DCP / (TOl - TI(I))

ER = DCP / DES

Check Energy Balance

IF (ABS (ER-1.0) .LT. 0.0010) GOTO 30
TOl = TI(I) + (TOl - TI(I)) / ER
GOTO 20

QUTLET ENERGY

DIFF. ENERGY EQUIV.
AVERAGE HEAT CAPACITY
DIFF. ENERGY RATIO

[

TC(I) = TO1
Calculate Outlet Temperature Uncertainty

CALL TOUTUNC(TU(I),TI(I),W(I),Q(I),DENSI,CPA)

PCT(1,I) = 100.0 * CTE / DES ! THERMAL ENERGY %
PCT(2,I) = 100.0 * CKE / DES ! KINETIC ENERGY %
PCT(3,I) = 100.0 * CPE / DES ! POTENTIAL ENERGY %
PCT(4,1I) = 100.0 * CME / DES ! MECHANICAL ENERGY %

CONTINUE

WRITE(3,111) C(1l), C(2), C(4), C(2), C(2)

FORMAT (' NO GPM MW PSI_FR',3(' T(F)_',Al),

+ ' TM-TO PSIA ',Al,' UNC ',Al)

FORMAT (1X,12,1X,F7.4,1X,F8.6,1X,F6.3, 3(1X,F7.3), 3 (1X,F6.3))
DO 40 I=1,NR

DT = TM(I) - TC(I)

WRITE(3,112) I,Q(I),W(I),DP(I),TI(I),TC(I),TM(I),DT,PE(I),TU(I)
CONTINUE

Begin Peclet and Stanton Number Calculations
DO 50 J=1,2

WRITE (3,113) C(J+2)
FORMAT (/' PECLET - STANTON NUMBERS WITH OUTLET TEMPERATURE',

+ ' FROM ',A8,' CALCULATIONS',
/' NO LB/S-FT2 BTU/S~FT2 BTU/LB-F BTU/S-FT-F',
+ ' T_SAT F T _OUT F PECLET  STANTON')

DO 50 I=1,NR
IF(J .EQ. 1) THEN

TO = TC(I) ! CALCULATED OUTLET TEMP
ELSE IF(J .EQ. 2) THEN

TO = TM(I) ! MEASURED OUTLET TEMP
END IF
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[eXeNe]

Q00

aaaQ

50
114

C

115

60
116

990
999

995
998

QO

(@]

CALL HTCAP (CPO,TO, 1) ! HEAT CAPACITY
Calculate Heat Flux

HF(I) = 144.0 * AT * W(I) / (PI*DH*HL)
G(I) = 144.0 * F(I) / CSA

CALL THCOND (CK, TO)

CALL SATEMP (TS, PE(I))

BTU/S-FT2
LBM/S-FT2
THERMAL COND
SATURATED TEMP

Calculate Peclet Number
PEN(J,I) = G(I) * (DH/12.0) * CPO / CK ! PECLET NUMBER
Calculate Stanton Number

STN(J,I) = HF(I) / (G(I)*CPO*(TS -~ TO)) ! STANTON NUMBER
WRITF (3,114) I, G(I), HF(I), CPO, CK,TS,TO,PEN(J,I),STN(J,I)
CONTINUE
FORMAT (1X,I2,2(1X,F9.3),1X,F8.6,1X,E10.4,2(1X,F7.3),
+ 1X,F7.0,1X,F10.8)

WRITE (3,115)

FORMAT (/4X, 'ENERGY TERMS PERCENT CONTRIBUTION',

+ /' NO THERMAL?®, 6X,

+ '"KINETIC POTENTIAL  MECHANICAL')

Write Energy Terms Percent Contribution

DO 60 I=1,NR

WRITE(3,116) I, (PCT(J,I),J=1,4)
CONTINUE
FORMAT (1X,I2,2X,4(E12.5,2X))
CLOSE (3)
GOTO 999

PRINT *, ' PECLET STANTON FILE OPEN ERROR'
CLOSE (2)

