

WSRC-RP--89-870

DE92 016495

**NRTSC**

NUCLEAR REACTOR TECHNOLOGY  
AND SCIENTIFIC COMPUTATIONS

KEYWORDS: LOCA  
FLOWTRAN  
FLOW INSTABILITY  
BENCHMARK  
OSV  
RETENTION: PERMANENT

**FLOWTRAN BENCHMARKING WITH ONSET OF FLOW INSTABILITY  
DATA FROM 1988 COLUMBIA UNIVERSITY SINGLE-TUBE OFI  
EXPERIMENT**

by

K. CHEN  
P. K. PAUL  
K. L. BARBOUR

ISSUED: JUNE, 1990

*J. P. Faraci*

*6/20/90*

---

J. P. Faraci, Authorized Derivative Classifier

Date

**SRL**

SAVANNAH RIVER LABORATORY, AIKEN, SC 29808  
Westinghouse Savannah River Company  
Prepared for the U. S. Department of Energy under  
Contract DE-AC09-84SR18035

**MASTER**

*9*  
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

PROJECT: LOCA LIMITS

DOCUMENT: WSRC-RP-89-870

TITLE: FLOWTRAN BENCHMARKING WITH ONSET OF FLOW INSTABILITY

DATA FROM 1988 COLUMBIA UNIVERSITY SINGLE-TUBE OFI EXPERIMENT

QA TASK NUMBER: 88-049-0

REVISION NUMBER: 0

APPROVALS

|                                                                       |                 |
|-----------------------------------------------------------------------|-----------------|
| <u>James E Laurinat</u><br>J. E. LAURINAT, TECHNICAL REVIEWER         | 6-27-90<br>DATE |
| <u>N H Kuehn</u><br>N. H. KUEHN, TECHNICAL ADVISOR                    | 6-27-90<br>DATE |
| <u>J D Menra</u><br>J. D. MENNA, RESEARCH SUPERVISOR                  | 6-27-90<br>DATE |
| <u>A J Garrett</u><br>A. J. GARRETT, TECHNICAL MANAGER                | 6/27/90<br>DATE |
| <u>A J Garrett for K L Huffman</u><br>K. L. HUFFMAN, RESEARCH MANAGER | 6/27/90<br>DATE |

## ACKNOWLEDGEMENTS

The authors wish to acknowledge C. F. Fighetti, E. V. McAsey Jr., T. Dougherty, B. Yang and G. Reddy at the Columbia University Heat Transfer Research Facility for design, construction and execution of the onset of flow instability test program and the timely responses to the needs of Savannah River Site. Special thanks are extended to Z. H. Qureshi at Savannah River Laboratory for the technical coordination of the test program, and L. W. Patrick and R. B. Pagett for contract administration. The authors thank F. G. Smith for his assistance in using the FLOWTRAN code.

## TABLE OF CONTENTS

|                                                                        |            |
|------------------------------------------------------------------------|------------|
| SUMMARY.....                                                           | 1          |
| 1. INTRODUCTION.....                                                   | 1          |
| 2. TEST FACILITY.....                                                  | 3          |
| 2.1 TEST LOOP.....                                                     | 3          |
| 2.2 TEST SECTION.....                                                  | 3          |
| 2.3 INSTRUMENTATION.....                                               | 6          |
| 2.4 TEST PROCEDURE.....                                                | 6          |
| 2.5 DATA REDUCTION.....                                                | 7          |
| 3. TEST MATRIX.....                                                    | 7          |
| 4. DATA ANALYSIS.....                                                  | 8          |
| 4.1 MEASURED PRESSURE DROP.....                                        | 9          |
| 4.2 MODELING FLOWTRAN PRESSURE DROP.....                               | 9          |
| 4.2.1 SURFACE WALL ROUGHNESS.....                                      | 11         |
| 4.2.2 HEATED WALL EFFECT.....                                          | 12         |
| 4.3 CALCULATED AND MEASURED PRESSURE DROPS.....                        | 17         |
| 4.4 OSV CRITERION.....                                                 | 19         |
| 4.5 MEASURED OFI CONDITIONS DETERMINATION.....                         | 20         |
| 4.6 MEASURED OFI FLOW DETERMINATION.....                               | 20         |
| 4.7 PECLET AND STANTON NUMBER CALCULATION.....                         | 21         |
| 4.8 FLOWTRAN OSV FLOW CALCULATIONS. ....                               | 25         |
| 4.9 UNCERTAINTY ANALYSIS.....                                          | 25         |
| 5. CONCLUSIONS.....                                                    | 31         |
| REFERENCES.....                                                        | 32-33      |
| APPENDIXES                                                             |            |
| APPENDIX A - PRESSURE DROP COMPARISON GRAPHS.....                      | A-1 - A-53 |
| APPENDIX B - INDIVIDUAL TEST POINT CONDITIONS.....                     | B-1 - B-22 |
| APPENDIX C - SAMPLE PRESSURE DROP COMPARISONS<br>USING VOID MODEL..... | C-1 - C-6  |
| APPENDIX D - SAMPLE FLOWTRAN INPUT.....                                | D-1 - D-5  |
| APPENDIX E - COMPUTER PROGRAMS SOURCE LISTINGS                         | E-1 - E-15 |

## TABLES

|                                                              |       |
|--------------------------------------------------------------|-------|
| 1. SINGLE TUBE GEOMETRY.....                                 | 6     |
| 2. TEST MATRIX.....                                          | 8     |
| 3. MEASUREMENT DEVIATION LIMITS.....                         | 8     |
| 4. WALL SURFACE ROUGHNESS.....                               | 12    |
| 5. MEASURED OFI CONDITIONS.....                              | 15-16 |
| 6. MEASUREMENT UNCERTAINTIES.....                            | 27    |
| 7. TEST SECTION GEOMETRY AND WATER PROPERTY UNCERTAINTIES... | 28    |

## FIGURES

|                                                             |    |
|-------------------------------------------------------------|----|
| 1. TEST LOOP SCHEMATIC.....                                 | 4  |
| 2. TEST SECTION INSTRUMENTATION.....                        | 5  |
| 3. PRESSURE DROP MEASUREMENT.....                           | 10 |
| 4. UNHEATED PRESSURE DROP COMPARISON.....                   | 13 |
| 5. HEATED PRESSURE DROP COMPARISON.....                     | 18 |
| 6. MEASURED OFI OUTLET TEMPERATURE DETERMINATION.....       | 22 |
| 7. TEST DATA STANTON VERSUS PECLET NUMBERS AT OFI.....      | 23 |
| 8. STANTON NUMBER AT OFI VERSUS L/D.....                    | 24 |
| 9. ACCUMULATED DATA STANTON VERSUS PECLET NUMBERS AT OFI... | 26 |

## SUMMARY

Benchmarking FLOWTRAN, Version 16.2, with an Onset of Significant Voiding (OSV) criterion against measured Onset of Flow Instability (OFI) data from the 1988-89 Columbia University downflow tests has shown that FLOWTRAN with OSV is a conservative OFI predictor. Calculated limiting flow rates based on the SRS OSV criterion were always higher than the measured flow rates at OFI. This work supplements recent FLOWTRAN benchmarking against 1963 downflow tests at Columbia University and 1988 downflow tests at the SRL Heat Transfer Laboratory. These studies provide confidence that using FLOWTRAN with an OSV based criterion for SRS reactor limits analyses will generate operating limits that are conservative with respect to OFI, the criterion selected to prevent fuel damage.

The OSV based limit criterion used for benchmarking against the 1988-89 Columbia data and in SRS limits analyses is a constant Stanton number 0.00455 for all Peclet numbers. This SRS working criterion was derived from the Saha-Zuber correlation. The Stanton number value is a conservative bound on the Saha-Zuber correlation for Peclet numbers greater than 70,000.

In analyzing the 1988-89 Columbia data, FLOWTRAN was used to model the fluid flow pressure drop versus the flow rate for a range of tube diameters and heat fluxes. FLOWTRAN's calculated pressure drops were in good agreement with the measured pressure drops for single-phase flow. Because FLOWTRAN is a single-phase code, it cannot calculate two-phase pressure drop below the OSV flow rate.

## 1. INTRODUCTION

Reactor power and flow transient mathematical modeling is necessary to determine maximum safe operating limits for SRS reactors. These limits ensure that if a postulated accident were to occur, the reactor would shut down safely without damage to the fuel assemblies. The FLOWTRAN computer code, Version 16.2, [1] models an individual assembly's thermal-hydraulic behavior and can determine the operating power limits for transients in which the assemblies are filled with liquid water coolant. Operating limits are set to prevent Onset of Flow Instability (OFI) in every core assembly for the most restrictive flow or reactivity induced accident. OFI is currently prevented by setting the limit based on a calculated Onset

of Significant Void (OSV) criterion which is a precursor to OFI. FLOWTRAN uses the SRS Working Criterion with a constant Stanton number 0.00455 for all Peclet numbers [1,2,3] to determine a conservative OFI operating limit.

The SRS FLOWTRAN Flow Instability benchmark program objective is to demonstrate that FLOWTRAN with the SRS OSV Working Criterion ( $St=0.00455$ ) is a conservative OFI predictor. Previously, FLOWTRAN's validity in SRS reactor application was demonstrated by benchmarking FLOWTRAN with experimental results [4,5]. Reference 4 presents FLOWTRAN benchmarking with 1963 Columbia University FI test data for multiple channel tests with typical full power operating flows and heat fluxes. This test rig also had a mockup of a bottom endfitting. FLOWTRAN calculated the flow and energy splits among the channels as well as pressure and temperature distributions. FLOWTRAN also conservatively calculated the onset of flow instability through use of the SRS OSV criterion. The tests in Reference 5 were conducted at the Savannah River Heat Transfer Laboratory and focused on downflow for low Peclet numbers (30,000 - 80,000). The FLOWTRAN SRS OSV Working Criterion conservatively calculated OFI for these conditions.

During 1988 and 1989 significant OFI test results were obtained by the Columbia University Heat Transfer Research Facility in an ongoing test program. These OFI test data covered a wide range of parameters: Peclet number (160,000 - 800,000), Heat Flux (0.0 - 1.0 MBtu/hr-ft<sup>2</sup>), and L/D ratio (128 - 267). The range of Peclet numbers for SRS fuel assembly flow channels for normal and simulated accident conditions is 200,000 to 800,000. The heat fluxes at the surface of the fuel assembly at the proposed restart power level (~1200 MW) are below 0.5 MBtu/hr-ft<sup>2</sup>. The L/D ratios for the SRS fuel assembly flow channels are 300-485 and are higher than those for the test rigs. Stanton numbers at OFI increase with L/D for both the 1988-89 and the earlier 1963 Columbia University tests.

This report benchmarks FLOWTRAN with these new OFI results and provides further confidence that FLOWTRAN with an OSV based limit criterion will calculate conservative SRS reactor power limits with respect to OFI.

## 2. TEST FACILITY

A brief discussion of the Columbia University single-tube OFI tests follows. The detailed description of these tests is given in the Columbia University test reports [6,7].

### 2.1 TEST LOOP

Figure 1 presents the test loop schematic. The following components comprise the test loop:

- A 100 gallon hot water heater to supply deionized water to the pump;
- A recirculating pump capable of supplying 260 gpm to the test section;
- A single tube test section;
- Two heat exchangers to remove energy from the water before it returns to the 100 gallon water tank;
- A bypass loop to direct excess flow from the test section.

### 2.2 TEST SECTION

The test section is 10.5 feet long (Figure 2). The heated test section is an 8 foot length of tubing. Upstream and downstream of the heated section is a 1.5 foot copper section which serves as a connector to the power system. The power input to the test section is a DC electric generator which supplies up to 240 volts and approximately 6000 amps or 1.5 MW to the test section. This energy source can generate a 1.0 MBtu/hr-ft<sup>2</sup> surface heat flux in the various diameter test sections selected for this program. Table 1 presents the single tube geometry.

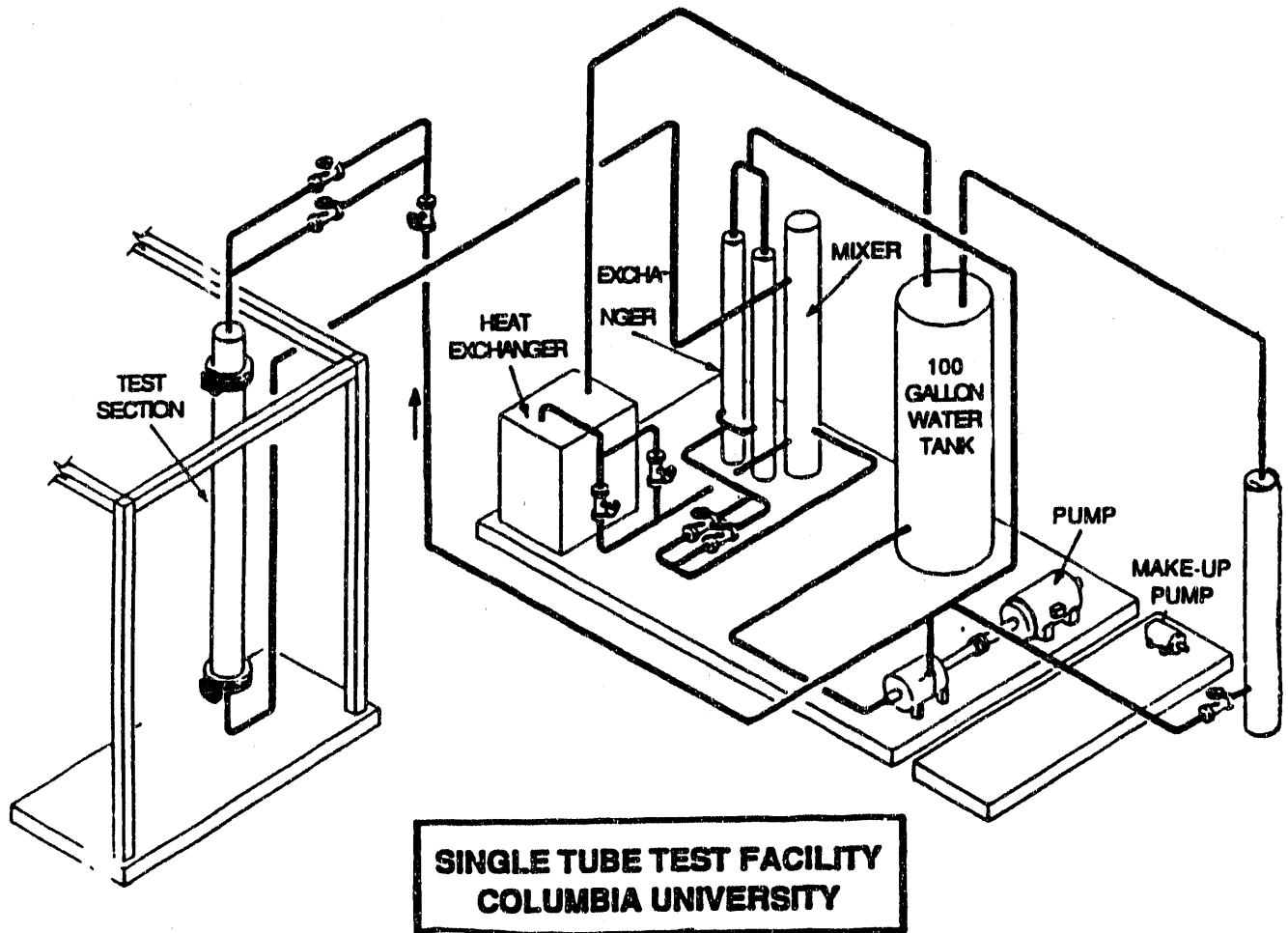



FIGURE 1. TEST LOOP SCHEMATIC

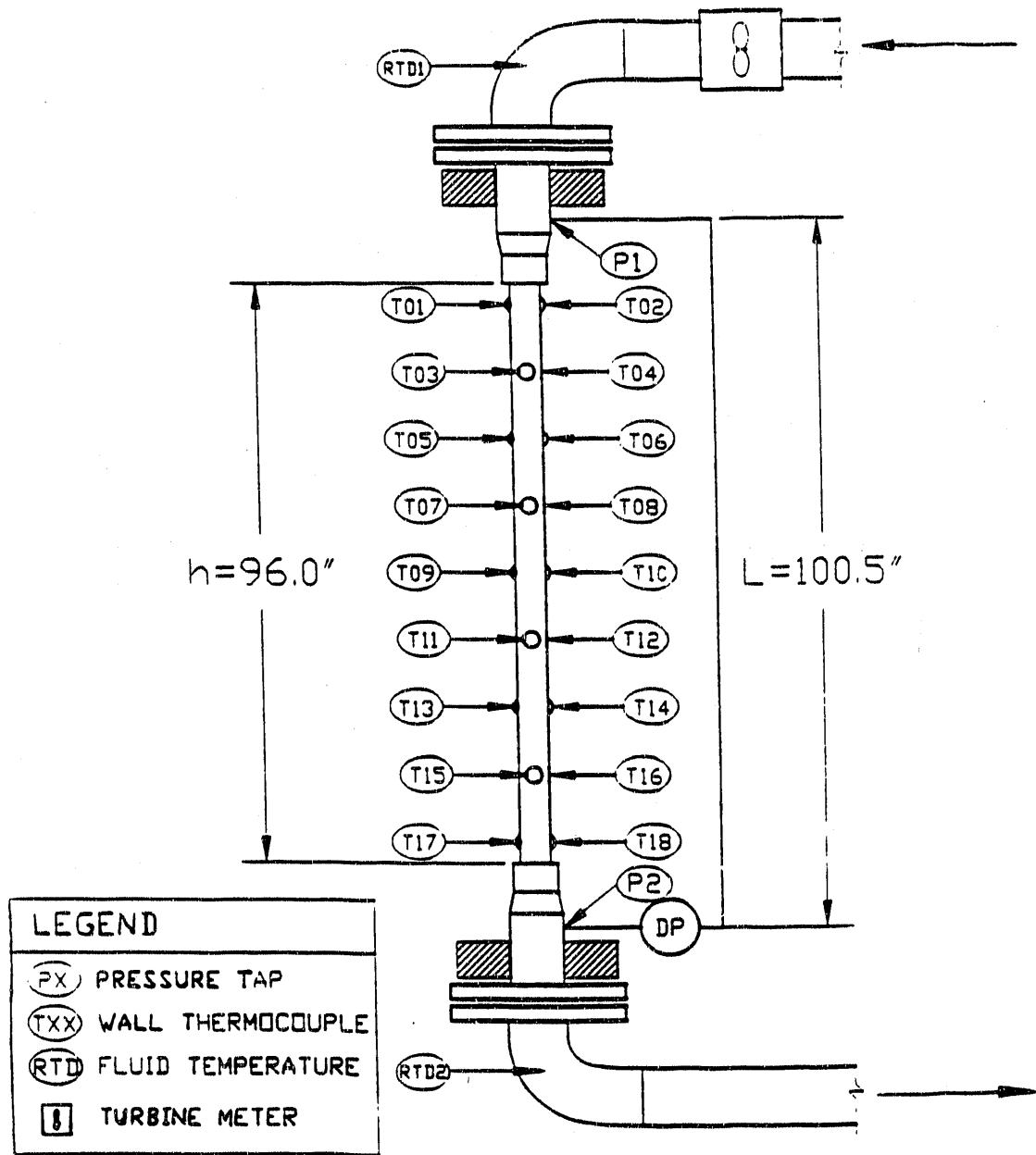



FIGURE 2. TEST SECTION INSTRUMENTATION

Table 1  
SINGLE TUBE GEOMETRY

| Test | Test Section | Material    | OD (in) | ID (in) | Heated Length (in) |
|------|--------------|-------------|---------|---------|--------------------|
| 2.1  | 4.745-002S   | 304 type SS | 0.8759  | 0.7516  | 9 6                |
| 4    | 4.620-001I   | Inconel 600 | 0.7482  | 0.6125  | 9 6                |
| 7    | 4.620-001I   | 304 type SS | 0.7485  | 0.6000  | 9 6                |
| 9    | 4.370-003I   | Inconel 600 | 0.4970  | 0.3590  | 9 6                |

### 2.3 INSTRUMENTATION

The test instruments are presented in Figure 2. The loop instrumentation is used primarily to operate the loop and establish the test section conditions. The test section instrumentation provides the required test data, namely pressure drop and tube wall temperature. Figure 2 shows the test section thermocouple, pressure tap, and flowmeter locations.

Prior to installation in the test section each instrument was calibrated. Those instruments which provide data necessary for test analysis were calibrated to NIST (National Institute of Standards and Technology) standards. Instruments which were included as backups to primary instruments (e.g. the orifice plate) or were required for loop operation were calibrated but are not traceable to NIST standards.

### 2.4 TEST PROCEDURE

The test procedure is summarized here. The detailed test procedure description is given in Reference 6.

1. The test engineer conducts instrumentation performance reliability checks and a heat balance check.
2. The test engineer establishes the test loop conditions, i.e. test section power, inlet temperature, exit pressure, and initial flow rate.
3. The measured parameters, including the loop operating and test section conditions, are recorded in the HP-1000 computer when

the loop control parameters are within the deviation limits (Table 3) and the loop is at steady state.

4. The test engineer plots the measured pressure drop versus flow rate on graph paper.

5. The test engineer reduces the inlet flow and repeats Step 4 until the pressure drop increases.

6. The test engineer increases the test section flow rate and repeats Step 4 until the test section is in single-phase liquid flow.

7. The test engineer may rerun the checkpoint condition to ensure the test section integrity. The checkpoint conditions are 64.7 psia exit pressure, 77 F inlet temperature, and 600,000 Btu/hr-ft<sup>2</sup> heat flux.

## 2.5 DATA REDUCTION

The HP-1000 computer records data at 400 channels per second. During the test the loop parameters are presented on several panels, and the test section data are displayed on a CRT. The data acquisition system records data both in input voltage (raw data) and engineering units. The engineering units are calculated from calibration data for each instrument. Both raw voltage data and engineering unit data are saved.

## 3. TEST MATRIX

The test matrix parameters (Table 2) were designed to cover SRS reactor normal operating and hypothetical accident conditions, which can range from 68 - 113 F inlet temperature and 200,000 - 800,000 Pecllet number. A demand curve is the frictional pressure drop across a heated flow channel plotted versus the flow rate and is obtained by fixing the heat flux, inlet temperature and exit pressure, and then varying the inlet flow rate. The onset of flow instability is determined from the demand curve where the pressure drop is a minimum with respect to the flow rate. The test parameters were controlled within a narrow band (Table 3) to define the demand curve accurately.

Table 2

## TEST MATRIX

| HEAT FLUX<br>BTU/HR-FT <sup>2</sup> | EXIT PRESSURE<br>PSIA | INLET TEMPERATURE<br>F |
|-------------------------------------|-----------------------|------------------------|
| 0                                   | 34.7                  | 64.7                   |
| 400,000                             | 34.7                  | 64.7                   |
| 600,000                             | 34.7                  | 64.7                   |
| 800,000                             | 34.7                  | 64.7                   |
| 1,000,000                           | 34.7                  | 64.7                   |

Table 3

MEASUREMENT DEVIATION LIMITS  
DURING PRESSURE DROP MEASUREMENT

| PARAMETERS        | DEVIATION LIMIT |
|-------------------|-----------------|
| Heat Flux         | 1%              |
| Exit Pressure     | 1 psia          |
| Inlet Temperature | 1 F             |

## 4. DATA ANALYSIS

Data analysis covers the measured pressure drop, FLOWTRAN pressure drop calculations, measured OFI flow rate, and FLOWTRAN OSV flow rate calculations. The analysis has two major parts. The first part establishes that the FLOWTRAN code effectively models thermal-hydraulic flow through the heated tubes. This is achieved by determining two modeling parameters, the surface wall absolute roughness and the heated wall correction correlation exponent. A FLOWTRAN model for the test rig uses these input parameters to calculate pressure drops for comparison with the experimentally measured demand curve for single-phase flow. The second part uses a FLOWTRAN model with SRS Working Criterion ( $St=0.00455$ ) to calculate an OSV point for comparison with the measured OFI point for a given heat flux, inlet temperature, and exit pressure. An

uncertainty analysis is also presented to quantify and establish FLOWTRAN with OSV as a conservative OFI predictor.

FLOWTRAN models the test section between the two pressure tap locations (Figure 3) using 58 total nodes in three sections (Appendix D, Figure D-1). Appendix D presents a sample FLOWTRAN input file.

#### 4.1 MEASURED PRESSURE DROP

Figure 3 diagrams the pressure drop measurement between two pressure tap locations. The pressure drop calculation method is:

$$DP_m = P1' - P2' \quad (1)$$

$$P1' = P1 + \frac{\rho g L}{144 g_c} \quad (2)$$

$$P2 = P2' \quad (3)$$

$$DP_m = P1 + \frac{\rho g L}{144 g_c} - P2 \quad (4)$$

Equation 4 is used to calculate the measured pressure drop  $DP_m$ (psi) at test conditions.  $P1$  and  $P2$  are the static pressures shown in Figure 3 and are calculated in psia by FLOWTRAN. The water density in the pressure transducer line is  $\rho$  and is set at 62.248 lbm/ft<sup>3</sup> for an assumed 77 F test room temperature. The room temperature uncertainty is taken as  $\pm 10$  F.  $L$  is the pressure tap separation in feet, and  $g/(144g_c)$  is the gravitational conversion factor to psi.

#### 4.2 MODELING FLOWTRAN PRESSURE DROP

FLOWTRAN uses the traditional hydraulic fluid friction factor and velocity power law relationship [1] to calculate single-phase pressure drop. Because the velocity is directly derived from the measured flow rate, benchmarking FLOWTRAN's pressure drop calculations is primarily validating the friction factor determination. FLOWTRAN uses the Moody equation [9] to calculate the friction factor [8]. The Moody equation, like other well-established friction factor equations

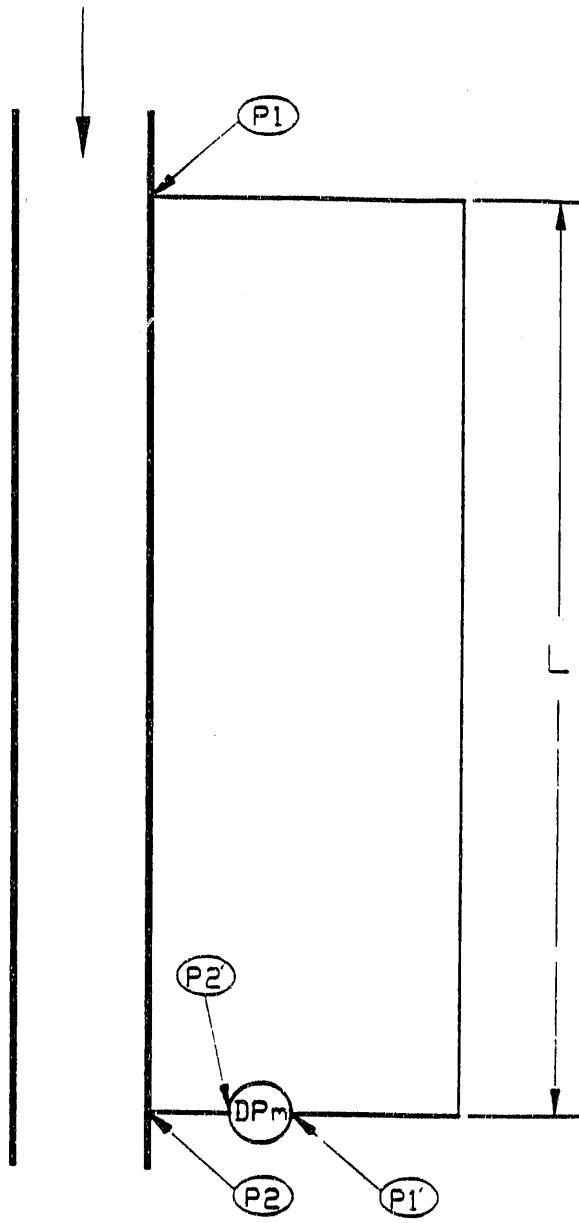



FIGURE 3. PRESSURE DROP MEASUREMENT

[10], is a function of the absolute wall roughness, the tube inner diameter, and the Reynolds number (Re). Other well-established equations [10] tend to calculate values about 3% high for high flow rates ( $Re > 1,000,000$ ), be slightly low for low flow rates ( $Re < 100,000$ ), and be in very good agreement for medium flow rates. The Moody equation can be expected to follow this pattern [1]. Based upon this behavior, criteria were established for benchmarking FLOWTRAN calculations versus measured data for unheated and heated tests.

Criteria for the unheated runs in order of importance are:

1. good agreement for medium flows ( $100,000 < Re < 1,000,000$ ),
2. agreement within 3% for high flows ( $Re > 1,000,000$ ),
3. calculations slightly lower for low flows ( $Re < 100,000$ ).

Criteria for the heated runs in order of importance are:

1. good agreement for medium flows ( $100,000 < Re < 1,000,000$ ),
2. agreement within 6% for high flows ( $Re > 1,000,000$ ),
3. calculations slightly lower for low flows ( $Re < 100,000$ ).

A 3% error band is expected for high flow rates from the friction factor equation. An additional 3% was allowed for calculating FLOWTRAN high flow pressure drops, making an adjusted 6% total error band for Criterion 2. This additional band accounts for the heated wall effect correlation being an approximate correction.

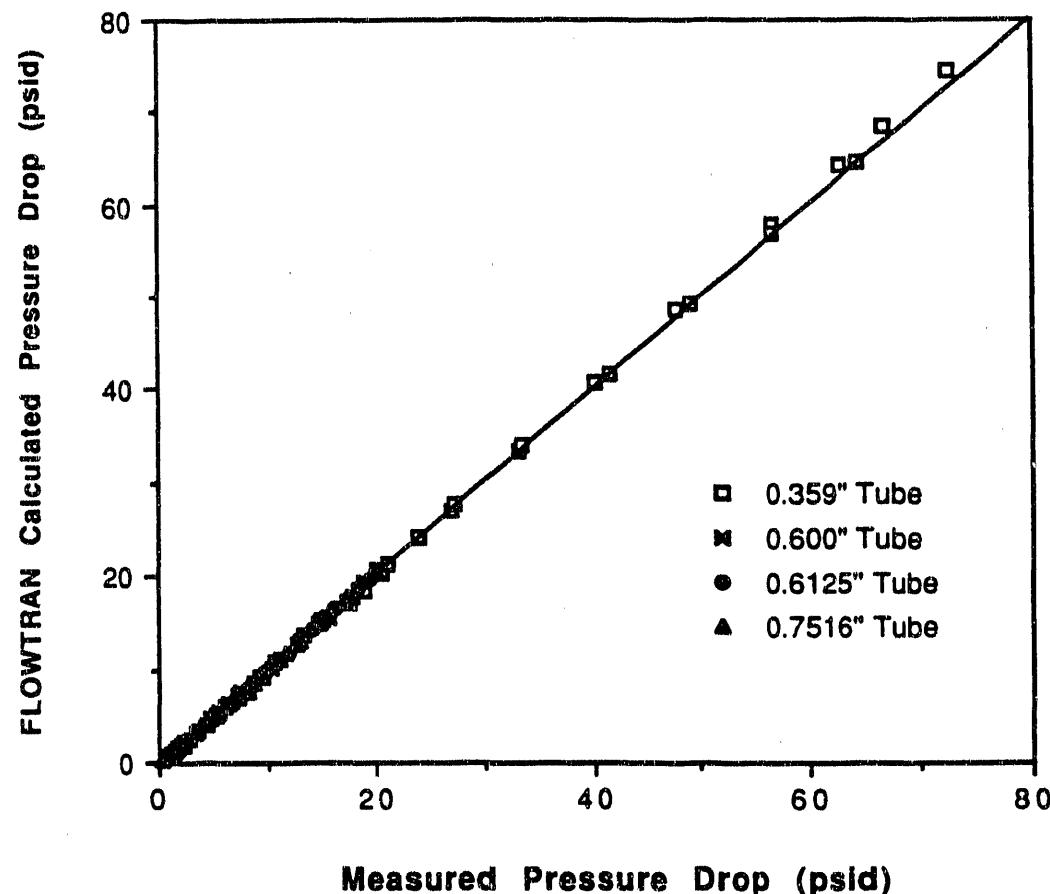
The wall surface roughness and the heated wall correction exponent are input parameters to FLOWTRAN that directly impact the friction factor calculation. The following subsections discuss establishing these parameters for the tubes used by Columbia University.

#### **4.2.1 SURFACE WALL ROUGHNESS**

The standard wall surface roughness for a pipe or tube can be obtained within a certain range from hydraulic handbook charts. A more precise value can be determined through direct measurement or calculation from the experimentally determined fluid flow friction factor obtained from unheated test data (no heated wall effect). The unheated pressure drop data were analyzed for each tube to determine the tube wall friction factor for each datum point. The surface roughness was calculated for each friction factor determined from experimental data, using the Moody friction factor formula

contained within FLOWTRAN. All values agreed with the handbook value range [11]. The roughnesses for the unheated test runs were also calculated using other established friction factor equations [10] and fell within the same range as the Moody roughnesses.

For each individual tube a surface roughness range was selected from its calculated values. Different values within this range were tried in the Moody equation to find an agreement between calculated and measured friction factors that satisfied the criteria for unheated runs. The final roughness value was verified when the FLOWTRAN calculations agreed with the unheated measured pressure drops per the unheated run criteria. Figure 4 compares the calculated FLOWTRAN pressure drops with the measured pressure drops for all the unheated test runs. Agreement is good for the entire data range for all tubes. The FLOWTRAN calculations for all tubes met all three criteria. This established that the FLOWTRAN pressure drop calculations matched the experimental isothermal hydraulic baseline. Table 4 lists each individual tube's wall surface roughness used to calculate the pressure drops in Figure 4. The FLOWTRAN, or Moody, equation produced better agreement with the measured data friction factors than did the other friction factor equations. All heated test run FLOWTRAN calculations used the roughness factors in Table 4.


Table 4  
WALL SURFACE ROUGHNESS  
USED IN FLOWTRAN CALCULATION

| Test # | Test Section # | Wall Roughness (in)  |
|--------|----------------|----------------------|
| 2.1    | 4.745-002S     | $6.0 \times 10^{-5}$ |
| 4      | 4.620-001I     | $2.5 \times 10^{-5}$ |
| 7      | 4.620-001S     | $4.5 \times 10^{-5}$ |
| 9      | 4.370-003I     | $1.2 \times 10^{-4}$ |

#### 4.2.2 HEATED WALL EFFECT

FLOWTRAN uses the following correlation to account for the friction factor change due to the heated wall effect

**MEASURED AND FLOWTRAN CALCULATED PRESSURE DROP**  
**INC TUBE ID=0.359" & 0.6125" ; SS TUBE ID=0.600" & 0.7516"**  
**UNIFORM FLUX=0.0 MBTU/HR-FT2**



**FIGURE 4. UNHEATED PRESSURE DROP COMPARISON**

$$\frac{f}{f_b} = 1 + \frac{P_h}{P_w} \left[ \left( \frac{\mu_w}{\mu_b} \right)^n - 1 \right] \quad (5)$$

where

$f_b$  = friction factor evaluated at the bulk fluid temperature

$P_h$  = heated perimeter

$P_w$  = wetted perimeter

$\mu_w$  = dynamic viscosity evaluated at the wall temperature

$\mu_b$  = bulk fluid dynamic viscosity

$n$  = an input that varies with diameter.

Exponent values between 0.14 and 0.35 were tried to optimize the agreement between calculated and measured pressure drop. It was found that the optimum "n" value increases as the diameter increases. Shown below are the optimum "n" values for the tubes and maximum difference between calculated and measured pressure drops for high flow rates:

|            |       |       |        |        |
|------------|-------|-------|--------|--------|
| ID(in)     | 0.359 | 0.600 | 0.6125 | 0.7516 |
| n          | 0.12  | 0.20  | 0.21   | 0.22   |
| Max. Diff. | 5%    | 5%    | 5%     | 5%     |

The optimum values produced excellent agreement for low to medium flow rates (1.5 to 2 times the OFI flow) and agreement within 5% for high flow rates for all heat fluxes. Criteria 1 and 2 were met for all heat fluxes. Criterion 3 was not applicable above 0.4 MBtu/hr-ft<sup>2</sup> because the Reynolds number condition occurred below the OSV flow rates. While all three criteria are important in matching isothermal data, only Criteria 1 and 2 are important for heated runs because the OSV flows occur in the low flow range. These exponents satisfied the criteria for heated runs and were used for pressure drop calculations in Appendix B and FLOWTRAN OSV flow rate calculations in Table 5.

The hydraulic diameters for the annular SRS fuel assembly channels range from 0.3" to 0.5". Therefore, the 0.36" and 0.60" ID single tubes are appropriate for modeling SRS reactor channels under the assumption that the thermal hydraulic behavior scales as the hydraulic diameter. Based on these "n" values determined

Table 5

| TEST RUN # | TEST POINTS | MEASURED OFI CONDITIONS |                      |                |              |               |                   | STANTON NUMBER | FLOWTRAN OSF FLOW    | RATIO 61-.00455 |              |                |                     |           |
|------------|-------------|-------------------------|----------------------|----------------|--------------|---------------|-------------------|----------------|----------------------|-----------------|--------------|----------------|---------------------|-----------|
|            |             | POWER KW                | HEAT FLUX MBtu/h-It2 | EXIT PRES PSIA | INLET TEMP F | OUTLET TEMP F | MEAS OFI FLOW GPM |                |                      |                 |              |                |                     |           |
| 9 - 01     | 1622-1-836  | 87.63                   | 0.400                | 34.769         | 76.898       | 237.857       | 3.56 ± 0.089      | 192765 ± 4897  | 0.007380 ± 0.000666  | 3.96 1.12       |              |                |                     |           |
| 9 - 02     | 1803-1-811  | 175.10                  | 0.799                | 34.859         | 76.757       | 241.591       | 7.25 ± 0.181      | 393709 ± 10003 | 0.008703 ± 0.000927  | 7.67 1.09       |              |                |                     |           |
| 9 - 03     | 1637-1-850  | 87.74                   | 0.400                | 34.768         | 121.979      | 245.972       | 4.75 ± 0.119      | 255323 ± 6487  | 0.009069 ± 0.001292  | 5.32 1.12       |              |                |                     |           |
| 9 - 04     | 1812-1-821  | 174.82                  | 0.798                | 34.665         | 121.810      | 245.000       | 9.80 ± 0.245      | 526765 ± 13383 | 0.008252 ± 0.001107  | 10.49 1.07      |              |                |                     |           |
| 9 - 05     | 1695-1-714  | 87.44                   | 0.399                | 64.774         | 76.877       | 272.341       | 2.95 ± 0.074      | 160896 ± 4088  | 0.007291 ± 0.000558  | 3.26 1.11       |              |                |                     |           |
| 9 - 06     | 1729-1-744  | 131.43                  | 0.600                | 64.811         | 76.830       | 272.433       | 4.50 ± 0.113      | 245442 ± 6236  | 0.007200 ± 0.000552  | 4.90 1.09       |              |                |                     |           |
| 9 - 07     | 1747-1-761  | 174.84                  | 0.798                | 64.766         | 76.702       | 277.137       | 5.90 ± 0.148      | 322223 ± 8186  | 0.008964 ± 0.000822; | 6.51 1.10       |              |                |                     |           |
| 9 - 07     | 1768-1-802  | 218.10                  | 0.995                | 64.873         | 76.678       | 276.810       | 7.40 ± 0.185      | 404108 ± 10267 | 0.008741 ± 0.000789  | 8.19 1.09       |              |                |                     |           |
| 9 - 08     | 1762-1-782  | 87.43                   | 0.399                | 64.694         | 121.819      | 278.772       | 3.70 ± 0.093      | 200081 ± 5083  | 0.007886 ± 0.000787  | 4.14 1.12       |              |                |                     |           |
| 9 - 09     | 1715-1-728  | 1745-1-746              | 1861-1-852           | 7 - 03         | 1521-1-540   | 146.54        | 0.400             | 64.692         | 121.500              | 282.700         | 7.45 ± 0.186 | 403397 ± 10249 | 0.009913 ± 0.001222 | 8.27 1.11 |
| 7 - 04     | 1574-1-590  | 292.34                  | 0.799                | 64.908         | 121.017      | 263.799       | 14.20 ± 0.355     | 457843 ± 12091 | 0.006390 ± 0.000391  | 15.33 1.06      |              |                |                     |           |
| 4 - 01     | 1020-1-037  | 149.49                  | 0.398                | 34.760         | 77.357       | 225.041       | 6.96 ± 0.174      | 221617 ± 5841  | 0.006845 ± 0.000415  | 7.35 1.06       |              |                |                     |           |
| 4 - 02     | 1038-1-053  | 224.53                  | 0.597                | 34.730         | 76.989       | 224.521       | 10.46 ± 0.262     | 333103 ± 8779  | 0.006748 ± 0.000399  | 11.40 1.09      |              |                |                     |           |
| 4 - 03     | 1054-1-068  | 298.16                  | 0.793                | 34.811         | 76.891       | 222.790       | 14.10 ± 0.353     | 449098 ± 11836 | 0.006306 ± 0.000359  | 15.12 1.07      |              |                |                     |           |
| 4 - 04     | 1069-1-084  | 373.52                  | 0.594                | 34.751         | 76.975       | 222.890       | 17.50 ± 0.438     | 557388 ± 14691 | 0.006403 ± 0.000365  | 18.94 1.08      |              |                |                     |           |
| 4 - 05     | 971-980     | 149.18                  | 0.397                | 34.841         | 121.072      | 232.910       | 9.25 ± 0.231      | 291440 ± 7681  | 0.006716 ± 0.000502  | 10.09 1.09      |              |                |                     |           |
| 4 - 06     | 991-1005    | 223.36                  | 0.594                | 34.765         | 121.058      | 232.165       | 13.95 ± 0.349     | 439537 ± 11584 | 0.006515 ± 0.000474  | 15.11 1.08      |              |                |                     |           |
| 4 - 07     | 1006-1-019  | 299.93                  | 0.798                | 34.792         | 120.939      | 231.401       | 18.80 ± 0.470     | 592387 ± 15613 | 0.006302 ± 0.000446  | 20.23 1.08      |              |                |                     |           |
| 4 - 08     | 1085-1-099  | 374.52                  | 0.996                | 34.851         | 121.173      | 231.610       | 23.50 ± 0.588     | 740433 ± 19515 | 0.006320 ± 0.000448  | 25.26 1.07      |              |                |                     |           |
| 4 - 09     | 954-971     | 148.88                  | 0.398                | 64.767         | 77.142       | 251.598       | 5.72 ± 0.143      | 182172 ± 4801  | 0.006058 ± 0.000296  | 6.22 1.09       |              |                |                     |           |
| 4 - 10     | 846-882     | 224.09                  | 0.598                | 64.723         | 76.913       | 255.117       | 8.60 ± 0.215      | 274015 ± 7222  | 0.006558 ± 0.000330  | 9.37 1.09       |              |                |                     |           |
| 4 - 11     | 890-906     | 299.64                  | 0.798                | 64.737         | 77.365       | 255.074       | 11.50 ± 0.288     | 366381 ± 9656  | 0.006555 ± 0.000331  | 12.56 1.09      |              |                |                     |           |
| 4 - 12     | 907-920     | 373.81                  | 0.994                | 64.783         | 77.333       | 252.235       | 14.60 ± 0.365     | 464992 ± 12255 | 0.006033 ± 0.000292  | 15.85 1.07      |              |                |                     |           |
| 4 - 13     | 936-953     | 148.22                  | 0.397                | 64.659         | 120.946      | 262.371       | 7.20 ± 0.180      | 227352 ± 5892  | 0.006351 ± 0.000377  | 7.88 1.09       |              |                |                     |           |
| 4 - 14     | 863-876     | 224.76                  | 0.598                | 64.706         | 121.100      | 263.059       | 10.87 ± 0.272     | 343268 ± 9047  | 0.006437 ± 0.000377  | 11.87 1.09      |              |                |                     |           |
| 4 - 15     | 877-889     | 299.07                  | 0.796                | 64.792         | 121.289      | 262.303       | 14.53 ± 0.363     | 458762 ± 12091 | 0.006272 ± 0.000363  | 15.80 1.09      |              |                |                     |           |
| 4 - 16     | 921-935     | 373.92                  | 0.595                | 64.794         | 120.776      | 263.070       | 18.00 ± 0.450     | 568478 ± 14983 | 0.006467 ± 0.000379  | 19.69 1.09      |              |                |                     |           |
| 2.1-01     | 775-789     | 363.90                  | 0.800                | 34.729         | 76.989       | 210.462       | 18.73 ± 0.468     | 487156 ± 12631 | 0.005331 ± 0.000248  | 19.56 1.04      |              |                |                     |           |
| 2.1-02     | 790-804     | 453.95                  | 0.998                | 34.826         | 76.816       | 211.162       | 23.29 ± 0.582     | 605572 ± 15701 | 0.005410 ± 0.000252  | 24.35 1.05      |              |                |                     |           |
| 2.1-03     | 729-745     | 181.80                  | 0.400                | 34.799         | 121.034      | 228.860       | 11.61 ± 0.290     | 298190 ± 7731  | 0.006950 ± 0.000462  | 13.03 1.12      |              |                |                     |           |

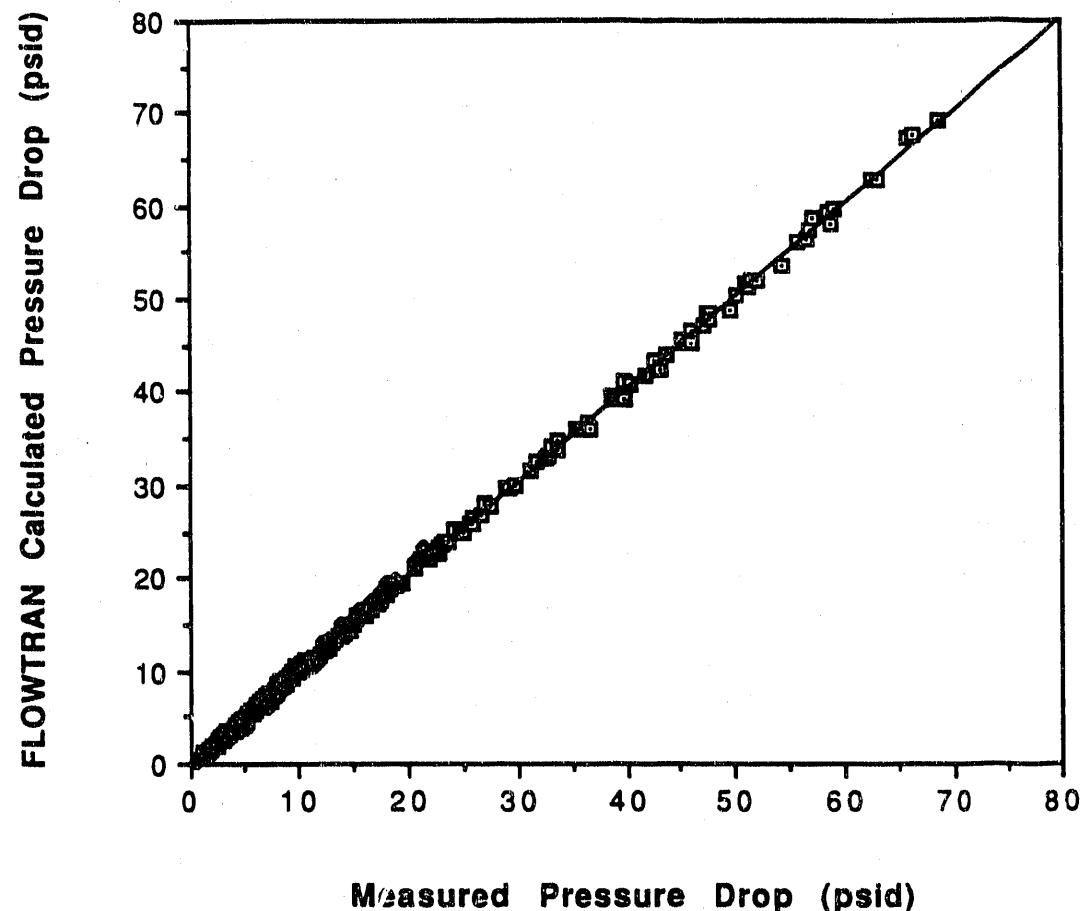
## MEASURED OFI CONDITIONS (CONTINUED)

| TEST RUN # | TEST POINTS          | POWER<br>kW | HEATFLUX<br>MBtu/h-ft <sup>2</sup> | EXT PRES<br>PSIA | INLET TEMP<br>F | OUTLET TEMP<br>F | MEAS OFI FLOW<br>GPM | PECLET NUMBER | STANTON NUMBER     | FLOWTRAN<br>OSV FLOW<br>SI=0.00455 | RATIO |
|------------|----------------------|-------------|------------------------------------|------------------|-----------------|------------------|----------------------|---------------|--------------------|------------------------------------|-------|
| 2.1-04     | 746-761              | 272.38      | 0.599                              | 34.733           | 121.116         | 224.037          | 19.27 ±0.457         | 469395 ±12170 | 0.005728 ±0.000337 | 19.53                              | 1.07  |
| 2.1-05     | 782-774              | 363.03      | 0.798                              | 34.872           | 121.065         | 223.000          | 24.68 ±0.617         | 634019 ±16439 | 0.005455 ±0.000312 | 25.98                              | 1.05  |
| 2.1-06     | 805-820              | 453.07      | 0.996                              | 34.797           | 121.131         | 223.000          | 31.25 ±0.781         | 803045 ±20821 | 0.005394 ±0.000306 | 32.42                              | 1.04  |
| 2.1-07     | 612-625              | 271.93      | 0.598                              | 64.888           | 77.030          | 246.990          | 11.12 ±0.278         | 288595 ±7483  | 0.006322 ±0.000285 | 12.05                              | 1.06  |
| 2.1-08     | 677-681              | 361.55      | 0.795                              | 64.692           | 76.980          | 246.460          | 14.85 ±0.371         | 385155 ±9986  | 0.006289 ±0.000278 | 16.02                              | 1.06  |
| 2.1-09     | 713-728              | 455.03      | 1.001                              | 64.723           | 76.769          | 242.662          | 16.71 ±0.468         | 485326 ±12583 | 0.005830 ±0.000248 | 20.13                              | 1.06  |
| 2.1-10     | 626-644              | 181.62      | 0.399                              | 64.721           | 121.038         | 256.130          | 9.22 ±0.231          | 237100 ±6148  | 0.006327 ±0.000327 | 10.14                              | 1.10  |
| 2.1-11     | 645-660              | 272.18      | 0.598                              | 64.793           | 120.976         | 256.520          | 13.90 ±0.347         | 357220 ±9262  | 0.006306 ±0.000327 | 15.21                              | 1.09  |
| 2.1-12     | 661-666              | 363.70      | 0.800                              | 64.708           | 120.980         | 256.090          | 16.52 ±0.463         | 476204 ±12347 | 0.006270 ±0.000324 | 20.33                              | 1.10  |
| 2.1-12     | 682-691 <sub>1</sub> |             |                                    |                  |                 |                  |                      |               |                    |                                    |       |
| 2.1-13     | 692-712              | 453.80      | 0.998                              | 64.732           | 120.930         | 253.920          | 23.59 ±0.580         | 606219 ±15718 | 0.005839 ±0.000286 | 25.34                              | 1.07  |

RATIO - This column is the quotient of FLOWTRAN calculated OSV flow rate at SI=0.00455 and measured OFI flow rate.

experimentally, "0.14" would be a reasonable exponent value for an SRS fuel assembly.

#### 4.3 CALCULATED AND MEASURED PRESSURE DROPS


The agreement between FLOWTRAN calculated and measured pressure drops depends upon the heat flux and tube diameter. FLOWTRAN, Version 16.2, is a single-phase code. Beyond the onset of nucleate boiling (ONB) there are two-phase effects due to the bubbles at the heated surfaces and in the bulk fluid. FLOWTRAN, Version 16.2, is applicable for a heated channel up to OSV if the additional resistance due to the bubbles is not a significant contributor to the total pressure drop. FLOWTRAN, Version 16.2, is benchmarked up to OSV conditions, since SRS limit calculations are based upon OSV criterion. Figure 5 shows FLOWTRAN calculated pressure drops versus measured pressure drops for all heated runs. Appendix A contains all the test run demand curves with corresponding FLOWTRAN pressure drops and OSV points. Appendix B lists test run data and the calculated and measured pressure drops.