GOTO 998

PRINT *, ' OFI INPUT FILE OPEN ERROR'
CONTINUE

STOP
END

SUBROUTINE TOUTUNC (TUNC,T1,W,Q,D,C)

kA h A kI kA hdhk kb kA K I A AR AT A Ak kAR A kR Kk kdkRhdk ke kddhodkokk ok hokkhkkk k kK

TUNC(F) with Regard to Inlet Temperature T1(F), Power W (MW),
Flow Rate Q(GPM), Inlet Density D(LBM/FT3), and Average Heat
Capacity C(BTU/LBM-F)

* A A+ o * 3

The Routine Determines Calculated Outlet Temperature Uncertainty

* % Xk ok %

KKK A KRR AR A R AR KR A KK ARAR N AR KA IR A A AR AR KA AR I AR A ARk Rk kAR I ARk KKKk khk

DATA Al,AP/425516.5433,
4 1.071122E-04/
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DATA DT,DW,DQ,DL/0.6,
0.008,
0.02,
0.004833/

Calculate Outlet Temperature Uncertainty

B=Al/ (D *Q * ()
TUNC = SQRT(DT**2 + (B*DW*W)**2 + (B*W*DQ/Q)**2 + (AP*DIL)**2)

RETURN
END

SUBROUTINE DENSITY (D, TF)

AR A KA AR A A AT A A A A AR I A A A AAARA A KA KA R I AR A A A I A A AR AR AR A kA kAR KKK A K kK

Routine calculates saturated liquid density for temp "T"
The regression eguation was used from FLOWTRAN Manual

TF = Temperature (F), Pass in argument

D = Density (LBM/CU-FT), Pass out argument

Valid Range: 10 C <= T =< 300 C

* % * % F * *
* % ok o F A *
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DIMENSION CD(4)

DATA (CD(I),I=1,4)/0.10048897E+4,
- =0.26847207E+0,

-0,18136391E-2,

-0.17041217E-5/

P=20.0 ! INITIALIZE SUM
Calculate Saturated Density in lbm/cu-ft
T= (TF - 32.0) / 1.8 ! CONVERT TO DEG C
DO 10 I=1,4

P =P + CD(I)*T**(I-1)
CONTINUE
D="Pr* 0.006242800 ! LBM/CU_FT

RETURN
END

SUBROUTINE HTCAP (PP, T, IP)

hRKKIKKAK K I K KRR I AR A KT KRR KT KAk dk A& Rk KKk KKk kook ki e &k ook ok oo ook ok &k ok ok

Routine to Calculate Heat Capacity
T = Temperature (F), pass in argument

IP = Option, Pass in argument
= 1, for normal heat capacity
= 2, for integrated heat capacity
PP = Heat capacity (BTU/LBM-F), Pass out argument

* % * * F * ¥ F
* 4 %+ % % A+ ¥ *

vValid Range: 50 F <= T =< 500 F
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DIMENSION CP(6)

DATA (CP(I),I=1,6)/1.0105,
-2.7630E-4,
1.8461E-6,
-4,1051E-9,
5.7686E-12,
0.0/

P = 0.0 ! INITIALIZE SUM

IF (IP .EQ. 1) THEN ,
Calculate Heat Capacity in Btu/lbm
DO 30 I=1,6

P =P + CP(I)*T**(I-1) ! BTU/LBM-F
CONTINUE
ELSE IF(IP .EQ. 2) THEN
Calculate Integrated Heat Capacity in Btu/lbm
DO 20 I=1,6

P =P + (CP(IL)/I)*T**I ! BTU/LBM
CONTINUE
END IF
PP =P

! DETERMINE PROPERTY

RETURN
END

SUBROUTINE SATEMP (T, P)

KEE KA KRR KA AR KRR AR R AR AR AR AR KR A AR AR A AR A AR ARAARRAN R ARk kAR Ak k kA K

Routine calculates saturated temperature for pressure "P"
The regression equation was used from FLOWTRAN Manual

P = Pressure (psia), Pass in argument

T = Saturation Temperature (F), Pass out argument

Valid Range: 0.178 psi <= P =< 1246 psi '