For the smallest tube diameter, 0.359", the agreement is excellent for all flow rates above the OSV flow rate for all heat fluxes. For the larger tube diameters, 0.600", 0.6125", and 0.7516", the agreement is good for low to medium flow rates (1.5 to 2 times OFI flow rate). For these larger tubes the pressure drops across the channel around the OSV flow range are low (2 to 5 psi), and the agreement between measured and FLOWTRAN calculated pressure drops is not good for high heat flux cases (0.8 and 1.0 MBtu/hr-ft<sup>2</sup>). For flow rates higher than two times the OFI flow rate, the FLOWTRAN calculated pressure drops are higher than the measured values, but the difference is less than 5% for all heat fluxes.

Stanton and Peclet number calculations require the saturation temperature at the exit pressure. The exit pressure was kept constant during each experimental run. Since FLOWTRAN calculates absolute pressure from the bottom node to the top node, FLOWTRAN's exit pressure will always be the correct experimental pressure. Therefore, Stanton and Peclet number calculations are not affected by any pressure drop disagreement.

The difference between the FLOWTRAN calculated and measured pressure drops around OSV is attributed to two-phase effects due to

**MEASURED AND FLOWTRAN CALCULATED PRESSURE DROP  
INC TUBE ID=0.359" & 0.6125" ; SS TUBE ID=0.600' & 0.7516"**



**FIGURE 5. HEATED PRESSURE DROP COMPARISON**

bubbles along the heated surface and in the bulk fluid for points beyond ONB. The standard FLOWTRAN code, Version 16.2, does not model the acceleration pressure drop and the two-phase multiplier effect. To improve agreement between measurement and calculation, a modified FLOWTRAN code called UNCERT, Version 16-1A, [14,15] which includes models for these effects, was used to calculate selected cases as outlined in Appendix C.

The models in UNCERT had very little impact on the pressure drop calculations up to OSV for large tubes at high heat fluxes and thus did not give the anticipated improvement between measured and calculated pressure drops. The conclusion drawn from these comparisons is that the VOID model in UNCERT, which incorporates the acceleration pressure drop and the two-phase multiplier, needs to be improved. However, it is important to put this observed difference between test data and FLOWTRAN calculations in context for application to SRS assembly limit calculations. Where there were obvious differences between the measured and calculated pressure drops, those tests had low total pressure drops (2 to 5 psi) across the tube's heated length and high heat fluxes (0.8 and 1.0 MBtu/hr-ft<sup>2</sup>). In the SRS reactors the channel pressure drops will be larger and the heat fluxes at the restart power levels will be less than 0.5 MBtu/hr-ft<sup>2</sup>. For these conditions the void effect contribution up to OSV, the limit calculations end point, is small. This is substantiated by the test data for the smallest diameter tube, 0.359". For all the 0.359" tube OSV conditions FLOWTRAN accurately calculated the pressure drop. For this tube the two-phase contribution was relatively small compared to the total pressure drops, as in a reactor assembly.

The overall assessment is that FLOWTRAN accurately calculates single-phase pressure drop given the proper roughness and "n" value and can be used to model a reactor assembly pressure drop for OSV conditions.

#### 4.4 OSV CRITERION

FLOWTRAN uses the SRS OSV Working Criterion,  $St=0.00455$ , for all Peclet numbers to calculate a limiting flow. The logic is that if the flow calculated by FLOWTRAN with the OSV based limit criterion is greater than the observed flow at the point of OFI, then FLOWTRAN with an OSV based limit criterion is a conservative predictor of OFI.

The SRS OSV Working Criterion is expressed in terms of the Peclet (Pe), and Stanton (St) numbers as

$$Pe = \frac{G D_e c_p}{k_b}, \quad (6)$$

$$St = \frac{q}{G c_p (T_s - T_b)} = 0.00455, \quad (7)$$

where

$q$  = heat flux

$D_e$  = equivalent hydraulic diameter

$k_b$  = liquid thermal conductivity

$T_s$  = saturated temperature for exit pressure

$T_b$  = bulk fluid temperature

$c_p$  = liquid heat capacity

$G$  = mass flux.

#### 4.5 MEASURED OFI CONDITIONS DETERMINATION

The OFI condition is determined from a demand curve (pressure drop vs. flow rate) which is obtained from tests by measuring the pressure drop versus flow rate at constant power, inlet temperature and exit pressure. For convenience, a demand curve is named a test run and each individual point (pressure drop vs. flow rate) within a demand curve is called a test point. The variations of the test parameters (i.e. power, inlet temperature and exit pressure) within a test run were very small as shown in Table 3. The measured OFI conditions were determined by averaging all data points for each test parameter within a test run. The test data variations within a test run are included in the uncertainty analysis. Table 5 shows the measured OFI conditions.

#### 4.6 MEASURED OFI FLOW DETERMINATION

The flow rate at the onset of flow instability (OFI) is derived from the test data. The measured OFI flow rate is the minimum point on the pressure drop versus flow rate demand curve. The approach

used to determine the minimum point (OFI flow rate) was to curve fit sufficient data points around the minimum pressure drop area to establish a demand curve minimum. For some runs engineering judgment was used to omit spurious points to improve the curve fit. Thus, the curve fitting technique complemented with engineering judgment determined the measured OFI flow rate from the demand curve. The actual OFI point may differ from the minimum in the curve derived from the data. This difference is due to error in the test data flow measurements and error in the curve fitting. This uncertainty was estimated for each set of test data based on the spacing of data points and the slope of the curve in the vicinity of the OFI point. A  $\pm 2.5\%$  OFI flow rate uncertainty was selected to account for all inherent curve fit uncertainties for all four test diameters. Table 5 shows the measured OFI flow rates.

#### 4.7 PECLET AND STANTON NUMBER CALCULATION

For each heated test run the Peclet and Stanton numbers at OFI conditions were calculated by an external FORTRAN computer program. The source listing for this computer program, ENBALSTPE.FOR, is given in Appendix E. For each test run the average power, inlet temperature, and exit pressure were calculated from all the data points. These averages, the OFI determined outlet temperature, and the corresponding OFI flow rate were inputs to the program. The measured outlet temperature at the OFI flow rate was determined by plotting the measured outlet temperatures versus the flow rate to OFI flow rate ratio. Figure 6 shows one such measured OFI temperature determination. The OFI outlet temperature was taken where the flow rate ratio equaled one. The program calculated the saturation temperature for the exit pressure using FLOWTRAN's correlation for  $T_s$  as a function of pressure. The physical property correlations required to calculate Stanton and Peclet numbers were obtained from the FLOWTRAN manual [1]. The Peclet and Stanton numbers for the exit node were calculated using these temperatures and the OFI flow rates. The OFI flow rates, measured outlet temperatures, Peclet and Stanton numbers are shown in Table 5. The graphical presentation of Stanton numbers versus Peclet numbers at OFI along with their uncertainties are shown in Figure 7.

The L/D ratios for the SRS reactor heated channels are 300-485. Figure 8 presents Stanton numbers at OFI for different test conditions (inlet temperatures, exit pressures, and heat fluxes) from

$$y = -456.22 + 3690.4x - 6379.1x^2 + 5094.0x^3 - 1961.5x^4 + 295.12x^5 \quad R^2 = 1.000$$

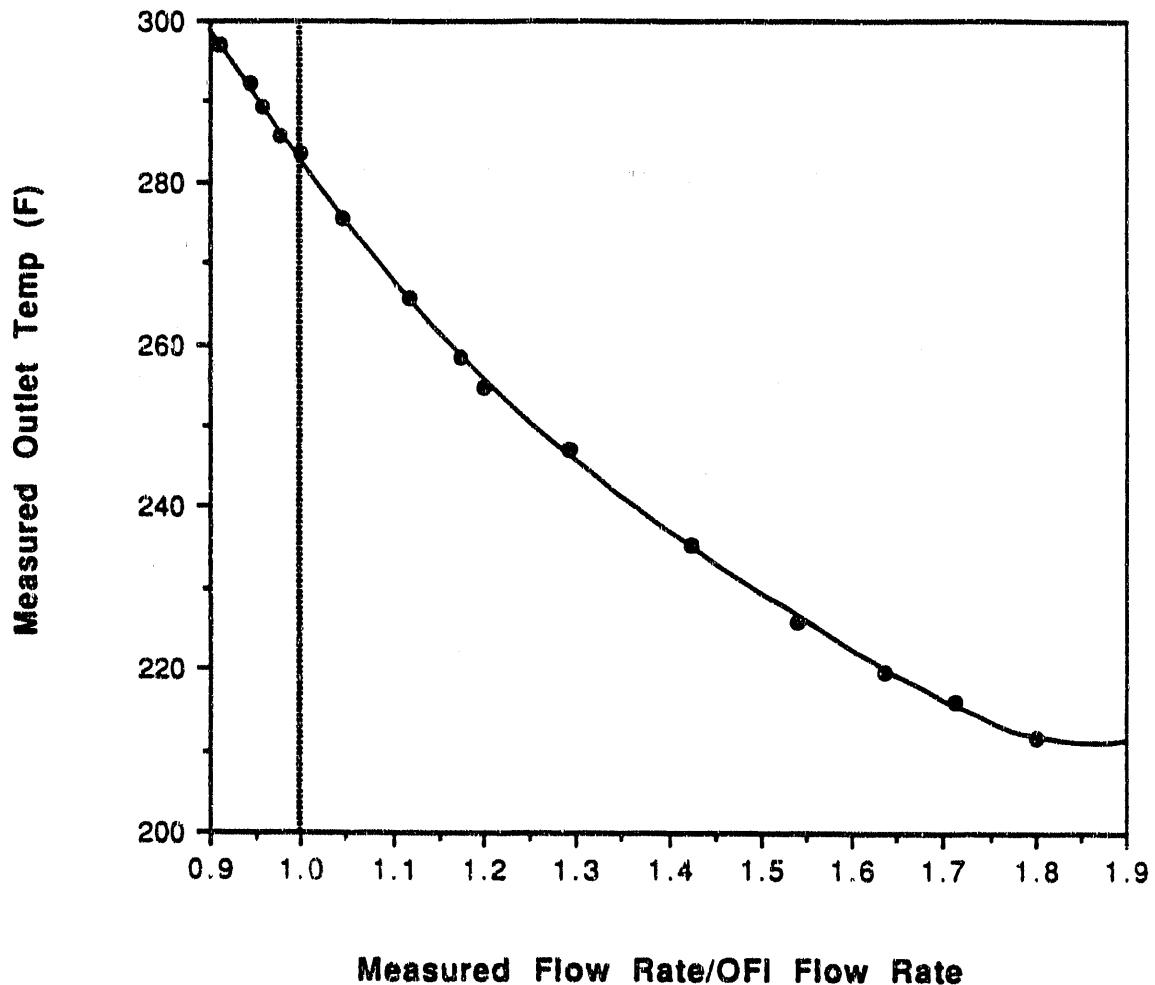



FIGURE 6. MEASURED OFI OUTLET TEMPERATURE DETERMINATION

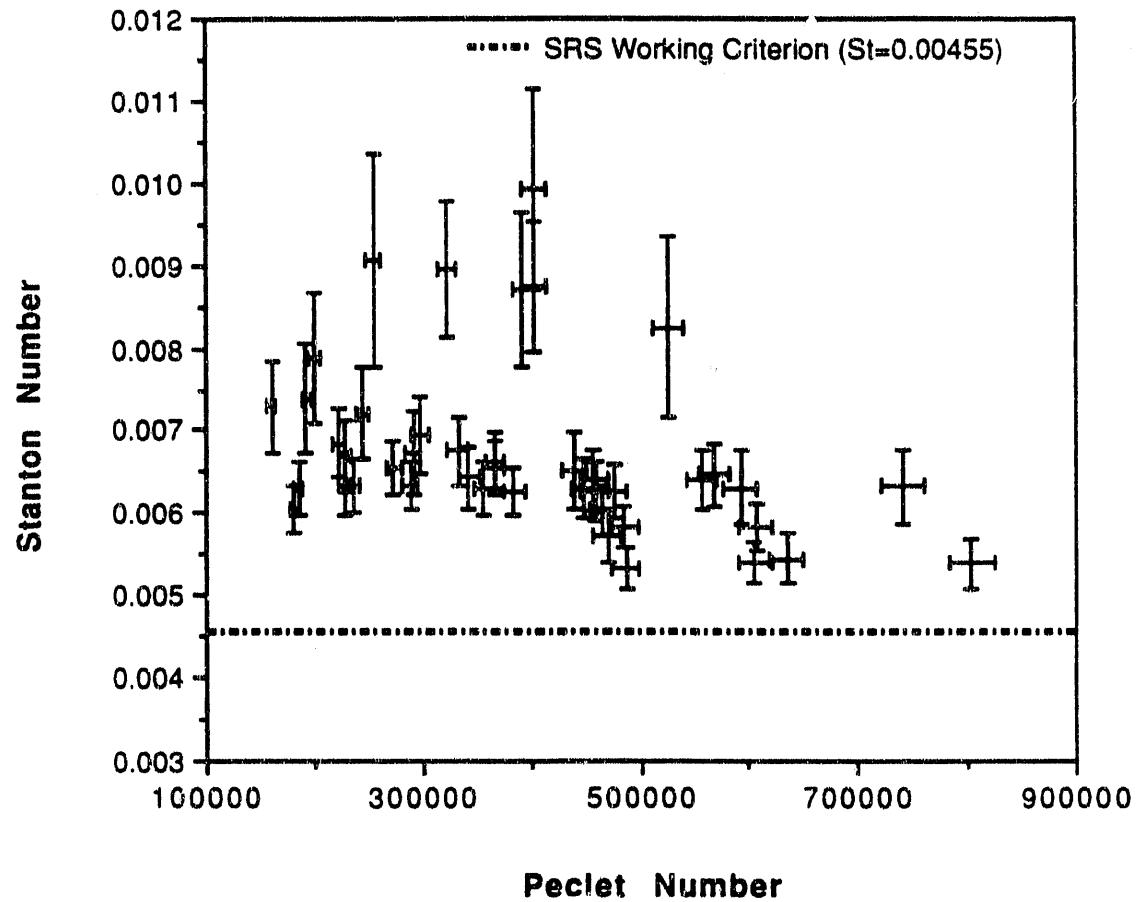
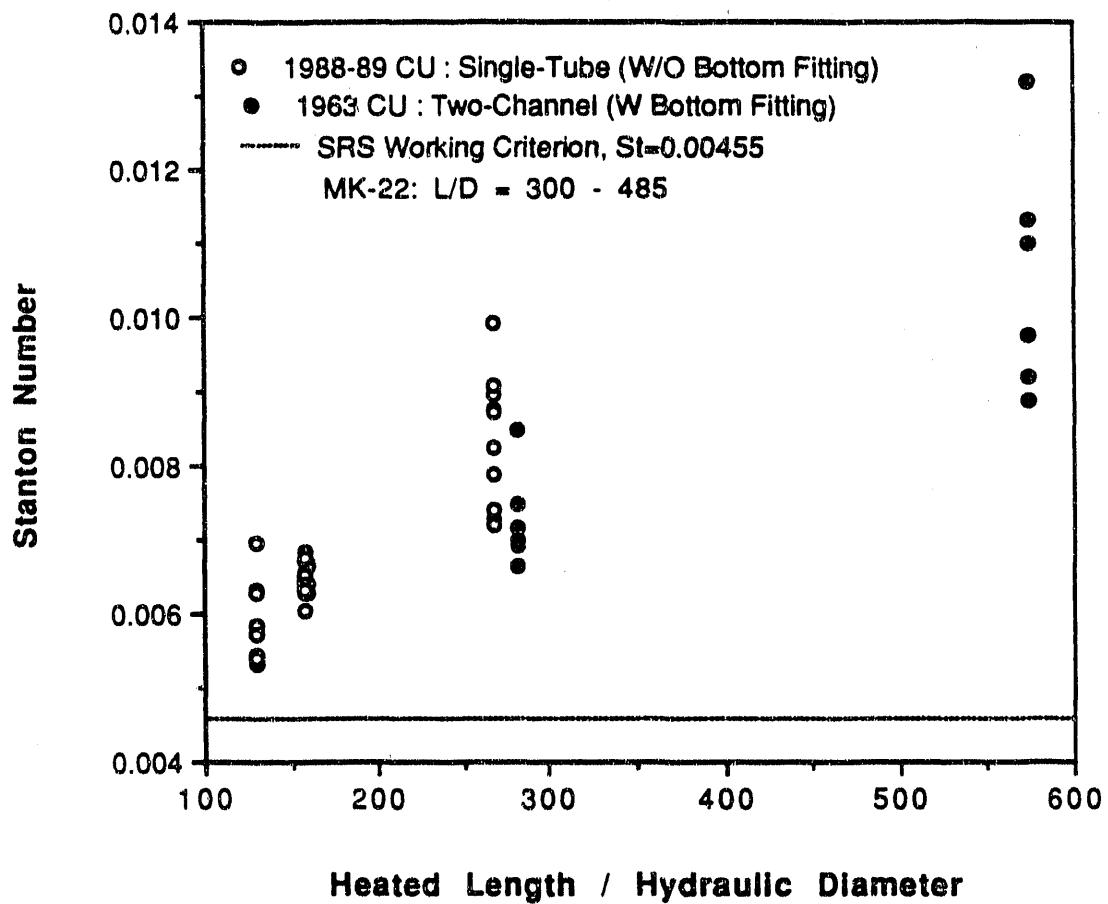




FIGURE 7. TEST DATA STANTON VERSUS PECLET NUMBERS  
AT OFI

**STANTON NUMBER AT OFI POINTS**  
**COLUMBIA UNIVERSITY 1963 TWO-CHANNEL DATA**  
**AND 1988-89 SINGLE TUBE DATA \***



\* For tests with different inlet temp., exit pres., and heat flux at a given L/D

**FIGURE 8. STANTON NUMBER AT OFI VERSUS L/D**

the 1988-89 tests and 1963 Columbia tests [4] plotted against L/D and shows the trend that Stanton number increases with L/D. The OFI data from 1988-89 and 1963 Columbia University tests and SRS HTL test [5] are shown in Figure 9. This figure shows that the Stanton numbers are greater than 0.00455 for all Peclet numbers (20,000 to 800,000). The range of Peclet numbers for the SRS reactor channels for normal and simulated accident conditions is 200,000 to 800,000. The SRS reactor channel heat fluxes at the proposed restart power level (~1200 MW) are below 0.5 MBtu/hr-ft<sup>2</sup>. Figures 7 and 8 show that the SRS Working Criterion, St=0.00455, is a conservative OFI predictor for the SRS reactor fuel assemblies at the reactor restart power level.

#### 4.8 FLOWTRAN OSV FLOW CALCULATIONS

OSV flow rates were calculated by FLOWTRAN for the SRS Working Criterion (St = 0.00455) using average powers, inlet temperatures, and exit pressures. Table 5 shows the FLOWTRAN input data used to calculate the OSV flow rates as well as the calculated OSV flow rates. Figures A-9 to A-51 present the FLOWTRAN calculated OSV flow rates. The column RATIO in Table 5 represents the calculated OSV flow rate for St = 0.00455 divided by the measured OFI flow rate. Table 5 shows that the FLOWTRAN onset of significant voiding (OSV) calculations for St = 0.00455 are conservative OFI predictors because RATIO > 1.0 for all test cases.

#### 4.9 UNCERTAINTY ANALYSIS

The uncertainties in the Peclet and Stanton numbers at the measured OFI conditions and the pressure drops were calculated from the uncertainties for both experimentally measured quantities and physical properties. Table 6 presents a measurement uncertainties example; all experimental uncertainties are presented in Columbia University's report, Section 4.2 [7]. Table 7 shows the test section geometry and water physical properties uncertainties. Uncertainties in all other experimental parameters are calculated from these uncertainties using a root sum of squares formula. Equations 8 - 13 were used in an external FORTRAN program to calculate the Peclet and Stanton number uncertainties at OFI. The program source listing, UNCEPSTPE.FOR, is given in Appendix E.

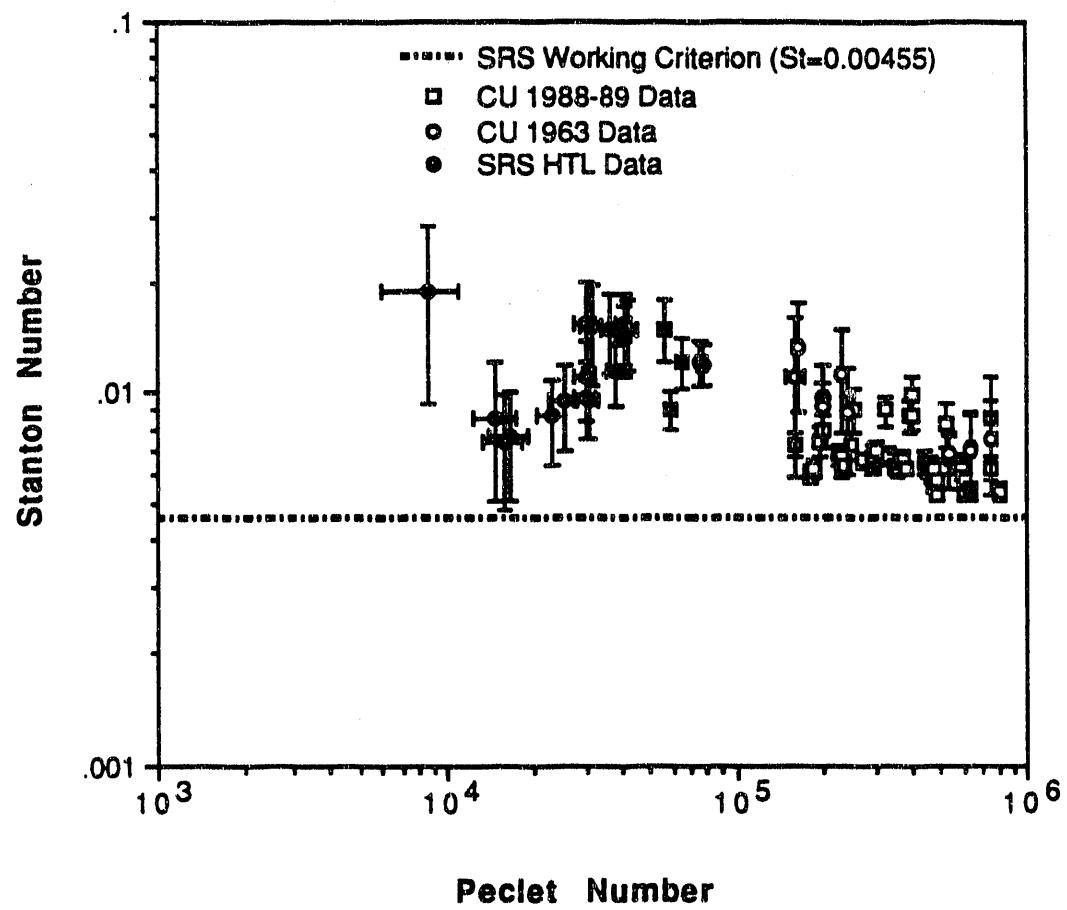



FIGURE 9. ACCUMULATED DATA STANTON VERSUS PECLET NUMBERS AT OFI

Table 6  
MEASUREMENT UNCERTAINTIES

Uncertainty Analysis Sample:  
Test #4, 0.6125" ID tube

| Measurement      | Range of Measurement | Accuracy of Instrument | DAS (End to End) (% of reading) | Digitizing Error* |
|------------------|----------------------|------------------------|---------------------------------|-------------------|
| P Inlet (PTI1)   | 200 psi              | 0.112% of F.S.         | 0.304%                          | 0.200 psi         |
| P Outlet (PTO1)  | 200 psi              | 0.112% of F.S.         | 0.304%                          | 0.200 psi         |
| DP (DT1)         | 15 psid              | 0.112% of F.S.         | 0.304%                          | 0.015 psid        |
| T Inlet (TRTI1)  | 360 F                | 0.25 F                 | 0.005%                          | 0.500 F           |
| T Outlet (TRTO1) | 360 F                | 0.25 F                 | 0.005%                          | 0.500 F           |
| Flow Rate (FTI2) | 60 gpm               | 0.5106% of F.S.        | 0.200%                          | 0.060 gpm         |
| Current          | 10000 amp            | 0.10% of reading       | 0.304%                          | 10 amp            |
| Voltage          | 200 volt             | 0.050% of reading      | 0.304%                          | 0.200 volt        |

\* Error in multiplexer digitizer is 0.005 volts for signal voltage range of 5.00 volts, which corresponds to the full range of measurement.

**Total Uncertainty:**

Total Uncertainty is calculated based on Kline & McClintock procedure [13]

Example: If the DT1 reading is 1 psid,  
 Overall accuracy of the DP (DT1)  
 $=\sqrt{((15 \text{ psid} \cdot 0.112\%)^2 + (1 \text{ psid} \cdot 0.304\%)^2 + (0.015 \text{ psid})^2)}$   
 $=0.0227 \text{ psid}$

Table 7

TEST SECTION GEOMETRY AND WATER PROPERTIES UNCERTAINTIES

|                                        |                                                                                                   |                               |
|----------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|
| Inner Diameter <sup>1</sup>            | $\pm 0.005$ in. <sup>5</sup>                                                                      | $\pm 0.0015$ in. <sup>6</sup> |
| Heated Length <sup>1</sup>             | $\pm 0.038$ in.                                                                                   |                               |
| Pressure Tap Separation <sup>1</sup>   | $\pm 0.058$ in.                                                                                   |                               |
| Water Physical Properties <sup>2</sup> | $\Delta c_p/c_p, \Delta k/k, \Delta \rho/\rho = \pm 0.1\%$<br>$\Delta \rho/\rho_p = \pm 0.14\%^4$ |                               |
| Saturation Temperature <sup>2</sup>    | $\Delta T_s = \pm 0.024$ C                                                                        |                               |
| Exit Temperature <sup>3</sup>          | $\Delta T_o = \pm 1.8$ F                                                                          |                               |

---

<sup>1</sup> Columbia University measurement uncertainty

<sup>2</sup> Correlation uncertainties per FLOWTRAN manual

<sup>3</sup> Measured outlet temperature uncertainty

<sup>4</sup> Used in the pressure drop uncertainty estimation.  
Water temperature inside pressure transducer line  
assumed as  $77 \pm 10$  F.

<sup>5</sup> Tests 2,1, 4, 7 ; <sup>6</sup> Test 9

The measured outlet temperature,  $T_o$ , and its uncertainty are required for Equations 11 and 12. Since the temperature at the OFI flow rate is not directly measured, its uncertainty value must cover temperature measurement uncertainties in the demand curve and curve fitting regression error. The data regression error is insignificant (see Figure 6). Columbia University [7] reported the maximum measured outlet temperature uncertainty as  $\pm 0.6$  F. Thus, a lower uncertainty bound would be  $\pm 0.6$  F. This uncertainty was judged to be too low, because the outlet temperature was measured below the end of the heater tube. Below the heated section vapor bubbles should collapse. The collapse of the bubbles should raise the bulk fluid temperature about 0.5 F. Therefore, the bulk temperature at the measurement location should be slightly higher than the temperature at the OFI location. Considering all these factors,  $\pm 1.8$  F was selected for the measured outlet temperature uncertainty at OFI and was judged to be conservative.

The experimental uncertainties formulae are:

Pressure Drop:

From Equation 4 the pressure drop uncertainty can be expressed as

$$\Delta(DP_{12}) = \pm \sqrt{[\Delta(DP_m)]^2 + \left[ \frac{\rho g L}{144 g_c} \right]^2 \left\{ \left[ \frac{\Delta \rho}{\rho} \right]^2 + \left[ \frac{\Delta L}{L} \right]^2 \right\}}, \quad (8)$$

where

$\Delta(DP_{12})$  = uncertainty in pressure drop between the pressure taps

$\Delta(DP_m)$  = uncertainty in measurement pressure drop between the taps.

Peclet Number:

Equation 8 for the Peclet number can be expressed in terms of the measured parameter  $Q$ , the volumetric flow rate, as

$$Pe = \frac{4 c_p \rho Q}{\pi k_b D_e} \quad (9)$$

Using Equation 10, the Peclet number uncertainty can be expressed as

$$\Delta Pe = \pm Pe \sqrt{\left(\frac{\Delta D_e}{D_e}\right)^2 + \left(\frac{\Delta \rho}{\rho}\right)^2 + \left(\frac{\Delta c_p}{c_p}\right)^2 + \left(\frac{\Delta k_b}{k_b}\right)^2 + \left(\frac{\Delta Q}{Q}\right)^2} \quad (10)$$

Stanton Number:

Equation 11 for the Stanton number is derived from Equation 6 in terms of the measured parameters volumetric flow rate and power in the following form

$$St = \frac{\frac{w D_e}{4 h}}{Q \rho c_p (T_s - T_o)}, \quad (11)$$

where

$h$  = heated length

$w$  = power

$Q$  = volumetric flow rate.

Using Equation 11, the Stanton number uncertainty can be expressed as

$$\Delta St = \pm St \sqrt{\left[\left(\frac{\Delta w}{w}\right)^2 + \left(\frac{\Delta c_p}{c_p}\right)^2 + \left(\frac{\Delta \rho}{\rho}\right)^2 + \left(\frac{\Delta Q}{Q}\right)^2\right] + \frac{\Delta T_s^2 + \Delta T_o^2}{(T_s - T_o)^2} + \left(\frac{\Delta D_e}{D_e}\right)^2 + \left(\frac{\Delta h}{h}\right)^2} \quad (12)$$

The parameter  $\Delta w$  in Equation 12 is given by

$$\Delta w = \pm \sqrt{\Delta w_m^2 + \Delta w_v^2}, \quad (13)$$

where

$\Delta w_m$  = measurement power uncertainty

$\Delta w_v$  = standard deviation of the power within a test run.

## 5. CONCLUSIONS

1. FLOWTRAN accurately modeled the pressure drop for single-phase flow in both heated and unheated tubes with the proper input values for the wall absolute roughness and the heated wall effect correlation exponent. For a tube with a hydraulic diameter similar to that of an SRS reactor channel, pressure drops calculated by FLOWTRAN agree closely with the measured pressure drops up to OSV, since the two-phase contribution is relatively small compared to the total channel pressure drop. For larger tubes at high heat fluxes the total pressure drop is low, and the two-phase contributions are much more significant. Consequently, the agreement between measured and FLOWTRAN calculated pressure drops near OSV is not good.
2. For all the current Columbia University OFI tests, the FLOWTRAN calculated flows at OSV, based on the SRS working criterion,  $St=0.00455$ , were lower than the flows at which the test rigs went into flow instability. This substantiated  $St=0.00455$  as a conservative predictor of OFI in FLOWTRAN for the range of test conditions: Peclet numbers between 100,000 and 300,000 and surface heat fluxes up to 1 MBtu/hr-ft<sup>2</sup>.

## REFERENCES

1. Aleman, S. E., Gregory, M. V., Hamm, L. L., Pevey, R. E., Reed, W. H., and Smith, F. G., "FLOWTRAN: An Algorithm for Describing the Thermal-Hydraulic Behavior of SRP Assemblies," DPSTM-140, September 15, 1989.
2. Saha, P. and Zuber, N., "Point of Vapor Generation and Vapor Void Fraction in Subcooled Boiling," International Heat Transfer Conference, 5th Proceeding, Tokyo, Japan, Vol. 4, Paper B4, September 3-7, 1974.
3. Goodwin, K. E., Sjostrom, L. C., Witmer, F. E., and Buckner, M. L., Signatories, Agreements and Commitments: Review of FI Limits Methodology Meeting, August 30-September 2, 1988, Savannah River Laboratory, September 2, 1988.
4. Chen, Kuo-Fu and King, J. F., "FLOWTRAN Benchmarking With Onset of Flow Instability Data from 1963 Columbia University Experiment," DPST-88-666, October, 1988.
5. Laurinat, J. E., "Comparison of FLOWTRAN Predictions of Onset of Significant Voiding (OSV) to Savannah River Heat Transfer Laboratory Subcooled Boiling Flow Instability Measurements, Part 1," DPST-88-886, Rev. 1, October, 1988.
6. Columbia University, "Flow Excursion Experimental Program : Single Tube Uniformly Heated Tests, Part I - Technical Discussion," CU-HTRF-T4,CU-90-01, January 1990.
7. Columbia University, "Flow Excursion Experimental Program : Single Tube Uniformly Heated Tests, Part II- Uncertainty Analysis and Data," CU-HTRF-T4,CU-90-03, May 1990.
8. Moody, L. F., "Friction Factors for Pipe Flow," Trans. A.S.M.E., Vol. 66, pp. 671-684, November, 1944.
9. Moody, L. F., " An Approximate Formula for Pipe Friction Factors," Mechanical Engineering, pp. 1005-1006, December, 1947.
10. Olujic, Zarko, "Compute Friction Factors Fast for Flow in Pipes," Chemical Engineering, pp. 91-92, December 14, 1981.

11. Crane Co., "Flow of Fluids Through Valves, Fittings, and Pipe," Technical Paper No. 410, p. A-24, 1970.
12. Sieder, E. N. and Tate, G. E., "Heat Transfer and Pressure Drop of Liquids in Tubes," Ind. Eng. Chem., 28, 1429 (1936).
13. Kline, S. J. and McClintock, F. A., "Describing Uncertainties in Single-Sample Experiments," Mechanical Engineering, pp. 3-8, January, 1953.
14. Hamm, L. L., Aleman, S. E., and Laurinat, J. E., "Effects of Heated Wall, Wall Voidage, and Dissolved Gases on Flow Instability Limits," WSRC-RP-89-406, FIU-89-31, October, 1989.
15. Laurinat, J. E., "Documentation of UNCERT, Versions 16-2A and 16-4A, Revision 1," NES-ART-900006, Rev. 1-FIU-90-40, REV. 1, May 25, 1990.

## APPENDIX - A

### PRESSURE DROP COMPARISON GRAPHS

This appendix contains 51 figures which present graphical representation of pressure drop versus flow rate for the test cases. Figures A-1 through A-8 are the comparisons of measured and FLOWTRAN calculated pressure drops for cold test cases. Figures A-9 through A-51 show measured and FLOWTRAN calculated pressure drops, the measured OFI flow range, and the FLOWTRAN calculated OSV flow rates for  $St=0.00455$ . The figures show the measured pressure drop points with their associated flow and pressure drop uncertainties. In this appendix, the figure caption "INC" denotes inconel 600 and "SS" denotes 304 type stainless steel. The following are the figure numbers associated with the test conditions.

| Figure      | Test Run | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Inlet Temp<br>F | Exit Pres<br>Psia |
|-------------|----------|--------------------------------------|-----------------|-------------------|
| FIGURE A-1  | .359"    | tube base run 1                      | 0.0             | 77                |
| FIGURE A-2  | .359"    | tube base run 2                      | 0.0             | 122               |
| FIGURE A-3  | .600"    | tube base run 1                      | 0.0             | 77                |
| FIGURE A-4  | .600"    | tube base run 2                      | 0.0             | 121               |
| FIGURE A-5  | .6125"   | tube base run 1                      | 0.0             | 77                |
| FIGURE A-6  | .6125"   | tube base run 2                      | 0.0             | 121               |
| FIGURE A-7  | .7516"   | tube base run 1                      | 0.001           | 77                |
| FIGURE A-8  | .7516"   | tube base run 2                      | 0.0             | 121               |
| FIGURE A-9  | 9 - 01   | 0.4                                  | 77              | 34.7              |
| FIGURE A-10 | 9 - 02   | 0.8                                  | 77              | 34.7              |
| FIGURE A-11 | 9 - 03   | 0.4                                  | 122             | 34.7              |
| FIGURE A-12 | 9 - 04   | 0.8                                  | 122             | 34.7              |
| FIGURE A-13 | 9 - 05   | 0.4                                  | 77              | 64.7              |
| FIGURE A-14 | 9 - 06   | 0.6                                  | 77              | 64.7              |
| FIGURE A-15 | 9 - 07   | 0.8                                  | 77              | 64.7              |
| FIGURE A-16 | 9 - 08   | 1.0                                  | 77              | 64.7              |
| FIGURE A-17 | 9 - 09   | 0.4                                  | 122             | 64.7              |
| FIGURE A-18 | 9 - 10   | 0.8                                  | 122             | 64.7              |
| FIGURE A-19 | 7 - 01   | 0.4                                  | 77              | 64.7              |
| FIGURE A-20 | 7 - 02   | 0.8                                  | 77              | 64.7              |
| FIGURE A-21 | 7 - 03   | 0.4                                  | 121             | 64.7              |
| FIGURE A-22 | 7 - 04   | 0.8                                  | 121             | 64.7              |
| FIGURE A-23 | 4 - 01   | 0.4                                  | 77              | 34.7              |

| Figure      | Test Run | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Inlet Temp<br>F | Exit Pres<br>Psia |
|-------------|----------|--------------------------------------|-----------------|-------------------|
| FIGURE A-24 | 4 - 02   | 0.6                                  | 77              | 34.7              |
| FIGURE A-25 | 4 - 03   | 0.8                                  | 77              | 34.7              |
| FIGURE A-26 | 4 - 04   | 1.0                                  | 77              | 34.7              |
| FIGURE A-27 | 4 - 05   | 0.4                                  | 121             | 34.7              |
| FIGURE A-28 | 4 - 06   | 0.6                                  | 121             | 34.7              |
| FIGURE A-29 | 4 - 07   | 0.8                                  | 121             | 34.7              |
| FIGURE A-30 | 4 - 08   | 1.0                                  | 121             | 34.7              |
| FIGURE A-31 | 4 - 09   | 0.4                                  | 77              | 64.7              |
| FIGURE A-32 | 4 - 10   | 0.6                                  | 77              | 64.7              |
| FIGURE A-33 | 4 - 11   | 0.8                                  | 77              | 64.7              |
| FIGURE A-34 | 4 - 12   | 1.0                                  | 77              | 64.7              |
| FIGURE A-35 | 4 - 13   | 0.4                                  | 121             | 64.7              |
| FIGURE A-36 | 4 - 14   | 0.6                                  | 121             | 64.7              |
| FIGURE A-37 | 4 - 15   | 0.8                                  | 121             | 64.7              |
| FIGURE A-38 | 4 - 16   | 1.0                                  | 121             | 64.7              |
| FIGURE A-39 | 2.1-01   | 0.8                                  | 77              | 34.7              |
| FIGURE A-40 | 2.1-02   | 1.0                                  | 77              | 34.7              |
| FIGURE A-41 | 2.1-03   | 0.4                                  | 121             | 34.7              |
| FIGURE A-42 | 2.1-04   | 0.6                                  | 121             | 34.7              |
| FIGURE A-43 | 2.1-05   | 0.8                                  | 121             | 34.7              |
| FIGURE A-44 | 2.1-06   | 1.0                                  | 121             | 34.7              |
| FIGURE A-45 | 2.1-07   | 0.6                                  | 77              | 64.7              |
| FIGURE A-46 | 2.1-08   | 0.8                                  | 77              | 64.7              |
| FIGURE A-47 | 2.1-09   | 1.0                                  | 77              | 64.7              |
| FIGURE A-48 | 2.1-10   | 0.4                                  | 121             | 64.7              |
| FIGURE A-49 | 2.1-11   | 0.6                                  | 121             | 64.7              |
| FIGURE A-50 | 2.1-12   | 0.8                                  | 121             | 64.7              |
| FIGURE A-51 | 2.1-13   | 1.0                                  | 121             | 64.7              |

MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP  
INC TUBE ID=0.359" ; UNIFORM FLUX=0.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA

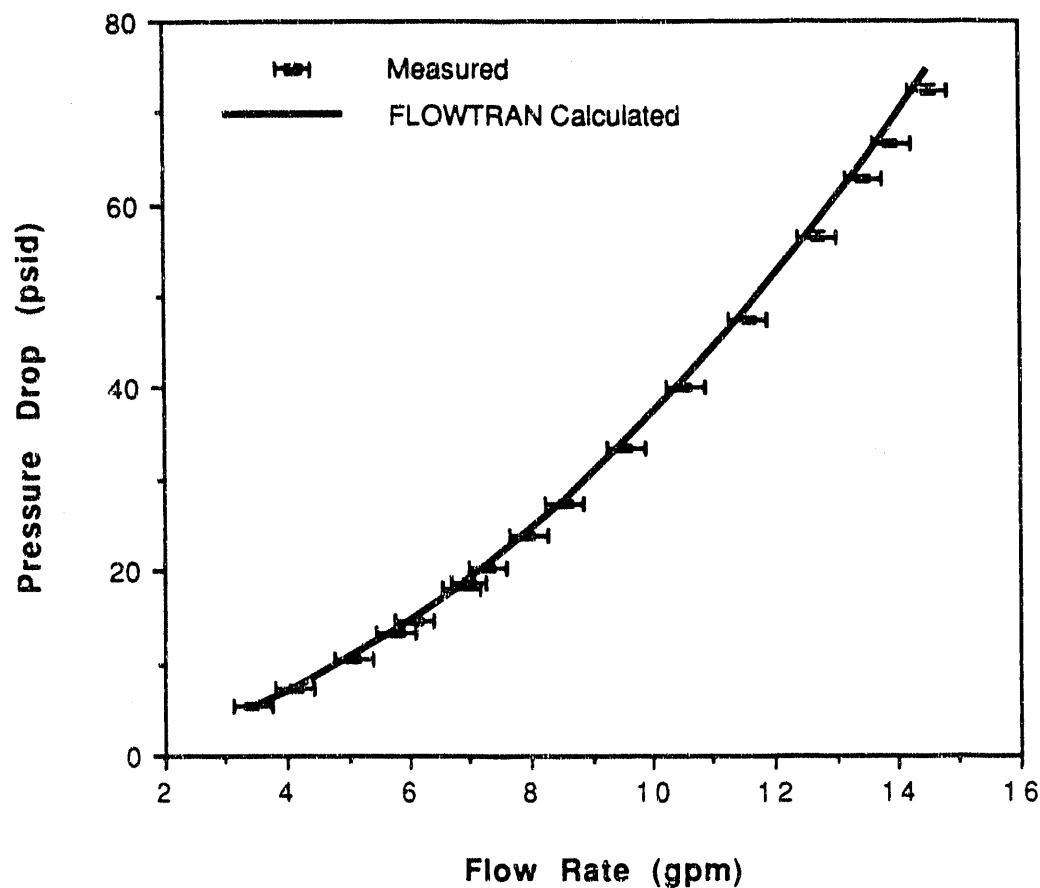
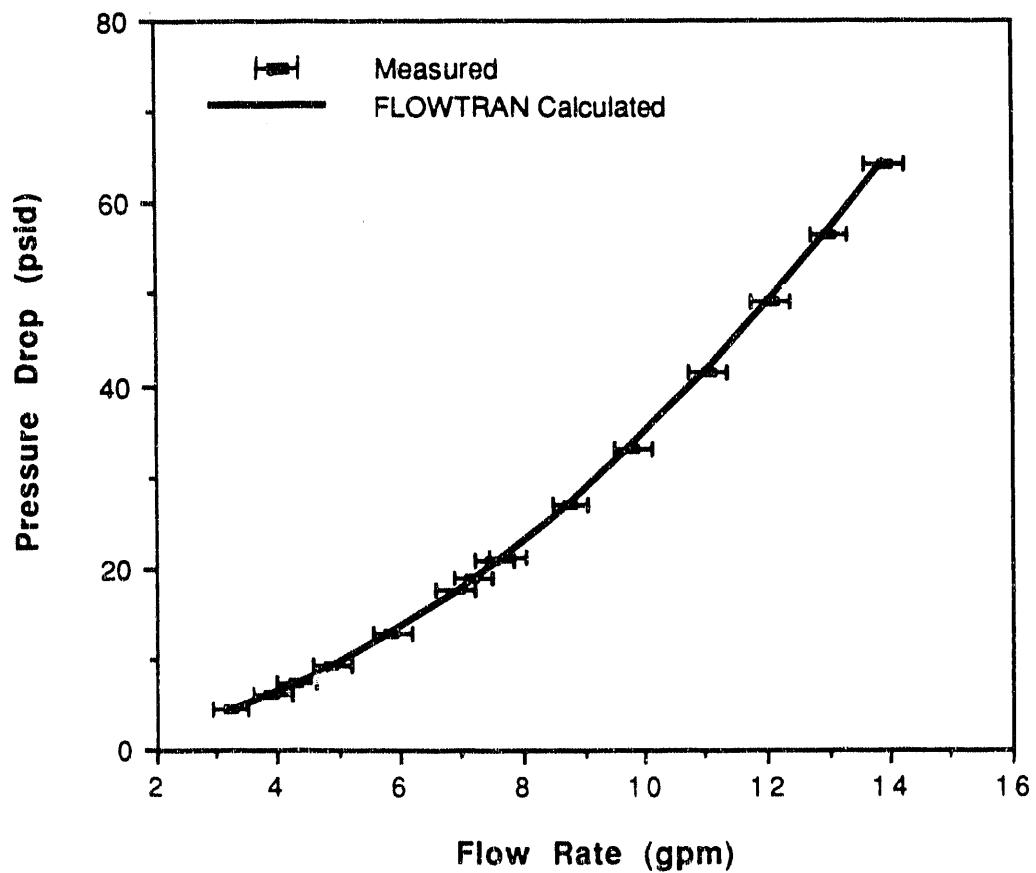




FIGURE A-1. 0.359" TUBE BASE RUN 1

**MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP  
INC TUBE ID=0.359" ; UNIFORM FLUX=0.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=122 F ; EXIT PRES=64.7 PSIA**



**FIGURE A-2. 0.359" TUBE BASE RUN 2**

**MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP**  
**SS TUBE ID=0.600" ; UNIFORM FLUX=0.0 MBTU/HR-FT<sup>2</sup>**  
**INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**

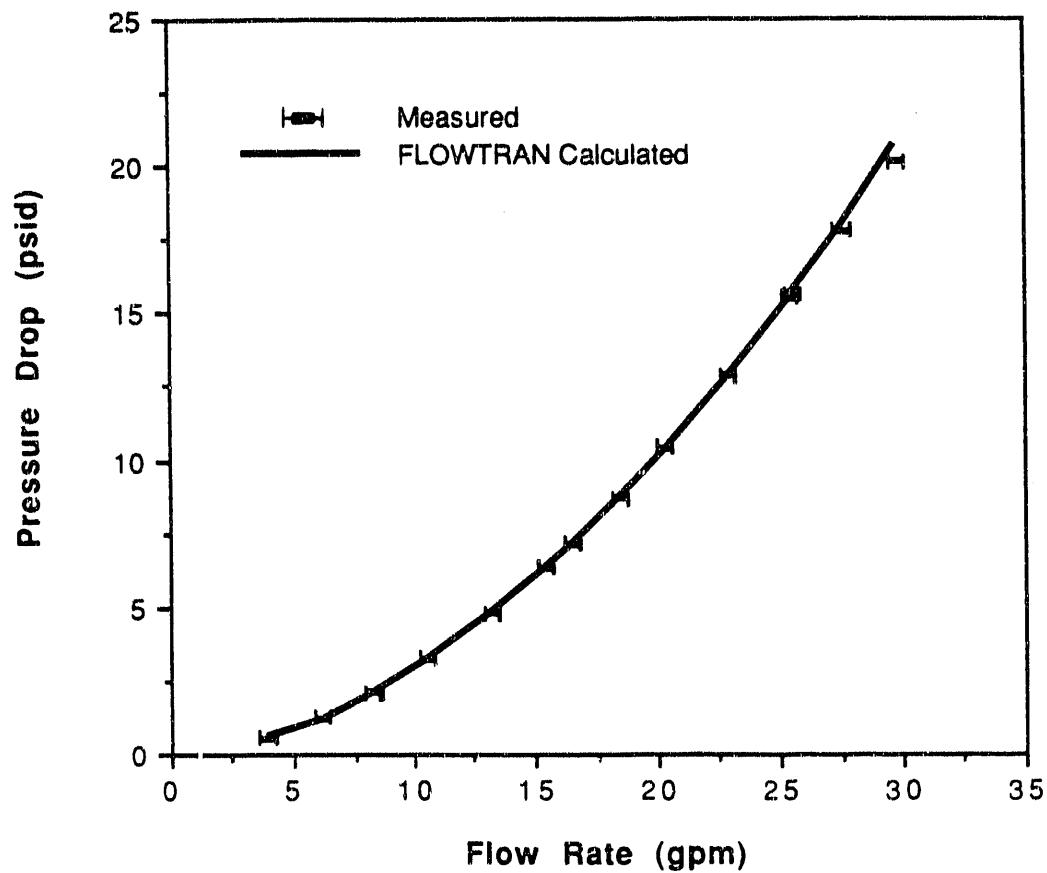



FIGURE A-3. 0.600" TUBE BASE RUN 1

MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP  
SS TUBE ID=0.600" ; UNIFORM FLUX=0.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

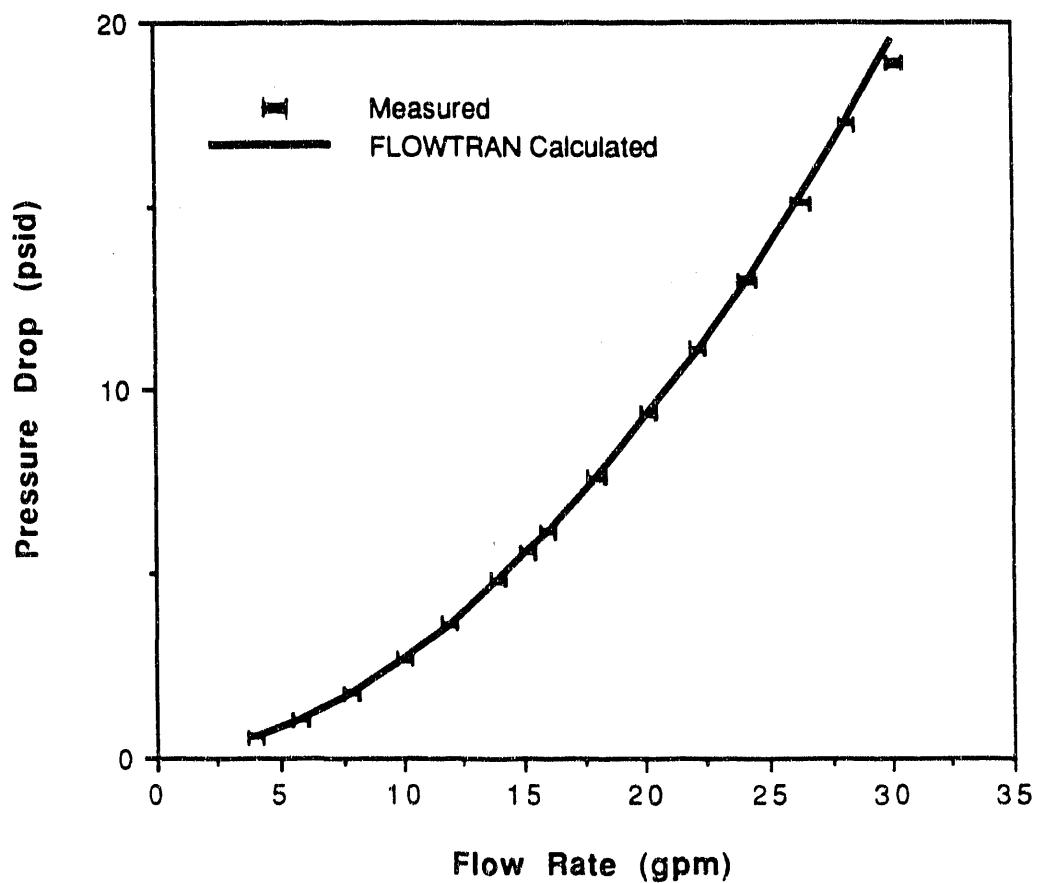



FIGURE A-4. 0.600" TUBE BASE RUN 2

**MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP  
INC TUBE ID=0.6125" ; UNIFORM FLUX=0.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**