* A % % * X #*

* 4 * % * ¥ *
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DIMENSION C(6)

DATA (C(J),J=1,6)/0.37546530E+3,
0.89679811E+2,
0.11149468E+2,
0.99075812E+0,
0.52882025E-1,
0.12471856E-2/

TS = 0.0 ! INITIALIZE TEMPERATURE

Calculate Reduced Pressure

PR =P / (217.6 * 14.696) ! REDUCED PRESSURE
Y = ALOG (PR)

E-7
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DO 10 I=1,6
TS = TS + C(I)*Y**(I-1)
CONTINUE
T = 1.8*TS + 32.0 o ! CONVERT TO DEG F

RETURN
END

SUBROUTINE THCOND (CK, TF)

ek Fe ok K Aok ok ke Ak e ok e ok g ok e o ke i ok e ok oAk K ok ok o ok ke ok K ok o R e ok ok ok ok K ok ke ke gk ke ok ok ok ok ke ko ke

*

* Routine calculates liquid thermal conductivity for temp "T"
* The regression equation was used from FLOWTRAN Manual

* TF = Temperature (F), pass in argument

* CK = Thermal conductivity (BTU/S~-FT-F), pass out argument

* Valid Range: 10 C <= T =< 300 C

*
*

* % % ok A A %
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DIMENSION C(4)

DATA (C(J),J=1,4)/0.57032432E+3,

0.17996615E+1,
-0.7288195%E~2,
0.32412245E~-5/
T = (TF - 32.0) / 1.8 ! CONVERT TO DEG C
F = 0.0 ! INITIAL SUM
DO 10 I=1,4
F=F + C(L)*T**(I-1)
CONTINUE
CK =F * 1.604969E-7 ! BTU/S~-FT-F
RETURN
END

E-8



-

LS

.

ok ok oF R ok ok b b R % %k %k % % O % F b A Ok ok 3k *F F F *F F

[eRoNe RPN N NONONONONO RO RO N NoNoNONONoNeNoNoNoNo N oo NoNoNoNe No o RS N O]

FhA AR IAKRKRARKRAARRAAR A AR AL kA AR AR R Ak kA Kk Ak khk kA kAR Ak h R kk &k

KA KRR I LKA KKK RAA AR AR KA AL AR A AR IR ARA R AR AR Ak Ak AR kkkhhkkkkkk

Second File -

UNCERSTPE.FOR

This Program Calculates Mean and Standard Deviation
of Power, Heat Flux, Inlet Temp, and Exit Pressure.
This Program also Calculates Uncertainties in
Peclet & Stanton Numbers

The Program interactively ‘asks two input and one
output file names

[
1 :

Input Files: Two Input Files - Free Formatted

First File - The First Inplt File is the OFI Conditions

File. The First Record is tube ID, the
Second Record is Uncertainty on ID, the
Third Retord is Ratio of Flow Rate
Uncertainty to the Flow Rate (which is
Const. for all Flow Rates), the Fourth
Record is the No. of Test Cases and the
Fifth is the No. of Sample Cases in Each
Test Case. The Subsequent Records are
Flow Rate (gpm), Peclet No., Stanton No.,
Measured Outlef Temp at OFI Condition (F)
for Each Test Case.

The Second File 1s the test Conditions File

Each Record Consists of Test Conditions
Power, Heat Flux, Exit Preg, Inlet Temp,
Ratio of Uncertainty of Power to Power

DIMENSION AVPOWER(30),
SDPOWER (30),
AVHTFLX (30),

)

+ 4+ + + 4+ +++++++++ o+

DIMENSION

+

+ + 4+ + +

SDHTFLX (30
AVIT(30),
SDIT(30),
AVEP (30),
SDEP (30),
AVUNPOW (30) ,
SDUNPOW (30),
DPOWERMESR (30),
DTINMES (30),
DTINLET (30),
TSAT (30),
TSUB (30),

NN (30)

TOUT (30),
QMES (30),

PE(30),

DELPE (30),

ST(30),

DELST(30),
DPCWERR (30),

E-9
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+ j DELHFLXR (30)

i

c i
REAL PE,
+ L
REAL*8 SQUNPOW,
+ SUMSQUNPOW,
+ SUMUNPOW,
+ AVUNPOW,
+ SDUNPOW
C .
CHARACTER*25 INFILE1,
+ INFILEZ,
+ OUTFILE

L = Length of The Tube (inch)

DELL = Uncertainty of Tube Length (inch)

DELD = Uncertainty in Tube ID (inch)

DELQOMESR = Uncertainty in Flow Ratio (%)

DELRHOR = Uncertainty in Density (%)

DELCPR = Uncertainty in Specific Heat Ratio (%)

DELKR = Uncertainty in Thermal Conductivity Ratio (%)
DPOWERMESR = Uncertainty in Meas Power Ratio (%)
DELTOUT = Uncertainty in T Cut (C)

DELTSAT = Uncertainty in Saturation Temp (C)

D = Tube Inside Diameter (inch)

N = Number of Test Cases

NN = Number of Samples in Each Test Case

QMES = Measured Flow Rate (gpm)

PE = Peclet Number

ST = Stanton Number

TEMPPOWER = Power in the Sample (KW)

TEMPHTFLX = HT Flux in the Sample (MBtu/hr-ft2)
TEMPEP = Exit Pressure in the sample (psia)

TEMPIT = Inlet Temperature in the Sample (F)
TEMPUNPOW = Measured Power Uncertainty Ratio in the Sample
AVPOWER = Average Power of the Test Case (KW)
AVHTFLX = Average Heat Flux of the Test Case (MBtu/hr-ft2)
AVIT = Average Inlet Temp of the Test Case (C)

AVEP = Average Exit Pressure of the Test Case (psia)

AVUNPOW = Average Measure Power Uncertainty Ratio of the Test Case
SDPOWER = S,D. of Power in the Test Case (KW)
SDHTFLX = S.D of Heat Flux in the Test Case (MBtu/hr-ft2)

SDIT = S.D of Inlet Temp in the Test Case (C)
SDEP = S.D of Exit Pressure in the Test Case (PSIA)

SDUNPOW = S.D. OF Measured Power Uncertainty Ratio
DTINMES = Uncertainty in I. Temp Measurement (C)
DTINLET = Total Uncertainty in I. Temp (C)

DPOWERR = Ratio of Uncertainty of Power to Power

DELHFLXR = Ratio of Uncetainty of HT Flux to HT Flux
TSAT = Saturation Temperature (C)
TOUT = Exit Temperature (C)

DELGR = Ratio of Uncertainty of Flow Rate to Flow Rate
DELPE = Uncertainty in Peclet Number
DELST = Uncertainty in Stanton Number

Set up Input File Name Record Format

FOoOOo0o0ao0a0aoaaoaaaoaoao0aoaaoaaooaaoao0aa0aoaoaooacaoaaan

001 FORMAT (A25)
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Open the OFI Input File

PRINT 1002

FORMAT (' ENTER THE OFI INPUT DATA FILE NAME ? ',$)
ACCEPT 1001, INFILE1l
OPEN(Z,FILE=INFILE1,STATUS='OLD',ERR=991,

+ ACCESS='SEQUENTIAL',FORM='FORMATTED',

+ ORGANIZATION='SEQUENTIAL', RECORDTYPE='VARIABLE')
Open the Test Conditions Data File

PRINT 1004 ‘

FORMAT (' ENTER THE TEST CONDITIONS INPUT DATA FILE NAME ? ', 5)
ACCEPT 1001, INFILEZ2 '

OPEN (3, FILE=INFILEZ2, STATUS='QLD', ERR=993,

+ ACCESS='SEQUENTIAL', FORM='FORMATTED',

+ ORGANIZATION='SEQUENTIAL', RECORDTYPE='VARIABLE')
Open the Output File

PRINT 1006

FORMAT (' ENTER THE OUTPUT FILE NAME ? ',$)