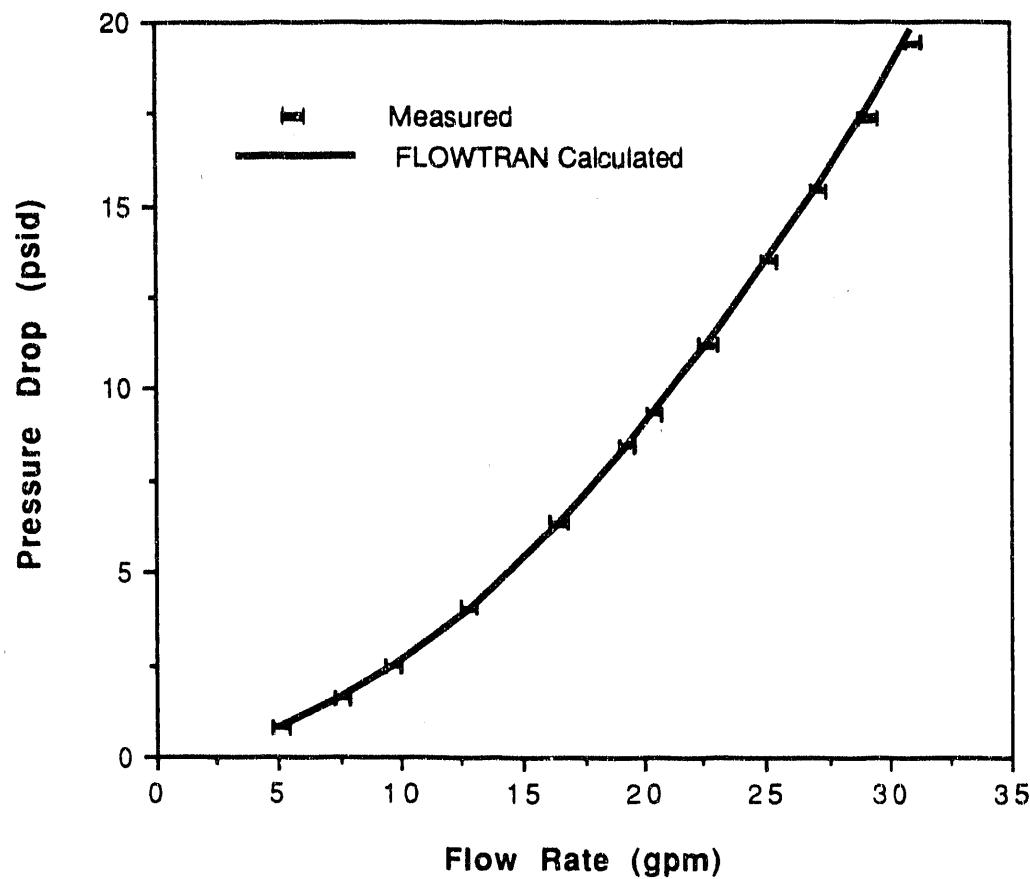
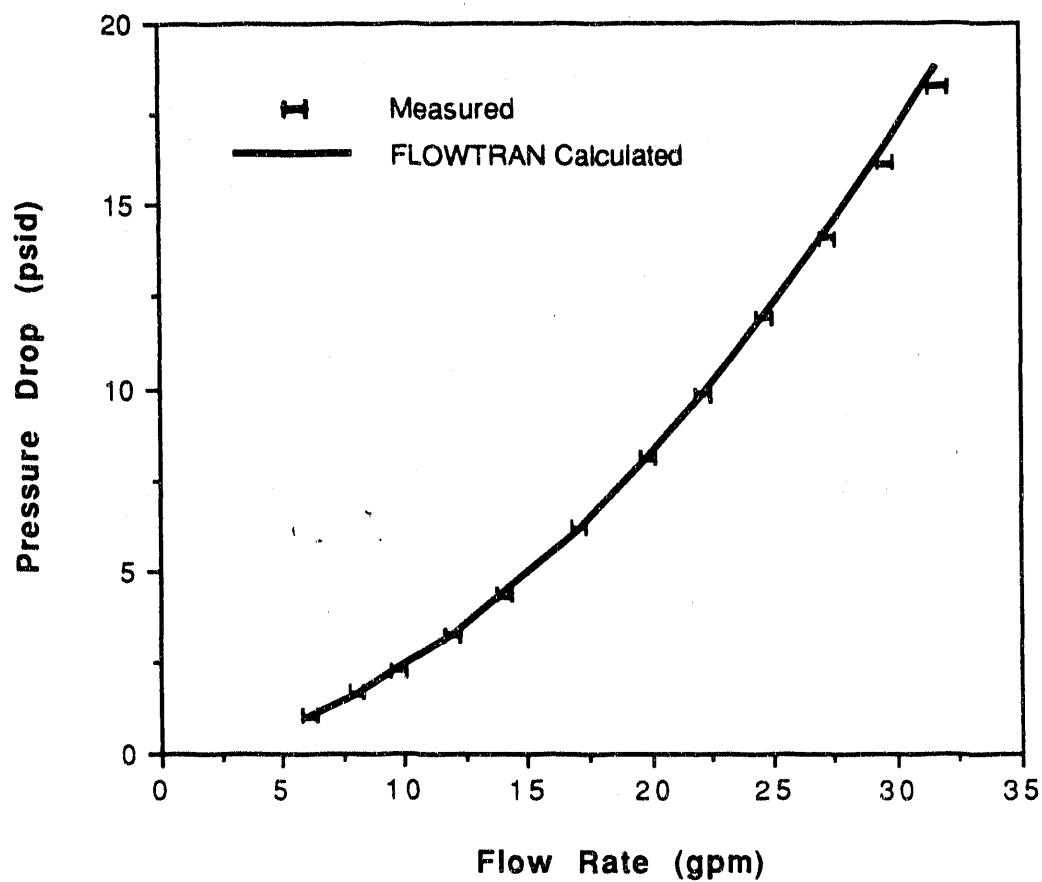




FIGURE A-5. 0.6125" TUBE BASE RUN 1

**MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP  
INC TUBE ID=0.6125" ; UNIFORM FLUX=0.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA**



**FIGURE A-6. 0.6125" TUBE BASE RUN 2**

**MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP**  
**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.001 MBTU/HR-FT<sup>2</sup>**  
**INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**

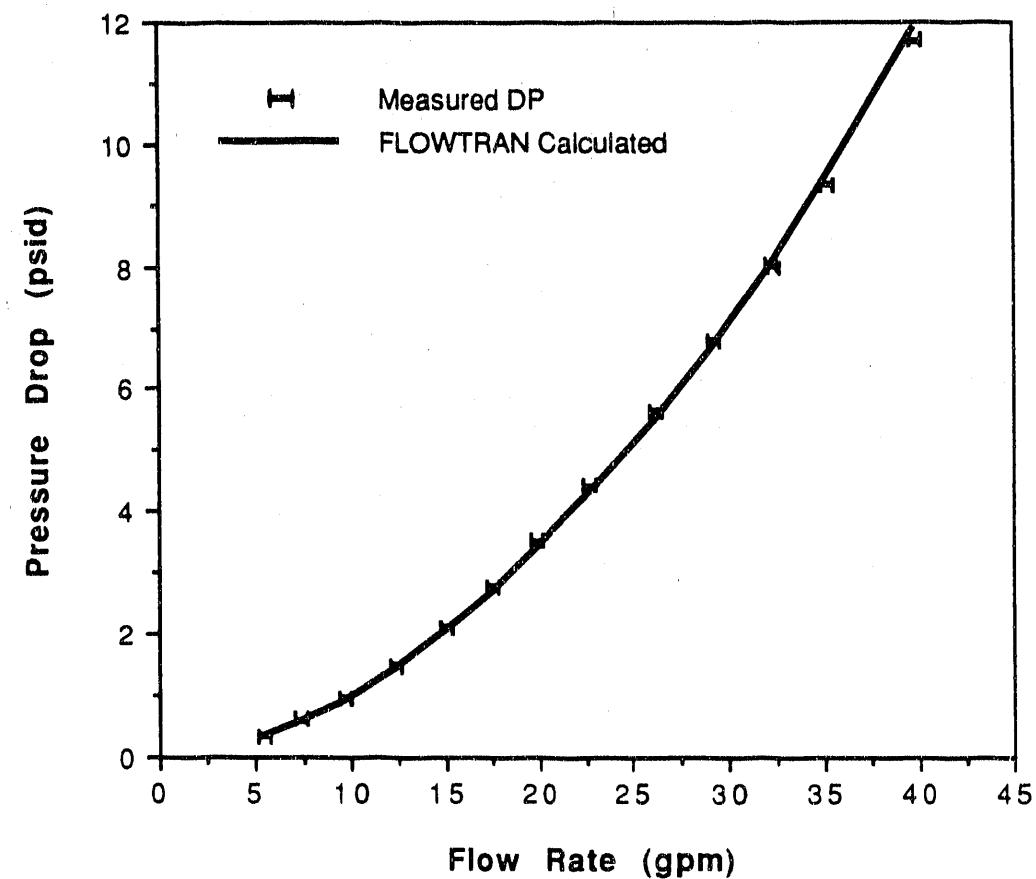



FIGURE A-7. 0.7516" TUBE BASE RUN 1

**MEASURED AND FLOWTRAN PREDICTED PRESSURE DROP**  
**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.0 MBTU/HR-FT<sup>2</sup>**  
**INLET TEMP=121 F ; EXIT PRES=64.7 PSIA**

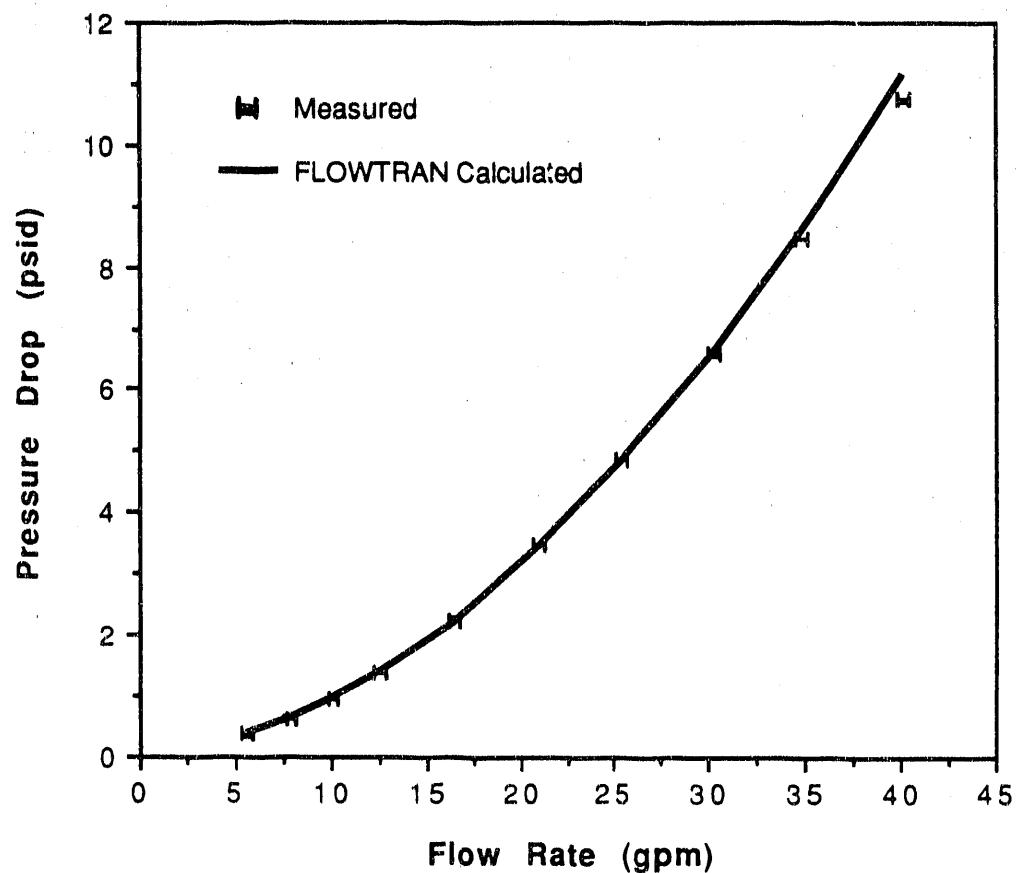



FIGURE A-8. 0.7516" TUBE BASE RUN 2

INC TUBE ID=0.359" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA

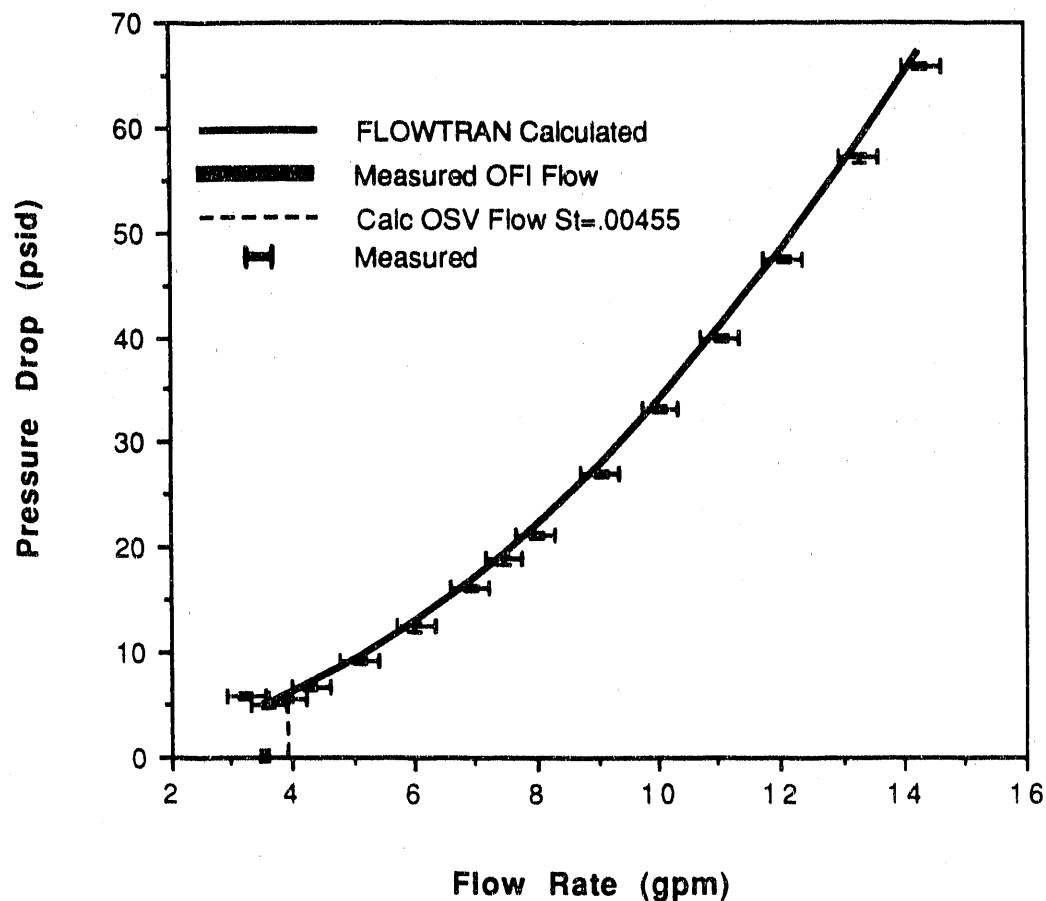



FIGURE A-9. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 01

INC TUBE ID=0.359" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA

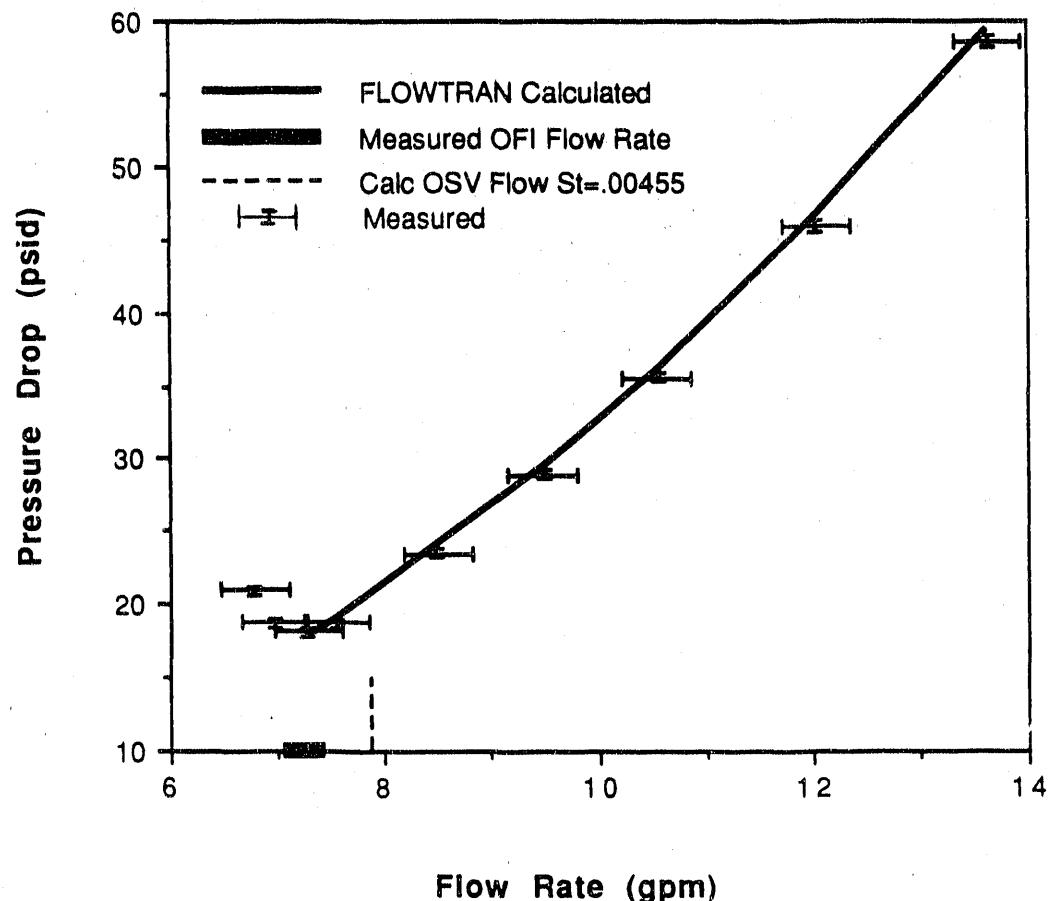



FIGURE A-10. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 02

INC TUBE ID=0.359" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=122 F ; EXIT PRES=34.7 PSIA

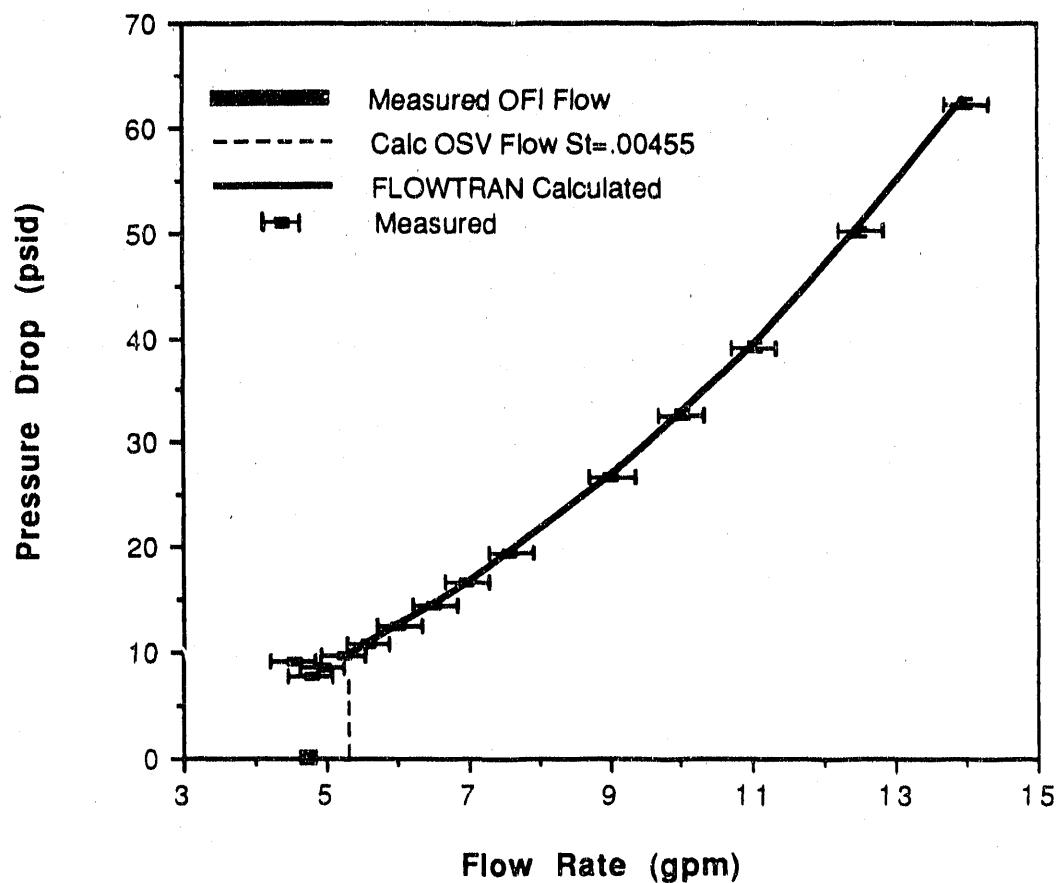



FIGURE A-11. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 03

INC TUBE ID=0.359" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=122 F ; EXIT PRES=34.7 PSIA

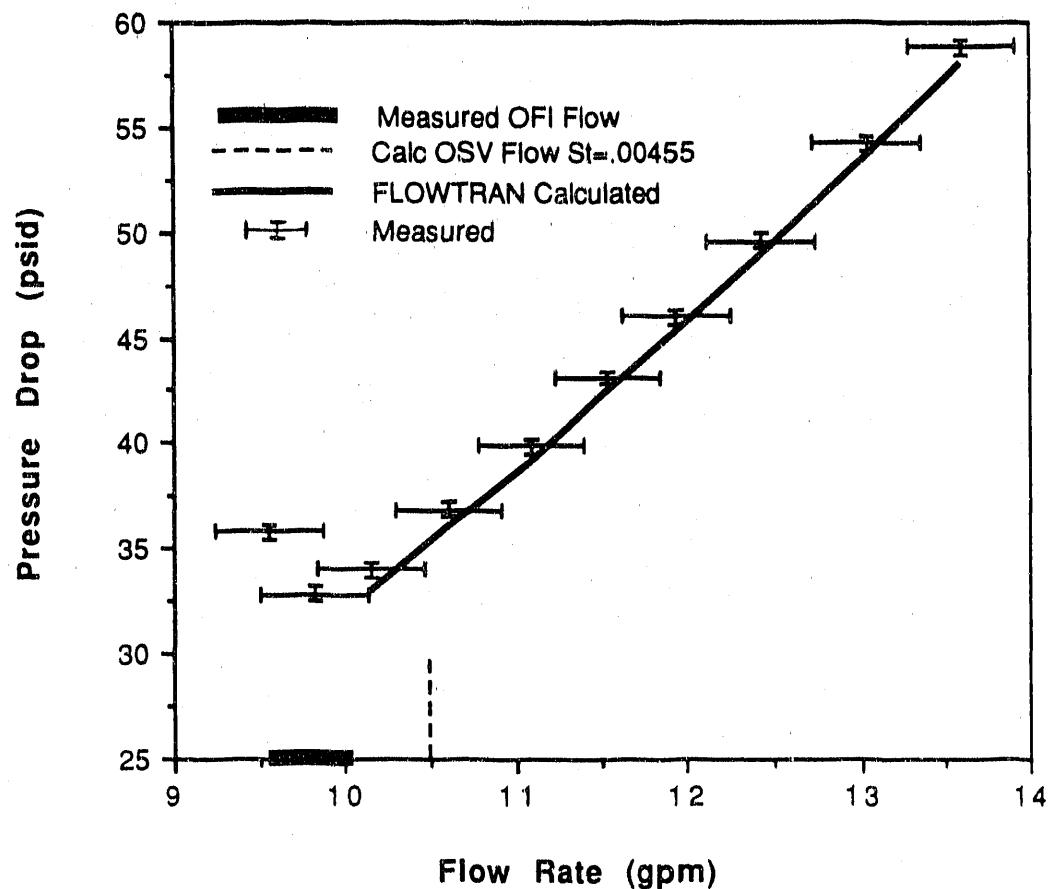



FIGURE A-12. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 04

INC TUBE ID=0.359" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA

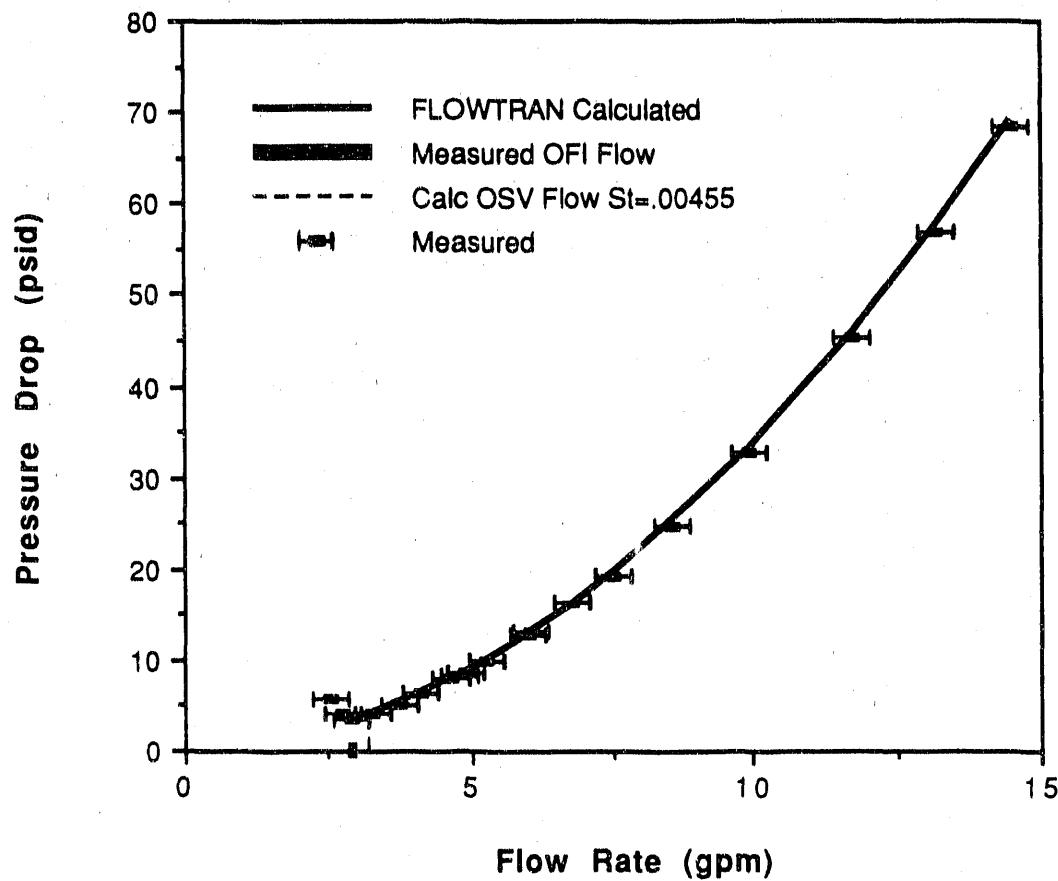
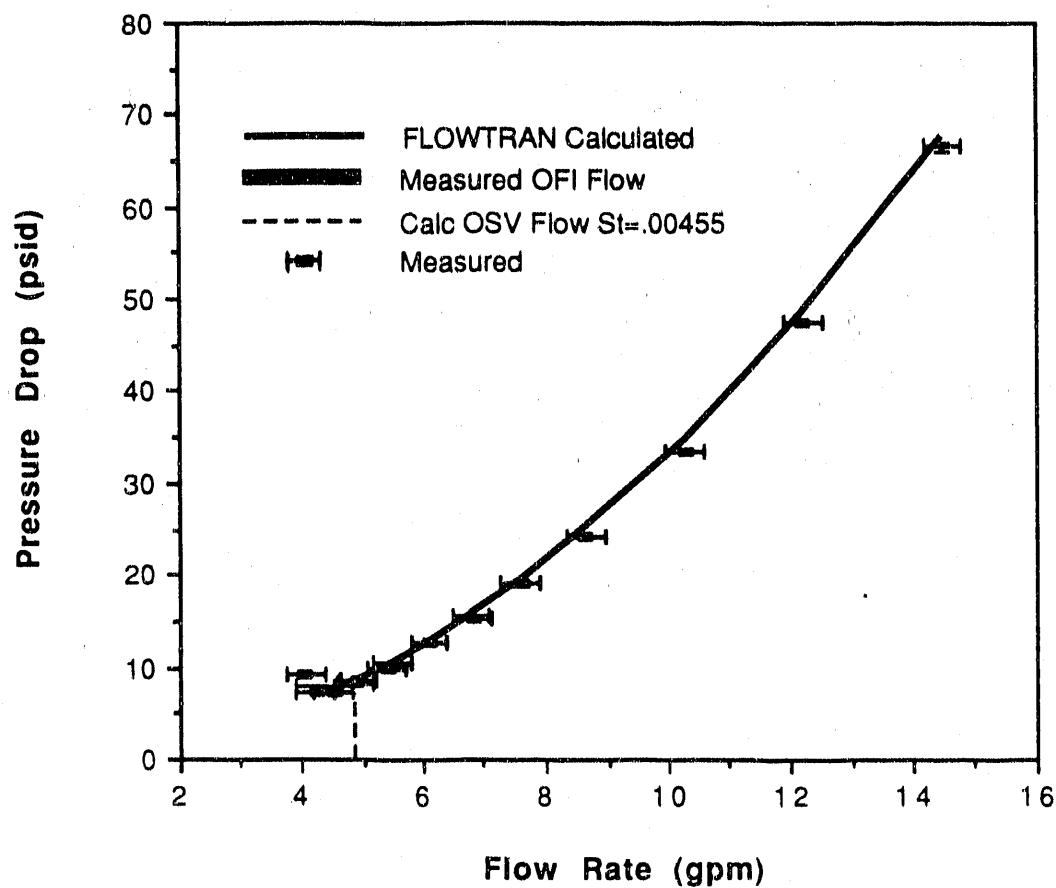
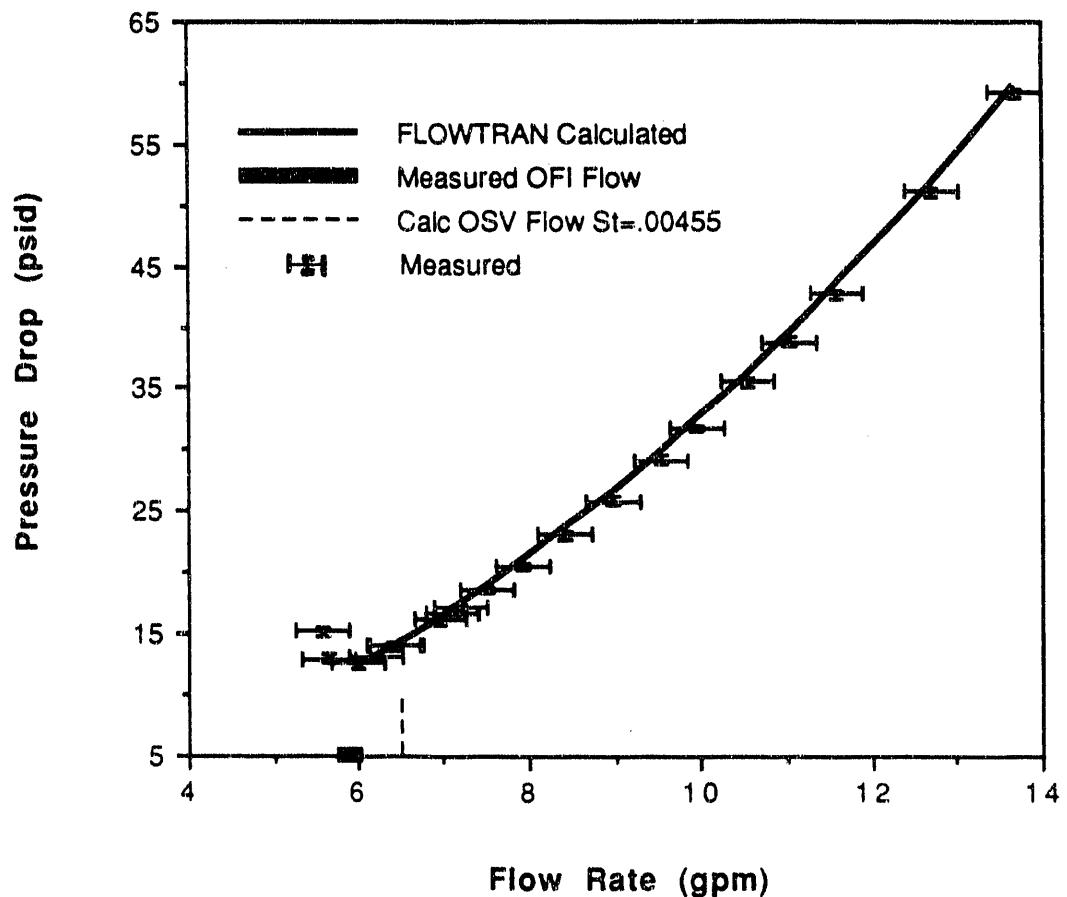
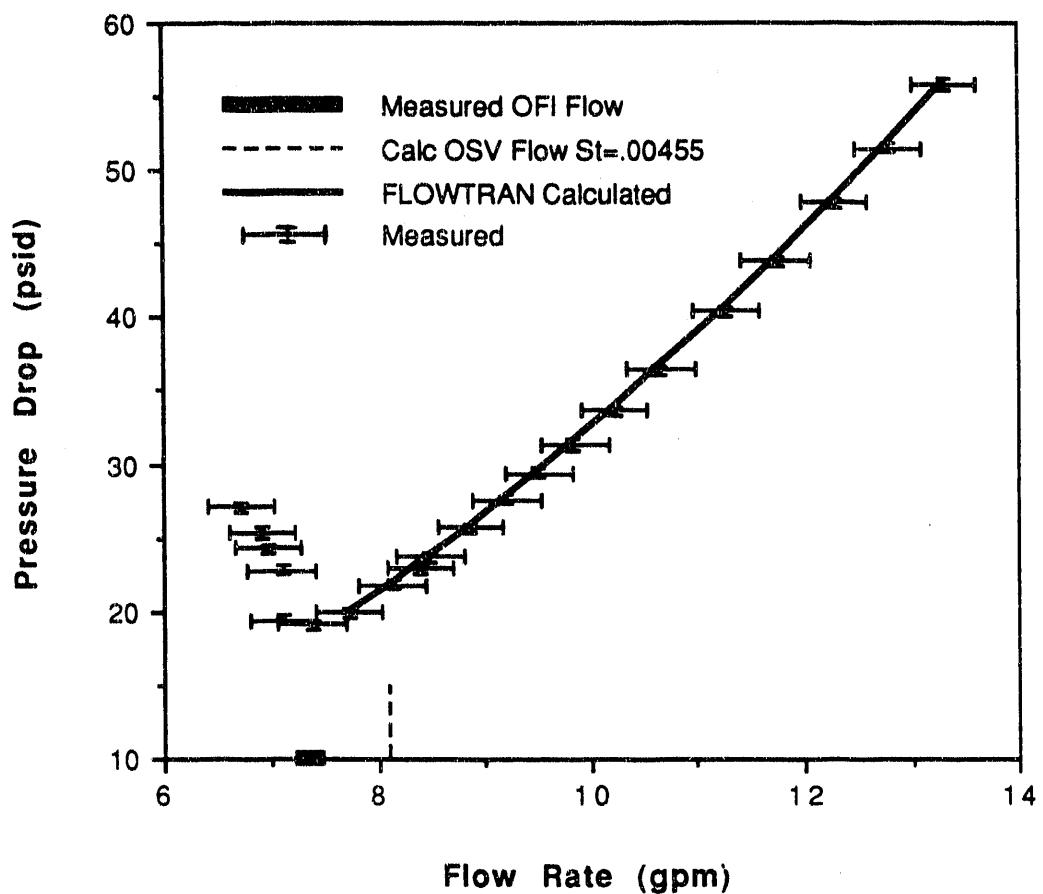



FIGURE A-13. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 05

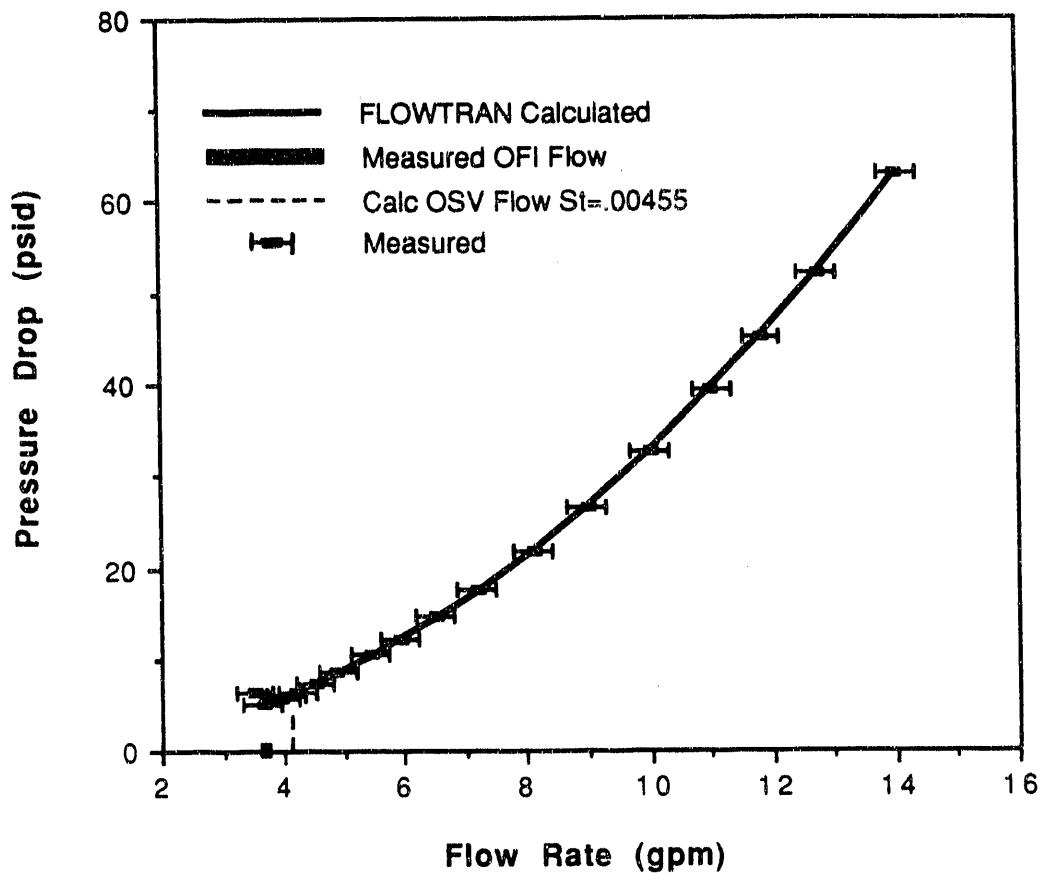
INC TUBE ID=0.359" ; UNIFORM FLUX=0.6 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA



FIGURE A-14. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 06

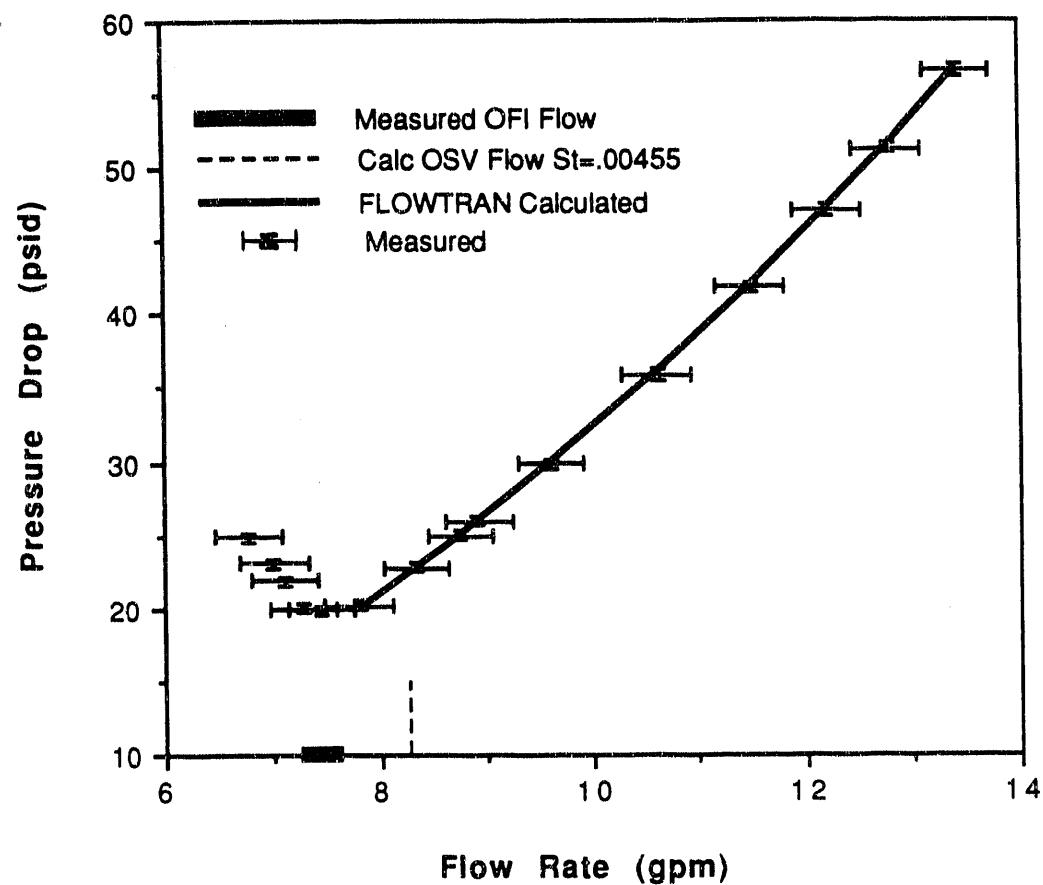
**INC TUBE ID=0.359" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-15. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 07**

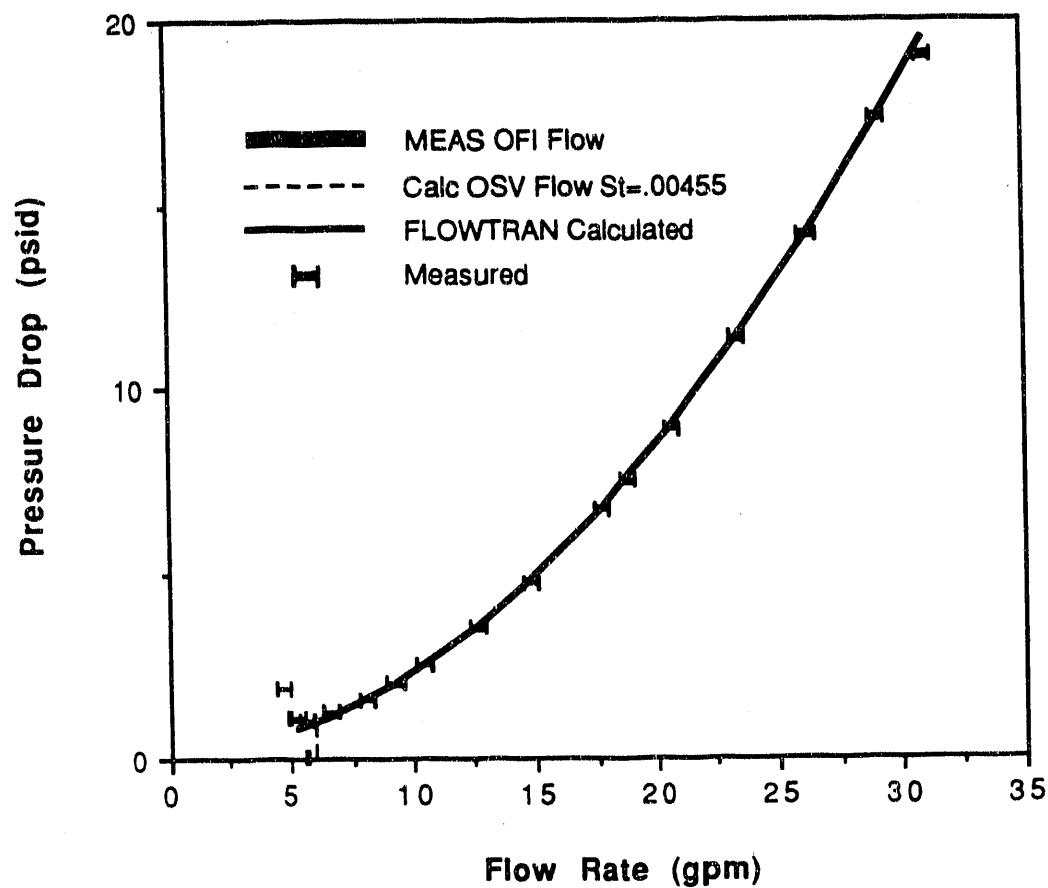
**INC TUBE ID=0.359" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>**  
**INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-16. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 08**

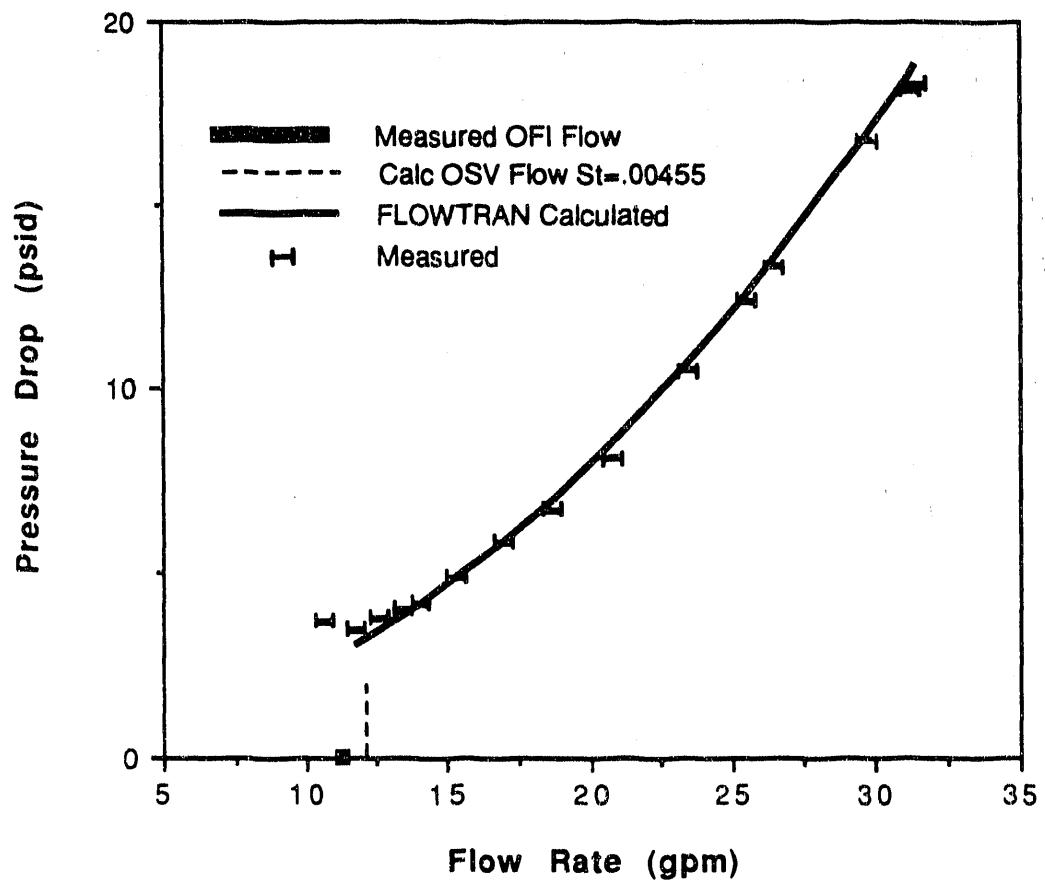
**INC TUBE ID=0.359" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>**  
**INLET TEMP=122 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-17. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 09**

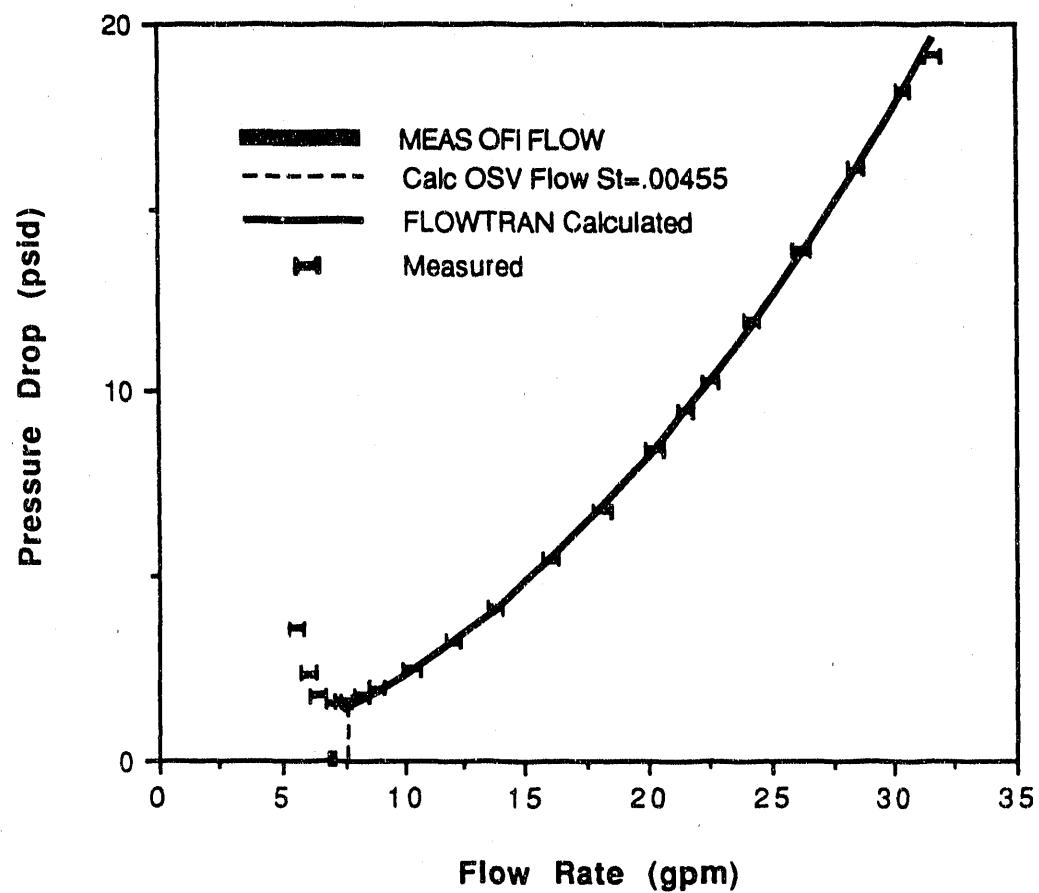
**INC TUBE ID=0.359" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=122 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-18. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 9 - 10**

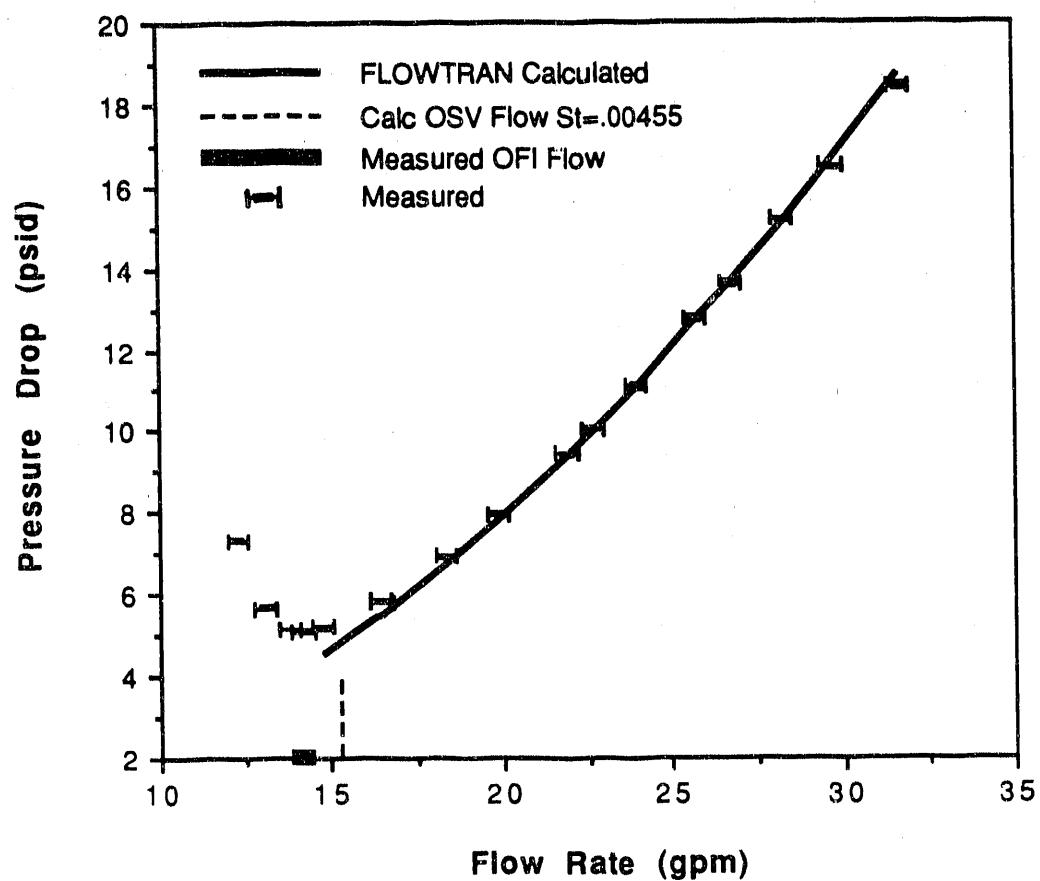
**SS TUBE ID=0.600" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-19. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 7 - 01**

**SS TUBE ID=0.600" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-20. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 7 - 02**

**SS TUBE ID=0.600" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA**



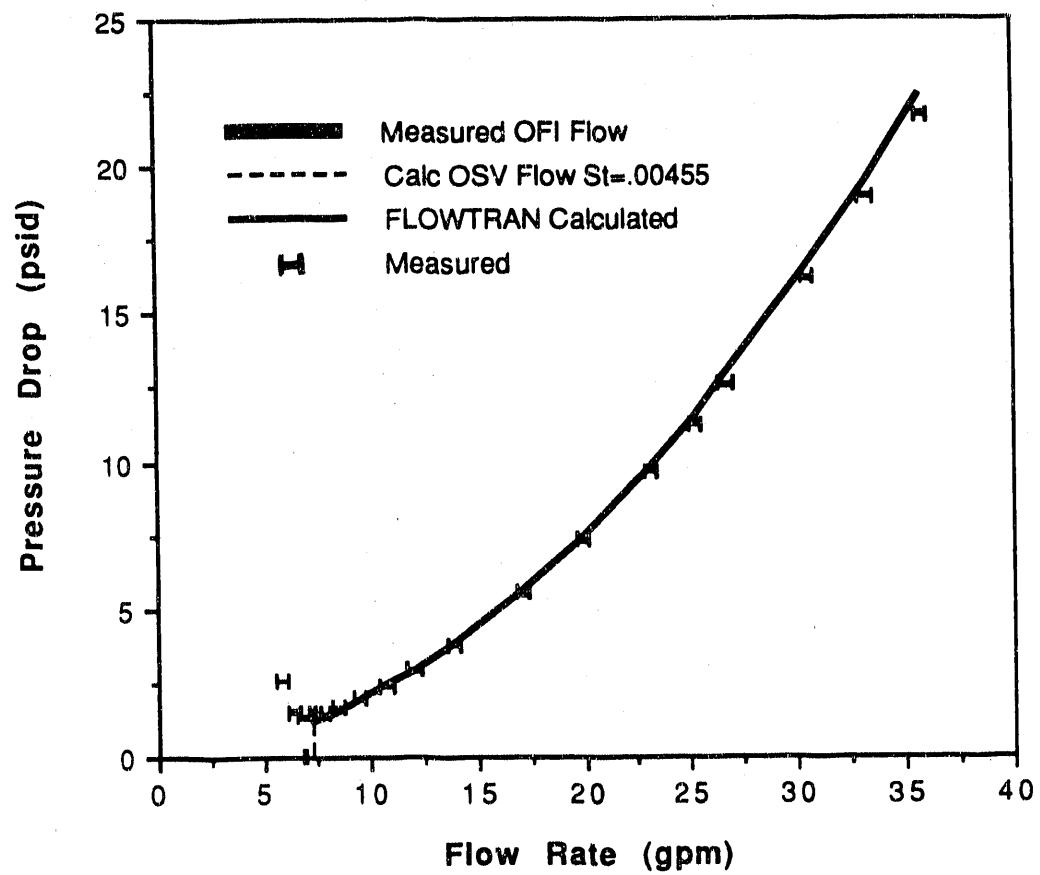
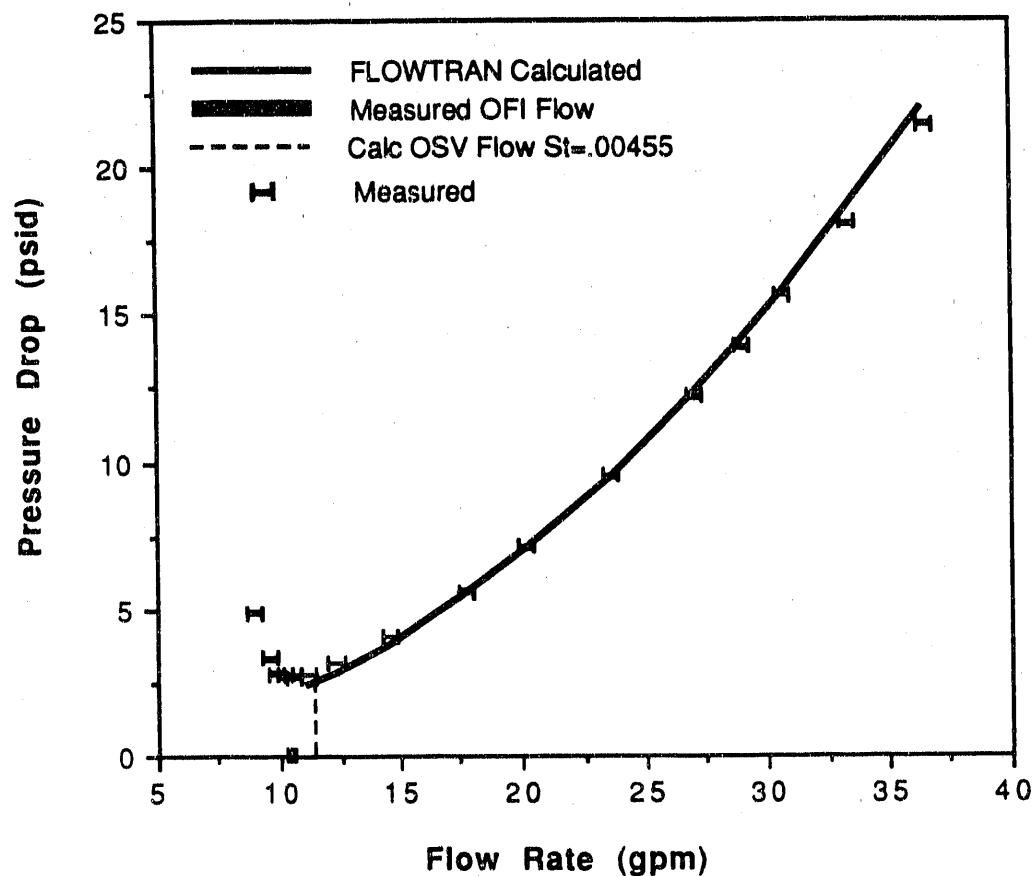
**FIGURE A-21. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 7 - 03**

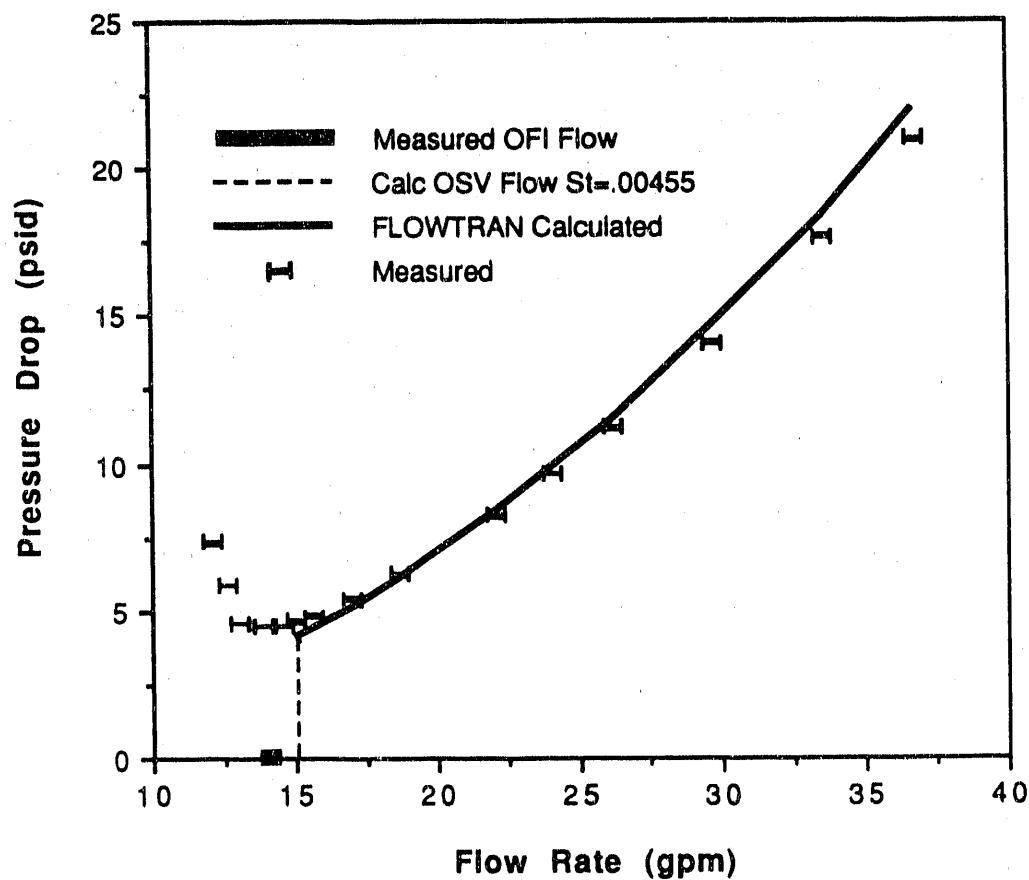
**SS TUBE ID=0.600" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA**



**FIGURE A-22. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 7 - 04**

INC TUBE ID=0.6125" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA



FIGURE A-23. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 01

**INC TUBE ID=0.6125" ; UNIFORM FLUX=0.6 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA**



**FIGURE A-24. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 02**

**INC TUBE ID=0.6125" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA**



**FIGURE A-25. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 03**

**INC TUBE ID=0.6125" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA**



**FIGURE A-26. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 04**

INC TUBE ID=0.6125" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=34.7 PSIA

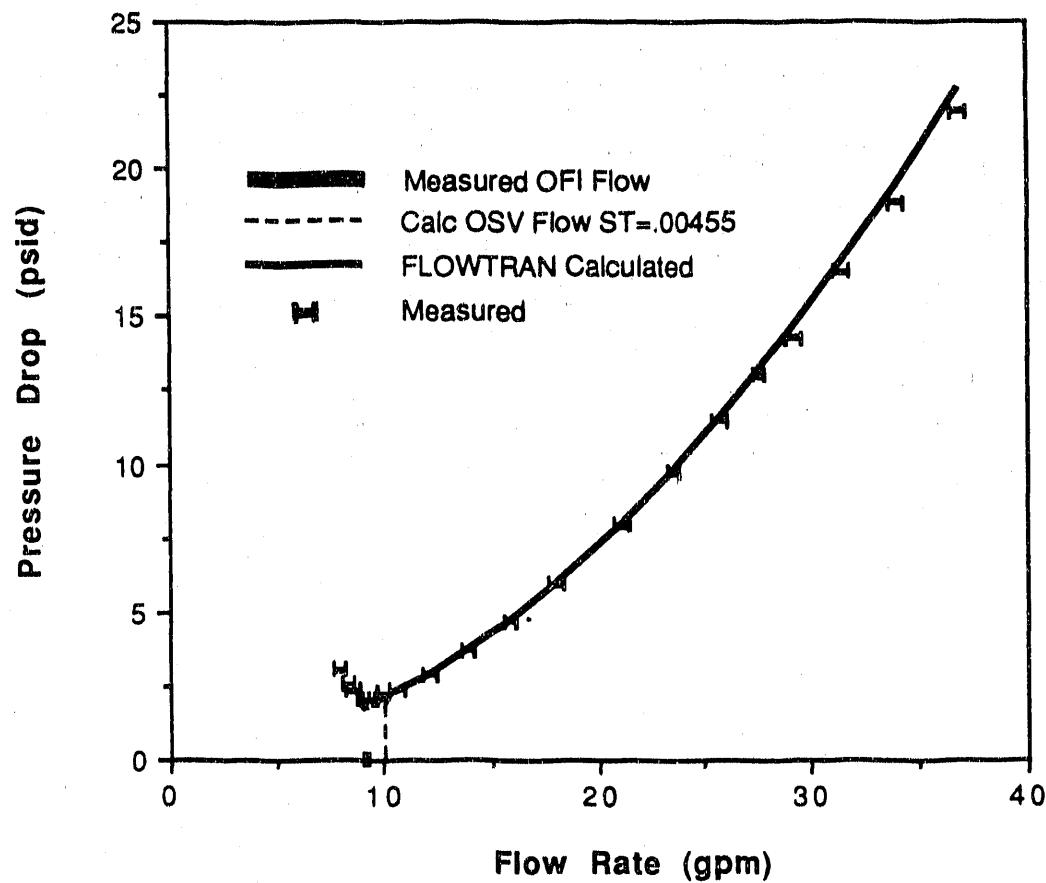
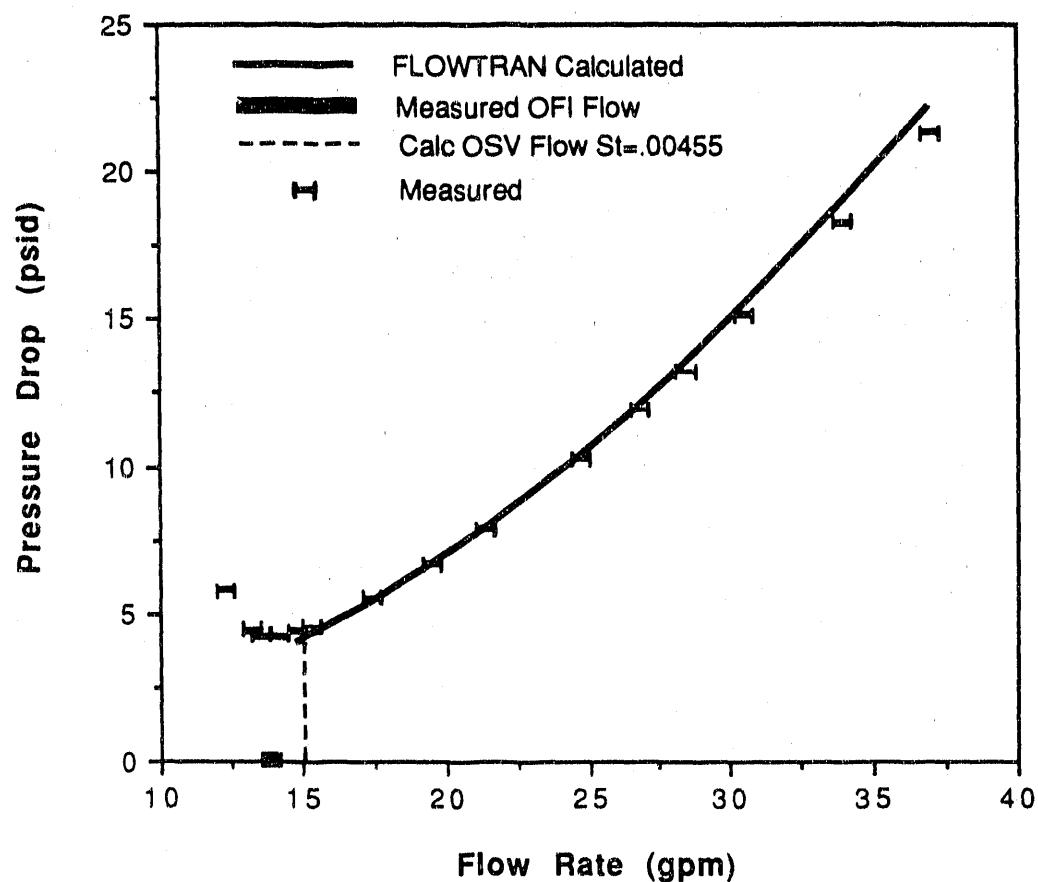



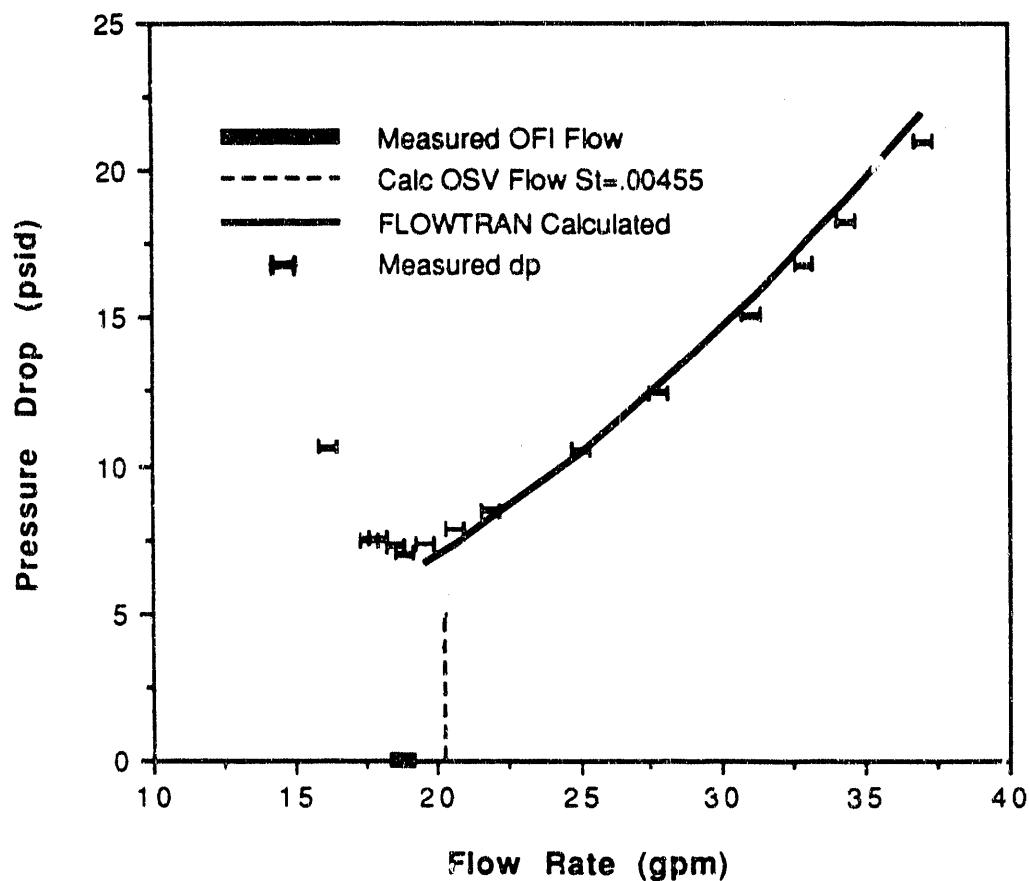
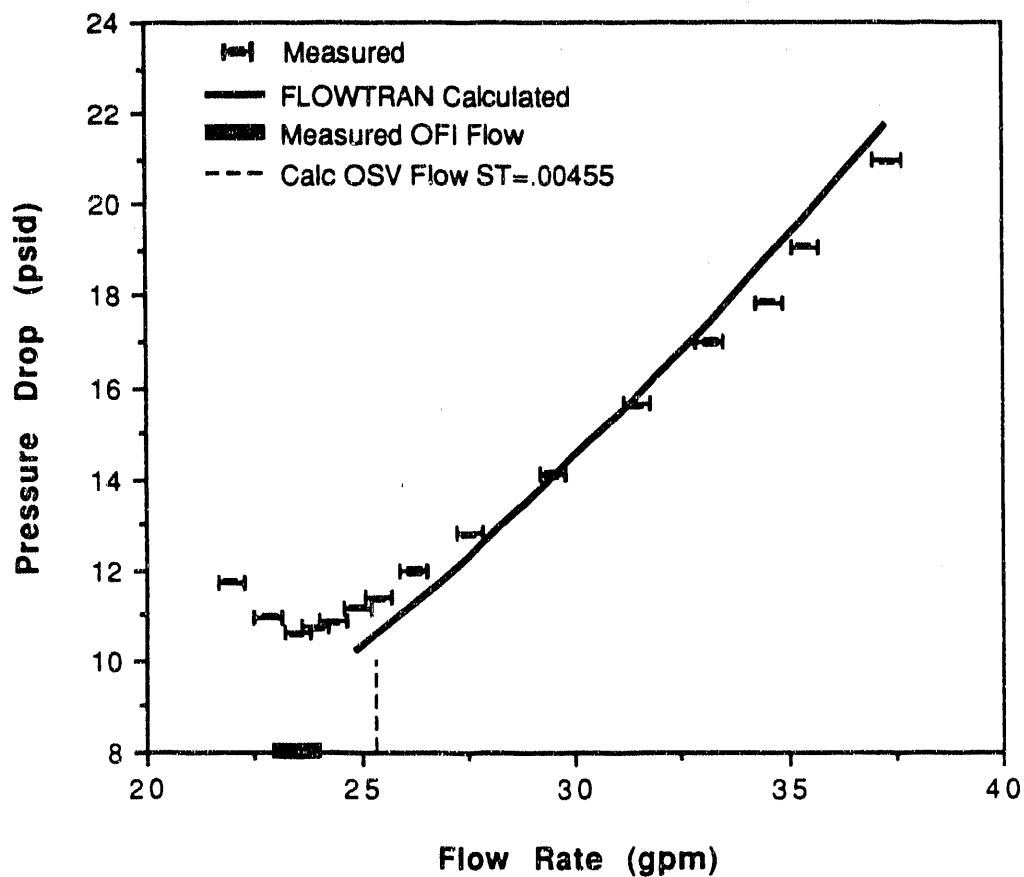

FIGURE A-27. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 05

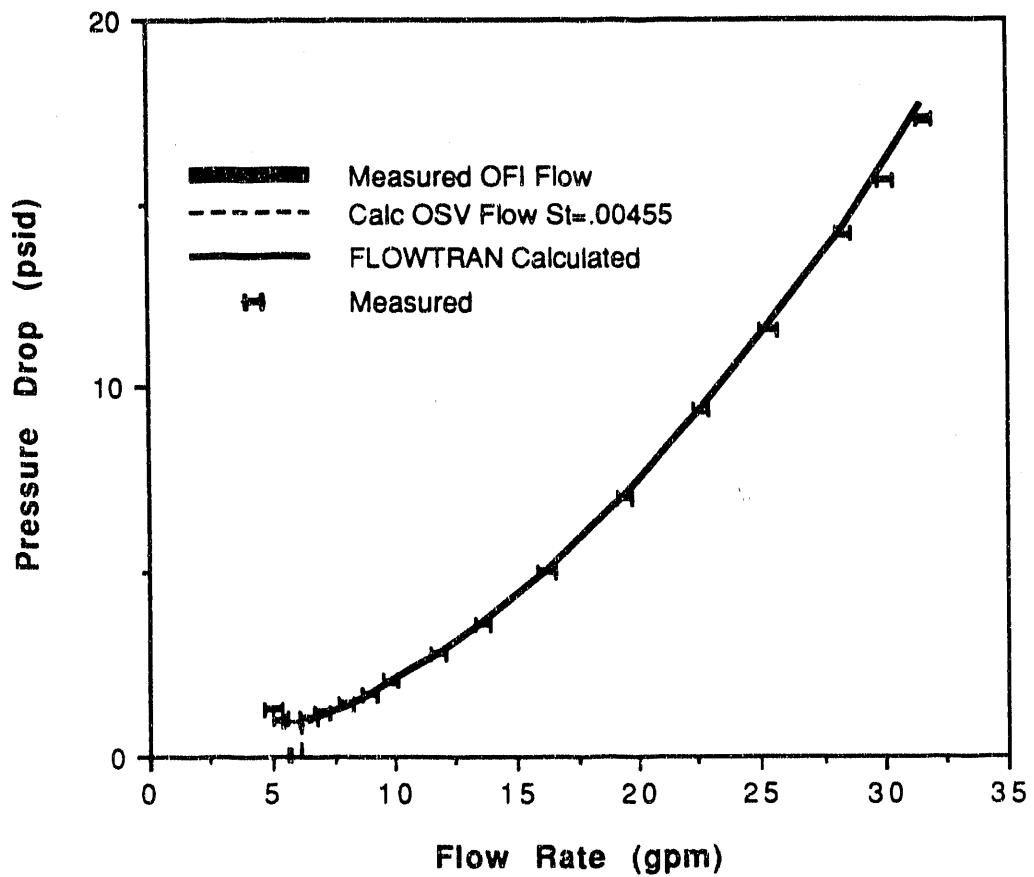
**INC TUBE ID=0.6125" ; UNIFORM FLUX=0.6 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=34.7 PSIA**



**FIGURE A-28. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 06**

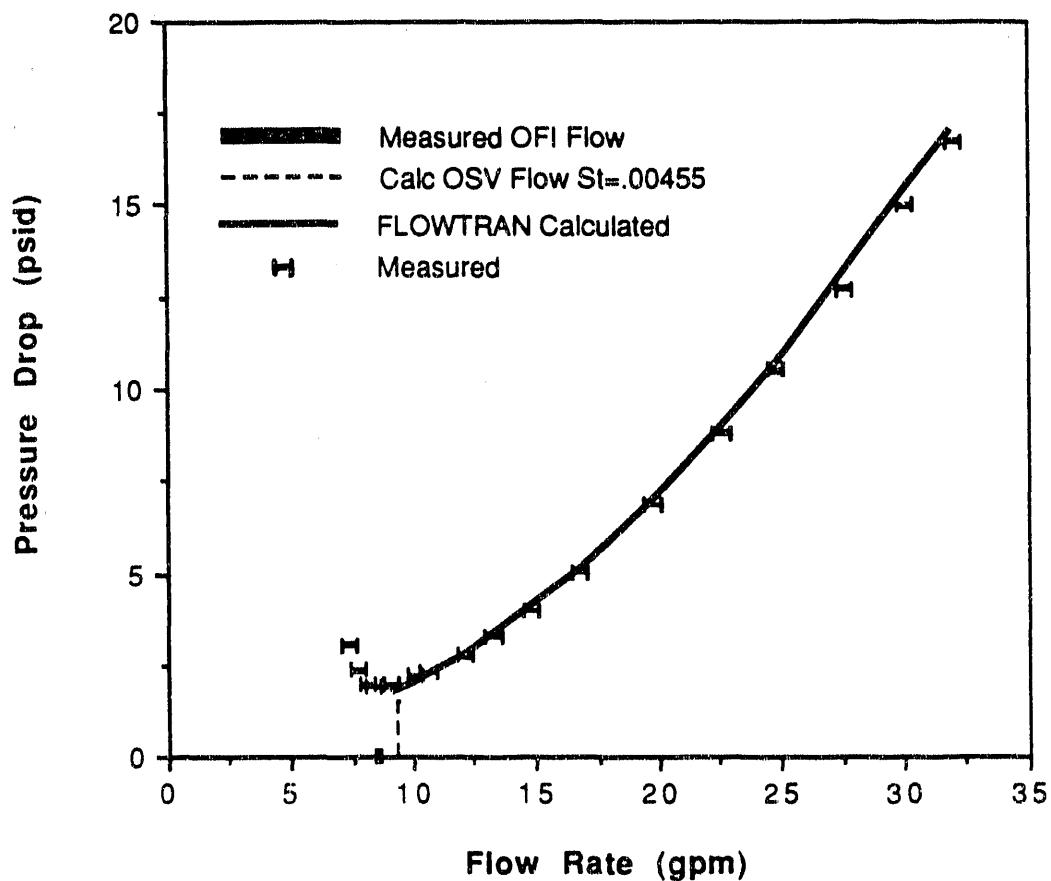
INC TUBE ID=0.6125" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=34.7 PSIA



FIGURE A-29. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 07

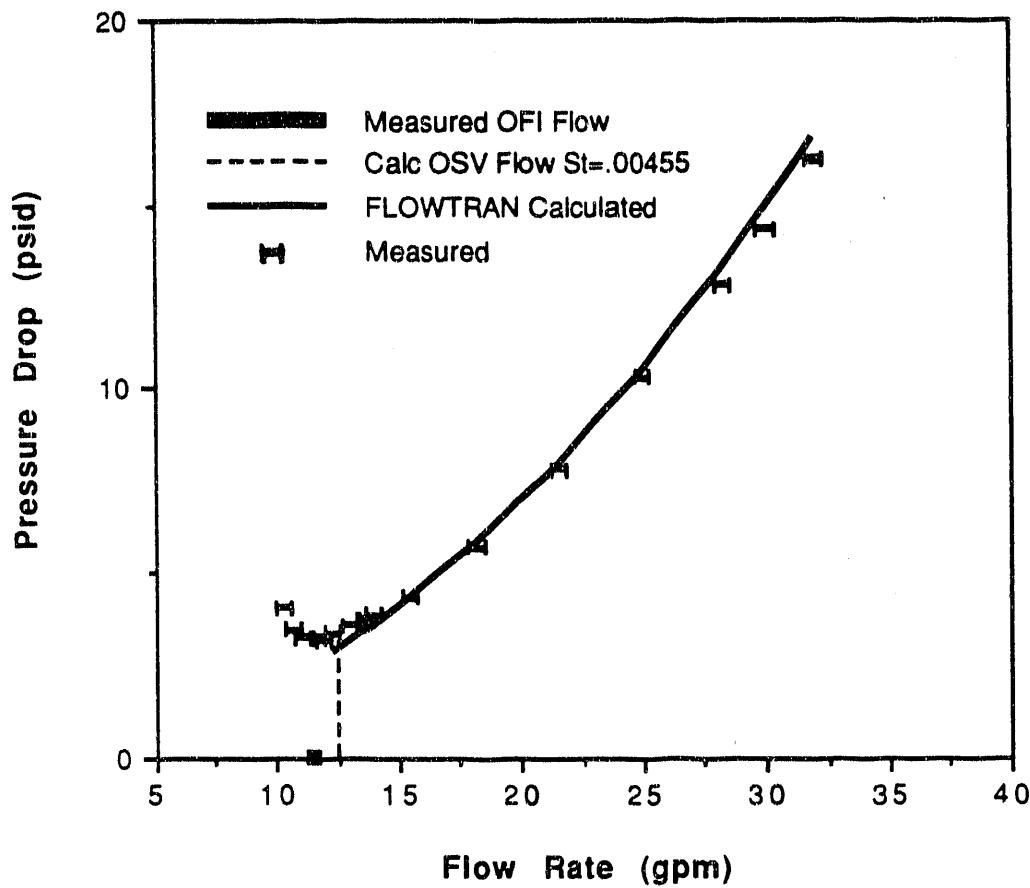
**INC TUBE ID=0.6125" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=34.7 PSIA**




**FIGURE A-30. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 08**

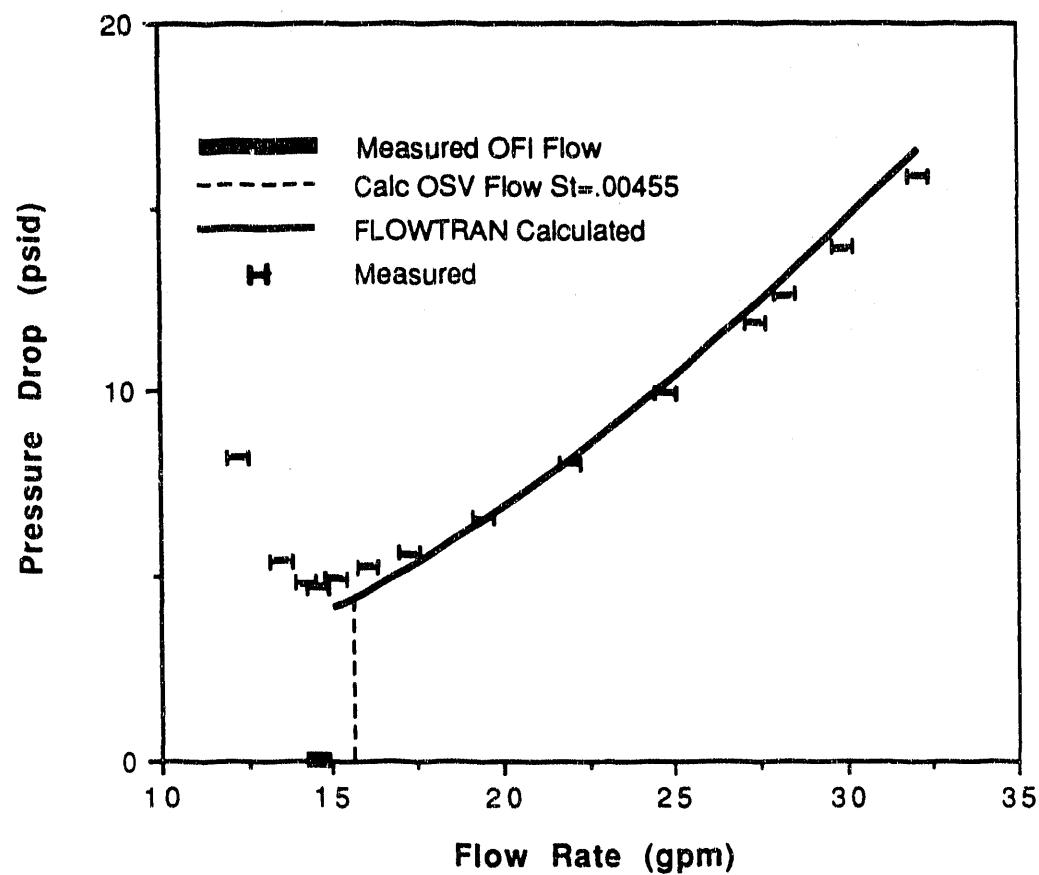
**INC TUBE ID=0.6125" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-31. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 09**

**INC TUBE ID=0.6125" ; UNIFORM FLUX=0.6 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-32. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 10**

**INC TUBE ID=0.6125" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**



**FIGURE A-33. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 11**

**INC TUBE ID=0.6125" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>**  
**INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**



**FIGURE A-34. MEASURED DATA AND FLOWTRAN PREDICTIONS FOR TEST RUN 4 - 12**

INC TUBE ID=0.6125" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

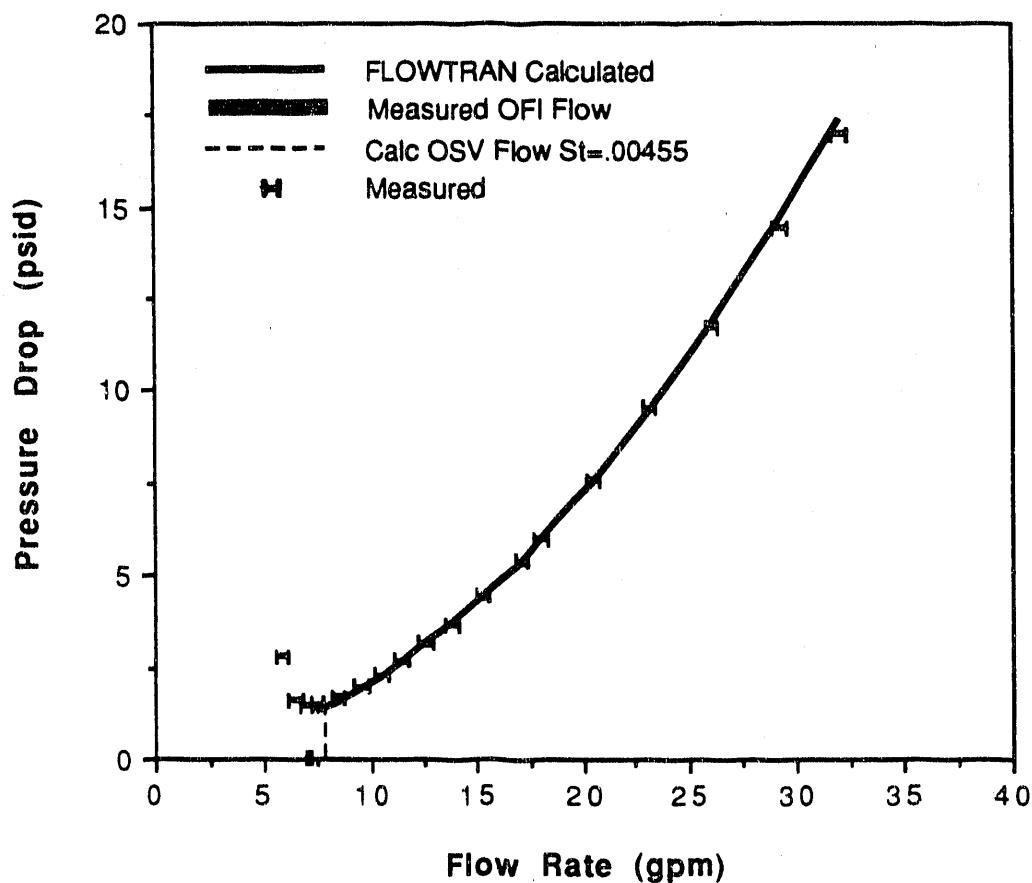
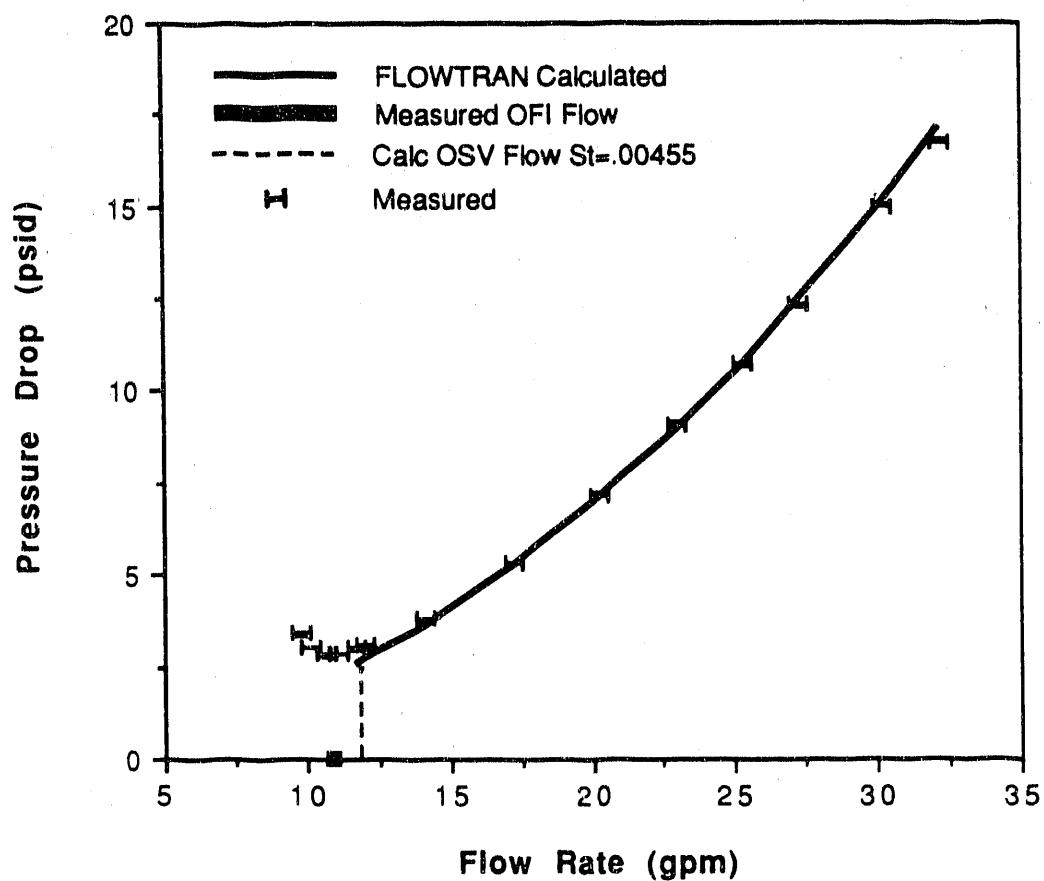



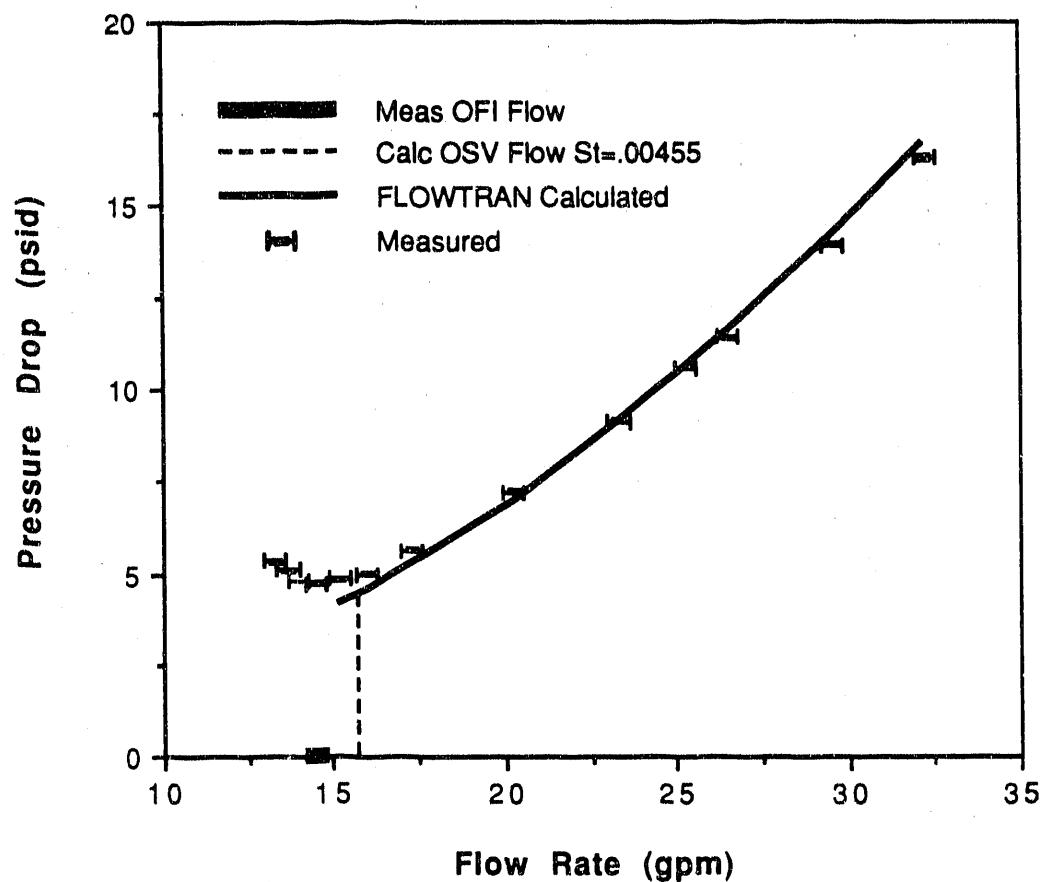
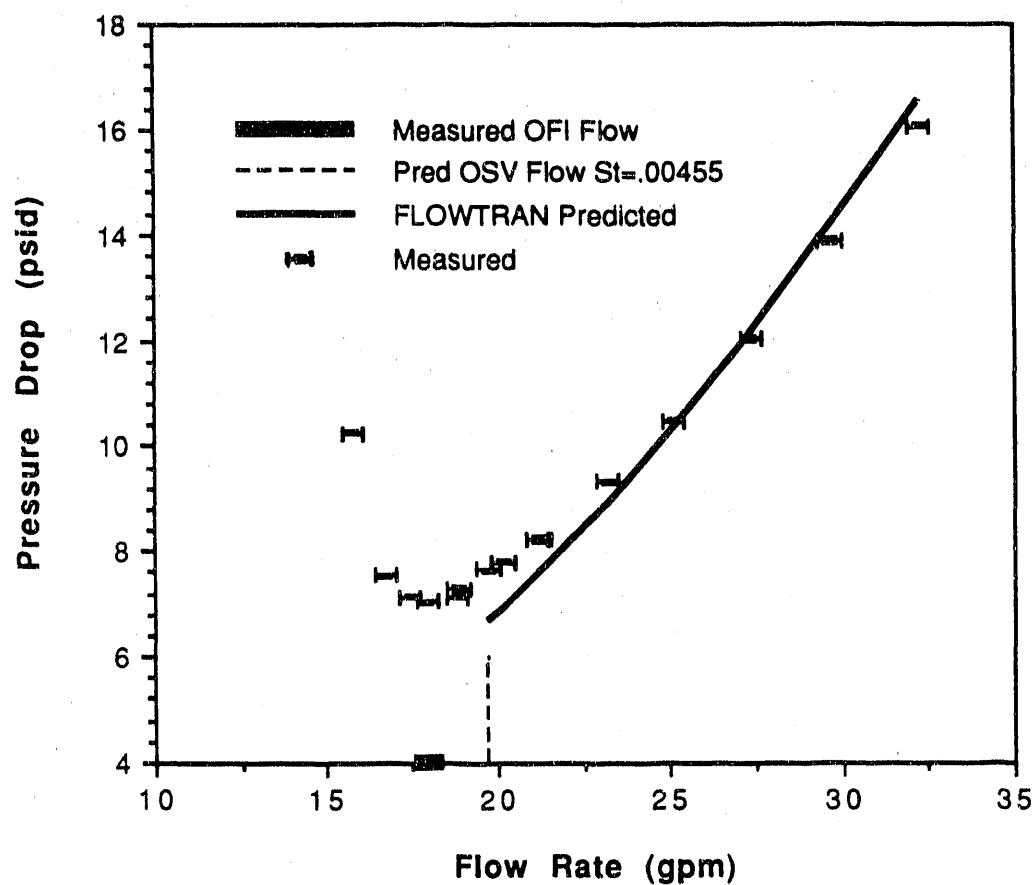

FIGURE A-35. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 13

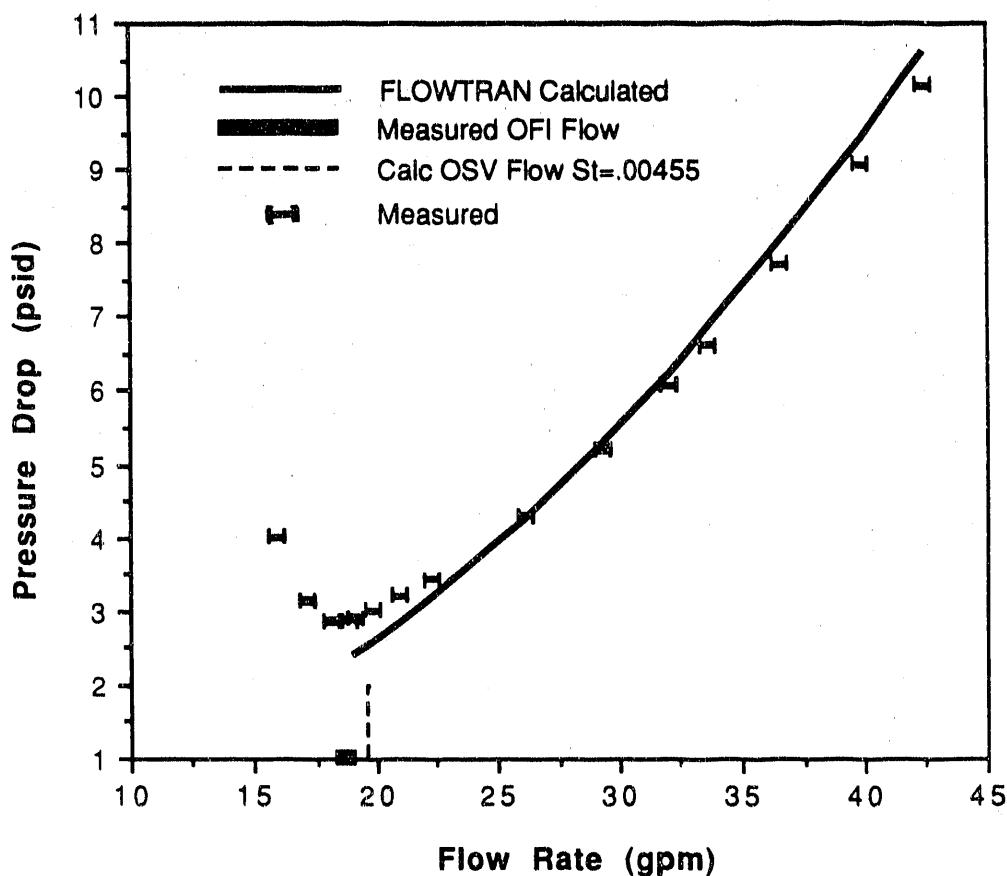
**INC TUBE ID=0.6125" ; UNIFORM FLUX=0.6 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA**



**FIGURE A-36. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 14**

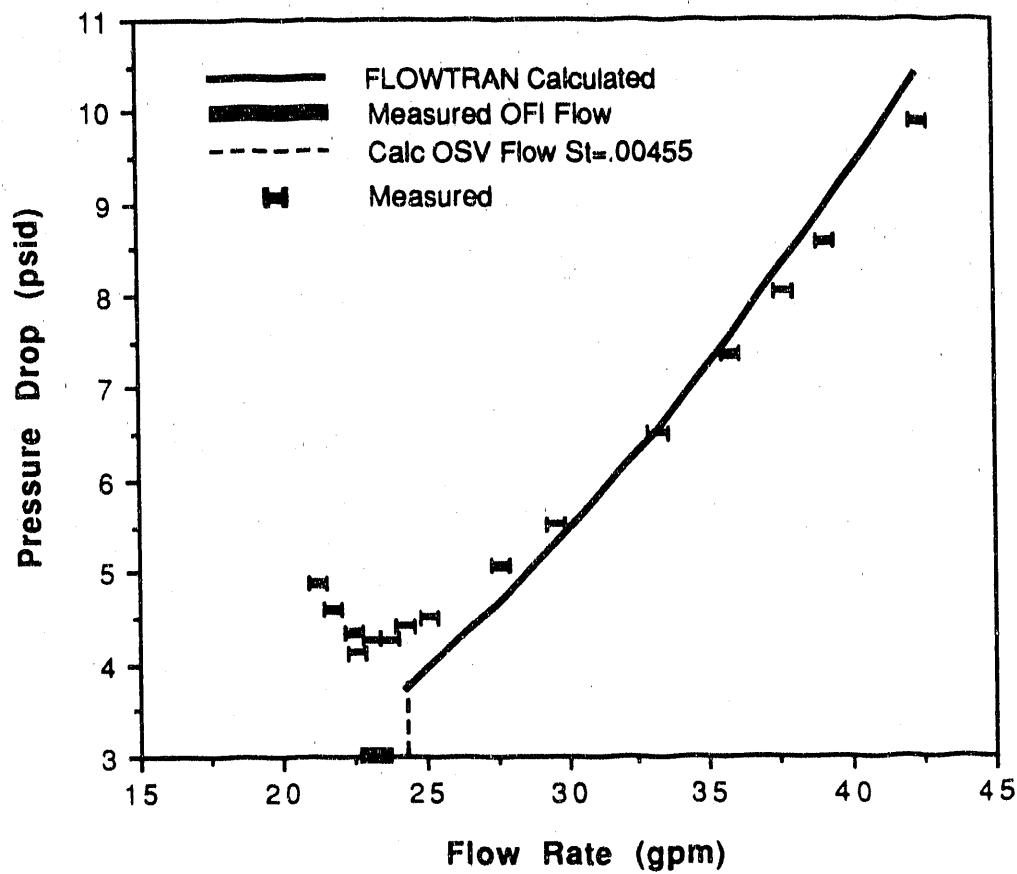
INC TUBE ID=0.6125" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA



FIGURE A-37. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 15

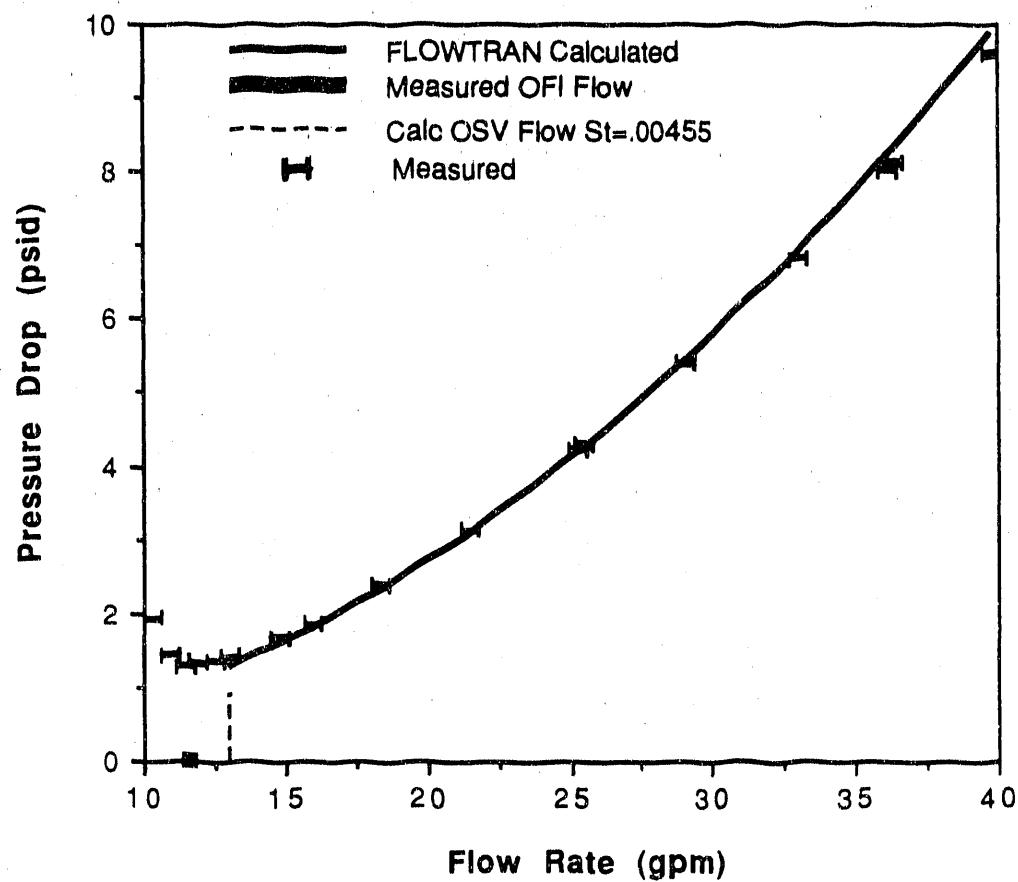
**INC TUBE ID=0.6125" ; UNIFORM FLUX=1.0 MBTU.HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-38. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 4 - 16**

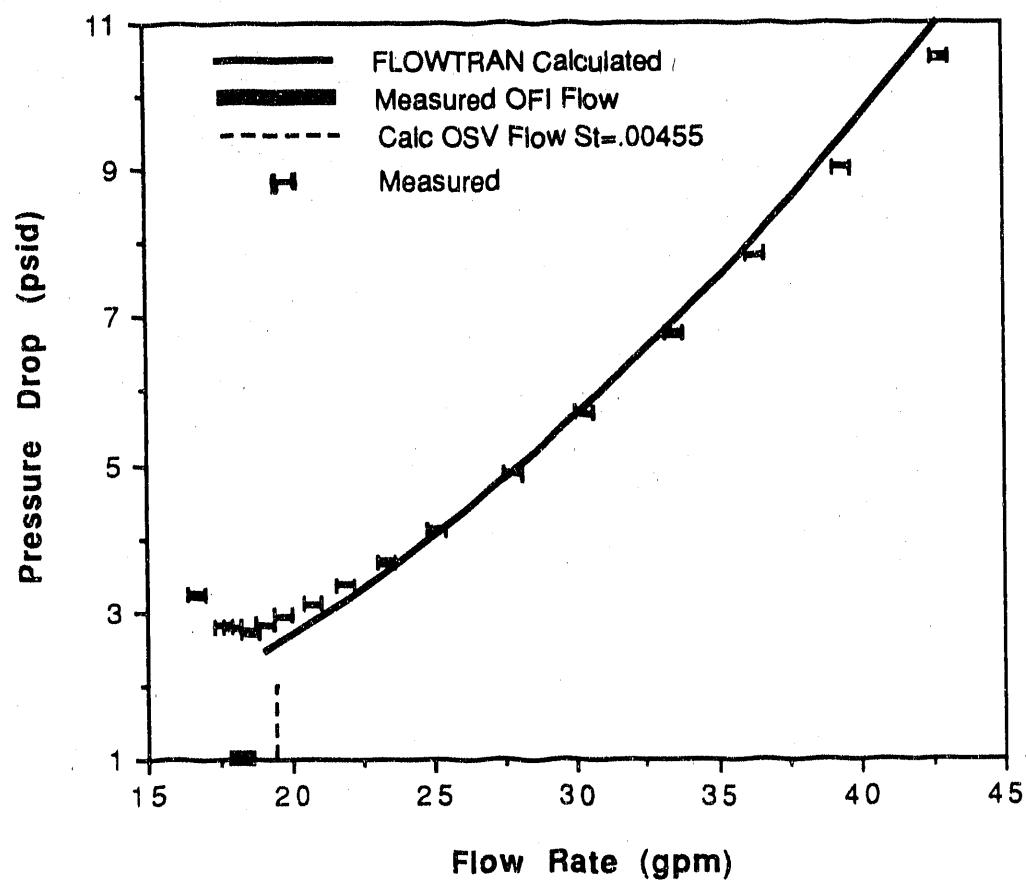
**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA**




**FIGURE A-39. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 01**

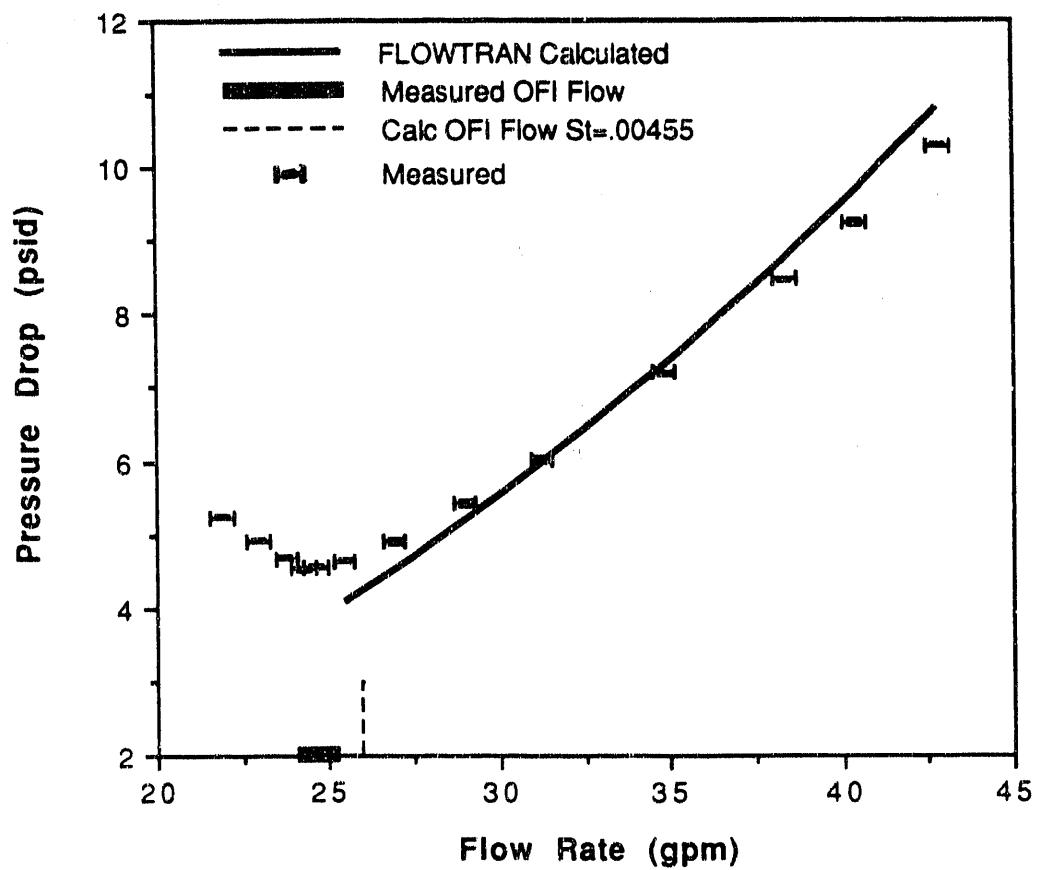
**SS TUBE ID=0.7516" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA**




**FIGURE A-40. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 02**

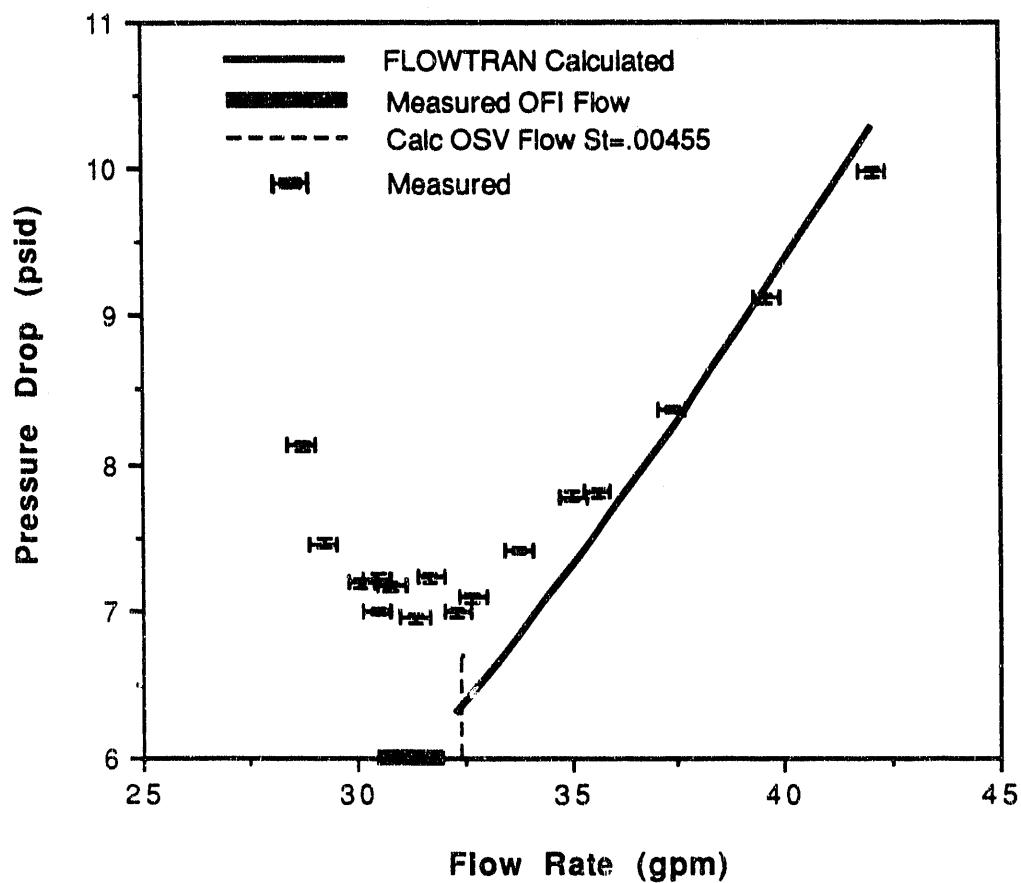
**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=34.7 PSIA**




**FIGURE A-41. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 03**

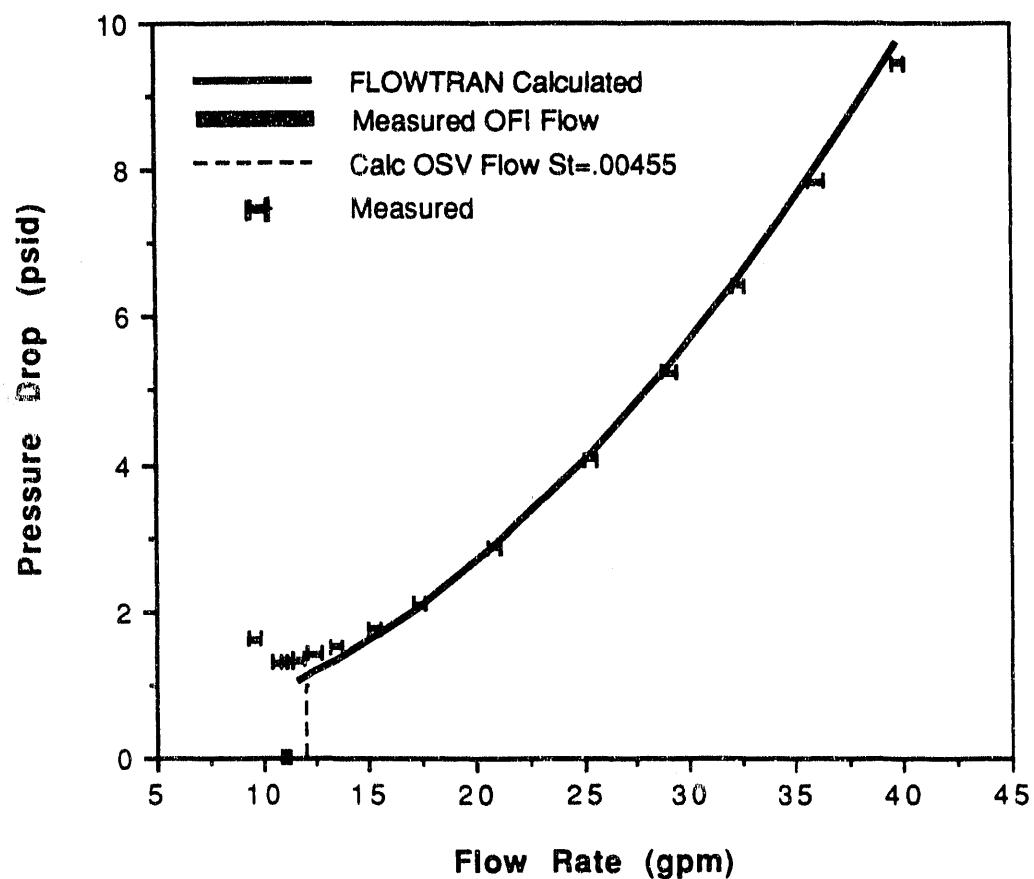
**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.6 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=34.7 PSIA**




**FIGURE A-42. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 04**

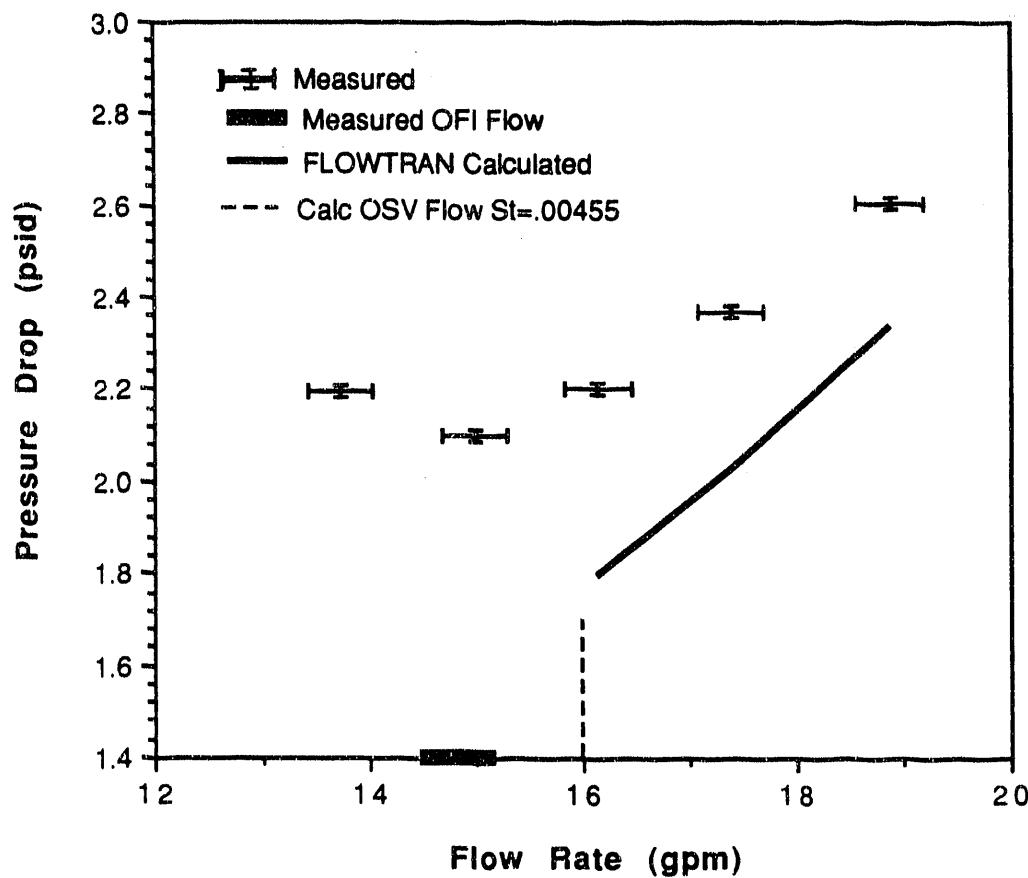
**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=34.7 PSIA**




**FIGURE A-43. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 05**

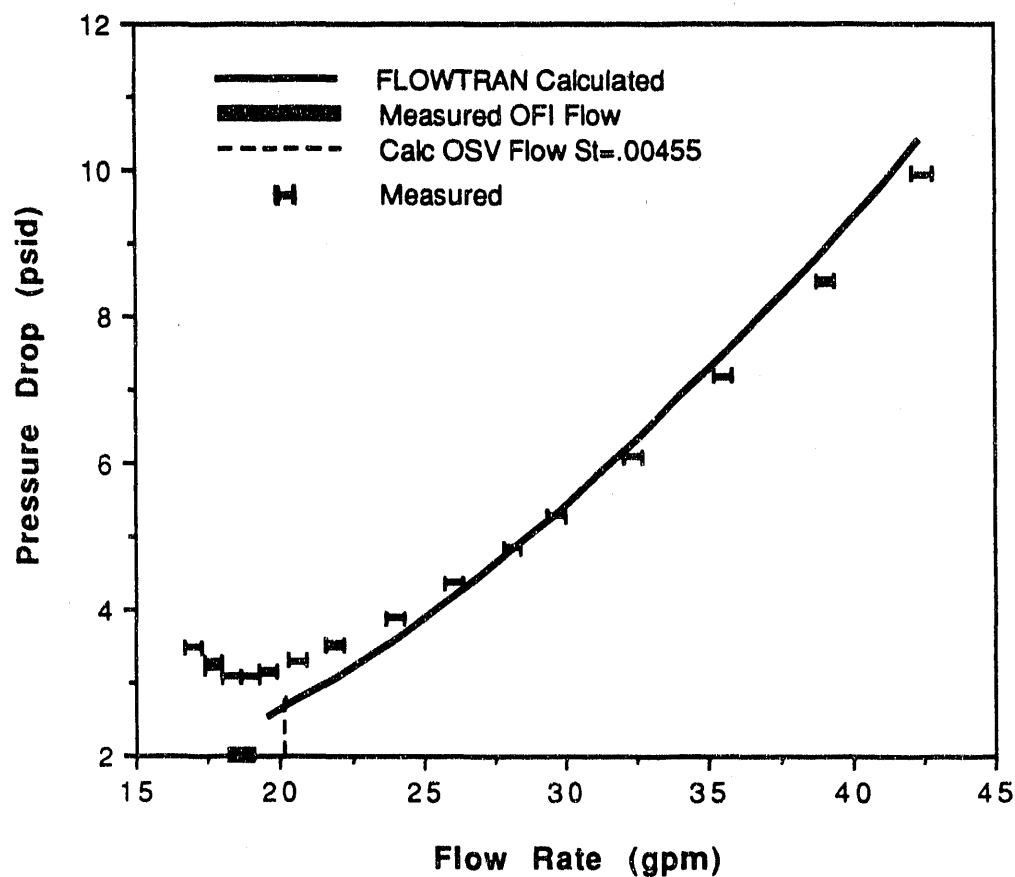
**SS TUBE ID=0.7516" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=34.7 PSIA**




**FIGURE A-44. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 06**

**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.6 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-45. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 07**

**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**



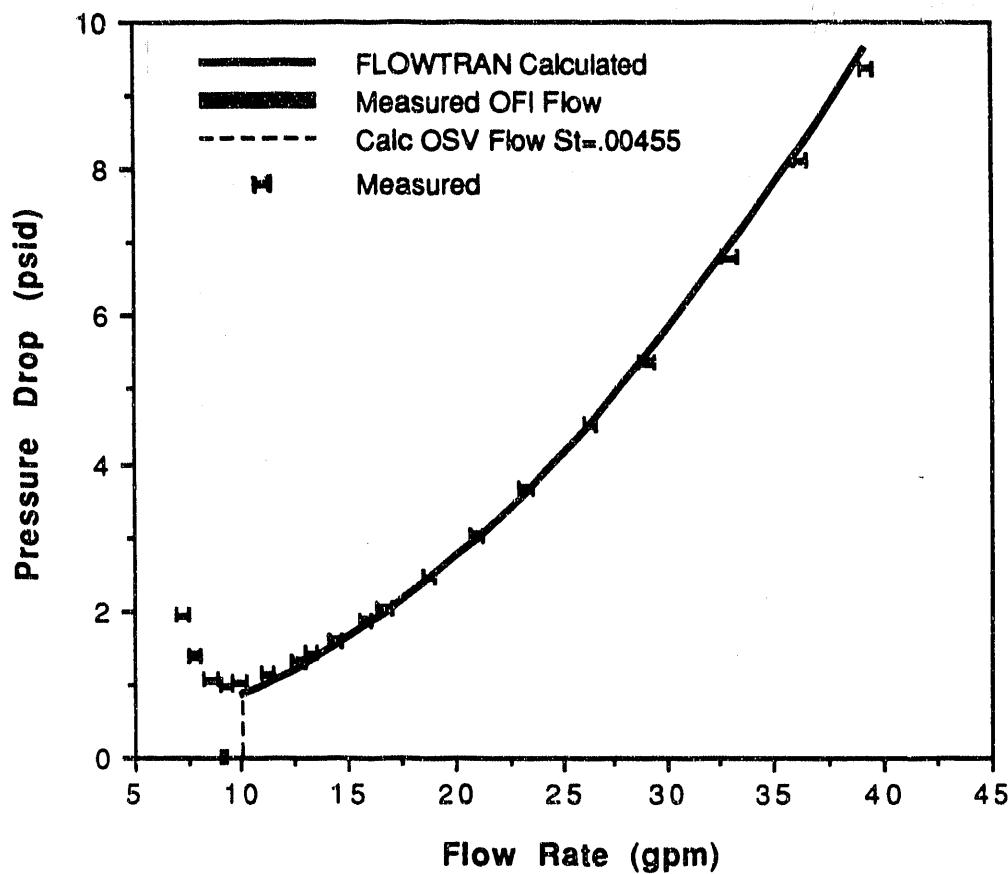
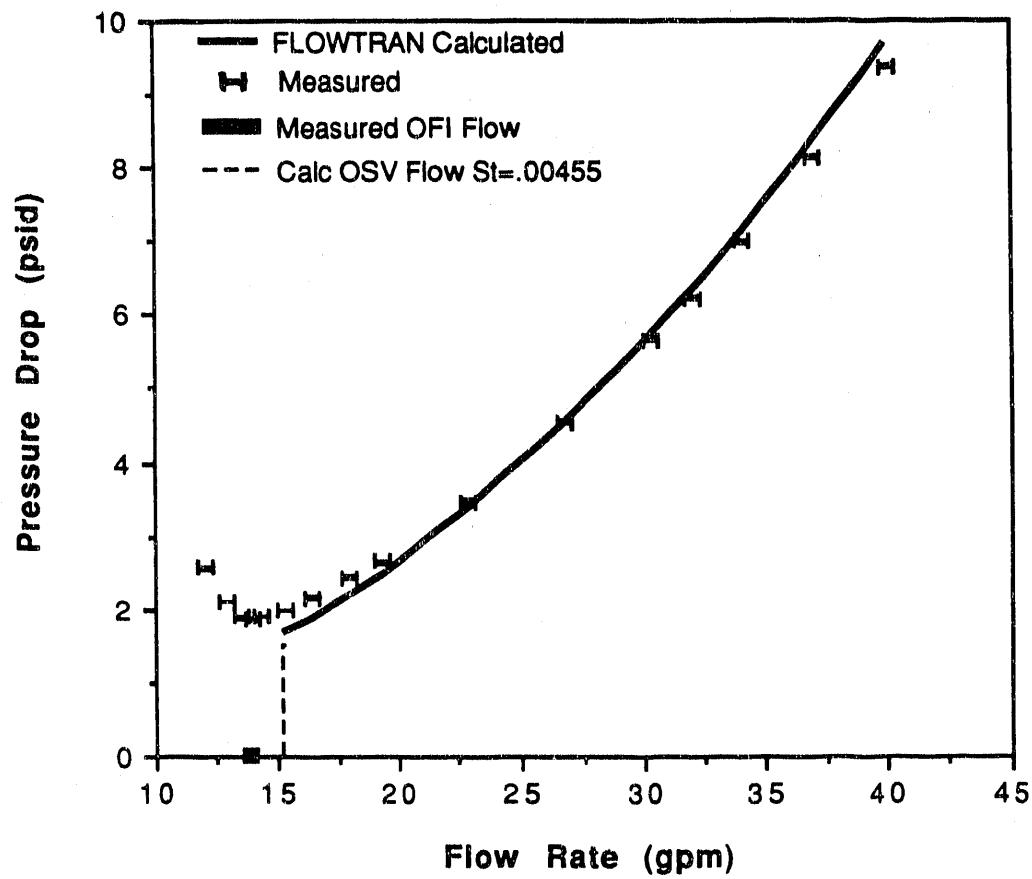
**FIGURE A-46. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 08**

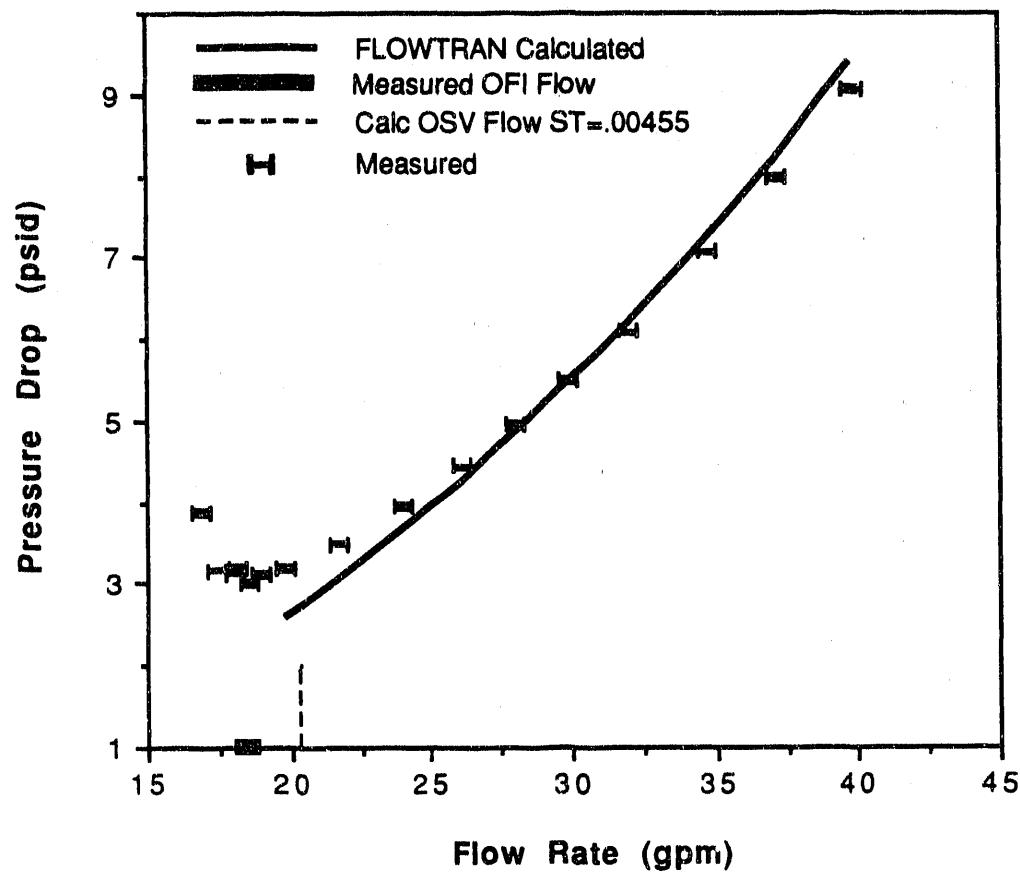
**SS TUBE ID=0.7516" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=64.7 PSIA**



**FIGURE A-47. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 09**

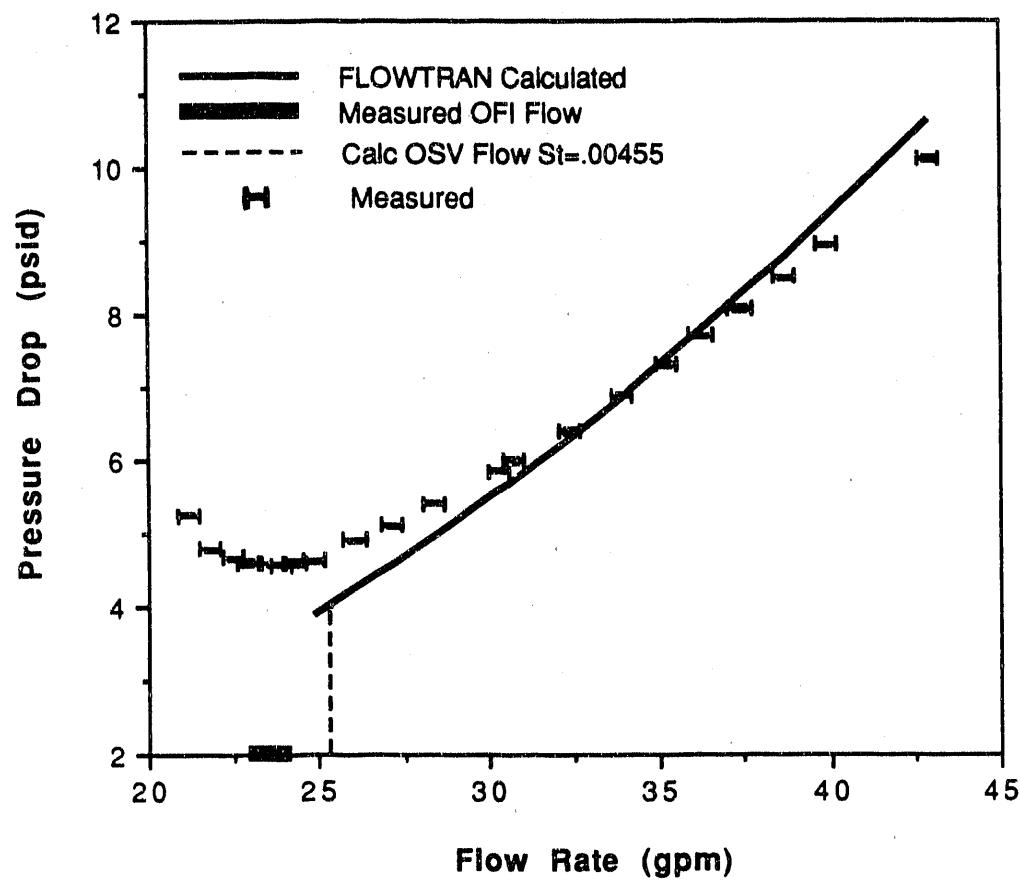
SS TUBE /ID=0.7516" ; UNIFORM FLUX=0.4 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA



FIGURE A-48. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 10

**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.6 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA**




**FIGURE A-49. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 11**

**SS TUBE ID=0.7516" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>**  
**INLET TEMP=121 F ; EXIT PRES=64.7 PSIA**



**FIGURE A-50. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 12**

**SS TUBE ID=0.7516" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA**



**FIGURE A-51. MEASURED DATA AND FLOWTRAN PREDICTIONS  
FOR TEST RUN 2.1 - 13**

## APPENDIX - B

### INDIVIDUAL TEST POINT CONDITIONS

This appendix contains the table for individual test point conditions. The table presents power, heat flux, exit pressure, inlet temperature, flow rate, measured pressure drop, FLOWTRAN calculated pressure drop, and the percent difference between FLOWTRAN calculated and measured pressure drops for all data points for all test runs. The data points that correspond to each test run are listed in Table 5.

Flow rates and measured pressure drops are associated with their measurement uncertainties. A significant amount of void is present in the flow channel if the flow rate is lower than the FLOWTRAN calculated OSV flow rate at  $St=0.00455$ . FLOWTRAN code is not designed to handle pressure drops for two-phase flows. The difference between measured and FLOWTRAN calculated pressure drops is not meaningful for flow rates lower than the FLOWTRAN calculated OSV flow rate at  $St=0.00455$ . These cases are shown as "\*\*\*\*\*" in column "Difference".

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 598        | 2.1         | 0.001       | 64.831                               | 76.875                | 77.000          | 35.175 ± 0.320   | 9.334 ± 0.033    | 9.484                      | 1.61                   |                 |
| 599        | 2.1         | 0.001       | 64.781                               | 78.713                | 78.988          | 32.246 ± 0.319   | 8.006 ± 0.029    | 8.060                      | 0.67                   |                 |
| 600        | 2.1         | 0.001       | 64.608                               | 77.700                | 77.837          | 32.195 ± 0.319   | 8.008 ± 0.029    | 7.606                      | -5.02                  |                 |
| 601        | 2.1         | 0.001       | 64.979                               | 77.463                | 77.500          | 29.103 ± 0.318   | 6.792 ± 0.026    | 6.708                      | -1.24                  |                 |
| 602        | 2.1         | 0.001       | 64.584                               | 77.687                | 77.700          | 26.147 ± 0.317   | 5.651 ± 0.023    | 5.520                      | -2.31                  |                 |
| 603        | 2.1         | 0.001       | 64.497                               | 77.950                | 78.000          | 22.788 ± 0.315   | 4.426 ± 0.021    | 4.303                      | -2.78                  |                 |
| 604        | 2.1         | 0.001       | 64.682                               | 77.912                | 78.000          | 19.989 ± 0.315   | 3.523 ± 0.019    | 3.398                      | -3.54                  |                 |
| 605        | 2.1         | 0.001       | 64.756                               | 77.588                | 77.513          | 17.576 ± 0.314   | 2.790 ± 0.018    | 2.700                      | -3.24                  |                 |
| 606        | 2.1         | 0.001       | 64.732                               | 77.475                | 77.500          | 15.078 ± 0.314   | 2.111 ± 0.017    | 2.053                      | -2.77                  |                 |
| 607        | 2.1         | 0.001       | 64.707                               | 77.375                | 77.500          | 12.347 ± 0.313   | 1.504 ± 0.017    | 1.438                      | -4.40                  |                 |
| 608        | 2.1         | 0.001       | 64.707                               | 77.375                | 77.500          | 9.655 ± 0.313    | 0.962 ± 0.016    | 0.930                      | -3.38                  |                 |
| 609        | 2.1         | 0.001       | 64.559                               | 77.575                | 77.500          | 7.418 ± 0.313    | 0.612 ± 0.016    | 0.584                      | -4.64                  |                 |
| 610        | 2.1         | 0.001       | 64.534                               | 77.962                | 78.000          | 5.493 ± 0.312    | 0.353 ± 0.016    | 0.344                      | -2.46                  |                 |
| 611        | 2.1         | 0.001       | 64.719                               | 76.487                | 76.500          | 39.835 ± 0.322   | 11.700 ± 0.039   | 11.923                     | 1.90                   |                 |
| 612        | 2.1         | 0.604       | 64.682                               | 76.988                | 125.275         | 39.866 ± 0.322   | 9.460 ± 0.033    | 9.706                      | 2.60                   |                 |
| 613        | 2.1         | 0.595       | 64.682                               | 76.362                | 128.813         | 35.978 ± 0.320   | 7.838 ± 0.029    | 7.978                      | 1.78                   |                 |
| 614        | 2.1         | 0.598       | 64.695                               | 77.812                | 136.475         | 32.306 ± 0.319   | 6.422 ± 0.025    | 6.492                      | 1.09                   |                 |
| 615        | 2.1         | 0.596       | 64.460                               | 76.587                | 141.500         | 29.039 ± 0.318   | 5.251 ± 0.023    | 5.299                      | 0.91                   |                 |
| 616        | 2.1         | 0.600       | 64.695                               | 77.488                | 151.812         | 25.334 ± 0.316   | 4.075 ± 0.020    | 4.090                      | 0.38                   |                 |
| 617        | 2.1         | 0.599       | 64.435                               | 77.5                  | 168.013         | 20.893 ± 0.315   | 2.878 ± 0.018    | 2.850                      | -0.97                  |                 |
| 618        | 2.1         | 0.597       | 64.633                               | 76.687                | 185.000         | 17.390 ± 0.314   | 2.100 ± 0.017    | 2.036                      | -3.06                  |                 |
| 619        | 2.1         | 0.602       | 64.645                               | 76.037                | 199.500         | 15.311 ± 0.314   | 1.767 ± 0.017    | 1.621                      | -8.24                  |                 |
| 620        | 2.1         | 0.599       | 64.905                               | 77.113                | 217.500         | 13.523 ± 0.313   | 1.521 ± 0.017    | 1.312                      | -13.76                 |                 |
| 621        | 2.1         | 0.599       | 64.645                               | 77.863                | 229.462         | 12.433 ± 0.313   | 1.427 ± 0.017    | 1.144                      | -19.84                 |                 |
| 622        | 2.1         | 0.597       | 64.855                               | 77.275                | 239.100         | 11.671 ± 0.313   | 1.350 ± 0.016    | 1.035                      | ***                    |                 |
| 623        | 2.1         | 0.597       | 64.781                               | 76.975                | 246.500         | 11.098 ± 0.313   | 1.331 ± 0.016    | 0.958                      | ***                    |                 |
| 624        | 2.1         | 0.595       | 64.868                               | 76.750                | 251.500         | 10.759 ± 0.313   | 1.301 ± 0.016    | 0.915                      | ***                    |                 |
| 625        | 2.1         | 0.594       | 64.621                               | 76.963                | 270.500         | 9.629 ± 0.313    | 1.618 ± 0.017    | 0.783                      | ***                    |                 |
| 626        | 2.1         | 0.400       | 64.448                               | 120.325               | 152.987         | 39.271 ± 0.322   | 9.376 ± 0.033    | 9.622                      | 2.62                   |                 |
| 627        | 2.1         | 0.401       | 64.485                               | 121.287               | 156.500         | 36.201 ± 0.320   | 8.116 ± 0.029    | 8.232                      | 1.43                   |                 |
| 628        | 2.1         | 0.400       | 64.756                               | 121.287               | 160.000         | 32.926 ± 0.319   | 6.801 ± 0.026    | 6.873                      | 1.06                   |                 |
| 629        | 2.1         | 0.399       | 64.584                               | 120.388               | 164.000         | 29.015 ± 0.318   | 5.384 ± 0.023    | 5.412                      | 0.52                   |                 |
| 630        | 2.1         | 0.396       | 64.633                               | 120.350               | 167.987         | 26.302 ± 0.317   | 4.535 ± 0.021    | 4.501                      | -0.76                  |                 |
| 631        | 2.1         | 0.398       | 64.522                               | 121.425               | 175.000         | 23.334 ± 0.316   | 3.661 ± 0.019    | 3.597                      | -1.75                  |                 |
| 632        | 2.1         | 0.402       | 64.534                               | 120.713               | 180.950         | 21.008 ± 0.315   | 3.040 ± 0.018    | 2.959                      | -2.66                  |                 |
| 633        | 2.1         | 0.401       | 64.868                               | 120.438               | 187.925         | 18.797 ± 0.314   | 2.452 ± 0.018    | 2.412                      | -1.63                  |                 |
| 634        | 2.1         | 0.397       | 64.917                               | 121.787               | 196.812         | 16.778 ± 0.314   | 2.034 ± 0.017    | 1.965                      | -3.39                  |                 |
| 635        | 2.1         | 0.402       | 64.436                               | 121.550               | 209.000         | 14.494 ± 0.314   | 1.599 ± 0.017    | 1.517                      | -5.16                  |                 |
| 636        | 2.1         | 0.400       | 64.806                               | 120.588               | 214.987         | 13.336 ± 0.313   | 1.428 ± 0.017    | 1.313                      | -8.05                  |                 |

| Test Point | Test Number | Power<br>KW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 637        | 2.1         | 182.091     | 0.400                                | 64.954                | 121.637         | 220.313          | 12.711 ± 0.313   | 1.326 ± 0.016              | 1.212                  | -8.62           |
| 638        | 2.1         | 181.003     | 0.398                                | 64.769                | 121.000         | 232.500          | 11.307 ± 0.313   | 1.151 ± 0.016              | 1.000                  | -13.08          |
| 639        | 2.1         | 180.694     | 0.397                                | 64.682                | 120.238         | 244.500          | 9.973 ± 0.313    | 1.030 ± 0.016              | 0.824                  | .....           |
| 640        | 2.1         | 180.612     | 0.397                                | 64.830                | 121.562         | 254.950          | 9.321 ± 0.313    | 0.982 ± 0.016              | 0.750                  | .....           |
| 641        | 2.1         | 181.810     | 0.400                                | 65.003                | 120.750         | 266.000          | 8.545 ± 0.313    | 1.060 ± 0.016              | 0.666                  | .....           |
| 642        | 2.1         | 181.175     | 0.398                                | 64.707                | 120.987         | 278.937          | 7.759 ± 0.313    | 1.391 ± 0.016              | 0.593                  | .....           |
| 643        | 2.1         | 181.473     | 0.399                                | 65.250                | 122.025         | 289.650          | 7.255 ± 0.313    | 1.935 ± 0.017              | 0.552                  | .....           |
| 644        | 2.1         | 183.038     | 0.402                                | 64.510                | 121.387         | 201.500          | 15.881 ± 0.314   | 1.872 ± 0.017              | 1.782                  | -4.78           |
| 645        | 2.1         | 272.005     | 0.598                                | 64.695                | 121.775         | 169.737          | 40.033 ± 0.322   | 9.377 ± 0.033              | 9.687                  | 3.31            |
| 646        | 2.1         | 272.870     | 0.600                                | 64.497                | 120.112         | 171.825          | 37.036 ± 0.321   | 8.141 ± 0.029              | 8.350                  | 2.56            |
| 647        | 2.1         | 272.349     | 0.599                                | 64.547                | 120.087         | 176.000          | 34.089 ± 0.320   | 7.000 ± 0.027              | 7.129                  | 1.95            |
| 648        | 2.1         | 271.251     | 0.596                                | 64.682                | 120.275         | 182.500          | 30.296 ± 0.318   | 5.673 ± 0.023              | 5.703                  | 0.53            |
| 649        | 2.1         | 271.223     | 0.596                                | 64.707                | 120.450         | 190.312          | 26.780 ± 0.317   | 4.553 ± 0.021              | 4.524                  | -0.63           |
| 650        | 2.1         | 274.374     | 0.603                                | 64.571                | 119.962         | 202.500          | 22.909 ± 0.316   | 3.472 ± 0.019              | 3.385                  | -2.50           |
| 651        | 2.1         | 273.160     | 0.601                                | 64.670                | 120.600         | 217.850          | 19.333 ± 0.315   | 2.650 ± 0.018              | 2.487                  | -6.14           |
| 652        | 2.1         | 271.992     | 0.598                                | 64.855                | 120.813         | 234.613          | 16.460 ± 0.314   | 2.162 ± 0.017              | 1.879                  | -13.10          |
| 653        | 2.1         | 272.410     | 0.599                                | 64.707                | 121.913         | 253.000          | 14.366 ± 0.313   | 1.907 ± 0.017              | 1.501                  | .....           |
| 654        | 2.1         | 272.103     | 0.598                                | 64.942                | 120.813         | 266.700          | 12.885 ± 0.313   | 2.110 ± 0.017              | 1.265                  | .....           |
| 655        | 2.1         | 271.355     | 0.597                                | 65.522                | 122.050         | 277.550          | 11.969 ± 0.313   | 2.578 ± 0.018              | 1.135                  | .....           |
| 656        | 2.1         | 270.969     | 0.596                                | 64.719                | 121.300         | 259.925          | 13.491 ± 0.313   | 1.901 ± 0.017              | 1.358                  | .....           |
| 657        | 2.1         | 270.555     | 0.595                                | 64.608                | 121.575         | 255.025          | 13.967 ± 0.313   | 1.870 ± 0.017              | 1.435                  | .....           |
| 658        | 2.1         | 271.520     | 0.597                                | 65.188                | 121.837         | 244.463          | 15.288 ± 0.314   | 1.997 ± 0.017              | 1.661                  | -16.82          |
| 659        | 2.1         | 271.659     | 0.597                                | 65.016                | 121.862         | 225.987          | 18.008 ± 0.314   | 2.447 ± 0.018              | 2.196                  | -10.25          |
| 660        | 2.1         | 275.024     | 0.605                                | 64.769                | 120.188         | 181.525          | 31.968 ± 0.319   | 6.222 ± 0.025              | 6.313                  | 1.47            |
| 661        | 2.1         | 362.445     | 0.797                                | 64.843                | 120.363         | 184.438          | 39.805 ± 0.322   | 9.066 ± 0.032              | 9.389                  | 3.57            |
| 662        | 2.1         | 360.437     | 0.793                                | 64.423                | 121.700         | 189.650          | 37.111 ± 0.321   | 7.991 ± 0.029              | 8.217                  | 2.83            |
| 663        | 2.1         | 364.025     | 0.800                                | 64.510                | 121.650         | 195.000          | 34.694 ± 0.320   | 7.070 ± 0.027              | 7.230                  | 2.26            |
| 664        | 2.1         | 361.220     | 0.794                                | 64.547                | 121.312         | 200.475          | 31.977 ± 0.319   | 6.098 ± 0.024              | 6.198                  | 1.64            |
| 665        | 2.1         | 364.283     | 0.801                                | 64.719                | 121.437         | 211.500          | 28.006 ± 0.317   | 4.954 ± 0.022              | 4.838                  | -2.35           |
| 666        | 2.1         | 364.051     | 0.800                                | 64.880                | 120.325         | 216.500          | 26.100 ± 0.317   | 4.439 ± 0.021              | 4.247                  | -4.33           |
| 667        | 2.1         | 0.001       | 0.000                                | 64.892                | 120.962         | 121.000          | 40.074 ± 0.322   | 10.741 ± 0.036             | 11.133                 | 3.65            |
| 668        | 2.1         | 0.001       | 0.000                                | 64.596                | 121.625         | 121.687          | 34.799 ± 0.320   | 8.463 ± 0.030              | 8.569                  | 1.26            |
| 669        | 2.1         | 0.001       | 0.000                                | 64.645                | 121.525         | 121.500          | 30.213 ± 0.318   | 6.580 ± 0.026              | 6.611                  | 0.47            |
| 670        | 2.1         | 0.001       | 0.000                                | 64.744                | 120.100         | 120.000          | 21.009 ± 0.315   | 3.490 ± 0.019              | 3.422                  | -1.95           |
| 671        | 2.1         | 0.001       | 0.000                                | 64.633                | 121.212         | 121.025          | 16.513 ± 0.314   | 2.265 ± 0.017              | 2.219                  | -2.03           |
| 672        | 2.1         | 0.001       | 0.000                                | 64.682                | 121.675         | 122.000          | 12.533 ± 0.313   | 1.383 ± 0.016              | 1.363                  | -1.47           |
| 673        | 2.1         | 0.001       | 0.000                                | 64.510                | 120.350         | 120.475          | 10.112 ± 0.313   | 0.951 ± 0.016              | 0.941                  | -1.09           |
| 674        | 2.1         | 0.001       | 0.000                                | 64.818                | 121.275         | 121.000          | 5.674 ± 0.312    | 0.365 ± 0.016              | 0.360                  | -1.47           |
| 675        | 2.1         | 0.001       | 0.000                                | 64.682                | 122.013         | 121.850          | 7.916 ± 0.313    | 0.638 ± 0.016              | 0.621                  | -2.73           |

| Test Point | Test Number | Power<br>KW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 676        | 2.1         | 0.001       | 0.000                                | 64.719                | 120.713         | 121.000          | 25.353 ± 0.316   | 4.875 ± 0.022              | 4.809                  | -1.35           |
| 677        | 2.1         | 360.868     | 0.793                                | 64.386                | 76.137          | 207.000          | 18.873 ± 0.314   | 2.607 ± 0.018              | 2.337                  | -10.35          |
| 678        | 2.1         | 362.225     | 0.796                                | 64.818                | 76.100          | 218.500          | 17.381 ± 0.314   | 2.371 ± 0.017              | 2.026                  | -14.56          |
| 679        | 2.1         | 361.854     | 0.796                                | 64.806                | 77.475          | 231.575          | 16.163 ± 0.314   | 2.203 ± 0.017              | 1.794                  | -18.55          |
| 680        | 2.1         | 362.551     | 0.797                                | 64.695                | 77.875          | 244.500          | 15.016 ± 0.314   | 2.101 ± 0.017              | 1.592                  | *****           |
| 681        | 2.1         | 360.261     | 0.792                                | 64.756                | 77.313          | 257.838          | 13.728 ± 0.313   | 2.194 ± 0.017              | 1.382                  | *****           |
| 682        | 2.1         | 365.640     | 0.804                                | 64.929                | 120.675         | 226.000          | 24.009 ± 0.316   | 3.958 ± 0.020              | 3.649                  | -7.81           |
| 683        | 2.1         | 365.555     | 0.804                                | 64.719                | 120.350         | 236.000          | 21.744 ± 0.315   | 3.492 ± 0.019              | 3.059                  | -12.39          |
| 684        | 2.1         | 364.514     | 0.801                                | 64.584                | 120.300         | 246.500          | 19.779 ± 0.315   | 3.191 ± 0.019              | 2.597                  | *****           |
| 685        | 2.1         | 362.896     | 0.798                                | 65.090                | 120.425         | 255.000          | 18.558 ± 0.314   | 3.017 ± 0.018              | 2.332                  | *****           |
| 686        | 2.1         | 361.011     | 0.794                                | 64.966                | 120.263         | 262.788          | 17.432 ± 0.314   | 3.178 ± 0.019              | 2.101                  | *****           |
| 687        | 2.1         | 365.865     | 0.804                                | 64.732                | 121.800         | 271.600          | 16.849 ± 0.314   | 3.886 ± 0.020              | 1.993                  | *****           |
| 688        | 2.1         | 364.939     | 0.802                                | 64.374                | 121.662         | 254.000          | 18.964 ± 0.314   | 3.130 ± 0.019              | 2.422                  | *****           |
| 689        | 2.1         | 364.332     | 0.801                                | 64.806                | 120.663         | 259.300          | 18.198 ± 0.314   | 3.209 ± 0.019              | 2.258                  | *****           |
| 690        | 2.1         | 365.035     | 0.803                                | 64.645                | 121.100         | 260.462          | 18.035 ± 0.314   | 3.132 ± 0.019              | 2.226                  | *****           |
| 691        | 2.1         | 362.959     | 0.798                                | 64.571                | 121.650         | 206.500          | 29.927 ± 0.318   | 5.497 ± 0.023              | 5.475                  | -0.40           |
| 692        | 2.1         | 451.516     | 0.993                                | 65.337                | 121.450         | 201.000          | 39.865 ± 0.322   | 8.948 ± 0.032              | 9.287                  | 3.79            |
| 693        | 2.1         | 455.059     | 1.001                                | 64.806                | 120.438         | 203.000          | 38.677 ± 0.322   | 8.509 ± 0.030              | 8.766                  | 3.02            |
| 694        | 2.1         | 456.607     | 1.004                                | 64.707                | 120.987         | 206.500          | 37.394 ± 0.321   | 8.086 ± 0.029              | 8.222                  | 1.68            |
| 695        | 2.1         | 455.597     | 1.002                                | 64.682                | 120.525         | 208.500          | 36.270 ± 0.320   | 7.701 ± 0.028              | 7.761                  | 0.78            |
| 696        | 2.1         | 454.852     | 1.000                                | 64.596                | 120.300         | 210.488          | 35.237 ± 0.320   | 7.314 ± 0.027              | 7.351                  | 0.51            |
| 697        | 2.1         | 454.997     | 1.000                                | 64.547                | 121.512         | 215.000          | 33.954 ± 0.319   | 6.900 ± 0.026              | 6.859                  | -0.59           |
| 698        | 2.1         | 453.429     | 0.997                                | 64.559                | 120.563         | 218.012          | 32.371 ± 0.319   | 6.401 ± 0.025              | 6.275                  | -1.97           |
| 699        | 2.1         | 452.532     | 0.995                                | 64.547                | 120.338         | 224.060          | 30.269 ± 0.318   | 5.848 ± 0.024              | 5.545                  | -5.19           |
| 700        | 2.1         | 452.151     | 0.994                                | 64.584                | 120.688         | 230.587          | 28.342 ± 0.317   | 5.416 ± 0.023              | 4.920                  | -9.17           |
| 701        | 2.1         | 453.360     | 0.997                                | 64.608                | 120.213         | 235.500          | 27.140 ± 0.317   | 5.114 ± 0.022              | 4.550                  | 11.03           |
| 702        | 2.1         | 451.815     | 0.993                                | 64.929                | 121.337         | 241.500          | 26.038 ± 0.316   | 4.902 ± 0.022              | 4.228                  | 13.74           |
| 703        | 2.1         | 453.927     | 0.998                                | 64.793                | 120.275         | 246.000          | 24.864 ± 0.316   | 4.630 ± 0.021              | 3.897                  | *****           |
| 704        | 2.1         | 453.162     | 0.996                                | 64.868                | 121.850         | 254.000          | 23.649 ± 0.316   | 4.583 ± 0.021              | 3.576                  | *****           |
| 705        | 2.1         | 453.755     | 0.998                                | 64.991                | 121.300         | 259.600          | 22.512 ± 0.315   | 4.672 ± 0.021              | 3.285                  | *****           |
| 706        | 2.1         | 453.413     | 0.997                                | 64.670                | 120.525         | 267.825          | 21.175 ± 0.315   | 5.247 ± 0.023              | 2.963                  | *****           |
| 707        | 2.1         | 453.565     | 0.997                                | 64.596                | 120.338         | 263.000          | 21.823 ± 0.315   | 4.786 ± 0.022              | 3.116                  | *****           |
| 712        | 2.1         | 457.461     | 1.006                                | 64.645                | 120.513         | 196.000          | 42.859 ± 0.324   | 10.115 ± 0.035             | 10.656                 | 5.35            |
| 713        | 2.1         | 457.381     | 1.006                                | 64.831                | 77.338          | 153.000          | 42.441 ± 0.324   | 9.946 ± 0.034              | 10.417                 | 4.73            |
| 714        | 2.1         | 455.865     | 1.002                                | 64.929                | 77.525          | 159.000          | 39.037 ± 0.322   | 8.471 ± 0.030              | 8.878                  | 4.81            |