ACCEPT 1001, OUTFILE

OPEN (4, FILE=OUTFILE, STATUS='UNKNOWN', ERR=995,

+ ACCESS='SEQUENTIAL', FORM='FORMATTED',
+ ORGANIZATION='SEQUENTIAL', RECORDTYPE="'VARIARLE')
Static Input Vvalues

L = 96.0

DELL = 0.038

DELRHOR = 0,001

DELCPR = 0.001

DELKR = 0.001

DELTOUT = 1.0

DELTSAT = 0.024

Read Tube ID, ID Uncertainty, Flow Rate Uncertainty Ratio
# of Test Cases, # of Sample in the Test Case,

OFI Flow Rate, Peclet #, Stanton #, Measured Outlet Temp at OFI
READ(2,*) D

READ (2, *) DELD

READ (2, *) DELQMESR

READ (2,*) N

READ (2,*) (NN(I),I=1,N)

DO 10 I=1,N

READ (2,*) QMES(I),PE(I),ST(I),TOUT(I)

CONTINUE

Echo of Input

WRITE (4,1010)

FORMAT (20X, 'Echo of Input')

WRITE (4,1020) N

FORMAT (//5X, 'No. of Test Case = ',6I4)
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WRITE (4,1030)
FORMAT (/5X,' TEST CASE
WRITE (4,1040) {I,NN(I),I=1,N)
FORMAT (2 (10X, I4))
WRITE (4, 1050)
FORMAT (//5X; '"FLOW RATE (GPM) PECLET # STANTON #',
' MEAS OUTLET TEMP (F)'/)
DO 20 I=1,N
WRITE (4,1060) QMES(I),PE(I),ST(I),TOUT(I)
FORMAT (5X,F8.3, 7X,F12.0, 5X,F10.8, 5%X,F10.2)
CONTINUE ‘

NO. OF SAMPLES'/)

Calculation of Average & S.D. of the Sample

DO 30 I=1,N

SUMSQPOWER=0. 0

SUMSQHTFLX=0. 0

SUMSQIT=0.0

SUMSQEP=0. 0

SUMSQUNPOW=0. 0

SUMPOWER=0 . 0

SUMHTFLX=0. 0

SUMIT=0.0

SUMEP=0. 0

SUMUNPOW=0. 0

DO 25 J=1,NN(I)
READ (3, *) TEMPPOWER, TEMPHTFLX, TEMPEP, TEMPIT, TEMPUNPOW
SQPOWER=TEMPPOWER* TEMPPOWER
SQHTFLX=TEMPHTFLX* TEMPHTFLX
SQIT=TEMPIT*TEMPIT
SQEP=TEMPEP * TEMPEP
SQUNPOW=TEMPUNPOW* TEMPUNPOW
SUMSQPOWER=SUMSQPOWER+SQPOWER
SUMSQHTFLX=SUMSQHTFLX+SQHTFLX
SUMSQIT=SUMSQIT+SQIT
SUMSQEP=SUMSQEP+SQEP
SUMSQUNPOW=SUMSQUNPOW-+SQUNPOW
SUMPOWER=SUMPOWER+TEMPPOWER
SUMHTFLX=SUMHTFLX+TEMPHTFLX
SUMIT=SUMIT+TEMPIT
SUMEP=SUMEP +TEMPEP
SUMUNPOW=SUMUNPOW-+TEMPUNPOW

CONTINUE

AVPOWER (I) =SUMPOWER/NN (I)

AVHTFLX (1) =SUMHTFLX/NN (I)

AVIT (I)=SUMIT/NN(I)

AVEP (I)=SUMEP/NN (I)

AVUNPOW (I ) =SUMUNPOW/NN (I)

SDPOWER (1) =SQRT ( (SUMSQPOWER-NN (I) *AVPOWER (I) *AVPOWER(I) )/
(NN(I)-1))

SDHTFLX (I)=SQRT ( (SUMSQHTFLX~-NN (I)*AVHTFLX (I) *AVHTFLX(I))/
(NN(I)-1))