| Test Point | Test Number | Power<br>KW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>qpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 715        | 2.1         | 455.934     | 1.003                                | 64.695                | 77.150          | 166.000          | 35.535 ± 0.320   | 7.190 ± 0.027              | 7.424                  | 3.26            |
| 716        | 2.1         | 454.297     | 0.999                                | 64.473                | 76.612          | 173.775          | 32.416 ± 0.319   | 6.350 ± 0.024              | 6.241                  | 2.47            |
| 717        | 2.1         | 454.012     | 0.998                                | 64.781                | 76.100          | 187.363          | 28.122 ± 0.317   | 4.853 ± 0.022              | 4.784                  | 1.43            |
| 718        | 2.1         | 455.161     | 1.001                                | 64.695                | 76.625          | 207.500          | 23.914 ± 0.316   | 3.900 ± 0.020              | 3.560                  | -8.71           |
| 719        | 2.1         | 452.839     | 0.996                                | 64.769                | 76.662          | 226.500          | 20.663 ± 0.315   | 3.312 ± 0.019              | 2.757                  | -16.76          |
| 720        | 2.1         | 453.213     | 0.997                                | 64.892                | 76.662          | 240.500          | 18.964 ± 0.314   | 3.092 ± 0.019              | 2.385                  | *****           |
| 721        | 2.1         | 453.827     | 0.998                                | 64.781                | 76.575          | 252.250          | 17.692 ± 0.314   | 3.212 ± 0.019              | 2.128                  | *****           |
| 722        | 2.1         | 454.029     | 0.998                                | 64.670                | 76.487          | 258.488          | 16.980 ± 0.314   | 3.489 ± 0.019              | 1.992                  | *****           |
| 723        | 2.1         | 456.223     | 1.003                                | 64.547                | 76.462          | 251.963          | 17.738 ± 0.314   | 3.283 ± 0.019              | 2.138                  | *****           |
| 724        | 2.1         | 454.147     | 0.999                                | 64.645                | 76.437          | 246.500          | 18.284 ± 0.314   | 3.099 ± 0.019              | 2.247                  | *****           |
| 725        | 2.1         | 454.534     | 0.999                                | 64.559                | 76.437          | 235.437          | 19.620 ± 0.315   | 3.161 ± 0.019              | 2.526                  | *****           |
| 726        | 2.1         | 455.183     | 1.001                                | 64.510                | 76.512          | 219.063          | 21.902 ± 0.315   | 3.524 ± 0.019              | 3.050                  | -13.46          |
| 727        | 2.1         | 455.323     | 1.002                                | 64.818                | 77.038          | 198.000          | 25.996 ± 0.316   | 4.376 ± 0.021              | 4.142                  | -5.36           |
| 728        | 2.1         | 458.032     | 1.007                                | 64.966                | 77.675          | 184.500          | 29.667 ± 0.318   | 5.287 ± 0.023              | 5.285                  | -0.03           |
| 729        | 2.1         | 181.873     | 0.400                                | 34.414                | 120.513         | 152.750          | 39.824 ± 0.322   | 9.606 ± 0.033              | 9.881                  | 2.87            |
| 730        | 2.1         | 181.375     | 0.399                                | 34.784                | 121.500         | 156.962          | 36.307 ± 0.321   | 8.134 ± 0.029              | 8.278                  | 1.78            |
| 731        | 2.1         | 180.375     | 0.397                                | 34.908                | 120.250         | 158.500          | 32.972 ± 0.319   | 6.827 ± 0.026              | 6.899                  | 1.05            |
| 732        | 2.1         | 182.341     | 0.401                                | 34.624                | 121.437         | 165.038          | 28.995 ± 0.318   | 5.408 ± 0.023              | 5.404                  | -0.08           |
| 733        | 2.1         | 181.078     | 0.398                                | 34.747                | 121.525         | 171.000          | 25.437 ± 0.316   | 4.298 ± 0.021              | 4.223                  | -1.73           |
| 734        | 2.1         | 183.147     | 0.403                                | 34.797                | 121.900         | 157.500          | 36.143 ± 0.320   | 8.023 ± 0.029              | 8.208                  | 2.30            |
| 735        | 2.1         | 182.721     | 0.402                                | 34.871                | 120.037         | 170.350          | 25.263 ± 0.316   | 4.230 ± 0.020              | 4.167                  | -1.48           |
| 736        | 2.1         | 180.450     | 0.397                                | 34.673                | 121.712         | 180.013          | 21.463 ± 0.315   | 3.129 ± 0.019              | 3.079                  | -1.61           |
| 737        | 2.1         | 182.770     | 0.402                                | 34.908                | 121.425         | 190.000          | 18.400 ± 0.314   | 2.394 ± 0.018              | 2.321                  | -3.05           |
| 738        | 2.1         | 181.726     | 0.400                                | 34.846                | 121.037         | 199.500          | 15.974 ± 0.314   | 1.867 ± 0.017              | 1.800                  | -3.61           |
| 739        | 2.1         | 180.905     | 0.398                                | 34.797                | 121.750         | 217.075          | 13.057 ± 0.313   | 1.423 ± 0.017              | 1.273                  | -10.52          |
| 740        | 2.1         | 180.451     | 0.397                                | 34.648                | 121.512         | 229.925          | 11.484 ± 0.313   | 1.282 ± 0.016              | 1.035                  | *****           |
| 741        | 2.1         | 183.571     | 0.404                                | 35.352                | 120.037         | 235.500          | 10.940 ± 0.313   | 1.439 ± 0.017              | 0.959                  | *****           |
| 742        | 2.1         | 182.915     | 0.402                                | 35.216                | 120.425         | 243.000          | 10.304 ± 0.313   | 1.937 ± 0.017              | 0.878                  | *****           |
| 743        | 2.1         | 181.912     | 0.400                                | 34.883                | 120.300         | 225.800          | 11.899 ± 0.313   | 1.347 ± 0.016              | 1.094                  | *****           |
| 744        | 2.1         | 181.762     | 0.400                                | 34.661                | 120.950         | 220.663          | 12.486 ± 0.313   | 1.366 ± 0.016              | 1.183                  | *****           |
| 745        | 2.1         | 181.242     | 0.399                                | 34.451                | 121.275         | 206.625          | 14.802 ± 0.314   | 1.689 ± 0.017              | 1.576                  | -6.70           |
| 746        | 2.1         | 271.988     | 0.598                                | 34.661                | 121.888         | 166.987          | 42.783 ± 0.324   | 10.527 ± 0.036             | 11.003                 | 4.53            |
| 747        | 2.1         | 271.967     | 0.598                                | 34.871                | 120.588         | 169.500          | 39.339 ± 0.322   | 9.018 ± 0.032              | 9.371                  | 3.92            |
| 748        | 2.1         | 273.997     | 0.602                                | 34.784                | 121.850         | 174.500          | 36.279 ± 0.321   | 7.843 ± 0.029              | 8.023                  | 2.30            |
| 749        | 2.1         | 272.716     | 0.600                                | 34.809                | 121.300         | 178.400          | 33.481 ± 0.319   | 6.774 ± 0.026              | 6.887                  | 1.67            |
| 750        | 2.1         | 271.714     | 0.597                                | 34.797                | 121.037         | 183.500          | 30.383 ± 0.318   | 5.689 ± 0.024              | 5.733                  | 0.77            |
| 751        | 2.1         | 270.684     | 0.595                                | 34.636                | 120.087         | 194.500          | 25.126 ± 0.316   | 4.123 ± 0.020              | 4.018                  | -2.55           |
| 752        | 2.1         | 272.607     | 0.599                                | 35.105                | 120.738         | 201.000          | 23.325 ± 0.316   | 3.666 ± 0.019              | 3.503                  | -4.44           |
| 753        | 2.1         | 271.189     | 0.596                                | 34.784                | 121.812         | 212.025          | 20.737 ± 0.315   | 3.103 ± 0.019              | 2.833                  | -8.69           |

| Test Point | Test Number | Power<br>KW | Heat Flux<br>W/Btu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|---------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 754        | 2.1         | 270.005     | 0.594                                 | 35.130                | 121.387         | 221.563          | 18.560 ± 0.314   | 2.714 ± 0.018              | 2.331                  | ***             |
| 755        | 2.1         | 272.131     | 0.598                                 | 34.858                | 121.475         | 228.475          | 17.599 ± 0.314   | 2.798 ± 0.018              | 2.129                  | ***             |
| 756        | 2.1         | 271.684     | 0.597                                 | 34.352                | 121.275         | 233.500          | 16.712 ± 0.314   | 3.229 ± 0.019              | 1.952                  | ***             |
| 757        | 2.1         | 272.571     | 0.599                                 | 34.636                | 121.625         | 227.000          | 17.878 ± 0.314   | 2.777 ± 0.018              | 2.188                  | ***             |
| 758        | 2.1         | 272.511     | 0.599                                 | 34.648                | 120.213         | 215.500          | 19.683 ± 0.315   | 2.934 ± 0.018              | 2.583                  | -1.96           |
| 759        | 2.1         | 273.411     | 0.601                                 | 34.611                | 121.025         | 219.500          | 19.110 ± 0.315   | 2.825 ± 0.018              | 2.453                  | ***             |
| 760        | 2.1         | 273.965     | 0.602                                 | 34.525                | 120.538         | 206.738          | 21.909 ± 0.315   | 3.363 ± 0.019              | 3.127                  | ***             |
| 761        | 2.1         | 274.918     | 0.604                                 | 34.525                | 121.012         | 190.000          | 27.830 ± 0.317   | 4.872 ± 0.022              | 4.859                  | -0.26           |
| 762        | 2.1         | 366.689     | 0.806                                 | 34.957                | 120.588         | 181.000          | 42.817 ± 0.324   | 10.301 ± 0.035             | 10.787                 | 4.72            |
| 763        | 2.1         | 363.310     | 0.799                                 | 34.636                | 121.825         | 188.500          | 38.373 ± 0.321   | 8.477 ± 0.030              | 8.750                  | 3.23            |
| 764        | 2.1         | 361.994     | 0.796                                 | 34.797                | 121.800         | 194.500          | 34.852 ± 0.320   | 7.210 ± 0.027              | 7.293                  | 1.15            |
| 765        | 2.1         | 363.668     | 0.800                                 | 34.735                | 120.563         | 201.500          | 31.259 ± 0.318   | 6.023 ± 0.024              | 5.945                  | -1.30           |
| 766        | 2.1         | 360.678     | 0.793                                 | 34.673                | 121.350         | 207.988          | 29.039 ± 0.318   | 5.425 ± 0.023              | 5.188                  | -4.36           |
| 767        | 2.1         | 360.081     | 0.792                                 | 35.340                | 121.725         | 214.500          | 26.948 ± 0.317   | 4.903 ± 0.022              | 4.527                  | -7.67           |
| 768        | 2.1         | 363.448     | 0.799                                 | 34.772                | 121.475         | 220.500          | 25.465 ± 0.316   | 4.649 ± 0.021              | 4.089                  | ***             |
| 769        | 2.1         | 363.168     | 0.799                                 | 35.006                | 120.613         | 224.112          | 24.279 ± 0.316   | 4.537 ± 0.021              | 3.755                  | ***             |
| 770        | 2.1         | 362.242     | 0.797                                 | 35.019                | 121.787         | 231.463          | 22.963 ± 0.316   | 4.918 ± 0.022              | 3.407                  | ***             |
| 771        | 2.1         | 362.045     | 0.796                                 | 34.957                | 120.563         | 234.500          | 21.916 ± 0.315   | 5.244 ± 0.023              | 3.140                  | ***             |
| 772        | 2.1         | 363.994     | 0.800                                 | 34.587                | 120.550         | 226.037          | 23.770 ± 0.316   | 4.675 ± 0.021              | 3.619                  | ***             |
| 773        | 2.1         | 364.165     | 0.801                                 | 34.846                | 120.738         | 222.500          | 24.611 ± 0.316   | 4.566 ± 0.021              | 3.848                  | ***             |
| 774        | 2.1         | 363.921     | 0.800                                 | 35.006                | 120.263         | 183.100          | 40.376 ± 0.322   | 9.260 ± 0.032              | 9.648                  | 4.19            |
| 775        | 2.1         | 365.143     | 0.803                                 | 34.747                | 76.375          | 137.000          | 42.386 ± 0.323   | 10.148 ± 0.035             | 10.612                 | 4.57            |
| 776        | 2.1         | 365.663     | 0.804                                 | 34.723                | 77.563          | 142.000          | 39.842 ± 0.322   | 9.077 ± 0.032              | 9.420                  | 3.77            |
| 777        | 2.1         | 365.948     | 0.805                                 | 34.525                | 77.275          | 147.500          | 36.488 ± 0.321   | 7.716 ± 0.028              | 7.957                  | 3.13            |
| 778        | 2.1         | 363.969     | 0.800                                 | 34.723                | 76.150          | 151.500          | 33.597 ± 0.319   | 6.631 ± 0.026              | 6.799                  | 2.54            |
| 779        | 2.1         | 361.811     | 0.796                                 | 34.883                | 76.550          | 162.000          | 29.303 ± 0.318   | 5.228 ± 0.023              | 5.249                  | 0.39            |
| 780        | 2.1         | 361.479     | 0.795                                 | 34.686                | 76.500          | 172.500          | 26.128 ± 0.317   | 4.314 ± 0.021              | 4.235                  | -1.84           |
| 781        | 2.1         | 365.121     | 0.803                                 | 34.945                | 77.125          | 190.175          | 22.252 ± 0.315   | 3.448 ± 0.019              | 3.157                  | -8.44           |
| 782        | 2.1         | 362.744     | 0.798                                 | 34.920                | 77.638          | 209.650          | 18.845 ± 0.314   | 2.881 ± 0.018              | 2.361                  | ***             |
| 783        | 2.1         | 362.357     | 0.797                                 | 34.599                | 76.725          | 233.000          | 15.865 ± 0.314   | 4.017 ± 0.020              | 1.770                  | ***             |
| 784        | 2.1         | 363.231     | 0.799                                 | 34.599                | 76.850          | 214.987          | 18.070 ± 0.314   | 2.876 ± 0.018              | 2.198                  | ***             |
| 785        | 2.1         | 362.514     | 0.797                                 | 34.772                | 76.950          | 221.887          | 17.161 ± 0.314   | 3.154 ± 0.019              | 2.015                  | ***             |
| 786        | 2.1         | 363.879     | 0.800                                 | 34.648                | 77.188          | 203.000          | 19.808 ± 0.315   | 3.012 ± 0.018              | 2.573                  | -14.57          |
| 787        | 2.1         | 362.692     | 0.797                                 | 34.661                | 77.550          | 207.988          | 19.059 ± 0.314   | 2.913 ± 0.018              | 2.408                  | ***             |
| 788        | 2.1         | 366.050     | 0.805                                 | 34.698                | 78.000          | 198.475          | 20.925 ± 0.315   | 3.220 ± 0.019              | 2.833                  | -12.03          |
| 789        | 2.1         | 365.917     | 0.805                                 | 34.809                | 76.400          | 156.000          | 32.058 ± 0.319   | 6.091 ± 0.024              | 6.219                  | 2.11            |
| 790        | 2.1         | 454.124     | 0.999                                 | 35.044                | 76.200          | 151.500          | 42.354 ± 0.323   | 9.888 ± 0.034              | 10.381                 | 4.99            |
| 791        | 2.1         | 452.874     | 0.996                                 | 34.402                | 76.637          | 157.100          | 39.137 ± 0.322   | 8.588 ± 0.031              | 8.926                  | 3.93            |
| 792        | 2.1         | 452.147     | 0.994                                 | 34.772                | 76.537          | 164.350          | 35.785 ± 0.320   | 7.358 ± 0.027              | 7.529                  | 2.32            |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Drop<br>% | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------|-----------------|
| 793        | 2.1         | 456.774     | 1.004                                | 34.772                | 76.512          | 172.000          | 33.244 ± 0.319   | 6.518 ± 0.025              | 6.549                  | 0.48      |                 |
| 794        | 2.1         | 454.796     | 1.000                                | 34.883                | 76.275          | 182.225          | 29.677 ± 0.318   | 5.532 ± 0.023              | 5.303                  | -4.14     |                 |
| 795        | 2.1         | 455.563     | 1.002                                | 34.747                | 76.762          | 190.738          | 27.649 ± 0.317   | 5.073 ± 0.022              | 4.663                  | -8.09     |                 |
| 796        | 2.1         | 454.152     | 0.999                                | 34.834                | 76.825          | 201.112          | 25.183 ± 0.316   | 4.510 ± 0.021              | 3.946                  | -12.51    |                 |
| 797        | 2.1         | 455.404     | 1.001                                | 34.895                | 76.537          | 208.813          | 23.798 ± 0.316   | 4.259 ± 0.021              | 3.573                  | *****     |                 |
| 798        | 2.1         | 453.282     | 0.997                                | 34.982                | 76.525          | 214.000          | 22.637 ± 0.315   | 4.128 ± 0.020              | 3.276                  | *****     |                 |
| 799        | 2.1         | 452.811     | 0.996                                | 34.969                | 76.975          | 223.000          | 21.233 ± 0.315   | 4.885 ± 0.022              | 2.936                  | *****     |                 |
| 800        | 2.1         | 453.690     | 0.998                                | 34.636                | 77.075          | 219.700          | 21.839 ± 0.315   | 4.598 ± 0.021              | 3.082                  | *****     |                 |
| 801        | 2.1         | 452.105     | 0.994                                | 34.932                | 77.288          | 215.500          | 22.552 ± 0.315   | 4.332 ± 0.021              | 3.256                  | *****     |                 |
| 802        | 2.1         | 453.512     | 0.997                                | 34.846                | 77.475          | 212.500          | 23.165 ± 0.316   | 4.262 ± 0.021              | 3.411                  | *****     |                 |
| 803        | 2.1         | 451.033     | 0.992                                | 34.636                | 77.550          | 205.500          | 24.311 ± 0.316   | 4.413 ± 0.021              | 3.710                  | *****     |                 |
| 804        | 2.1         | 457.019     | 1.005                                | 35.044                | 77.063          | 161.500          | 37.725 ± 0.321   | 3.051 ± 0.029              | 8.325                  | 3.41      |                 |
| 805        | 2.1         | 455.108     | 1.001                                | 34.994                | 120.525         | 196.500          | 42.052 ± 0.323   | 9.982 ± 0.034              | 10.279                 | 2.97      |                 |
| 806        | 2.1         | 453.351     | 0.997                                | 34.809                | 121.825         | 202.500          | 39.575 ± 0.322   | 9.118 ± 0.032              | 9.166                  | 0.53      |                 |
| 807        | 2.1         | 453.501     | 0.997                                | 34.895                | 121.362         | 206.388          | 37.380 ± 0.321   | 8.370 ± 0.030              | 8.235                  | -1.61     |                 |
| 808        | 2.1         | 452.317     | 0.995                                | 34.908                | 120.450         | 209.500          | 35.639 ± 0.320   | 7.808 ± 0.029              | 7.534                  | -3.51     |                 |
| 809        | 2.1         | 452.039     | 0.994                                | 34.686                | 119.987         | 213.387          | 33.780 ± 0.319   | 7.416 ± 0.028              | 6.825                  | -7.97     |                 |
| 810        | 2.1         | 452.193     | 0.994                                | 34.698                | 120.338         | 216.537          | 32.671 ± 0.319   | 7.092 ± 0.027              | 6.421                  | -9.46     |                 |
| 811        | 2.1         | 454.321     | 0.999                                | 35.081                | 121.262         | 221.975          | 31.346 ± 0.318   | 6.950 ± 0.026              | 5.957                  | *****     |                 |
| 812        | 2.1         | 453.647     | 0.997                                | 34.920                | 120.425         | 225.675          | 30.798 ± 0.318   | 7.173 ± 0.027              | 5.770                  | *****     |                 |
| 813        | 2.1         | 453.511     | 0.997                                | 34.537                | 121.512         | 228.462          | 29.236 ± 0.318   | 7.458 ± 0.028              | 5.260                  | *****     |                 |
| 814        | 2.1         | 453.143     | 0.996                                | 34.463                | 121.975         | 230.962          | 28.751 ± 0.317   | 8.126 ± 0.029              | 5.108                  | *****     |                 |
| 815        | 2.1         | 454.075     | 0.998                                | 34.797                | 121.612         | 226.500          | 30.094 ± 0.318   | 7.191 ± 0.027              | 5.539                  | *****     |                 |
| 816        | 2.1         | 452.976     | 0.996                                | 34.846                | 122.025         | 227.337          | 30.485 ± 0.318   | 7.222 ± 0.027              | 5.669                  | *****     |                 |
| 817        | 2.1         | 451.800     | 0.993                                | 34.908                | 121.475         | 225.000          | 30.494 ± 0.318   | 6.995 ± 0.027              | 5.670                  | *****     |                 |
| 818        | 2.1         | 452.661     | 0.995                                | 34.648                | 121.788         | 222.713          | 31.715 ± 0.319   | 7.230 ± 0.027              | 6.088                  | *****     |                 |
| 819        | 2.1         | 451.796     | 0.993                                | 34.636                | 120.525         | 218.600          | 32.337 ± 0.319   | 6.992 ± 0.027              | 6.303                  | *****     |                 |
| 820        | 2.1         | 452.659     | 0.995                                | 34.920                | 121.012         | 212.025          | 35.043 ± 0.320   | 7.775 ± 0.029              | 7.305                  | -6.05     |                 |
| 821        | 4           | 0.001       | 0.000                                | 64.621                | 76.275          | 76.450           | 20.419 ± 0.318   | 9.345 ± 0.064              | 9.305                  | -0.42     |                 |
| 822        | 4           | 0.000       | 0.000                                | 64.855                | 76.175          | 76.475           | 30.997 ± 0.318   | 19.409 ± 0.060             | 19.752                 | 1.77      |                 |
| 823        | 4           | 0.000       | 0.000                                | 64.658                | 77.500          | 77.500           | 29.148 ± 0.317   | 17.366 ± 0.056             | 17.610                 | 1.40      |                 |
| 824        | 4           | 0.001       | 0.000                                | 64.584                | 76.950          | 77.000           | 27.156 ± 0.316   | 15.391 ± 0.051             | 15.517                 | 0.82      |                 |
| 825        | 4           | 0.000       | 0.000                                | 64.719                | 76.075          | 76.425           | 25.216 ± 0.315   | 13.504 ± 0.046             | 13.606                 | 0.75      |                 |
| 826        | 4           | 0.000       | 0.000                                | 64.806                | 76.125          | 76.500           | 22.679 ± 0.315   | 11.221 ± 0.040             | 11.240                 | 0.17      |                 |
| 827        | 4           | 0.002       | 0.000                                | 64.645                | 76.500          | 76.538           | 19.300 ± 0.314   | 8.461 ± 0.036              | 8.405                  | -0.66     |                 |
| 828        | 4           | 0.001       | 0.000                                | 64.460                | 77.462          | 77.500           | 16.455 ± 0.313   | 6.364 ± 0.033              | 6.303                  | -0.97     |                 |
| 829        | 4           | 0.000       | 0.000                                | 64.793                | 77.738          | 77.950           | 12.758 ± 0.313   | 4.042 ± 0.031              | 4.002                  | -1.00     |                 |
| 830        | 4           | 0.001       | 0.000                                | 64.744                | 77.512          | 77.613           | 9.706 ± 0.313    | 2.477 ± 0.031              | 2.466                  | -0.45     |                 |
| 831        | 4           | 0.000       | 0.000                                | 64.584                | 76.762          | 77.000           | 7.584 ± 0.312    | 1.623 ± 0.031              | 1.599                  | -1.50     |                 |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |  |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|--|
| 832        | 4           | 0.000       | 0.000                                | 64.781                | 76.500          | 5.125 ± 0.315    | 0.8112 ± 0.043   | 0.804                      | -1.04                  |                 |  |
| 833        | 4           | 0.000       | 0.000                                | 64.584                | 121.900         | 22.143 ± 0.316   | 9.824 ± 0.047    | 9.753                      | -0.72                  |                 |  |
| 834        | 4           | 0.000       | 0.000                                | 64.744                | 121.475         | 24.745 ± 0.317   | 11.887 ± 0.053   | 11.939                     | 0.44                   |                 |  |
| 835        | 4           | 0.000       | 0.000                                | 64.917                | 120.162         | 27.298 ± 0.318   | 14.087 ± 0.058   | 14.306                     | 1.56                   |                 |  |
| 836        | 4           | 0.000       | 0.000                                | 65.028                | 121.500         | 29.547 ± 0.319   | 16.117 ± 0.062   | 16.490                     | 2.31                   |                 |  |
| 837        | 4           | 0.000       | 0.000                                | 64.695                | 120.212         | 31.712 ± 0.315   | 18.260 ± 0.039   | 18.806                     | 2.99                   |                 |  |
| 838        | 4           | 0.000       | 0.000                                | 64.682                | 121.725         | 19.853 ± 0.314   | 8.084 ± 0.036    | 8.007                      | -0.96                  |                 |  |
| 839        | 4           | 0.000       | 0.000                                | 64.868                | 120.250         | 17.107 ± 0.313   | 6.178 ± 0.033    | 6.144                      | -0.56                  |                 |  |
| 840        | 4           | 0.000       | 0.000                                | 64.707                | 121.500         | 14.029 ± 0.313   | 4.323 ± 0.032    | 4.299                      | -0.56                  |                 |  |
| 841        | 4           | 0.000       | 0.000                                | 64.571                | 121.825         | 11.992 ± 0.313   | 3.252 ± 0.031    | 3.251                      | -0.03                  |                 |  |
| 842        | 4           | 0.000       | 0.000                                | 65.016                | 121.050         | 9.822 ± 0.313    | 2.286 ± 0.031    | 2.289                      | 0.15                   |                 |  |
| 843        | 4           | 0.000       | 0.000                                | 64.584                | 120.500         | 8.083 ± 0.312    | 1.652 ± 0.031    | 1.630                      | -1.31                  |                 |  |
| 844        | 4           | 0.000       | 0.000                                | 64.596                | 121.275         | 6.102 ± 0.319    | 1.018 ± 0.059    | 1.003                      | -1.43                  |                 |  |
| 845        | 4           | 224.891     | 0.598                                | 64.633                | 77.688          | 31.993 ± 0.318   | 16.753 ± 0.055   | 17.330                     | 3.45                   |                 |  |
| 846        | 4           | 224.759     | 0.598                                | 64.929                | 77.387          | 30.018 ± 0.317   | 15.005 ± 0.049   | 15.353                     | 2.32                   |                 |  |
| 847        | 4           | 224.423     | 0.597                                | 64.633                | 76.500          | 133.000          | 27.597 ± 0.316   | 12.746 ± 0.044             | 13.094                 | 2.73            |  |
| 848        | 4           | 224.141     | 0.596                                | 64.658                | 76.400          | 138.500          | 24.838 ± 0.315   | 10.555 ± 0.041             | 10.723                 | 1.59            |  |
| 849        | 4           | 223.633     | 0.595                                | 64.658                | 77.500          | 146.000          | 22.557 ± 0.315   | 8.834 ± 0.037              | 8.932                  | 1.11            |  |
| 850        | 4           | 223.711     | 0.595                                | 64.670                | 76.912          | 154.500          | 19.748 ± 0.314   | 6.874 ± 0.034              | 6.953                  | 1.15            |  |
| 851        | 4           | 223.416     | 0.594                                | 64.892                | 76.363          | 167.500          | 16.794 ± 0.314   | 5.058 ± 0.033              | 5.134                  | 1.50            |  |
| 852        | 4           | 223.822     | 0.595                                | 64.744                | 76.775          | 180.500          | 14.788 ± 0.313   | 4.007 ± 0.032              | 4.053                  | 1.14            |  |
| 853        | 4           | 223.530     | 0.595                                | 64.892                | 77.500          | 192.500          | 13.267 ± 0.313   | 3.307 ± 0.032              | 3.328                  | 0.63            |  |
| 854        | 4           | 223.550     | 0.595                                | 64.460                | 77.025          | 203.500          | 12.150 ± 0.313   | 2.771 ± 0.031              | 2.829                  | 2.10            |  |
| 855        | 4           | 223.926     | 0.596                                | 64.497                | 76.288          | 221.000          | 10.613 ± 0.313   | 2.322 ± 0.031              | 2.224                  | -4.22           |  |
| 856        | 4           | 224.090     | 0.596                                | 64.670                | 77.200          | 244.500          | 9.135 ± 0.313    | 1.981 ± 0.031              | 1.723                  | ••••            |  |
| 857        | 4           | 224.016     | 0.596                                | 64.917                | 77.062          | 263.488          | 8.160 ± 0.313    | 1.975 ± 0.031              | 1.437                  | ••••            |  |
| 858        | 4           | 224.140     | 0.596                                | 65.053                | 76.950          | 273.500          | 7.749 ± 0.313    | 2.372 ± 0.032              | 1.327                  | ••••            |  |
| 859        | 4           | 224.528     | 0.597                                | 64.719                | 76.962          | 281.000          | 7.411 ± 0.313    | 3.073 ± 0.031              | 1.242                  | ••••            |  |
| 860        | 4           | 224.488     | 0.597                                | 64.682                | 76.588          | 231.000          | 10.036 ± 0.313   | 2.200 ± 0.031              | 2.020                  | -7.97           |  |
| 861        | 4           | 224.468     | 0.597                                | 64.584                | 76.425          | 260.313          | 8.355 ± 0.319    | 1.920 ± 0.059              | 1.491                  | ••••            |  |
| 862        | 4           | 225.107     | 0.599                                | 64.695                | 120.500         | 169.575          | 32.216 ± 0.318   | 16.753 ± 0.054             | 17.083                 | 1.97            |  |
| 863        | 4           | 225.194     | 0.599                                | 64.411                | 121.175         | 173.500          | 30.183 ± 0.317   | 15.005 ± 0.048             | 15.092                 | 0.58            |  |
| 864        | 4           | 225.342     | 0.599                                | 64.793                | 121.000         | 178.500          | 27.300 ± 0.316   | 12.327 ± 0.041             | 12.484                 | 1.27            |  |
| 865        | 4           | 224.833     | 0.598                                | 64.830                | 120.475         | 188.000          | 22.998 ± 0.315   | 9.091 ± 0.038              | 9.045                  | -0.51           |  |
| 866        | 4           | 225.059     | 0.599                                | 64.732                | 121.788         | 198.000          | 20.289 ± 0.314   | 7.211 ± 0.035              | 7.154                  | -0.80           |  |
| 867        | 4           | 224.935     | 0.598                                | 64.707                | 121.950         | 211.500          | 17.269 ± 0.313   | 5.332 ± 0.033              | 5.308                  | -0.45           |  |
| 868        | 4           | 224.793     | 0.598                                | 64.732                | 121.213         | 231.500          | 14.085 ± 0.313   | 3.809 ± 0.032              | 3.665                  | -3.78           |  |
| 869        | 4           | 224.616     | 0.597                                | 64.719                | 121.500         | 249.950          | 12.045 ± 0.313   | 3.095 ± 0.032              | 2.783                  | -7.97           |  |
| 870        | 4           | 224.788     | 0.598                                | 64.966                | 120.863         | 266.500          | 10.632 ± 0.313   | 2.857 ± 0.032              | 2.253                  | ••••            |  |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 871        | 4           | 224.376     | 0.597                                | 65.090                | 121.038         | 277.275          | 9.845 ± 0.313    | 3.416 ± 0.032              | 1.987                  | ***             |
| 872        | 4           | 224.159     | 0.596                                | 64.868                | 121.000         | 253.888          | 11.646 ± 0.313   | 3.015 ± 0.032              | 2.627                  | ***             |
| 873        | 4           | 224.614     | 0.597                                | 64.818                | 120.412         | 259.950          | 11.057 ± 0.313   | 2.870 ± 0.032              | 2.405                  | ***             |
| 874        | 4           | 224.011     | 0.596                                | 65.176                | 121.025         | 273.500          | 1.086 ± 0.316    | 3.032 ± 0.045              | 2.066                  | ***             |
| 875        | 4           | 224.807     | 0.598                                | 64.472                | 121.462         | 183.500          | 25.258 ± 0.319   | 10.747 ± 0.058             | 10.787                 | 0.37            |
| 876        | 4           | 299.600     | 0.797                                | 64.831                | 121.525         | 187.000          | 32.244 ± 0.318   | 16.321 ± 0.052             | 16.751                 | 2.63            |
| 877        | 4           | 299.274     | 0.796                                | 64.756                | 121.500         | 192.462          | 29.565 ± 0.317   | 13.935 ± 0.046             | 14.214                 | 2.01            |
| 878        | 4           | 298.692     | 0.795                                | 64.695                | 121.487         | 199.762          | 26.521 ± 0.316   | 11.434 ± 0.041             | 11.584                 | 1.31            |
| 879        | 4           | 298.923     | 0.795                                | 64.954                | 121.500         | 210.000          | 23.318 ± 0.315   | 9.144 ± 0.036              | 9.102                  | -0.45           |
| 880        | 4           | 299.957     | 0.798                                | 64.769                | 121.500         | 223.150          | 20.236 ± 0.314   | 7.207 ± 0.035              | 6.996                  | -2.93           |
| 881        | 4           | 299.913     | 0.798                                | 64.435                | 120.537         | 240.138          | 17.295 ± 0.314   | 5.629 ± 0.034              | 5.254                  | -6.66           |
| 882        | 4           | 296.322     | 0.788                                | 64.917                | 121.625         | 248.662          | 15.982 ± 0.314   | 4.985 ± 0.034              | 4.564                  | -8.45           |
| 883        | 4           | 299.329     | 0.796                                | 64.843                | 121.737         | 263.713          | 14.487 ± 0.313   | 4.737 ± 0.034              | 3.843                  | ***             |
| 884        | 4           | 299.731     | 0.797                                | 64.744                | 121.487         | 271.975          | 13.660 ± 0.313   | 5.105 ± 0.035              | 3.476                  | ***             |
| 885        | 4           | 299.019     | 0.795                                | 64.855                | 120.687         | 275.000          | 13.271 ± 0.313   | 5.349 ± 0.034              | 3.310                  | ***             |
| 886        | 4           | 299.060     | 0.795                                | 65.139                | 120.687         | 267.000          | 13.988 ± 0.314   | 4.798 ± 0.034              | 3.619                  | ***             |
| 887        | 4           | 298.961     | 0.795                                | 64.608                | 120.988         | 256.550          | 15.158 ± 0.316   | 4.847 ± 0.044              | 4.159                  | ***             |
| 888        | 4           | 299.134     | 0.796                                | 64.744                | 121.500         | 203.500          | 25.307 ± 0.319   | 10.576 ± 0.058             | 10.611                 | 0.33            |
| 889        | 4           | 301.286     | 0.801                                | 64.645                | 76.500          | 142.500          | 31.944 ± 0.317   | 16.253 ± 0.050             | 16.785                 | 3.28            |
| 890        | 4           | 301.056     | 0.801                                | 64.769                | 77.688          | 152.000          | 28.205 ± 0.316   | 12.856 ± 0.044             | 13.237                 | 2.97            |
| 891        | 4           | 299.676     | 0.797                                | 64.756                | 77.688          | 160.450          | 24.979 ± 0.315   | 10.347 ± 0.039             | 10.519                 | 1.66            |
| 892        | 4           | 299.777     | 0.797                                | 64.559                | 77.225          | 172.513          | 21.477 ± 0.314   | 7.818 ± 0.035              | 7.917                  | 1.27            |
| 893        | 4           | 299.911     | 0.798                                | 64.830                | 77.412          | 189.988          | 18.165 ± 0.314   | 5.727 ± 0.033              | 5.790                  | 1.10            |
| 894        | 4           | 298.602     | 0.794                                | 64.719                | 77.888          | 211.000          | 15.380 ± 0.313   | 4.349 ± 0.033              | 4.265                  | -1.94           |
| 895        | 4           | 298.812     | 0.795                                | 64.682                | 77.825          | 226.525          | 13.672 ± 0.313   | 3.721 ± 0.032              | 3.454                  | -7.18           |
| 896        | 4           | 298.374     | 0.794                                | 64.769                | 77.500          | 248.987          | 11.876 ± 0.313   | 3.207 ± 0.032              | 2.706                  | ***             |
| 897        | 4           | 298.852     | 0.795                                | 64.707                | 77.375          | 268.000          | 10.653 ± 0.313   | 3.496 ± 0.033              | 2.259                  | ***             |
| 898        | 4           | 299.250     | 0.796                                | 65.028                | 77.475          | 274.037          | 10.339 ± 0.313   | 4.099 ± 0.032              | 2.153                  | ***             |
| 899        | 4           | 299.735     | 0.797                                | 64.917                | 77.500          | 261.500          | 11.092 ± 0.313   | 3.303 ± 0.032              | 2.414                  | ***             |
| 900        | 4           | 300.008     | 0.798                                | 64.892                | 77.500          | 243.912          | 12.280 ± 0.313   | 3.388 ± 0.032              | 2.866                  | ***             |
| 901        | 4           | 299.539     | 0.797                                | 64.645                | 77.500          | 235.250          | 12.988 ± 0.313   | 3.604 ± 0.033              | 3.157                  | -12.41          |
| 902        | 4           | 300.317     | 0.799                                | 64.781                | 76.438          | 222.938          | 14.011 ± 0.313   | 3.904 ± 0.032              | 3.607                  | -7.60           |
| 903        | 4           | 300.478     | 0.799                                | 64.584                | 77.500          | 253.437          | 11.656 ± 0.313   | 3.279 ± 0.033              | 2.622                  | ***             |
| 904        | 4           | 300.023     | 0.798                                | 64.645                | 77.688          | 229.475          | 13.556 ± 0.318   | 3.772 ± 0.053              | 3.403                  | -9.78           |
| 905        | 4           | 301.535     | 0.802                                | 64.608                | 76.500          | 146.850          | 29.995 ± 0.318   | 14.363 ± 0.052             | 14.895                 | 3.71            |
| 906        | 4           | 373.672     | 0.994                                | 64.954                | 77.500          | 164.275          | 29.884 ± 0.319   | 13.940 ± 0.057             | 14.476                 | 3.84            |
| 907        | 4           | 372.098     | 0.990                                | 64.633                | 77.950          | 159.062          | 32.097 ± 0.317   | 15.890 ± 0.047             | 16.581                 | 4.35            |
| 908        | 4           | 371.657     | 0.989                                | 64.633                | 77.250          | 171.500          | 27.349 ± 0.316   | 11.905 ± 0.043             | 12.245                 | 2.86            |
| 909        | 4           | 371.322     | 0.988                                | 64.571                | 77.875          | 181.475          | 24.784 ± 0.315   | 9.980 ± 0.039              | 10.170                 | 1.91            |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 910        | 4           | 372.204     | 0.990                                | 64.534                | 77.150          | 193.300          | 21.979 ± 0.315   | 8.073 ± 0.037              | 8.123                  | 0.63            |
| 911        | 4           | 375.260     | 0.998                                | 64.818                | 77.550          | 209.512          | 19.435 ± 0.314   | 6.613 ± 0.035              | 6.466                  | -2.22           |
| 912        | 4           | 374.678     | 0.997                                | 64.621                | 77.788          | 225.988          | 17.270 ± 0.314   | 5.627 ± 0.034              | 5.218                  | -7.26           |
| 913        | 4           | 374.408     | 0.996                                | 65.077                | 77.500          | 252.513          | 14.552 ± 0.313   | 4.738 ± 0.039              | 3.863                  | ••••            |
| 914        | 4           | 374.432     | 0.996                                | 65.460                | 76.962          | 283.500          | 12.249 ± 0.313   | 8.213 ± 0.034              | 2.897                  | ••••            |
| 915        | 4           | 374.350     | 0.996                                | 64.905                | 76.875          | 256.500          | 14.255 ± 0.313   | 4.834 ± 0.035              | 3.730                  | ••••            |
| 916        | 4           | 375.098     | 0.998                                | 64.707                | 77.825          | 267.500          | 13.484 ± 0.314   | 5.442 ± 0.034              | 3.396                  | ••••            |
| 917        | 4           | 374.840     | 0.997                                | 64.695                | 76.500          | 246.500          | 15.076 ± 0.314   | 4.972 ± 0.034              | 4.107                  | ••••            |
| 918        | 4           | 374.088     | 0.995                                | 64.547                | 76.438          | 235.500          | 16.030 ± 0.317   | 5.279 ± 0.049              | 4.571                  | -13.41          |
| 919        | 4           | 375.219     | 0.998                                | 64.806                | 77.500          | 170.000          | 28.221 ± 0.319   | 12.639 ± 0.057             | 12.988                 | 2.76            |
| 920        | 4           | 374.687     | 0.997                                | 64.695                | 120.475         | 202.000          | 32.264 ± 0.318   | 16.072 ± 0.052             | 16.522                 | 2.80            |
| 921        | 4           | 374.077     | 0.995                                | 64.547                | 121.075         | 209.000          | 29.696 ± 0.317   | 13.879 ± 0.048             | 14.127                 | 1.78            |
| 922        | 4           | 373.306     | 0.993                                | 64.621                | 121.925         | 217.060          | 27.361 ± 0.316   | 12.042 ± 0.044             | 12.112                 | 0.58            |
| 923        | 4           | 373.512     | 0.994                                | 64.707                | 120.300         | 223.000          | 25.140 ± 0.316   | 10.496 ± 0.042             | 10.345                 | -1.44           |
| 924        | 4           | 373.526     | 0.994                                | 64.596                | 120.337         | 231.138          | 23.197 ± 0.315   | 9.334 ± 0.039              | 8.913                  | -4.51           |
| 925        | 4           | 374.074     | 0.995                                | 64.830                | 120.375         | 241.500          | 21.227 ± 0.314   | 8.225 ± 0.037              | 7.577                  | -7.88           |
| 926        | 4           | 374.192     | 0.995                                | 65.077                | 121.163         | 257.500          | 18.854 ± 0.314   | 7.151 ± 0.038              | 6.124                  | ••••            |
| 927        | 4           | 374.122     | 0.995                                | 65.065                | 120.000         | 273.000          | 16.750 ± 0.314   | 7.552 ± 0.044              | 4.978                  | ••••            |
| 928        | 4           | 373.958     | 0.995                                | 65.016                | 121.100         | 283.200          | 15.765 ± 0.314   | 10.268 ± 0.037             | 4.489                  | ••••            |
| 929        | 4           | 373.936     | 0.995                                | 64.942                | 120.350         | 266.563          | 17.479 ± 0.314   | 7.147 ± 0.037              | 5.361                  | ••••            |
| 930        | 4           | 373.504     | 0.993                                | 64.880                | 121.475         | 263.550          | 17.959 ± 0.315   | 7.052 ± 0.038              | 5.622                  | ••••            |
| 931        | 4           | 374.238     | 0.995                                | 64.547                | 121.512         | 252.000          | 19.748 ± 0.315   | 7.659 ± 0.039              | 6.653                  | -13.14          |
| 932        | 4           | 374.156     | 0.995                                | 64.756                | 120.700         | 248.000          | 20.192 ± 0.314   | 7.818 ± 0.038              | 6.923                  | -11.45          |
| 933        | 4           | 373.846     | 0.994                                | 64.868                | 120.362         | 256.000          | 18.887 ± 0.315   | 7.286 ± 0.039              | 6.143                  | ••••            |
| 934        | 4           | 373.684     | 0.994                                | 64.769                | 120.487         | 241.500          | 21.197 ± 0.319   | 8.241 ± 0.060              | 7.558                  | -8.28           |
| 935        | 4           | 147.933     | 0.394                                | 64.695                | 120.750         | 153.500          | 32.000 ± 0.318   | 17.002 ± 0.053             | 17.370                 | 2.16            |
| 936        | 4           | 147.925     | 0.393                                | 64.806                | 121.150         | 156.500          | 29.190 ± 0.317   | 14.456 ± 0.047             | 14.600                 | 1.00            |
| 937        | 4           | 150.180     | 0.399                                | 64.880                | 121.350         | 161.450          | 26.068 ± 0.316   | 11.739 ± 0.042             | 11.789                 | 0.42            |
| 938        | 4           | 149.740     | 0.398                                | 64.645                | 121.500         | 166.213          | 23.165 ± 0.315   | 9.522 ± 0.038              | 9.438                  | -0.88           |
| 939        | 4           | 149.173     | 0.397                                | 64.769                | 120.988         | 171.000          | 20.474 ± 0.314   | 7.586 ± 0.036              | 7.497                  | -1.17           |
| 940        | 4           | 149.243     | 0.397                                | 64.756                | 121.525         | 178.788          | 18.021 ± 0.314   | 6.007 ± 0.033              | 5.909                  | -1.62           |
| 941        | 4           | 148.922     | 0.396                                | 64.769                | 120.612         | 188.012          | 15.346 ± 0.313   | 4.437 ± 0.032              | 4.393                  | -0.99           |
| 942        | 4           | 149.005     | 0.396                                | 64.423                | 121.013         | 195.500          | 13.862 ± 0.313   | 3.676 ± 0.032              | 3.646                  | -0.82           |
| 943        | 4           | 148.606     | 0.395                                | 64.386                | 120.512         | 201.575          | 12.605 ± 0.313   | 3.151 ± 0.032              | 3.068                  | -2.63           |
| 944        | 4           | 148.169     | 0.394                                | 64.534                | 120.500         | 208.513          | 11.526 ± 0.313   | 2.700 ± 0.031              | 2.613                  | -3.24           |
| 945        | 4           | 147.896     | 0.393                                | 64.584                | 120.100         | 216.500          | 10.535 ± 0.313   | 2.311 ± 0.031              | 2.227                  | -3.62           |
| 946        | 4           | 147.806     | 0.393                                | 64.386                | 121.525         | 227.525          | 9.571 ± 0.313    | 1.988 ± 0.031              | 1.884                  | -5.25           |
| 947        | 4           | 150.039     | 0.399                                | 64.695                | 120.850         | 240.537          | 8.532 ± 0.313    | 1.708 ± 0.031              | 1.550                  | -9.28           |
| 948        | 4           | 150.384     | 0.400                                | 64.707                | 120.600         | 255.037          | 7.562 ± 0.312    | 1.502 ± 0.031              | 1.275                  | ••••            |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure<br>psid | Calc Pres<br>psid | Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|-----------------------|-------------------|--------------|-----------------|
| 949        | 4           | 150.271     | 0.400                                | 64.584                | 120.400         | 275.525          | 6.476 ± 0.312    | 1.614 ± 0.032         | 1.010             | ••••         |                 |
| 950        | 4           | 149.904     | 0.399                                | 64.695                | 121.525         | 295.425          | 5.886 ± 0.312    | 2.812 ± 0.031         | 0.886             | ••••         |                 |
| 951        | 4           | 150.137     | 0.399                                | 64.744                | 120.612         | 266.037          | 6.949 ± 0.314    | 1.446 ± 0.035         | 1.120             | ••••         |                 |
| 952        | 4           | 150.570     | 0.401                                | 64.806                | 121.525         | 182.525          | 17.121 ± 0.319   | 5.397 ± 0.061         | 5.373             | -0.44        |                 |
| 953        | 4           | 150.599     | 0.401                                | 65.028                | 76.063          | 109.838          | 31.635 ± 0.317   | 17.297 ± 0.053        | 17.669            | 2.15         |                 |
| 954        | 4           | 150.685     | 0.401                                | 64.547                | 77.538          | 114.537          | 28.363 ± 0.316   | 14.155 ± 0.047        | 14.344            | 1.33         |                 |
| 955        | 4           | 148.820     | 0.396                                | 64.682                | 76.088          | 117.088          | 25.362 ± 0.315   | 11.560 ± 0.042        | 11.632            | 0.62         |                 |
| 956        | 4           | 148.986     | 0.396                                | 64.892                | 76.850          | 122.063          | 22.608 ± 0.315   | 9.371 ± 0.037         | 9.360             | -0.11        |                 |
| 957        | 4           | 148.895     | 0.396                                | 64.769                | 77.550          | 130.550          | 19.474 ± 0.314   | 7.018 ± 0.034         | 7.059             | 0.58         |                 |
| 958        | 4           | 148.926     | 0.396                                | 64.905                | 76.050          | 139.175          | 16.218 ± 0.313   | 5.028 ± 0.032         | 5.011             | -0.34        |                 |
| 959        | 4           | 148.868     | 0.396                                | 64.485                | 77.913          | 153.537          | 13.572 ± 0.313   | 3.581 ± 0.032         | 3.589             | 0.21         |                 |
| 960        | 4           | 148.596     | 0.395                                | 64.756                | 77.700          | 164.050          | 11.794 ± 0.313   | 2.804 ± 0.031         | 2.768             | -1.28        |                 |
| 961        | 4           | 148.514     | 0.395                                | 64.695                | 77.562          | 181.175          | 9.790 ± 0.313    | 2.034 ± 0.031         | 1.971             | -3.09        |                 |
| 962        | 4           | 148.078     | 0.394                                | 64.571                | 77.550          | 203.050          | 7.998 ± 0.312    | 1.448 ± 0.031         | 1.378             | -4.83        |                 |
| 963        | 4           | 148.393     | 0.395                                | 64.744                | 77.650          | 219.212          | 7.049 ± 0.312    | 1.213 ± 0.031         | 1.113             | -8.26        |                 |
| 964        | 4           | 148.055     | 0.394                                | 64.744                | 77.925          | 243.800          | 5.735 ± 0.312    | 0.957 ± 0.031         | 0.807             | ••••         |                 |
| 965        | 4           | 148.269     | 0.394                                | 64.744                | 76.063          | 249.625          | 5.753 ± 0.312    | 0.957 ± 0.031         | 0.810             | ••••         |                 |
| 966        | 4           | 147.829     | 0.393                                | 64.991                | 76.588          | 267.762          | 5.261 ± 0.312    | 1.003 ± 0.031         | 0.715             | ••••         |                 |
| 967        | 4           | 147.931     | 0.394                                | 64.954                | 77.137          | 278.075          | 4.997 ± 0.312    | 1.305 ± 0.031         | 0.669             | ••••         |                 |
| 968        | 4           | 148.063     | 0.394                                | 64.806                | 77.763          | 232.175          | 6.470 ± 0.313    | 1.072 ± 0.031         | 0.970             | -9.56        |                 |
| 969        | 4           | 148.116     | 0.394                                | 64.608                | 77.562          | 191.550          | 8.977 ± 0.318    | 1.706 ± 0.057         | 1.689             | -0.99        |                 |
| 970        | 4           | 148.616     | 0.395                                | 64.880                | 77.000          | 112.075          | 30.020 ± 0.321   | 15.649 ± 0.066        | 16.010            | 2.31         |                 |
| 971        | 4           | 148.861     | 0.396                                | 64.954                | 121.900         | 150.500          | 36.874 ± 0.319   | 21.954 ± 0.063        | 22.682            | 3.32         |                 |
| 972        | 4           | 148.532     | 0.395                                | 64.908                | 120.500         | 151.487          | 33.945 ± 0.318   | 18.862 ± 0.058        | 19.417            | 2.94         |                 |
| 973        | 4           | 148.455     | 0.395                                | 34.698                | 121.025         | 154.012          | 31.454 ± 0.318   | 16.514 ± 0.053        | 16.806            | 1.77         |                 |
| 974        | 4           | 148.067     | 0.394                                | 34.760                | 121.900         | 157.500          | 29.164 ± 0.316   | 14.289 ± 0.046        | 14.563            | 1.92         |                 |
| 975        | 4           | 148.151     | 0.394                                | 34.797                | 121.513         | 161.737          | 25.745 ± 0.316   | 11.443 ± 0.042        | 11.519            | 0.67         |                 |
| 976        | 4           | 148.072     | 0.394                                | 34.698                | 120.950         | 164.500          | 23.568 ± 0.315   | 9.734 ± 0.039         | 9.764             | 0.31         |                 |
| 977        | 4           | 150.590     | 0.401                                | 34.760                | 120.237         | 169.500          | 21.143 ± 0.314   | 7.950 ± 0.035         | 7.966             | 0.20         |                 |
| 978        | 4           | 150.460     | 0.400                                | 34.797                | 121.000         | 178.500          | 18.042 ± 0.314   | 5.944 ± 0.034         | 5.920             | -0.41        |                 |
| 979        | 4           | 149.982     | 0.399                                | 34.537                | 121.000         | 187.000          | 15.873 ± 0.313   | 4.665 ± 0.033         | 4.672             | 0.15         |                 |
| 980        | 4           | 149.524     | 0.398                                | 34.994                | 120.450         | 195.050          | 13.965 ± 0.313   | 3.699 ± 0.032         | 3.695             | -0.11        |                 |
| 981        | 4           | 149.584     | 0.398                                | 34.698                | 121.400         | 207.000          | 12.199 ± 0.313   | 2.917 ± 0.031         | 2.891             | -0.90        |                 |
| 982        | 4           | 150.065     | 0.399                                | 34.797                | 121.400         | 218.863          | 10.644 ± 0.313   | 2.386 ± 0.031         | 2.269             | -4.91        |                 |
| 983        | 4           | 149.640     | 0.398                                | 34.945                | 122.013         | 233.500          | 9.244 ± 0.313    | 2.050 ± 0.032         | 1.782             | ••••         |                 |
| 984        | 4           | 149.259     | 0.397                                | 35.068                | 121.087         | 243.900          | 8.371 ± 0.313    | 2.667 ± 0.032         | 1.512             | ••••         |                 |
| 985        | 4           | 149.274     | 0.397                                | 35.303                | 120.200         | 249.000          | 7.931 ± 0.313    | 3.041 ± 0.031         | 1.386             | ••••         |                 |
| 986        | 4           | 148.900     | 0.396                                | 35.007                | 121.588         | 241.050          | 8.594 ± 0.313    | 2.363 ± 0.031         | 1.579             | ••••         |                 |
| 987        | 4           | 149.014     | 0.396                                | 34.760                | 120.987         | 223.575          | 10.047 ± 0.313   | 2.309 ± 0.031         | 2.053             | ••••         |                 |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 988        | 4           | 149.114     | 0.397                                | 35.229                | 120.850         | 234.500          | 9.075 ± 0.313    | 2.061 ± 0.031              | 1.727                  | ••••            |
| 989        | 4           | 149.001     | 0.396                                | 34.661                | 120.062         | 230.738          | 9.376 ± 0.317    | 2.050 ± 0.050              | 1.824                  | ••••            |
| 990        | 4           | 149.142     | 0.397                                | 34.599                | 121.375         | 159.438          | 27.618 ± 0.321   | 13.002 ± 0.066             | 13.147                 | 1.11            |
| 991        | 4           | 224.178     | 0.596                                | 34.586                | 121.563         | 164.588          | 36.983 ± 0.319   | 21.354 ± 0.062             | 22.196                 | 3.94            |
| 992        | 4           | 223.982     | 0.596                                | 34.710                | 120.613         | 167.000          | 33.950 ± 0.318   | 18.299 ± 0.055             | 18.875                 | 3.15            |
| 993        | 4           | 223.746     | 0.595                                | 34.710                | 121.763         | 173.038          | 30.506 ± 0.317   | 15.151 ± 0.047             | 15.400                 | 1.64            |
| 994        | 4           | 223.500     | 0.595                                | 34.587                | 120.187         | 178.500          | 26.831 ± 0.316   | 11.951 ± 0.044             | 12.095                 | 1.20            |
| 995        | 4           | 224.143     | 0.597                                | 34.611                | 121.125         | 184.238          | 24.699 ± 0.315   | 10.272 ± 0.039             | 10.343                 | 0.69            |
| 996        | 4           | 223.744     | 0.595                                | 34.846                | 120.912         | 193.425          | 21.417 ± 0.314   | 7.892 ± 0.035              | 7.918                  | 0.32            |
| 997        | 4           | 222.489     | 0.592                                | 34.710                | 121.413         | 210.000          | 17.455 ± 0.314   | 5.579 ± 0.034              | 5.419                  | -2.86           |
| 998        | 4           | 223.460     | 0.594                                | 34.747                | 121.613         | 223.000          | 15.283 ± 0.313   | 4.593 ± 0.033              | 4.257                  | -7.31           |
| 999        | 4           | 222.982     | 0.593                                | 34.772                | 121.000         | 238.000          | 13.245 ± 0.313   | 4.441 ± 0.035              | 3.305                  | ••••            |
| 1000       | 4           | 222.911     | 0.593                                | 35.093                | 121.012         | 246.100          | 12.280 ± 0.313   | 5.817 ± 0.033              | 2.901                  | ••••            |
| 1001       | 4           | 223.134     | 0.594                                | 34.649                | 121.000         | 229.500          | 14.225 ± 0.313   | 4.250 ± 0.033              | 3.748                  | ••••            |
| 1002       | 4           | 223.166     | 0.594                                | 34.934                | 121.012         | 235.013          | 13.603 ± 0.314   | 4.247 ± 0.033              | 3.463                  | ••••            |
| 1003       | 4           | 223.383     | 0.594                                | 35.044                | 120.975         | 225.513          | 14.810 ± 0.315   | 4.430 ± 0.037              | 4.025                  | ••••            |
| 1004       | 4           | 223.232     | 0.594                                | 34.821                | 120.175         | 200.000          | 19.484 ± 0.317   | 6.690 ± 0.050              | 6.644                  | -0.69           |
| 1005       | 4           | 222.289     | 0.591                                | 34.661                | 121.500         | 176.963          | 28.452 ± 0.321   | 13.238 ± 0.066             | 13.507                 | 2.03            |
| 1006       | 4           | 300.433     | 0.799                                | 34.735                | 121.012         | 178.450          | 37.117 ± 0.320   | 21.001 ± 0.062             | 21.889                 | 4.23            |
| 1007       | 4           | 295.894     | 0.798                                | 34.698                | 121.100         | 183.000          | 34.342 ± 0.318   | 18.312 ± 0.055             | 18.880                 | 3.10            |
| 1008       | 4           | 299.457     | 0.797                                | 34.957                | 121.150         | 189.000          | 31.004 ± 0.317   | 15.122 ± 0.049             | 15.553                 | 2.85            |
| 1009       | 4           | 299.825     | 0.798                                | 34.871                | 120.550         | 195.925          | 27.797 ± 0.316   | 12.493 ± 0.044             | 12.657                 | 1.31            |
| 1010       | 4           | 299.811     | 0.797                                | 34.661                | 121.500         | 205.000          | 25.045 ± 0.315   | 10.519 ± 0.040             | 10.402                 | -1.11           |
| 1011       | 4           | 299.716     | 0.797                                | 34.821                | 120.162         | 215.000          | 21.958 ± 0.314   | 8.513 ± 0.037              | 8.148                  | -4.29           |
| 1012       | 4           | 300.037     | 0.798                                | 34.945                | 121.012         | 230.025          | 18.890 ± 0.314   | 7.054 ± 0.038              | 6.192                  | ••••            |
| 1013       | 4           | 299.640     | 0.797                                | 35.253                | 121.012         | 238.512          | 17.594 ± 0.314   | 7.507 ± 0.044              | 5.453                  | ••••            |
| 1014       | 4           | 299.474     | 0.797                                | 35.019                | 120.500         | 248.012          | 16.204 ± 0.314   | 10.641 ± 0.038             | 4.718                  | ••••            |
| 1015       | 4           | 299.991     | 0.798                                | 34.710                | 121.075         | 237.012          | 17.957 ± 0.314   | 7.530 ± 0.038              | 5.656                  | ••••            |
| 1016       | 4           | 299.802     | 0.797                                | 34.463                | 121.975         | 233.125          | 18.600 ± 0.315   | 7.287 ± 0.038              | 6.024                  | ••••            |
| 1017       | 4           | 300.238     | 0.799                                | 34.649                | 121.012         | 227.013          | 19.651 ± 0.315   | 7.375 ± 0.039              | 6.651                  | ••••            |
| 1018       | 4           | 300.136     | 0.798                                | 34.686                | 121.000         | 221.500          | 20.691 ± 0.319   | 7.867 ± 0.060              | 7.305                  | -7.14           |
| 1019       | 4           | 300.497     | 0.799                                | 34.624                | 120.087         | 184.525          | 32.898 ± 0.320   | 16.825 ± 0.066             | 17.411                 | 3.49            |
| 1020       | 4           | 149.533     | 0.398                                | 34.834                | 76.025          | 105.525          | 35.837 ± 0.319   | 21.726 ± 0.063             | 22.400                 | 3.10            |
| 1021       | 4           | 149.079     | 0.397                                | 34.525                | 77.012          | 108.487          | 33.270 ± 0.318   | 18.968 ± 0.058             | 19.438                 | 2.48            |
| 1022       | 4           | 148.849     | 0.396                                | 34.599                | 76.987          | 111.000          | 30.524 ± 0.317   | 16.195 ± 0.049             | 16.513                 | 1.96            |
| 1023       | 4           | 148.492     | 0.395                                | 34.797                | 76.812          | 115.500          | 26.687 ± 0.316   | 12.637 ± 0.042             | 12.808                 | 1.36            |
| 1024       | 4           | 148.320     | 0.395                                | 34.673                | 77.525          | 122.000          | 23.153 ± 0.315   | 9.700 ± 0.038              | 9.787                  | 0.90            |
| 1025       | 4           | 148.371     | 0.395                                | 34.673                | 77.563          | 129.038          | 19.938 ± 0.314   | 7.343 ± 0.035              | 7.382                  | 0.53            |
| 1026       | 4           | 148.133     | 0.394                                | 34.784                | 77.475          | 137.000          | 5.541 ± 0.313    | 5.541 ± 0.033              | 5.577                  | 0.65            |

| Test Point | Test Number | Power<br>KW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Intlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|------------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 1027       | 4           | 149.974     | 0.399                                | 34.834                | 78.012           | 152.325          | 13.932 ± 0.313   | 3.797 ± 0.032              | 3.767                  | -0.79           |
| 1028       | 4           | 150.075     | 0.399                                | 34.809                | 77.800           | 163.513          | 12.068 ± 0.313   | 2.956 ± 0.031              | 2.885                  | -2.40           |
| 1029       | 4           | 149.787     | 0.398                                | 34.686                | 77.500           | 173.500          | 10.793 ± 0.313   | 2.437 ± 0.031              | 2.354                  | -3.41           |
| 1030       | 4           | 149.923     | 0.399                                | 34.686                | 77.438           | 186.500          | 9.478 ± 0.313    | 1.975 ± 0.031              | 1.859                  | -5.88           |
| 1031       | 4           | 149.714     | 0.398                                | 34.895                | 77.338           | 198.562          | 8.466 ± 0.313    | 1.700 ± 0.031              | 1.523                  | -10.42          |
| 1032       | 4           | 149.786     | 0.398                                | 34.895                | 77.400           | 209.513          | 7.750 ± 0.312    | 1.513 ± 0.031              | 1.309                  | -13.47          |
| 1033       | 4           | 149.965     | 0.399                                | 34.747                | 77.500           | 226.500          | 6.868 ± 0.312    | 1.354 ± 0.031              | 1.074                  | ****            |
| 1034       | 4           | 150.046     | 0.399                                | 34.846                | 77.613           | 235.438          | 6.424 ± 0.312    | 1.515 ± 0.031              | 0.968                  | ****            |
| 1035       | 4           | 150.049     | 0.399                                | 34.932                | 77.987           | 251.487          | 5.862 ± 0.313    | 2.577 ± 0.031              | 0.845                  | ****            |
| 1036       | 4           | 150.098     | 0.399                                | 34.809                | 77.500           | 216.500          | 7.357 ± 0.316    | 1.459 ± 0.046              | 1.201                  | -17.67          |
| 1037       | 4           | 150.591     | 0.401                                | 34.661                | 76.937           | 119.013          | 25.195 ± 0.321   | 11.280 ± 0.066             | 11.477                 | 1.75            |
| 1038       | 4           | 224.807     | 0.598                                | 34.747                | 76.587           | 120.000          | 36.495 ± 0.319   | 21.452 ± 0.062             | 22.294                 | 3.93            |
| 1039       | 4           | 224.659     | 0.598                                | 34.723                | 77.550           | 125.000          | 33.325 ± 0.318   | 18.118 ± 0.056             | 18.733                 | 3.40            |
| 1040       | 4           | 224.478     | 0.597                                | 34.624                | 76.962           | 128.000          | 30.709 ± 0.317   | 15.645 ± 0.048             | 16.040                 | 2.52            |
| 1041       | 4           | 224.628     | 0.598                                | 34.673                | 76.725           | 134.550          | 26.982 ± 0.316   | 12.235 ± 0.042             | 12.543                 | 2.52            |
| 1042       | 4           | 224.494     | 0.597                                | 34.661                | 77.525           | 143.500          | 23.599 ± 0.315   | 9.539 ± 0.037              | 9.724                  | 1.94            |
| 1043       | 4           | 224.536     | 0.597                                | 34.624                | 77.900           | 154.500          | 20.199 ± 0.314   | 7.148 ± 0.035              | 7.248                  | 1.41            |
| 1044       | 4           | 225.205     | 0.599                                | 34.611                | 77.500           | 165.000          | 17.731 ± 0.314   | 5.621 ± 0.033              | 5.676                  | 0.97            |
| 1045       | 4           | 224.665     | 0.598                                | 34.624                | 77.012           | 183.013          | 14.594 ± 0.313   | 4.100 ± 0.032              | 3.953                  | -3.60           |
| 1046       | 4           | 224.449     | 0.597                                | 34.982                | 76.013           | 201.587          | 12.315 ± 0.313   | 3.178 ± 0.032              | 2.905                  | -8.60           |
| 1047       | 4           | 224.095     | 0.596                                | 34.858                | 76.200           | 214.400          | 11.147 ± 0.313   | 2.807 ± 0.032              | 2.437                  | ****            |
| 1048       | 4           | 224.208     | 0.596                                | 34.710                | 77.688           | 224.013          | 10.585 ± 0.313   | 2.711 ± 0.032              | 2.230                  | ****            |
| 1049       | 4           | 223.982     | 0.596                                | 34.735                | 77.588           | 238.912          | 9.548 ± 0.313    | 3.344 ± 0.032              | 1.875                  | ****            |
| 1050       | 4           | 224.156     | 0.596                                | 34.821                | 77.000           | 229.788          | 10.130 ± 0.313   | 2.748 ± 0.032              | 2.069                  | ****            |
| 1051       | 4           | 224.315     | 0.597                                | 35.167                | 76.038           | 233.513          | 9.810 ± 0.313    | 2.820 ± 0.034              | 1.960                  | ****            |
| 1052       | 4           | 224.057     | 0.596                                | 34.463                | 76.013           | 248.000          | 9.012 ± 0.318    | 4.900 ± 0.052              | 1.706                  | ****            |
| 1053       | 4           | 225.796     | 0.601                                | 34.661                | 77.525           | 132.025          | 29.001 ± 0.321   | 12.935 ± 0.066             | 14.382                 | 3.21            |
| 1054       | 4           | 297.672     | 0.792                                | 34.895                | 76.587           | 133.500          | 36.755 ± 0.319   | 20.977 ± 0.061             | 21.967                 | 4.72            |
| 1055       | 4           | 299.191     | 0.796                                | 34.649                | 77.000           | 139.500          | 33.479 ± 0.318   | 17.637 ± 0.052             | 18.368                 | 4.15            |
| 1056       | 4           | 298.226     | 0.793                                | 34.723                | 76.862           | 147.013          | 29.691 ± 0.317   | 14.054 ± 0.046             | 14.611                 | 3.96            |
| 1057       | 4           | 296.576     | 0.789                                | 34.673                | 76.512           | 155.500          | 26.154 ± 0.315   | 11.222 ± 0.039             | 11.493                 | 2.41            |
| 1058       | 4           | 297.782     | 0.792                                | 34.574                | 77.012           | 170.012          | 22.101 ± 0.314   | 8.235 ± 0.036              | 8.362                  | 1.54            |
| 1059       | 4           | 298.109     | 0.793                                | 34.821                | 77.875           | 187.500          | 18.667 ± 0.314   | 6.257 ± 0.034              | 6.095                  | -2.58           |
| 1060       | 4           | 296.883     | 0.790                                | 34.821                | 77.575           | 209.425          | 15.598 ± 0.313   | 4.799 ± 0.034              | 4.394                  | -8.44           |
| 1061       | 4           | 297.000     | 0.790                                | 35.130                | 76.175           | 232.388          | 13.081 ± 0.313   | 4.590 ± 0.038              | 3.226                  | ****            |
| 1062       | 4           | 298.884     | 0.795                                | 35.031                | 76.288           | 245.513          | 12.115 ± 0.313   | 7.321 ± 0.035              | 2.833                  | ****            |
| 1063       | 4           | 298.953     | 0.795                                | 35.118                | 77.688           | 240.000          | 12.663 ± 0.313   | 5.880 ± 0.033              | 3.055                  | ****            |
| 1064       | 4           | 298.746     | 0.795                                | 34.883                | 77.225           | 225.150          | 13.877 ± 0.314   | 4.472 ± 0.033              | 3.575                  | ****            |
| 1065       | 4           | 298.540     | 0.794                                | 34.624                | 77.000           | 219.000          | 14.570 ± 0.314   | 4.477 ± 0.034              | 3.894                  | ****            |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 1066       | 4           | 298.301     | 0.793                                | 34.574                | 76.562          | 213.025          | 15.056 ± 0.314   | 4.643 ± 0.035              | 4.126                  | ••••            |
| 1067       | 4           | 298.668     | 0.794                                | 34.784                | 76.950          | 197.988          | 16.984 ± 0.316   | 5.412 ± 0.042              | 5.126                  | -5.29           |
| 1068       | 4           | 298.795     | 0.795                                | 34.871                | 77.550          | 163.538          | 24.123 ± 0.321   | 9.663 ± 0.065              | 9.856                  | 2.00            |
| 1069       | 4           | 375.439     | 0.999                                | 34.686                | 76.887          | 148.500          | 36.899 ± 0.319   | 20.637 ± 0.061             | 21.623                 | 4.78            |
| 1070       | 4           | 375.368     | 0.998                                | 34.797                | 77.850          | 155.350          | 33.949 ± 0.318   | 17.640 ± 0.054             | 18.437                 | 4.52            |
| 1071       | 4           | 374.632     | 0.996                                | 34.611                | 76.025          | 161.025          | 30.760 ± 0.317   | 14.687 ± 0.049             | 15.293                 | 4.13            |
| 1072       | 4           | 374.252     | 0.995                                | 34.747                | 76.025          | 168.525          | 28.108 ± 0.316   | 12.492 ± 0.044             | 12.893                 | 3.21            |
| 1073       | 4           | 373.891     | 0.995                                | 34.784                | 77.175          | 180.500          | 25.010 ± 0.315   | 10.298 ± 0.040             | 10.342                 | 0.43            |
| 1074       | 4           | 373.589     | 0.994                                | 34.858                | 77.650          | 195.500          | 21.867 ± 0.315   | 8.387 ± 0.037              | 8.054                  | -3.97           |
| 1075       | 4           | 372.661     | 0.991                                | 34.747                | 76.625          | 209.075          | 19.331 ± 0.314   | 7.098 ± 0.036              | 6.433                  | -9.38           |
| 1076       | 4           | 372.895     | 0.992                                | 34.661                | 76.787          | 221.975          | 17.624 ± 0.314   | 6.508 ± 0.037              | 5.454                  | ••••            |
| 1077       | 4           | 372.947     | 0.992                                | 35.007                | 77.438          | 231.513          | 16.583 ± 0.314   | 6.946 ± 0.039              | 4.901                  | ••••            |
| 1078       | 4           | 372.532     | 0.991                                | 35.031                | 76.250          | 236.013          | 16.021 ± 0.314   | 7.893 ± 0.036              | 4.615                  | ••••            |
| 1079       | 4           | 372.562     | 0.991                                | 34.587                | 76.100          | 226.763          | 17.030 ± 0.314   | 6.537 ± 0.037              | 5.134                  | ••••            |
| 1080       | 4           | 372.700     | 0.991                                | 34.599                | 77.962          | 220.013          | 17.947 ± 0.314   | 6.651 ± 0.037              | 5.633                  | ••••            |
| 1081       | 4           | 373.079     | 0.992                                | 34.735                | 77.463          | 215.000          | 18.620 ± 0.315   | 6.828 ± 0.039              | 6.015                  | ••••            |
| 1082       | 4           | 373.304     | 0.993                                | 34.710                | 76.937          | 201.638          | 20.572 ± 0.316   | 7.748 ± 0.042              | 7.203                  | -7.04           |
| 1083       | 4           | 374.044     | 0.995                                | 34.574                | 78.000          | 187.000          | 23.708 ± 0.319   | 9.481 ± 0.058              | 9.358                  | -1.30           |
| 1084       | 4           | 374.080     | 0.995                                | 34.883                | 76.425          | 157.025          | 32.408 ± 0.321   | 16.209 ± 0.066             | 16.893                 | 4.22            |
| 1085       | 4           | 374.448     | 0.996                                | 34.920                | 120.837         | 191.550          | 37.289 ± 0.320   | 20.953 ± 0.064             | 21.742                 | 3.77            |
| 1086       | 4           | 374.259     | 0.995                                | 34.611                | 121.513         | 196.013          | 35.358 ± 0.319   | 19.072 ± 0.060             | 19.648                 | 3.02            |
| 1087       | 4           | 374.557     | 0.996                                | 34.821                | 122.013         | 201.025          | 33.161 ± 0.318   | 17.005 ± 0.056             | 17.395                 | 2.29            |
| 1088       | 4           | 374.077     | 0.995                                | 34.883                | 121.525         | 205.000          | 31.438 ± 0.318   | 15.618 ± 0.053             | 15.729                 | 0.71            |
| 1089       | 4           | 374.173     | 0.995                                | 34.846                | 121.500         | 210.025          | 29.491 ± 0.317   | 14.100 ± 0.049             | 13.948                 | -1.08           |
| 1090       | 4           | 374.933     | 0.997                                | 34.920                | 121.975         | 216.600          | 27.533 ± 0.317   | 12.799 ± 0.048             | 12.266                 | -4.16           |
| 1091       | 4           | 374.622     | 0.996                                | 34.883                | 122.013         | 221.513          | 26.268 ± 0.316   | 11.985 ± 0.046             | 11.242                 | -6.20           |
| 1092       | 4           | 374.368     | 0.996                                | 34.871                | 120.513         | 223.012          | 25.383 ± 0.316   | 11.390 ± 0.045             | 10.555                 | -7.33           |
| 1093       | 4           | 374.500     | 0.996                                | 34.920                | 120.463         | 229.000          | 23.968 ± 0.316   | 10.738 ± 0.045             | 9.502                  | ••••            |
| 1094       | 4           | 374.604     | 0.996                                | 34.772                | 120.950         | 234.538          | 22.833 ± 0.315   | 10.973 ± 0.047             | 8.701                  | ••••            |
| 1095       | 4           | 374.088     | 0.995                                | 35.229                | 120.475         | 238.437          | 21.986 ± 0.316   | 11.756 ± 0.044             | 8.126                  | ••••            |
| 1096       | 4           | 374.694     | 0.997                                | 34.969                | 120.950         | 231.525          | 23.506 ± 0.316   | 10.607 ± 0.045             | 9.171                  | ••••            |
| 1097       | 4           | 374.870     | 0.997                                | 34.587                | 120.500         | 227.200          | 24.332 ± 0.316   | 10.866 ± 0.046             | 9.768                  | ••••            |
| 1098       | 4           | 374.746     | 0.997                                | 34.673                | 121.863         | 226.500          | 24.893 ± 0.320   | 11.173 ± 0.062             | 10.183                 | ••••            |
| 1099       | 4           | 374.912     | 0.997                                | 34.858                | 120.513         | 197.013          | 34.527 ± 0.317   | 17.862 ± 0.046             | 18.787                 | 5.18            |
| 1490       | 7           | 0.000       | 64.725                               | 76.725                | 76.500          | 29.781 ± 0.318   | 20.147 ± 0.065   | 20.703                     | 2.76                   |                 |
| 1491       | 7           | 0.000       | 64.638                               | 77.388                | 77.000          | 27.572 ± 0.317   | 17.790 ± 0.062   | 17.959                     | 0.95                   |                 |
| 1492       | 7           | 0.001       | 64.688                               | 77.500                | 77.500          | 25.513 ± 0.316   | 15.589 ± 0.056   | 15.588                     | 0.00                   |                 |
| 1493       | 7           | 0.000       | 64.688                               | 76.537                | 76.475          | 22.821 ± 0.315   | 12.860 ± 0.050   | 12.760                     | -0.77                  |                 |
| 1494       | 7           | 0.000       | 64.588                               | 77.538                | 77.500          | 20.321 ± 0.315   | 10.423 ± 0.044   | 10.317                     | -1.01                  |                 |

| Test Point | Test Number | Power<br>KW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 1495       | 7           | 0.000       | 0.000                                | 64.837                | 77.100          | 76.962           | 18.463 ± 0.314   | 8.699 ± 0.040              | 8.687                  | -0.14           |
| 1496       | 7           | 0.000       | 0.000                                | 64.575                | 77.500          | 77.000           | 16.480 ± 0.314   | 7.122 ± 0.037              | 7.072                  | -0.70           |
| 1497       | 7           | -0.001      | 0.000                                | 64.775                | 77.887          | 77.500           | 13.194 ± 0.313   | 4.796 ± 0.034              | 4.741                  | -1.15           |
| 1498       | 7           | 0.001       | 0.000                                | 64.426                | 77.513          | 77.475           | 10.514 ± 0.313   | 3.240 ± 0.032              | 3.165                  | -2.33           |
| 1499       | 7           | 0.000       | 0.000                                | 64.463                | 76.962          | 76.500           | 8.286 ± 0.313    | 2.135 ± 0.031              | 2.076                  | -2.74           |
| 1500       | 7           | 0.000       | 0.000                                | 64.451                | 78.025          | 77.500           | 6.190 ± 0.312    | 1.262 ± 0.031              | 1.237                  | -1.98           |
| 1501       | 7           | -0.001      | 0.000                                | 64.388                | 76.975          | 76.500           | 3.908 ± 0.312    | 0.564 ± 0.031              | 0.553                  | -1.94           |
| 1502       | 7           | 0.000       | 0.000                                | 64.438                | 76.500          | 76.038           | 8.251 ± 0.313    | 2.085 ± 0.031              | 2.066                  | -0.93           |
| 1503       | 7           | 0.000       | 0.000                                | 64.999                | 78.050          | 77.875           | 15.424 ± 0.314   | 6.357 ± 0.036              | 6.273                  | -1.32           |
| 1504       | 7           | 0.000       | 0.000                                | 64.862                | 77.500          | 77.175           | 25.465 ± 0.316   | 15.495 ± 0.056             | 15.539                 | 0.28            |
| 1505       | 7           | 0.000       | 0.000                                | 64.949                | 120.675         | 120.488          | 30.171 ± 0.318   | 18.891 ± 0.064             | 19.532                 | 3.39            |
| 1506       | 7           | 0.000       | 0.000                                | 64.949                | 121.500         | 121.000          | 28.222 ± 0.317   | 17.242 ± 0.061             | 17.243                 | 0.01            |
| 1507       | 7           | 0.000       | 0.000                                | 64.650                | 121.500         | 121.000          | 26.342 ± 0.317   | 15.091 ± 0.055             | 15.186                 | 0.63            |
| 1508       | 7           | 0.000       | 0.000                                | 65.074                | 121.500         | 121.000          | 24.141 ± 0.316   | 12.994 ± 0.050             | 12.937                 | -0.44           |
| 1509       | 7           | 0.000       | 0.000                                | 64.600                | 120.500         | 120.275          | 22.169 ± 0.315   | 11.142 ± 0.046             | 11.085                 | -0.51           |
| 1510       | 7           | 0.000       | 0.000                                | 64.738                | 120.400         | 119.687          | 20.173 ± 0.315   | 9.392 ± 0.042              | 9.332                  | -0.64           |
| 1511       | 7           | 0.000       | 0.000                                | 64.875                | 121.713         | 121.012          | 18.043 ± 0.314   | 7.647 ± 0.038              | 7.601                  | -0.60           |
| 1512       | 7           | 0.000       | 0.000                                | 64.538                | 121.500         | 121.012          | 16.062 ± 0.314   | 6.175 ± 0.036              | 6.159                  | -0.26           |
| 1513       | 7           | 0.000       | 0.000                                | 64.551                | 121.000         | 120.425          | 13.941 ± 0.313   | 4.832 ± 0.034              | 4.775                  | -1.18           |
| 1514       | 7           | 0.000       | 0.000                                | 64.713                | 122.000         | 121.500          | 11.943 ± 0.313   | 3.647 ± 0.032              | 3.613                  | -0.93           |
| 1515       | 7           | 0.000       | 0.000                                | 64.314                | 121.538         | 121.288          | 10.073 ± 0.313   | 2.701 ± 0.032              | 2.671                  | -1.12           |
| 1516       | 7           | 0.000       | 0.000                                | 64.750                | 121.988         | 121.025          | 7.888 ± 0.313    | 1.773 ± 0.031              | 1.735                  | -2.14           |
| 1517       | 7           | 0.000       | 0.000                                | 64.713                | 122.000         | 121.500          | 5.807 ± 0.312    | 1.044 ± 0.031              | 1.021                  | -2.19           |
| 1518       | 7           | 0.000       | 0.000                                | 64.638                | 119.962         | 119.487          | 4.010 ± 0.312    | 0.570 ± 0.031              | 0.549                  | -3.70           |
| 1519       | 7           | 0.000       | 0.000                                | 64.775                | 120.500         | 119.500          | 3.994 ± 0.312    | 0.554 ± 0.031              | 0.546                  | -1.49           |
| 1520       | 7           | 0.000       | 0.000                                | 64.177                | 120.975         | 120.500          | 15.158 ± 0.314   | 5.605 ± 0.035              | 5.556                  | -0.87           |
| 1521       | 7           | 145.729     | 0.398                                | 64.339                | 120.000         | 152.000          | 31.673 ± 0.319   | 19.158 ± 0.065             | 19.595                 | 2.28            |
| 1522       | 7           | 146.919     | 0.401                                | 64.638                | 121.500         | 154.713          | 30.463 ± 0.318   | 18.186 ± 0.063             | 18.167                 | -0.10           |
| 1523       | 7           | 145.942     | 0.398                                | 64.900                | 121.500         | 157.487          | 28.452 ± 0.317   | 16.058 ± 0.058             | 15.955                 | 0.64            |
| 1524       | 7           | 147.973     | 0.404                                | 64.812                | 120.000         | 159.500          | 26.219 ± 0.317   | 13.876 ± 0.052             | 13.669                 | -1.49           |
| 1525       | 7           | 145.687     | 0.398                                | 63.703                | 120.500         | 162.413          | 24.243 ± 0.316   | 11.959 ± 0.047             | 11.784                 | -1.46           |
| 1526       | 7           | 147.538     | 0.403                                | 64.613                | 120.838         | 166.500          | 22.461 ± 0.315   | 10.317 ± 0.044             | 10.196                 | -0.18           |
| 1527       | 7           | 147.087     | 0.402                                | 65.136                | 120.875         | 171.000          | 20.235 ± 0.315   | 8.448 ± 0.040              | 8.369                  | -0.94           |
| 1528       | 7           | 146.552     | 0.400                                | 64.501                | 121.500         | 178.175          | 18.177 ± 0.314   | 6.783 ± 0.037              | 6.843                  | 0.88            |
| 1529       | 7           | 147.688     | 0.403                                | 64.912                | 121.000         | 195.500          | 13.730 ± 0.313   | 4.159 ± 0.033              | 4.062                  | -2.34           |
| 1530       | 7           | 146.462     | 0.400                                | 65.274                | 121.775         | 206.000          | 12.004 ± 0.313   | 3.229 ± 0.032              | 3.177                  | -1.62           |
| 1531       | 7           | 146.366     | 0.400                                | 65.161                | 121.500         | 219.500          | 10.249 ± 0.313   | 2.506 ± 0.031              | 2.392                  | -4.54           |
| 1532       | 7           | 145.419     | 0.397                                | 64.401                | 121.500         | 234.537          | 8.864 ± 0.313    | 1.986 ± 0.031              | 1.856                  | -6.55           |
| 1533       | 7           | 145.653     | 0.398                                | 64.326                | 121.500         | 243.500          | 8.202 ± 0.313    | 1.763 ± 0.031              | 1.627                  | -7.70           |

| Test Point | Test Number | Power<br>KW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 1534       | 7           | 146.620     | 0.400                                | 65.274                | 122.000         | 257.925          | 7.441 ± 0.313    | 1.621 ± 0.031              | 1.387                  | *****           |
| 1535       | 7           | 146.152     | 0.399                                | 65.012                | 121.500         | 267.500          | 7.025 ± 0.312    | 1.560 ± 0.031              | 1.267                  | *****           |
| 1536       | 7           | 145.953     | 0.398                                | 65.149                | 120.575         | 277.875          | 6.434 ± 0.312    | 1.773 ± 0.031              | 1.107                  | *****           |
| 1537       | 7           | 147.938     | 0.404                                | 65.074                | 120.300         | 287.050          | 6.072 ± 0.312    | 2.353 ± 0.031              | 1.019                  | *****           |
| 1538       | 7           | 147.279     | 0.402                                | 65.648                | 120.513         | 298.175          | 5.558 ± 0.312    | 3.598 ± 0.032              | 0.904                  | *****           |
| 1539       | 7           | 145.879     | 0.398                                | 64.812                | 119.987         | 183.550          | 16.018 ± 0.314   | 5.492 ± 0.035              | 5.411                  | -1.47           |
| 1540       | 7           | 145.971     | 0.399                                | 65.336                | 121.938         | 168.913          | 21.523 ± 0.315   | 9.492 ± 0.042              | 9.397                  | -1.00           |
| 1541       | 7           | 145.890     | 0.398                                | 64.912                | 76.500          | 108.775          | 31.056 ± 0.318   | 19.039 ± 0.065             | 19.518                 | 2.52            |
| 1542       | 7           | 145.711     | 0.398                                | 64.875                | 76.300          | 110.713          | 29.083 ± 0.318   | 17.376 ± 0.061             | 17.226                 | -0.86           |
| 1543       | 7           | 146.070     | 0.399                                | 64.488                | 77.500          | 115.850          | 26.214 ± 0.317   | 14.184 ± 0.053             | 14.120                 | -0.45           |
| 1544       | 7           | 147.122     | 0.402                                | 64.575                | 77.500          | 121.500          | 23.383 ± 0.316   | 11.388 ± 0.046             | 11.356                 | -0.28           |
| 1545       | 7           | 147.701     | 0.403                                | 64.551                | 77.500          | 127.000          | 20.628 ± 0.315   | 8.942 ± 0.041              | 8.946                  | 0.04            |
| 1546       | 7           | 146.338     | 0.400                                | 64.625                | 77.750          | 134.500          | 17.757 ± 0.314   | 6.810 ± 0.037              | 6.738                  | -1.06           |
| 1547       | 7           | 146.282     | 0.399                                | 64.600                | 76.500          | 145.600          | 14.803 ± 0.314   | 4.815 ± 0.034              | 4.789                  | -0.53           |
| 1548       | 7           | 145.447     | 0.397                                | 64.463                | 77.625          | 158.000          | 12.644 ± 0.313   | 3.576 ± 0.032              | 3.565                  | -0.32           |
| 1549       | 7           | 145.291     | 0.397                                | 64.775                | 76.500          | 171.825          | 10.458 ± 0.313   | 2.542 ± 0.031              | 2.512                  | -1.18           |
| 1550       | 7           | 147.497     | 0.403                                | 64.538                | 77.700          | 187.713          | 9.267 ± 0.313    | 2.053 ± 0.031              | 2.014                  | -1.92           |
| 1551       | 7           | 146.533     | 0.400                                | 64.887                | 77.000          | 201.213          | 8.105 ± 0.313    | 1.614 ± 0.031              | 1.585                  | -1.79           |
| 1552       | 7           | 145.201     | 0.396                                | 64.787                | 77.575          | 226.663          | 6.666 ± 0.312    | 1.244 ± 0.031              | 1.135                  | -8.74           |
| 1553       | 7           | 145.490     | 0.397                                | 64.962                | 76.500          | 253.562          | 5.682 ± 0.312    | 1.044 ± 0.031              | 0.882                  | *****           |
| 1554       | 7           | 147.265     | 0.402                                | 64.987                | 77.438          | 289.500          | 4.712 ± 0.312    | 1.919 ± 0.031              | 0.684                  | *****           |
| 1555       | 7           | 147.048     | 0.401                                | 65.124                | 76.013          | 267.500          | 5.248 ± 0.312    | 1.088 ± 0.031              | 0.788                  | *****           |
| 1556       | 7           | 147.300     | 0.402                                | 66.695                | 77.500          | 269.500          | 5.333 ± 0.312    | 1.092 ± 0.031              | 0.807                  | *****           |
| 1557       | 7           | 145.418     | 0.397                                | 65.261                | 78.000          | 131.575          | 18.836 ± 0.314   | 7.556 ± 0.038              | 7.537                  | -0.26           |
| 1558       | 7           | 289.247     | 0.790                                | 64.625                | 76.625          | 140.575          | 31.454 ± 0.318   | 18.302 ± 0.063             | 18.778                 | 2.60            |
| 1559       | 7           | 293.588     | 0.802                                | 64.775                | 76.025          | 140.975          | 31.232 ± 0.318   | 18.156 ± 0.063             | 18.512                 | 1.96            |
| 1560       | 7           | 292.126     | 0.798                                | 64.538                | 77.500          | 145.500          | 29.719 ± 0.318   | 16.761 ± 0.059             | 16.817                 | 0.34            |
| 1561       | 7           | 293.642     | 0.802                                | 64.663                | 76.263          | 153.500          | 26.472 ± 0.317   | 13.330 ± 0.051             | 13.487                 | 1.18            |
| 1562       | 7           | 292.699     | 0.799                                | 64.675                | 77.500          | 164.675          | 23.417 ± 0.316   | 10.554 ± 0.044             | 10.674                 | 1.13            |
| 1563       | 7           | 292.070     | 0.797                                | 64.762                | 76.500          | 175.500          | 20.746 ± 0.315   | 8.142 ± 0.039              | 8.493                  | 4.31            |
| 1564       | 7           | 292.213     | 0.798                                | 64.563                | 76.500          | 206.000          | 15.387 ± 0.314   | 4.933 ± 0.034              | 4.862                  | -1.44           |
| 1565       | 7           | 292.392     | 0.798                                | 64.700                | 77.500          | 225.000          | 14.111 ± 0.313   | 4.190 ± 0.033              | 4.153                  | -0.88           |
| 1566       | 7           | 292.735     | 0.799                                | 64.688                | 76.575          | 229.500          | 13.445 ± 0.313   | 4.051 ± 0.033              | 3.807                  | -6.01           |
| 1567       | 7           | 291.997     | 0.797                                | 64.825                | 76.500          | 186.500          | 18.662 ± 0.314   | 6.743 ± 0.037              | 6.962                  | 3.25            |
| 1568       | 7           | 293.188     | 0.800                                | 65.062                | 77.900          | 236.988          | 12.679 ± 0.313   | 3.816 ± 0.033              | 3.430                  | -10.12          |
| 1569       | 7           | 292.134     | 0.798                                | 64.526                | 78.000          | 249.000          | 11.811 ± 0.313   | 3.484 ± 0.032              | 3.033                  | *****           |
| 1570       | 7           | 290.917     | 0.794                                | 64.974                | 77.000          | 268.000          | 10.600 ± 0.313   | 3.710 ± 0.033              | 2.523                  | *****           |
| 1572       | 7           | 294.338     | 0.804                                | 65.024                | 77.500          | 197.988          | 17.009 ± 0.314   | 5.866 ± 0.035              | 5.854                  | -0.20           |
| 1573       | 7           | 293.503     | 0.801                                | 64.987                | 77.087          | 157.500          | 25.444 ± 0.316   | 12.418 ± 0.049             | 12.500                 | 0.66            |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 1574       | 7           | 294.242     | 0.803                                | 64.688                | 121.475         | 186.000          | 31.675 ± 0.319   | 18.439 ± 0.064             | 18.714                 | 1.49            |
| 1575       | 7           | 293.224     | 0.801                                | 64.787                | 121.500         | 190.500          | 29.693 ± 0.318   | 16.462 ± 0.059             | 16.543                 | 0.49            |
| 1576       | 7           | 291.729     | 0.796                                | 64.750                | 121.500         | 197.412          | 26.743 ± 0.317   | 13.616 ± 0.051             | 13.560                 | -0.41           |
| 1577       | 7           | 291.663     | 0.796                                | 64.862                | 121.988         | 206.400          | 23.988 ± 0.316   | 11.106 ± 0.046             | 11.038                 | -0.61           |
| 1578       | 7           | 290.075     | 0.792                                | 65.136                | 121.613         | 210.500          | 22.651 ± 0.315   | 10.045 ± 0.043             | 9.911                  | -1.33           |
| 1579       | 7           | 291.677     | 0.796                                | 64.675                | 121.500         | 214.000          | 21.934 ± 0.315   | 9.442 ± 0.042              | 9.331                  | -1.18           |
| 1580       | 7           | 294.116     | 0.803                                | 64.675                | 121.588         | 225.825          | 19.885 ± 0.315   | 7.959 ± 0.039              | 7.764                  | -2.44           |
| 1581       | 7           | 294.282     | 0.803                                | 64.675                | 120.550         | 233.212          | 18.288 ± 0.314   | 6.941 ± 0.037              | 6.650                  | -4.20           |
| 1582       | 7           | 293.790     | 0.802                                | 65.136                | 121.000         | 245.512          | 16.385 ± 0.314   | 5.850 ± 0.035              | 5.441                  | -6.98           |
| 1583       | 7           | 291.006     | 0.795                                | 64.451                | 121.062         | 246.190          | 16.438 ± 0.314   | 5.812 ± 0.035              | 5.475                  | -5.80           |
| 1584       | 7           | 291.798     | 0.797                                | 65.099                | 120.500         | 258.500          | 14.768 ± 0.314   | 5.192 ± 0.034              | 4.519                  | ***             |
| 1585       | 7           | 286.300     | 0.782                                | 65.236                | 120.000         | 262.987          | 14.173 ± 0.313   | 5.092 ± 0.034              | 4.202                  | ***             |
| 1586       | 7           | 293.871     | 0.802                                | 64.974                | 120.000         | 268.500          | 13.783 ± 0.313   | 5.154 ± 0.034              | 4.003                  | ***             |
| 1587       | 7           | 291.019     | 0.795                                | 65.062                | 121.000         | 276.213          | 13.115 ± 0.313   | 5.672 ± 0.035              | 3.677                  | ***             |
| 1588       | 7           | 292.306     | 0.798                                | 65.498                | 121.513         | 285.500          | 12.289 ± 0.313   | 7.342 ± 0.038              | 3.291                  | ***             |
| 1589       | 7           | 295.716     | 0.807                                | 64.613                | 120.000         | 200.325          | 25.710 ± 0.316   | 12.752 ± 0.049             | 12.588                 | -1.29           |
| 1590       | 7           | 292.902     | 0.800                                | 65.112                | 120.500         | 192.187          | 28.256 ± 0.317   | 15.161 ± 0.055             | 15.043                 | -0.78           |
| 1663       | 9           | 0.000       | 0.000                                | 65.024                | 77.588          | 77.500           | 14.533 ± 0.314   | 72.471 ± 0.372             | 74.518                 | 2.82            |
| 1664       | 9           | 0.000       | 0.000                                | 64.825                | 77.538          | 77.500           | 13.463 ± 0.313   | 62.786 ± 0.356             | 64.357                 | 2.50            |
| 1665       | 9           | 0.000       | 0.000                                | 64.650                | 77.000          | 76.637           | 12.721 ± 0.313   | 56.559 ± 0.346             | 57.926                 | 2.42            |
| 1666       | 9           | 0.000       | 0.000                                | 64.588                | 76.500          | 76.000           | 11.586 ± 0.313   | 47.532 ± 0.333             | 48.689                 | 2.44            |
| 1667       | 9           | 0.000       | 0.000                                | 64.750                | 76.500          | 76.000           | 10.558 ± 0.313   | 40.050 ± 0.324             | 40.954                 | 2.26            |
| 1668       | 9           | 0.000       | 0.000                                | 64.613                | 76.500          | 76.000           | 9.583 ± 0.313    | 33.451 ± 0.317             | 34.214                 | 2.28            |
| 1669       | 9           | 0.000       | 0.000                                | 64.725                | 76.500          | 76.000           | 8.569 ± 0.313    | 27.359 ± 0.312             | 27.822                 | 1.69            |
| 1670       | 9           | 0.000       | 0.000                                | 64.850                | 76.500          | 76.000           | 7.974 ± 0.313    | 23.918 ± 0.309             | 24.367                 | 1.88            |
| 1671       | 9           | 0.000       | 0.000                                | 64.663                | 76.500          | 76.000           | 7.296 ± 0.313    | 20.455 ± 0.307             | 20.695                 | 1.17            |
| 1672       | 9           | 0.000       | 0.000                                | 64.575                | 76.500          | 76.000           | 6.869 ± 0.312    | 18.325 ± 0.305             | 18.530                 | 1.12            |
| 1673       | 9           | 0.000       | 0.000                                | 64.688                | 76.500          | 76.000           | 6.083 ± 0.312    | 14.776 ± 0.304             | 14.839                 | 0.43            |
| 1674       | 9           | 0.000       | 0.000                                | 64.725                | 76.500          | 76.000           | 5.079 ± 0.312    | 10.638 ± 0.302             | 10.690                 | 0.48            |
| 1675       | 9           | 0.000       | 0.000                                | 64.713                | 76.500          | 76.000           | 4.129 ± 0.312    | 7.374 ± 0.301              | 7.353                  | -0.29           |
| 1676       | 9           | 0.000       | 0.000                                | 64.787                | 76.500          | 76.000           | 3.420 ± 0.312    | 5.349 ± 0.301              | 5.242                  | -2.00           |
| 1677       | 9           | 0.000       | 0.000                                | 64.688                | 76.500          | 76.113           | 5.786 ± 0.312    | 13.416 ± 0.303             | 13.548                 | 0.99            |
| 1678       | 9           | 0.000       | 0.000                                | 64.713                | 76.500          | 76.075           | 6.980 ± 0.312    | 18.910 ± 0.306             | 19.083                 | 0.92            |
| 1679       | 9           | 0.000       | 0.000                                | 64.925                | 76.500          | 76.500           | 13.915 ± 0.313   | 66.717 ± 0.362             | 68.600                 | 2.82            |
| 1680       | 9           | -0.001      | 0.000                                | 64.787                | 122.738         | 122.500          | 13.927 ± 0.313   | 64.321 ± 0.358             | 64.589                 | 0.42            |
| 1681       | 9           | -0.001      | 0.000                                | 64.837                | 121.500         | 121.000          | 13.022 ± 0.313   | 56.597 ± 0.346             | 56.910                 | 0.55            |
| 1682       | 9           | -0.001      | 0.000                                | 64.750                | 121.425         | 120.950          | 12.080 ± 0.313   | 49.082 ± 0.335             | 49.352                 | 0.55            |
| 1683       | 9           | -0.001      | 0.000                                | 64.750                | 121.000         | 120.500          | 11.055 ± 0.313   | 41.425 ± 0.326             | 41.745                 | 0.77            |
| 1684       | 9           | 0.000       | 0.000                                | 64.962                | 121.925         | 121.500          | 9.815 ± 0.313    | 33.231 ± 0.317             | 33.314                 | 0.25            |