SDIT (I)=SQRT ((SUMSQIT~-NN(I)*AVIT(I)*AVIT(I))/(NN(I)-1))

SDEP (I)=SQRT ( (SUMSQEP~NN (I)*AVEP (1) *AVEP(I))/ (NN(I)-1))

SDUNPOW (I) =SQRT ( (SUMSQUNPOW-NN (I) *AVUNPOW (I) *AVUNPOW (I) )/
(NN(I)=-1))

CONTINUE



at

PR

A J L d

3000

3010

3020
110
C

+
+
“+

+

WRITE (4, 3000)
FORMAT{'1"')
WRITE (4, 3010)
FORMAT (1X, 'AV POWER SD POWER AV HT FLX  SD HT FLX',
! AV MES POW UNR $D MES PCOW UN'/
J1X, ' (KW) (KW) (MBTU/HR-FT2) (MBTU/HR-FT2)',
v ! (%) (%)'/)
DO 110 I=1,N
WRITE (4, 3020) AVPOWER(I), SDPOWER(I),AVHTFLX (I), SDHTFLX (I),
AVUNPOW (I), SDUNPOW{I)
FORMAT (1X, 3 (F10.6,2X), 3(F10.6, 2X})
CONTINUE

WRITE (4, 3030)

3030 FORMAT (/5X,'AV I, TEMP SD I. TEMP AV E. PRES'

3040
120
c

C
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1 5D E. PRES'/
5%, ! (C) (C) (PSIA) !
' (PSIA) '/)
DO 120 I=1,4
WRITE (4, 3040) AVIT(I),SDIT(I),AVEP(I),SDEP(I)
FORMAT (5X, 4 (F10.4, 2X))
CONTINUE

Calculate Error in Inlet Temp Measurement

DO 40 I=1,N
DTINMES (I)=SQRT ((0.25*0.25)+0.00005*AVIT (I)*0.00Q005*AVIT(I) +
(0.02*0.,02))
DTINMES (I)=DTINMES(I)*5.0/9.0
SDIT (I)=SDIT(I)*5.0/9.0
DTINLET (I)=SQRT (SDIT (I)*SDIT(I)+DTINMES (I)*DTINMES(I))
CONTINUE

Calculate Error in Power

DO 50 I=1,N
DPOWERMESR (I)=AVUNPOW (I)+2,0*SDUNPOW (I)
DPOWERR (I)=SQRT (2, 0*SDPOWER (I) /AVPCWER (I) *
2.0*SDPOWER (1) /AVPOWER(I) +
DPOWERMESR (I) *DPOWERMESR (1))
CONTINUE

Calculation of Saturation Temp

CT1l = 0.37546530E+3
CT2 = 0.89679811E+2
CT3 = 0.11149468E+2
CT4 = 0.99075812E+0
CTS5 = 0.52882025E-1
CT6 = 0.12471856E-2
PC = 22.064

Do 70 I=1,N

PR = (AVEP(I)/(14.5*10.0))/PC

Y = ALOG (PR)

TSAT(I) = CT1+CT2*Y+CT3*Y**2+CT4*Y**34+CTS*Y**4+CTE*Y**5
CONTINUE
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Calculate Subcooling

DO 87 I=1,N
TOUT (I)=(TOUT(I)-32.0)/1.8
TSUB(I)=TSAT (I)-TOUT(I)
CONTINUE

Calculation of Uncertainties
Calculation of Uncertainty of Peclet Number
DO 90 I=1,N
DELPE (I) = PE(I)*SORT (DELCPR*DELCPR+ (DELD/D)* (DELD/D) +
(DELQMESR) * (DELQMESR) +DELKR*DELKR+DELRHOR*DELRHOR)
CONTINUE
Calculatibn of Uncertainty of Stant »n Number

DO 100 I=1,N
Al = (DELCPR*DELCPR+DELQMESR*DELQMESR+DPOWERR (I) *DPOWERR (I) +

DELRHOR*DELRHOR)
A2 = (DELD/D)* (DELD/D)+ (DELL/L) * (DELL/L)
A = Al+A2
B = (DELTOUT*DELTOUT+DELTSAT*DELTSAT) /

( (TSAT (I)-TOUT (I))* (TSAT(I)~TOUT (I)))
DELST (I) = ST(I)*SQRT (A+B)
CONTINUE

Write the Output
WRITE (4, 2010)

FORMAT (//10X, ' Output of Uncertainty Calculation ')
WRITE (4,2012) L

FORMAT (/5X, 'Heated Length (inch) = ',F6.2)
WRITE (4,2014) DELL
FORMAT (5X, 'Uncertainty in Heated Length (inch) = ',F8.5)

WRITE (4,2016) D

FORMAT (5X, 'Inside DLiameter of Heater Tube (inch) = ',6F8.5)
WRITE (4, 2018) DELD
FORMAT (5X, 'Uncertainty in Inside Diameter (inch) = ',F8.5)
TEMP=DELQMZ3R*100.0
WRITE (4,2020) TEMP
FORMAT (5X, 'Uncertainty in Measured Flow Rate (%) = ',F6.3)

TEMP=DELRHOR*100.0

WRITE (4, 2040) TEMP

FORMAT (85X, 'Uncertainty in Density (%) = ',F6.3)
TEMP=DELCPR*100.0

WRITE (4,2060) TEMP

FORMAT (5X, 'Uncertainty in Specific Heat (%) = ',F6.3)
TEMP=DELKR*100.0

WRITE (4,2080) TEMP

FORMAT (5X, 'Uncertainty in Thermal Conductivity (%) = ',F6.3)
WRITE (4,2100) DELTOUT

FORMAT (5X, 'Uncertainty in Exit Temperature (C) = ',F6.3)

WRITE (4,2110) DELTSAT

FORMAT (5X, 'Uncertainty in Saturation Temperature (C) = ',F6.3)

WRITE (4, 3050)
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3050

3060
130

4000
4010

4020

4030
210

5010
5020

5030
305
C

c
991

993
995

C
999

FORMAT (/5X, 'SAT TEMP EXIT TEMP SUB COOL'/

+ 5%,'  (C) (C) (c)'/)

DO 130 I=1,N
WRITE (4, 3060) TSAT(I),TOUT(I),TSUB(I)

FORMAT (5X, 3(F10.4, 2X))
CONTINUE
WRITE (4, 4000)
FORMAT ('1"')
WRITE (4, 4010)
FORMAT (//10X, 'Uncertainty in PECLET numbers')
WRITE (4, 4020)
FORMAT (/3X, 'FLOW RATE (GPM) PECLET NUMBER DEL PECLET NUMBER'
+ ' UNCER PE (%)'/)
po 210 I1=1,N
TEMP=DELPE (I)*100.0/PE(I)
WRITE (4,4030) QMES(I),PE(I),DELPE(I), TEMP
FORMAT (6X,F5.2,10X,2(F8.0,10X),F5.2)
CONTINUE

+

WRITE (4, 5010)
FORMAT (/ /10X, 'Uncertainty in STANTON numbers’)
WRITE (4, 5020)
FORMAT (/3X, 'FLOW RATE (GPM) STANTON NUMBER DEL STANTON NUMBER'
'  ST-DELST UNCER 8T (%)'/)
DO 305 I=1,N
TEMP=ST (I)-DELST (I)
TEMP1=DELST (I)*100.0/ST(I)
WRITE {4, 5030) QMES(I),ST(I),DELST(I), TEMP, TEMP1
FORMAT (6X,F5.2,9%,3(F10.8,7X),F5.2)
CONTINUE

GOTO 999

PRINT *, ' ERROR TO OPEN OFI INPUT FILE '

GOTO 999

PRINT *, ' ERROR TO CPEN TEST CONDITIONS FILE '
GOTO 998

PRINT *, ' ERROR TO OPEN OUTPUT FILE '

GOTO 999

CONTINUE
CLOSE (2)
CLOSE (3)
CLOSE (4)

STOP
END
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