| Test Point | Test Number | Power<br>KW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 1685       | 9           | 0.000       | 0.000                                | 64.787                | 122.000         | 121.500          | 8.780 ± 0.313    | 26.912 ± 0.311             | 27.017                 | 0.39            |
| 1686       | 9           | 0.000       | 0.000                                | 64.650                | 122.500         | 121.963          | 7.758 ± 0.313    | 21.260 ± 0.307             | 21.418                 | 0.74            |
| 1687       | 9           | 0.000       | 0.000                                | 64.663                | 122.500         | 121.913          | 6.918 ± 0.312    | 17.512 ± 0.305             | 17.301                 | -1.20           |
| 1688       | 9           | 0.000       | 0.000                                | 64.962                | 122.500         | 121.838          | 5.860 ± 0.312    | 12.881 ± 0.303             | 12.722                 | -1.24           |
| 1689       | 9           | 0.000       | 0.000                                | 64.750                | 122.000         | 121.560          | 4.986 ± 0.312    | 9.247 ± 0.302              | 9.113                  | -1.44           |
| 1690       | 9           | 0.000       | 0.000                                | 64.613                | 122.000         | 121.100          | 3.912 ± 0.312    | 6.182 ± 0.301              | 6.076                  | -1.71           |
| 1691       | 9           | 0.000       | 0.000                                | 64.887                | 121.500         | 120.800          | 3.224 ± 0.312    | 4.489 ± 0.301              | 4.288                  | -4.48           |
| 1692       | 9           | -0.001      | 0.000                                | 64.675                | 121.000         | 120.162          | 4.299 ± 0.312    | 7.367 ± 0.301              | 7.227                  | -1.91           |
| 1693       | 9           | 0.009       | 0.000                                | 64.949                | 122.009         | 121.975          | 7.190 ± 0.313    | 18.982 ± 0.306             | 18.604                 | -1.99           |
| 1694       | 9           | 0.000       | 0.000                                | 64.401                | 121.963         | 122.000          | 7.532 ± 0.313    | 20.755 ± 0.307             | 20.285                 | -2.26           |
| 1695       | 9           | 87.522      | 0.399                                | 64.725                | 76.937          | 118.012          | 14.501 ± 0.314   | 68.497 ± 0.365             | 69.961                 | 0.82            |
| 1696       | 9           | 87.614      | 0.400                                | 64.575                | 77.937          | 123.500          | 13.192 ± 0.313   | 56.979 ± 0.347             | 57.487                 | 0.89            |
| 1697       | 9           | 87.470      | 0.399                                | 64.625                | 76.500          | 127.500          | 11.694 ± 0.313   | 45.219 ± 0.330             | 45.629                 | 0.91            |
| 1698       | 9           | 87.411      | 0.399                                | 64.725                | 77.162          | 137.500          | 9.921 ± 0.313    | 32.868 ± 0.317             | 33.249                 | 1.16            |
| 1699       | 9           | 87.385      | 0.399                                | 64.937                | 76.000          | 145.500          | 8.592 ± 0.313    | 24.839 ± 0.310             | 25.264                 | 1.71            |
| 1700       | 9           | 87.194      | 0.398                                | 64.900                | 77.000          | 155.987          | 7.506 ± 0.313    | 19.332 ± 0.306             | 19.499                 | 0.86            |
| 1701       | 9           | 87.253      | 0.398                                | 64.563                | 77.500          | 165.450          | 6.814 ± 0.312    | 16.239 ± 0.304             | 16.210                 | -0.18           |
| 1702       | 9           | 87.748      | 0.400                                | 65.224                | 76.500          | 174.000          | 6.070 ± 0.312    | 13.228 ± 0.303             | 13.018                 | -1.59           |
| 1703       | 9           | 87.108      | 0.397                                | 64.700                | 77.500          | 176.000          | 6.028 ± 0.312    | 12.961 ± 0.303             | 12.860                 | -0.78           |
| 1704       | 9           | 88.092      | 0.402                                | 64.538                | 76.500          | 190.500          | 5.275 ± 0.312    | 10.093 ± 0.302             | 9.980                  | -1.11           |
| 1705       | 9           | 87.222      | 0.398                                | 64.750                | 76.500          | 197.000          | 4.906 ± 0.312    | 8.802 ± 0.302              | 8.706                  | -1.09           |
| 1706       | 9           | 88.755      | 0.405                                | 64.600                | 77.000          | 200.500          | 4.816 ± 0.312    | 8.290 ± 0.301              | 8.403                  | 1.37            |
| 1707       | 9           | 86.884      | 0.396                                | 64.862                | 76.500          | 204.000          | 4.658 ± 0.312    | 7.972 ± 0.301              | 7.897                  | -0.94           |
| 1708       | 9           | 87.826      | 0.401                                | 64.513                | 77.912          | 220.987          | 4.145 ± 0.312    | 6.294 ± 0.301              | 6.347                  | 0.84            |
| 1709       | 9           | 87.383      | 0.399                                | 64.625                | 77.500          | 232.500          | 3.763 ± 0.312    | 5.276 ± 0.301              | 5.307                  | 0.59            |
| 1710       | 9           | 86.735      | 0.396                                | 64.725                | 77.000          | 252.600          | 3.274 ± 0.312    | 4.121 ± 0.301              | 4.119                  | -0.04           |
| 1711       | 9           | 87.261      | 0.398                                | 64.850                | 77.000          | 273.500          | 2.933 ± 0.312    | 3.486 ± 0.301              | 3.387                  | ****            |
| 1712       | 9           | 86.903      | 0.397                                | 65.211                | 76.000          | 273.262          | 2.932 ± 0.312    | 3.493 ± 0.301              | 3.386                  | ****            |
| 1713       | 9           | 87.699      | 0.400                                | 64.551                | 76.500          | 287.468          | 2.764 ± 0.312    | 4.059 ± 0.301              | 3.055                  | ****            |
| 1714       | 9           | 87.242      | 0.398                                | 65.174                | 75.088          | 295.487          | 2.544 ± 0.312    | 5.896 ± 0.301              | 2.654                  | ****            |
| 1715       | 9           | 87.218      | 0.398                                | 64.538                | 122.500         | 165.000          | 14.031 ± 0.313   | 62.918 ± 0.356             | 62.857                 | -0.10           |
| 1716       | 9           | 87.484      | 0.399                                | 64.625                | 121.500         | 168.312          | 12.723 ± 0.313   | 52.193 ± 0.340             | 52.034                 | -0.30           |
| 1717       | 9           | 86.671      | 0.395                                | 64.526                | 121.613         | 172.000          | 11.820 ± 0.313   | 45.189 ± 0.330             | 45.139                 | -0.11           |
| 1718       | 9           | 87.421      | 0.399                                | 64.588                | 121.500         | 175.500          | 11.009 ± 0.313   | 39.465 ± 0.323             | 39.359                 | -0.27           |
| 1719       | 9           | 87.429      | 0.399                                | 64.775                | 121.000         | 180.500          | 10.002 ± 0.313   | 32.706 ± 0.316             | 32.726                 | 0.06            |
| 1720       | 9           | 87.123      | 0.398                                | 64.912                | 121.325         | 187.000          | 8.989 ± 0.313    | 26.674 ± 0.311             | 26.656                 | -0.07           |
| 1721       | 9           | 86.715      | 0.396                                | 64.837                | 122.000         | 194.500          | 8.115 ± 0.313    | 21.895 ± 0.308             | 21.912                 | 0.08            |
| 1722       | 9           | 88.186      | 0.402                                | 64.638                | 122.000         | 204.513          | 7.186 ± 0.313    | 17.524 ± 0.305             | 17.373                 | -0.86           |
| 1723       | 9           | 87.476      | 0.399                                | 64.825                | 122.500         | 213.375          | 6.516 ± 0.312    | 14.636 ± 0.304             | 14.420                 | -1.48           |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psi | Calc Pres Drop<br>psi | Drop<br>psi | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|---------------------------|-----------------------|-------------|-----------------|
| 1724       | 9           | 86.961      | 0.397                                | 64.663                | 122.500         | 222.500          | 5.922 ± 0.312    | 12.163 ± 0.303            | 12.041                | -1.00       |                 |
| 1725       | 9           | 88.266      | 0.403                                | 64.800                | 121.500         | 231.500          | 5.430 ± 0.312    | 10.428 ± 0.302            | 10.232                | -1.87       |                 |
| 1726       | 9           | 87.764      | 0.400                                | 64.551                | 122.550         | 245.000          | 4.890 ± 0.312    | 8.517 ± 0.301             | 8.408                 | -1.28       |                 |
| 1727       | 9           | 87.442      | 0.399                                | 64.650                | 121.500         | 251.500          | 4.506 ± 0.312    | 7.342 ± 0.301             | 7.230                 | -1.53       |                 |
| 1728       | 9           | 87.905      | 0.401                                | 64.787                | 121.475         | 270.500          | 3.937 ± 0.312    | 5.739 ± 0.301             | 5.646                 | -1.62       |                 |
| 1745       | 9           | 87.410      | 0.399                                | 64.713                | 121.500         | 138.488          | 4.211 ± 0.312    | 6.299 ± 0.301             | 6.382                 | 1.32        |                 |
| 1746       | 9           | 87.570      | 0.400                                | 65.074                | 121.000         | 151.500          | 3.649 ± 0.312    | 5.121 ± 0.301             | 4.923                 | .....       |                 |
| 1851       | 9           | 88.316      | 0.403                                | 64.501                | 122.500         | 161.212          | 4.003 ± 0.312    | 5.956 ± 0.301             | 5.820                 | .....       |                 |
| 1852       | 9           | 88.524      | 0.404                                | 64.638                | 121.500         | 179.500          | 3.505 ± 0.312    | 6.329 ± 0.301             | 4.585                 | .....       |                 |
| 1729       | 9           | 130.569     | 0.596                                | 64.600                | 77.000          | 195.812          | 14.490 ± 0.314   | 66.462 ± 0.362            | 67.678                | 1.83        |                 |
| 1730       | 9           | 132.048     | 0.503                                | 64.775                | 77.500          | 208.000          | 12.211 ± 0.313   | 47.594 ± 0.333            | 48.566                | 2.04        |                 |
| 1731       | 9           | 131.807     | 0.601                                | 64.663                | 76.088          | 221.500          | 10.281 ± 0.313   | 33.621 ± 0.317            | 34.873                | 3.72        |                 |
| 1732       | 9           | 130.719     | 0.596                                | 64.725                | 76.500          | 237.500          | 8.648 ± 0.313    | 24.339 ± 0.309            | 25.021                | 2.80        |                 |
| 1733       | 9           | 131.925     | 0.602                                | 64.800                | 77.500          | 256.850          | 7.594 ± 0.313    | 19.195 ± 0.306            | 19.504                | 1.61        |                 |
| 1734       | 9           | 131.373     | 0.599                                | 64.925                | 76.500          | 208.675          | 6.780 ± 0.312    | 15.466 ± 0.304            | 15.726                | 1.68        |                 |
| 1735       | 9           | 130.669     | 0.596                                | 64.588                | 76.000          | 241.525          | 6.095 ± 0.312    | 12.651 ± 0.303            | 12.863                | 1.63        |                 |
| 1736       | 9           | 131.987     | 0.602                                | 64.862                | 77.500          | 258.000          | 5.498 ± 0.312    | 10.375 ± 0.302            | 10.588                | 2.06        |                 |
| 1737       | 9           | 132.728     | 0.606                                | 64.600                | 77.500          | 270.950          | 4.931 ± 0.312    | 8.555 ± 0.301             | 8.646                 | 1.06        |                 |
| 1738       | 9           | 132.354     | 0.604                                | 64.625                | 76.500          | 282.275          | 6.818 ± 0.312    | 15.436 ± 0.304            | 15.891                | 2.95        |                 |
| 1739       | 9           | 131.624     | 0.601                                | 64.713                | 76.975          | 287.325          | 5.403 ± 0.312    | 9.920 ± 0.302             | 10.249                | 3.32        |                 |
| 1740       | 9           | 131.180     | 0.599                                | 64.775                | 76.500          | 292.025          | 4.877 ± 0.312    | 8.152 ± 0.301             | 8.476                 | 3.98        |                 |
| 1741       | 9           | 131.518     | 0.600                                | 65.112                | 76.975          | 259.000          | 4.525 ± 0.312    | 7.262 ± 0.301             | 7.387                 | 1.72        |                 |
| 1742       | 9           | 130.238     | 0.594                                | 65.112                | 76.013          | 276.837          | 4.228 ± 0.312    | 7.462 ± 0.301             | 6.533                 | .....       |                 |
| 1743       | 9           | 131.556     | 0.600                                | 65.274                | 77.000          | 164.550          | 4.237 ± 0.312    | 7.819 ± 0.301             | 6.556                 | .....       |                 |
| 1744       | 9           | 130.526     | 0.596                                | 64.825                | 77.225          | 170.500          | 4.054 ± 0.312    | 9.320 ± 0.302             | 6.058                 | .....       |                 |
| 1747       | 9           | 173.685     | 0.793                                | 64.725                | 77.500          | 179.000          | 13.672 ± 0.313   | 59.190 ± 0.350            | 59.653                | 0.78        |                 |
| 1748       | 9           | 175.400     | 0.800                                | 64.688                | 76.475          | 184.000          | 12.697 ± 0.313   | 51.078 ± 0.338            | 51.703                | 1.22        |                 |
| 1749       | 9           | 174.979     | 0.798                                | 64.650                | 76.000          | 190.500          | 11.596 ± 0.313   | 42.681 ± 0.327            | 43.396                | 1.68        |                 |
| 1750       | 9           | 173.864     | 0.793                                | 64.750                | 76.000          | 197.500          | 11.028 ± 0.313   | 38.765 ± 0.323            | 39.403                | 1.65        |                 |
| 1751       | 9           | 173.880     | 0.793                                | 64.650                | 77.500          | 202.000          | 10.548 ± 0.313   | 35.479 ± 0.319            | 36.151                | 1.89        |                 |
| 1752       | 9           | 174.579     | 0.797                                | 64.962                | 78.000          | 210.000          | 9.968 ± 0.313    | 31.783 ± 0.315            | 32.418                | 2.00        |                 |
| 1753       | 9           | 174.847     | 0.798                                | 64.837                | 77.500          | 217.000          | 9.535 ± 0.313    | 29.222 ± 0.313            | 29.776                | 1.90        |                 |
| 1754       | 9           | 176.198     | 0.804                                | 64.800                | 76.987          | 226.500          | 8.980 ± 0.313    | 25.914 ± 0.311            | 26.547                | 2.44        |                 |
| 1755       | 9           | 174.161     | 0.795                                | 64.713                | 76.500          | 235.500          | 8.431 ± 0.313    | 23.048 ± 0.308            | 23.545                | 2.16        |                 |
| 1756       | 9           | 176.523     | 0.805                                | 64.937                | 76.000          | 242.000          | 7.940 ± 0.313    | 20.563 ± 0.307            | 21.009                | 2.17        |                 |
| 1757       | 9           | 174.574     | 0.797                                | 64.675                | 76.150          | 247.000          | 7.526 ± 0.313    | 18.627 ± 0.306            | 18.978                | 1.89        |                 |
| 1758       | 9           | 175.789     | 0.802                                | 64.600                | 76.113          | 260.000          | 7.199 ± 0.313    | 17.144 ± 0.305            | 17.453                | 1.80        |                 |
| 1759       | 9           | 175.510     | 0.801                                | 65.012                | 76.000          | 266.500          | 6.946 ± 0.312    | 16.127 ± 0.304            | 16.314                | 1.16        |                 |
| 1760       | 9           | 173.878     | 0.793                                | 64.713                | 76.500          | 189.500          | 6.435 ± 0.312    | 14.049 ± 0.303            | 14.138                | 0.63        |                 |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 1761       | 9           | 174.090     | 0.794                                | 65.012                | 76.500          | 193.987          | 6.198 ± 0.312    | 13.096 ± 0.303             | 13.185                 | 0.68            |
| 1762       | 9           | 176.265     | 0.804                                | 64.551                | 77.000          | 197.500          | 7.092 ± 0.313    | 16.827 ± 0.305             | 16.961                 | 0.30            |
| 1763       | 9           | 174.517     | 0.796                                | 65.024                | 77.000          | 202.475          | 6.414 ± 0.312    | 13.988 ± 0.303             | 14.050                 | 0.44            |
| 1764       | 9           | 174.556     | 0.796                                | 64.937                | 77.500          | 207.500          | 5.975 ± 0.312    | 12.573 ± 0.303             | 12.317                 | *****           |
| 1765       | 9           | 173.760     | 0.793                                | 64.738                | 76.325          | 215.513          | 5.652 ± 0.312    | 12.953 ± 0.303             | 11.125                 | *****           |
| 1766       | 9           | 175.760     | 0.802                                | 64.787                | 76.500          | 222.000          | 5.566 ± 0.312    | 15.224 ± 0.304             | 10.817                 | *****           |
| 1767       | 9           | 217.774     | 0.994                                | 64.775                | 77.663          | 227.500          | 13.301 ± 0.313   | 55.776 ± 0.345             | 56.039                 | 0.47            |
| 1768       | 9           | 217.651     | 0.993                                | 64.837                | 77.500          | 232.363          | 12.773 ± 0.313   | 51.503 ± 0.339             | 51.826                 | 0.63            |
| 1769       | 9           | 217.267     | 0.991                                | 64.812                | 76.500          | 237.500          | 12.267 ± 0.313   | 47.792 ± 0.334             | 47.956                 | 0.34            |
| 1770       | 9           | 217.530     | 0.993                                | 64.800                | 76.000          | 244.000          | 11.730 ± 0.313   | 43.768 ± 0.328             | 44.003                 | 0.54            |
| 1771       | 9           | 217.581     | 0.993                                | 64.600                | 76.000          | 250.500          | 11.266 ± 0.313   | 40.440 ± 0.325             | 40.718                 | 0.69            |
| 1772       | 9           | 218.178     | 0.996                                | 64.762                | 76.500          | 258.000          | 10.664 ± 0.313   | 36.462 ± 0.320             | 36.639                 | 0.49            |
| 1773       | 9           | 217.453     | 0.992                                | 64.900                | 77.000          | 267.000          | 10.236 ± 0.313   | 33.638 ± 0.317             | 33.872                 | 0.70            |
| 1774       | 9           | 217.757     | 0.994                                | 64.850                | 77.000          | 277.213          | 9.859 ± 0.313    | 31.330 ± 0.315             | 31.530                 | 0.64            |
| 1775       | 9           | 217.175     | 0.991                                | 65.074                | 77.000          | 253.000          | 9.525 ± 0.313    | 29.357 ± 0.313             | 29.526                 | 0.57            |
| 1776       | 9           | 217.458     | 0.992                                | 64.974                | 77.000          | 284.038          | 9.216 ± 0.313    | 27.612 ± 0.312             | 27.731                 | 0.43            |
| 1777       | 9           | 218.257     | 0.996                                | 64.974                | 76.987          | 287.937          | 8.878 ± 0.313    | 25.711 ± 0.310             | 25.831                 | 0.47            |
| 1778       | 9           | 217.136     | 0.991                                | 64.663                | 76.425          | 211.500          | 7.380 ± 0.313    | 19.140 ± 0.306             | 18.261                 | *****           |
| 1779       | 9           | 217.145     | 0.991                                | 65.311                | 76.987          | 215.975          | 8.398 ± 0.313    | 22.921 ± 0.308             | 23.746                 | 0.08            |
| 1780       | 9           | 217.003     | 0.990                                | 65.087                | 76.025          | 293.500          | 8.135 ± 0.313    | 21.825 ± 0.308             | 21.908                 | 0.38            |
| 1781       | 9           | 217.583     | 0.993                                | 64.912                | 75.963          | 298.500          | 7.732 ± 0.313    | 19.880 ± 0.306             | 19.918                 | 0.19            |
| 1782       | 9           | 221.015     | 1.003                                | 64.089                | 76.975          | 226.000          | 7.104 ± 0.313    | 22.823 ± 0.308             | 17.020                 | *****           |
| 1783       | 9           | 220.426     | 1.006                                | 64.039                | 76.175          | 235.513          | 6.982 ± 0.312    | 24.261 ± 0.309             | 16.490                 | *****           |
| 1784       | 9           | 220.393     | 1.006                                | 64.787                | 77.000          | 247.037          | 6.919 ± 0.312    | 25.341 ± 0.310             | 16.213                 | *****           |
| 1785       | 9           | 220.022     | 1.004                                | 65.635                | 76.500          | 254.812          | 6.717 ± 0.312    | 27.037 ± 0.311             | 15.356                 | *****           |
| 1786       | 9           | 176.628     | 0.806                                | 64.551                | 121.025         | 258.550          | 13.417 ± 0.313   | 56.627 ± 0.346             | 56.573                 | -0.10           |
| 1787       | 9           | 175.772     | 0.802                                | 65.087                | 121.012         | 265.513          | 12.765 ± 0.313   | 51.293 ± 0.338             | 51.378                 | 0.17            |
| 1788       | 9           | 175.655     | 0.802                                | 64.713                | 121.513         | 289.537          | 9.630 ± 0.313    | 29.882 ± 0.314             | 29.883                 | 0.00            |
| 1789       | 9           | 175.210     | 0.799                                | 64.738                | 121.200         | 275.525          | 12.200 ± 0.313   | 47.052 ± 0.333             | 47.077                 | 0.05            |
| 1790       | 9           | 174.991     | 0.798                                | 64.426                | 121.475         | 283.500          | 11.479 ± 0.313   | 41.790 ± 0.326             | 41.859                 | 0.16            |
| 1791       | 9           | 175.973     | 0.803                                | 64.837                | 121.338         | 285.737          | 10.614 ± 0.313   | 35.901 ± 0.320             | 36.005                 | 0.29            |
| 1792       | 9           | 174.508     | 0.796                                | 65.049                | 121.763         | 261.500          | 7.799 ± 0.313    | 20.248 ± 0.307             | 20.032                 | *****           |
| 1793       | 9           | 175.89      | 0.803                                | 64.314                | 122.900         | 275.500          | 7.454 ± 0.313    | 19.940 ± 0.306             | 18.400                 | *****           |
| 1794       | 9           | 176.416     | 0.805                                | 64.625                | 121.062         | 284.475          | 7.276 ± 0.313    | 20.000 ± 0.306             | 17.596                 | *****           |

| Test Point | Test Number | Power<br>KW | Heat Flux<br>MBtu/hr-ft <sup>2</sup> | Exit Pressure<br>psia | Inlet Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|--------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 1795       | 9           | 176.454     | 0.805                                | 64.201                | 121.000         | 290.188          | 7.119 ± 0.313    | 21.870 ± 0.308             | 16.897                 | ****            |
| 1796       | 9           | 176.114     | 0.804                                | 64.650                | 121.663         | 166.000          | 7.013 ± 0.312    | 23.071 ± 0.308             | 16.431                 | ****            |
| 1797       | 9           | 175.038     | 0.799                                | 64.526                | 121.513         | 176.500          | 6.783 ± 0.312    | 24.871 ± 0.310             | 15.446                 | ****            |
| 1803       | 9           | 175.235     | 0.800                                | 34.655                | 77.688          | 189.500          | 13.635 ± 0.313   | 58.617 ± 0.349             | 59.313                 | 1.19            |
| 1804       | 9           | 175.043     | 0.799                                | 34.730                | 76.675          | 203.050          | 12.039 ± 0.313   | 45.959 ± 0.331             | 46.642                 | 1.49            |
| 1805       | 9           | 175.292     | 0.800                                | 34.718                | 76.500          | 217.250          | 10.544 ± 0.313   | 35.566 ± 0.319             | 36.126                 | 1.57            |
| 1806       | 9           | 174.092     | 0.794                                | 34.855                | 77.563          | 235.300          | 9.492 ± 0.313    | 28.930 ± 0.313             | 29.519                 | 2.04            |
| 1807       | 9           | 175.370     | 0.800                                | 34.792                | 76.000          | 247.500          | 8.511 ± 0.313    | 23.468 ± 0.309             | 23.979                 | 2.18            |
| 1808       | 9           | 174.414     | 0.796                                | 34.979                | 77.450          | 241.025          | 7.556 ± 0.313    | 18.800 ± 0.306             | 19.123                 | 1.72            |
| 1809       | 9           | 175.691     | 0.802                                | 35.204                | 76.288          | 252.000          | 6.978 ± 0.312    | 18.807 ± 0.306             | 16.474                 | ****            |
| 1810       | 9           | 175.804     | 0.802                                | 34.643                | 76.000          | 211.500          | 7.288 ± 0.313    | 18.227 ± 0.305             | 17.874                 | ****            |
| 1811       | 9           | 174.922     | 0.798                                | 35.154                | 76.650          | 212.887          | 6.785 ± 0.312    | 20.970 ± 0.307             | 15.631                 | ****            |
| 1812       | 9           | 174.826     | 0.798                                | 34.767                | 121.500         | 218.500          | 13.598 ± 0.313   | 58.875 ± 0.350             | 58.065                 | -1.38           |
| 1813       | 9           | 174.523     | 0.796                                | 34.805                | 121.500         | 221.500          | 13.038 ± 0.313   | 54.271 ± 0.343             | 53.528                 | -1.37           |
| 1814       | 9           | 173.694     | 0.793                                | 34.680                | 122.988         | 224.950          | 12.439 ± 0.313   | 49.605 ± 0.336             | 48.857                 | -1.51           |
| 1815       | 9           | 174.228     | 0.795                                | 34.792                | 121.500         | 229.413          | 11.951 ± 0.313   | 46.011 ± 0.331             | 45.248                 | -1.66           |
| 1816       | 9           | 173.963     | 0.794                                | 34.767                | 121.500         | 235.012          | 11.551 ± 0.313   | 43.113 ± 0.328             | 42.372                 | -1.72           |
| 1817       | 9           | 173.804     | 0.793                                | 34.680                | 121.925         | 240.000          | 11.086 ± 0.313   | 39.857 ± 0.324             | 39.143                 | -1.79           |
| 1818       | 9           | 175.731     | 0.802                                | 34.980                | 121.550         | 244.000          | 10.610 ± 0.313   | 36.884 ± 0.321             | 35.986                 | -2.44           |
| 1819       | 9           | 176.047     | 0.803                                | 35.279                | 121.000         | 249.000          | 10.142 ± 0.313   | 34.026 ± 0.318             | 33.009                 | ****            |
| 1820       | 9           | 175.086     | 0.799                                | 34.880                | 122.000         | 120.000          | 9.822 ± 0.313    | 32.856 ± 0.317             | 31.038                 | ****            |
| 1821       | 9           | 176.275     | 0.804                                | 33.122                | 122.638         | 121.575          | 9.557 ± 0.313    | 35.809 ± 0.319             | 29.459                 | ****            |
| 1822       | 9           | 88.108      | 0.402                                | 34.643                | 78.000          | 126.138          | 14.314 ± 0.313   | 65.814 ± 0.361             | 67.275                 | 2.22            |
| 1823       | 9           | 88.046      | 0.402                                | 34.668                | 76.500          | 131.500          | 13.307 ± 0.313   | 57.094 ± 0.347             | 58.511                 | 2.48            |
| 1824       | 9           | 88.146      | 0.402                                | 34.755                | 76.500          | 136.000          | 12.080 ± 0.313   | 47.344 ± 0.333             | 48.556                 | 2.56            |
| 1825       | 9           | 87.398      | 0.399                                | 34.743                | 77.500          | 142.000          | 11.064 ± 0.313   | 39.915 ± 0.324             | 40.978                 | 2.66            |
| 1826       | 9           | 87.307      | 0.398                                | 34.730                | 76.500          | 150.850          | 10.045 ± 0.313   | 33.106 ± 0.317             | 34.074                 | 2.92            |
| 1827       | 9           | 87.523      | 0.399                                | 34.755                | 76.462          | 156.500          | 9.057 ± 0.313    | 27.104 ± 0.311             | 27.937                 | 3.07            |
| 1828       | 9           | 87.647      | 0.400                                | 34.743                | 76.000          | 162.500          | 7.981 ± 0.313    | 21.235 ± 0.307             | 21.938                 | 3.31            |
| 1829       | 9           | 87.811      | 0.401                                | 34.680                | 76.500          | 176.513          | 7.460 ± 0.313    | 18.850 ± 0.306             | 19.273                 | 2.24            |
| 1830       | 9           | 87.179      | 0.398                                | 34.605                | 76.500          | 193.500          | 6.921 ± 0.312    | 16.287 ± 0.304             | 16.709                 | 2.59            |
| 1831       | 9           | 87.333      | 0.398                                | 34.730                | 78.000          | 213.500          | 6.012 ± 0.312    | 12.416 ± 0.303             | 12.771                 | 2.86            |
| 1832       | 9           | 87.203      | 0.398                                | 34.792                | 77.500          | 225.500          | 5.112 ± 0.312    | 9.120 ± 0.302              | 9.401                  | 3.09            |
| 1833       | 9           | 87.186      | 0.398                                | 34.917                | 76.500          | 241.000          | 4.313 ± 0.312    | 6.602 ± 0.301              | 6.841                  | 3.61            |
| 1834       | 9           | 87.297      | 0.398                                | 35.129                | 76.000          | 246.050          | 3.917 ± 0.312    | 5.551 ± 0.301              | 5.723                  | 3.10            |
| 1835       | 9           | 88.283      | 0.403                                | 34.743                | 78.000          | 164.000          | 3.614 ± 0.312    | 5.011 ± 0.301              | 4.931                  | ****            |
| 1836       | 9           | 88.053      | 0.402                                | 34.905                | 77.000          | 168.837          | 3.225 ± 0.312    | 5.839 ± 0.301              | 4.018                  | ****            |
| 1837       | 9           | 86.972      | 0.397                                | 34.817                | 121.988         | 176.500          | 14.007 ± 0.313   | 62.303 ± 0.355             | 62.677                 | 0.60            |
| 1838       | 9           | 87.073      | 0.397                                | 34.743                | 121.438         | 181.287          | 12.506 ± 0.313   | 50.103 ± 0.337             | 50.344                 | 0.48            |

| Test Point | Test Number | Power<br>kW | Heat Flux<br>MBtu/hr.-ft <sup>2</sup> | Exit Pressure<br>psia | Init. Temp<br>F | Outlet Temp<br>F | Flow Rate<br>gpm | Meas Pressure Drop<br>psid | Calc Pres Drop<br>psid | Difference<br>% |
|------------|-------------|-------------|---------------------------------------|-----------------------|-----------------|------------------|------------------|----------------------------|------------------------|-----------------|
| 1839       | 9           | 86.913      | 0.397                                 | 34.655                | 122.275         | 188.162          | 11.007 ± 0.313   | 39.160 ± 0.323             | 39.330                 | 0.43            |
| 1840       | 9           | 87.404      | 0.399                                 | 34.842                | 122.000         | 201.000          | 10.018 ± 0.313   | 32.741 ± 0.316             | 32.812                 | 0.22            |
| 1841       | 9           | 86.771      | 0.396                                 | 34.643                | 122.000         | 208.938          | 9.025 ± 0.313    | 26.742 ± 0.311             | 26.855                 | 0.42            |
| 1842       | 9           | 88.280      | 0.403                                 | 34.668                | 121.975         | 214.000          | 7.619 ± 0.313    | 19.585 ± 0.306             | 19.423                 | -0.83           |
| 1843       | 9           | 88.327      | 0.403                                 | 34.693                | 122.500         | 222.262          | 6.990 ± 0.312    | 16.627 ± 0.305             | 16.474                 | -0.92           |
| 1844       | 9           | 88.064      | 0.402                                 | 34.780                | 122.000         | 228.500          | 6.530 ± 0.312    | 14.596 ± 0.304             | 14.484                 | -0.77           |
| 1845       | 9           | 88.394      | 0.403                                 | 34.693                | 122.850         | 237.450          | 6.023 ± 0.312    | 12.543 ± 0.303             | 12.425                 | -0.94           |
| 1846       | 9           | 88.303      | 0.403                                 | 34.655                | 121.488         | 242.500          | 5.592 ± 0.312    | 10.955 ± 0.302             | 10.812                 | -1.31           |
| 1847       | 9           | 88.514      | 0.404                                 | 34.830                | 122.500         | 250.063          | 5.241 ± 0.312    | 9.750 ± 0.302              | 9.570                  | ***             |
| 1848       | 9           | 88.489      | 0.404                                 | 34.942                | 121.875         | 251.475          | 4.946 ± 0.312    | 8.762 ± 0.302              | 8.593                  | ***             |
| 1849       | 9           | 87.388      | 0.399                                 | 34.668                | 121.012         | 271.500          | 4.531 ± 0.312    | 9.195 ± 0.302              | 7.311                  | ***             |
| 1850       | 9           | 87.420      | 0.399                                 | 35.117                | 121.800         | 290.500          | 4.780 ± 0.312    | 7.774 ± 0.301              | 8.068                  | 3.78            |

## APPENDIX - C

### SAMPLE PRESSURE DROP COMPARISONS USING VOID MODEL

UNCERT is a modified version of FLOWTRAN which includes acceleration pressure drop and two-phase multiplier effect to calculate the pressure drop. This appendix contains a few sample comparisons among measured, FLOWTRAN calculated, and UNCERT calculated pressure drops. Appendix B presents the comparison between measured and FLOWTRAN calculated pressure drops. The figures in Appendix B show that for large tube diameters, 0.600", 0.6125", and 0.7516", the agreement between measured and FLOWTRAN calculated pressure drops is not good around OSV regions for high heat flux cases (0.8 and 1.0 MBtu/hr-ft<sup>2</sup>). Several cases with the worst agreement between measured and FLOWTRAN calculated pressure drops were chosen for these tubes to demonstrate UNCERT pressure drop calculations. Since FLOWTRAN accurately calculated pressure drops up to OSV for the 0.359" tube for all heat fluxes, there were not any sample cases selected for this tube.

For these large tubes the pressure drops around OSV flow range are low (2 to 5 psi), and the two-phase contribution to the total pressure drop is significant. FLOWTRAN is a single-phase code, so its calculated pressure drops are low for these cases. The figures in this appendix show that UNCERT does not give anticipated improved agreement. The VOID model in UNCERT with the two-phase frictional multiplier and acceleration pressure drop needs revision to improve the agreement between measured and calculated pressure drops for large diameter tubes at high heat fluxes. As discussed in section 4.3, the acceleration pressure drop and the two-phase multiplier are not important to the total channel pressure drop calculation in SRS fuel assemblies.

SS TUBE ID=0.600" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

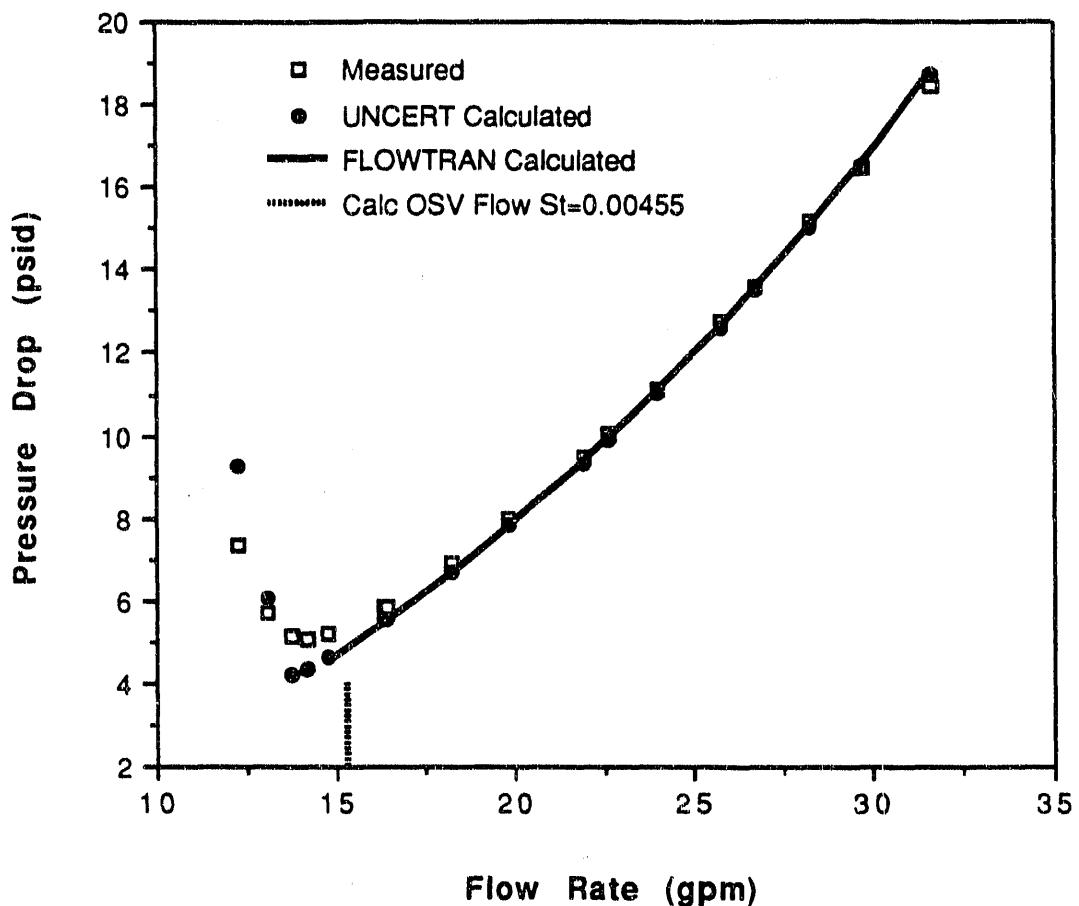



FIGURE C-1. MEASURED DATA, FLOWTRAN, AND UNCERT PREDICTIONS - SAMPLE 1

INC TUBE ID=0.6125" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA




FIGURE C-2. MEASURED DATA, FLOWTRAN, AND UNCERT PREDICTIONS - SAMPLE 2

INC TUBE ID=0.6125" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

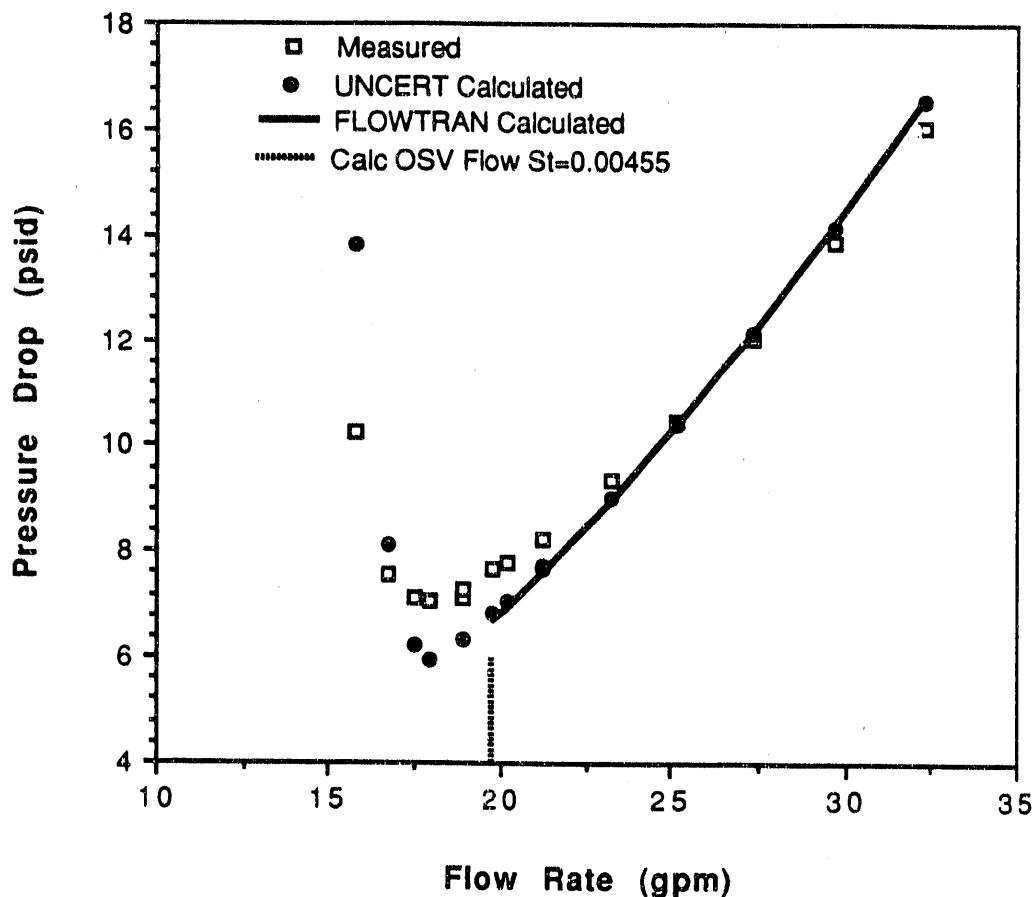



FIGURE C-3. MEASURED DATA, FLOWTRAN, AND UNCERT PREDICTIONS - SAMPLE 3

SS TUBE ID=0.7516" ; UNIFORM FLUX=0.8 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=121 F ; EXIT PRES=64.7 PSIA

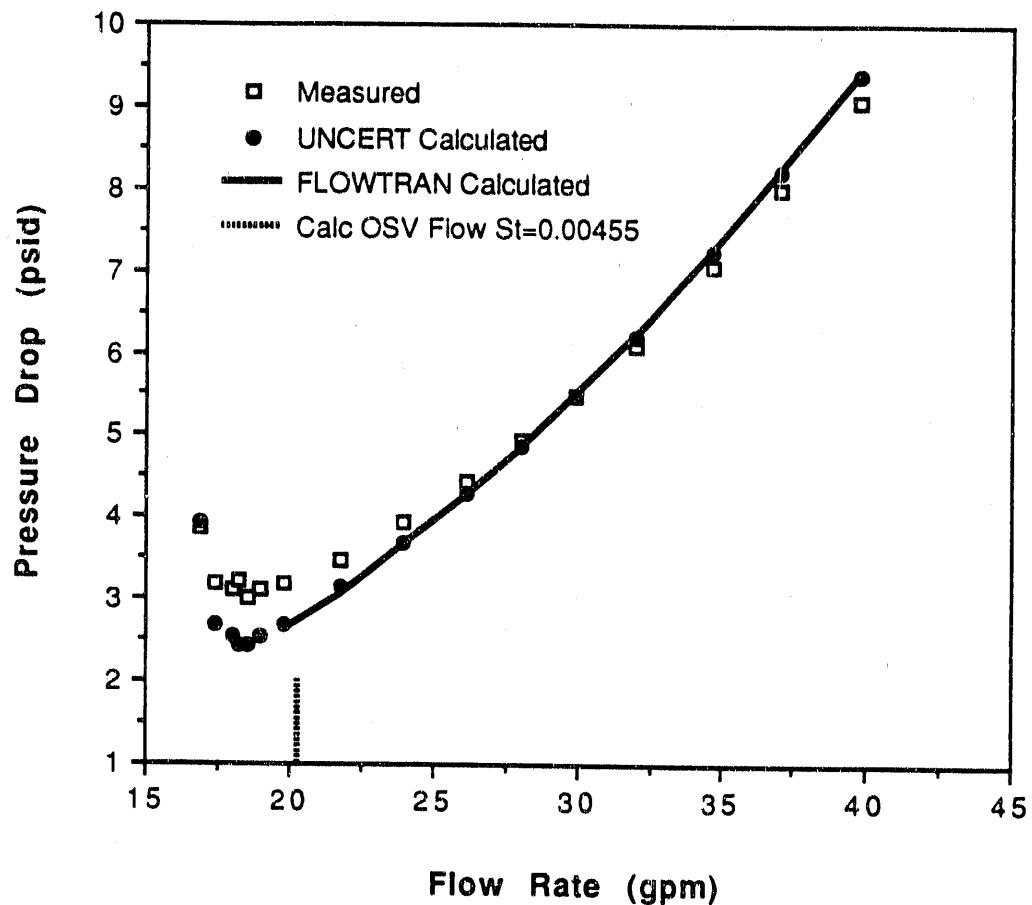



FIGURE C-4. MEASURED DATA, FLOWTRAN, AND UNCERT PREDICTIONS - SAMPLE 4

SS TUBE ID=0.7516" ; UNIFORM FLUX=1.0 MBTU/HR-FT<sup>2</sup>  
INLET TEMP=77 F ; EXIT PRES=34.7 PSIA

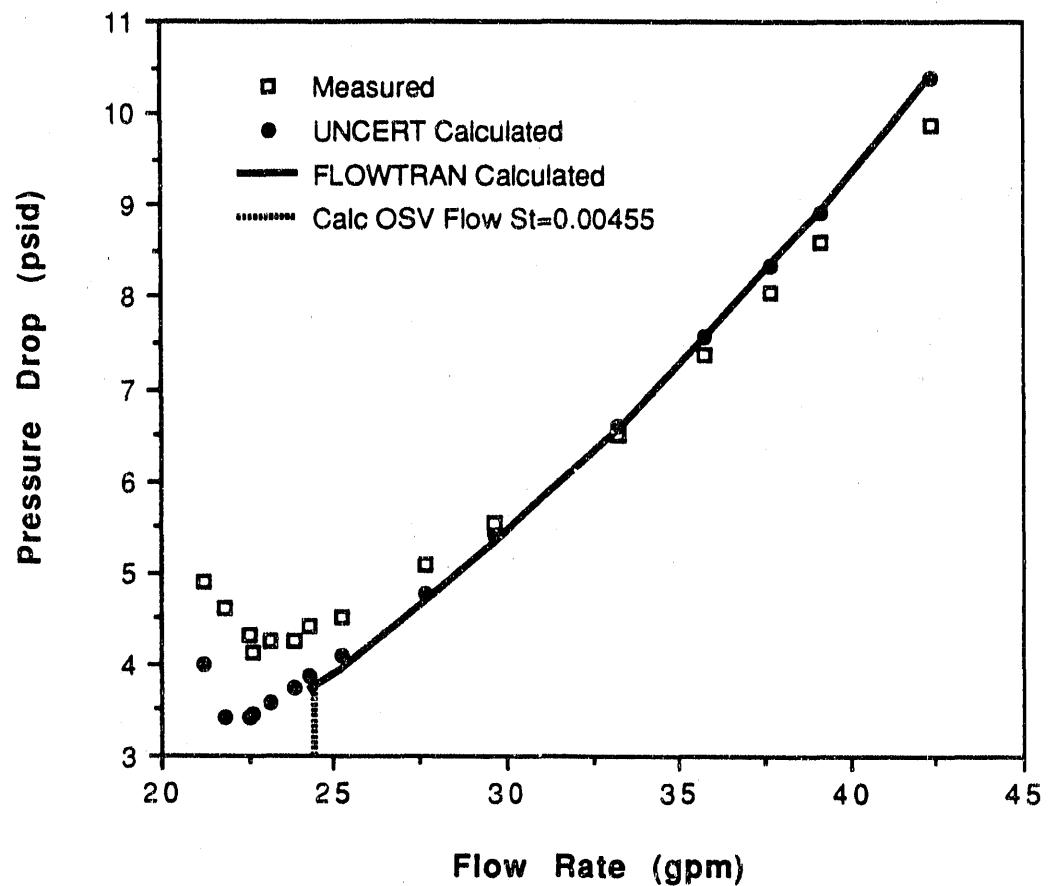



FIGURE C-5. MEASURED DATA, FLOWTRAN, AND UNCERT PREDICTIONS - SAMPLE 5

## APPENDIX - D

### SAMPLE FLOWTRAN INPUT

This appendix contains a FLOWTRAN model test section node diagram. FLOWTRAN models the test section between the pressure taps which is 100.5 inches. The 96 inch heated length is divided into 48 equally spaced axial nodes. The 2.25 inch length bounding the heated length at each end is divided into 5 axial nodes. The details are shown in Figure D-1.

This appendix also contains a sample FLOWTRAN input file for the OSV calculation for  $St=0.00455$ . FLOWTRAN iterates to calculate the power needed to achieve OSV for a particular flow rate. Different flow rate inputs are used to reiterate the OSV flow rate for a given power, inlet temperature, and exit pressure until the calculated power agrees with the given power. Chapter 5, Reference 1, is a guide to prepare the FLOWTRAN input deck.

- A: 96" - HEATED CHANNEL LENGTH
- B: 100.5" - FRICTIONAL CHANNEL LENGTH
- C: 105" - TOTAL CORE LENGTH
- D: 105.35" - TOTAL MODEL LENGTH
- E: 2.425" - TOP/BOTTOM FORM LENGTH
- F: 0.175" - TOP/BOTTOM SETUP LENGTH

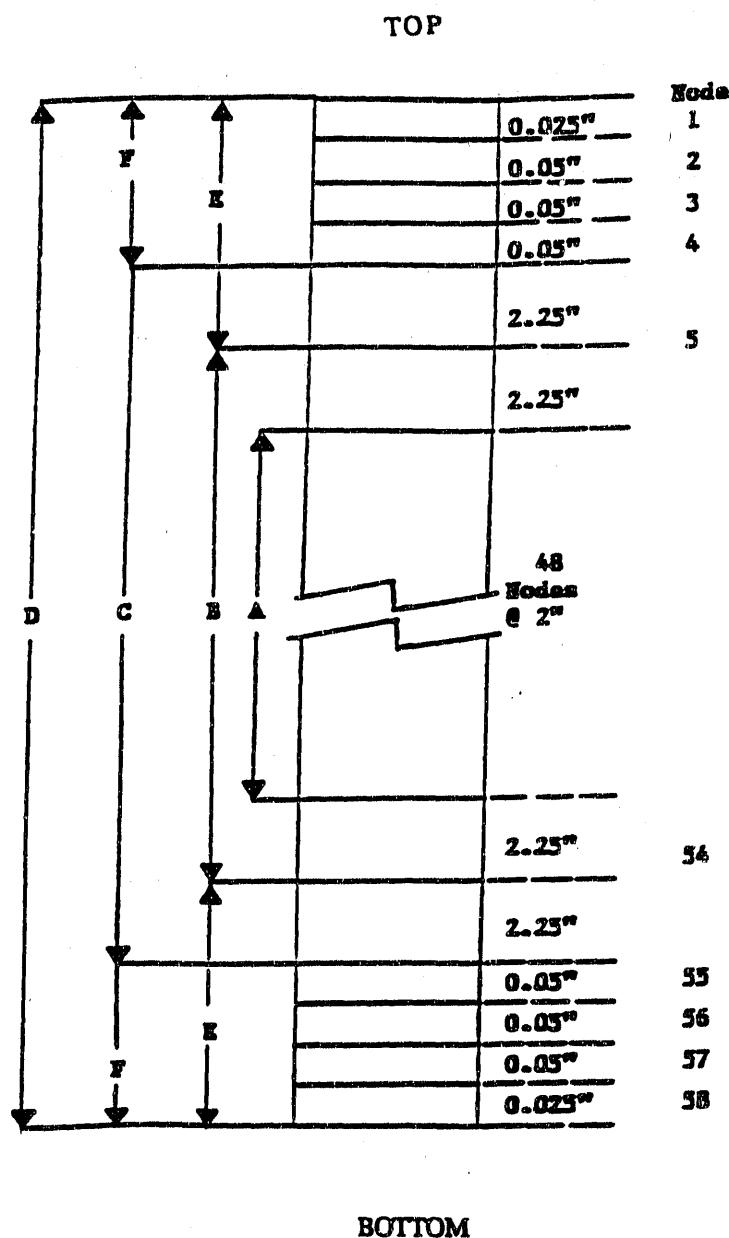



FIGURE D-1. FLOWTRAN MODEL NODES

/COLUMBIA .6125 PW 0.22409 MW P64.7 T77F FW GPM OSV V16.1/  
/RUN TIME (SEC), NZONE, TMIN, TIME ZONE DATA/  
0 1 0.0  
1.0 1  
/IPRTF, IPRTS, IPRTP, IDMPS, IBALN, ICRIT, IPRTSS/  
1 1 1  
100 1 1 1 0 0  
/CRITERIA CHECKING FLAGS: ONB, TSAT, CHF, OSV/  
0 0 0 1 0  
/TOLERANCES, ITERATIONS, AND INITIAL POWER/  
1.0D-5 20 0.22409  
1.0D-5 50  
1.0D-5 50  
/FLUID ITERATIONS, TOLERANCES, AND OPTIONS/  
0 100 1.0D-6  
0 100 1.0D-6  
1 1 1 2 1 1 1 1 1  
1  
/POWER ARRAY PARAMETERS/  
5 2 1  
2 2 2 2 2 2 2 2 2 2  
/MA MCYLIN ICENT AND NCELLS/  
1 1 0  
4 50 4  
/RADIAL CELLS AND SUBCHANNELS/  
5  
1  
/SURFACE CHECK FLAGS/  
0 1 0  
/CYLINDER #1/  
1.0 1  
0 0.0 0.0  
48 3 3 3 3 3  
0.6125  
0.63964  
0.66678  
0.69392  
0.72106  
0.7482  
/FLUID GEOMETRIC DATA SET/  
105.0000 96.00000 4.500000 4.675000 1.000000  
0.294647029 0.294647029  
1.0  
1.0  
0.294647029  
0.6125  
0.  
0.  
0.  
2.500000000000000E-05  
1 0.00368309 0.29464704 0.000 1.0 0.0  
1 0.00736618 0.29464704 0.025 0.0 0.0

|   |            |            |       |     |     |
|---|------------|------------|-------|-----|-----|
| 2 | 0.01104927 | 0.29464704 | 0.000 | 1.0 | 0.0 |
| 2 | 0.01473236 | 0.29464704 | 0.050 | 0.0 | 0.0 |
| 3 | 0.01473236 | 0.29464704 | 0.000 | 1.0 | 0.0 |
| 3 | 0.01473236 | 0.29464704 | 0.050 | 0.0 | 0.0 |
| 4 | 0.01473236 | 0.29464704 | 0.000 | 1.0 | 0.0 |
| 4 | 0.01473236 | 0.29464704 | 0.050 | 0.0 | 0.0 |
| 1 | 0.01473236 | 0.29464704 | 0.050 | 0.0 | 0.0 |
| 1 | 0.01473236 | 0.29464704 | 0.000 | 1.0 | 0.0 |
| 2 | 0.01473236 | 0.29464704 | 0.050 | 0.0 | 0.0 |
| 2 | 0.01473236 | 0.29464704 | 0.000 | 1.0 | 0.0 |
| 3 | 0.01473236 | 0.29464704 | 0.050 | 0.0 | 0.0 |
| 3 | 0.01104927 | 0.29464704 | 0.000 | 1.0 | 0.0 |
| 4 | 0.00736618 | 0.29464704 | 0.025 | 0.0 | 0.0 |
| 4 | 0.00368309 | 0.29464704 | 0.000 | 1.0 | 0.0 |

1.0 0.21

/POWER FRACTIONS/

1 1

1.0 0.0 0.0 0.0

/RADIAL SHAPES/

1 5 2

1 0 0 0 0

1.0 0.0

1.0 0.0

1.0 0.0

1.0 0.0

1.0 0.0

/WET TANK SHAPE POWER FRACTIONS/

0

/DRY TANK SHAPE POWER FRACTIONS/

0

/AZIMUTHAL SHAPES/

1 1 1

1 0 0 0 0

1.0

1.0

/ASSEMBLY POWER TRANSIENT/

3

0. 1.000000

5. 1.000000

10. 1.000000

/AXIAL POWER SPLINE/

3 2

0.0 10.0

0.0 1.0

0.5 1.0

1.0 1.0

1.0

1.0

1.0

/ASSEMBLY FLOW TRANSIENT/

3

0. 9.371447699

5. 9.38000

10. 9.38000

/TBOT PRESS SPLINE/

3

0. 64.80596  
5. 64.80595  
10. 64.80595

/ASSEMBLY INLET SPLINE/

3

0. 24.95180  
5. 25.00000  
10. 25.00000

/TANK LEVEL SPLINE/

3

0.0 1.0  
5.0 1.0  
10.0 1.0

/FLUID INITIAL GUESS/

1.0

9.550 85.000 25.000 0.000

1.0

0.0D0 0.0D0 0.0D0

0.0 30.0 19.7

3.937D-5 1.0 1.0 1.0 0.7 100.0

/INITIAL SOLID TEMPERATURES/

25.0 25.0

## APPENDIX - E

### COMPUTER PROGRAMS SOURCE LISTINGS

This appendix contains ENBALSTPE.FOR and UNCESTPPE.FOR computer programs source listings. ENBALSTPE.FOR is written to calculate Stanton and Peclet numbers at the OFI conditions. UNCESTPPE.FOR is used to calculate Stanton and Peclet number uncertainties. These source codes are written in VAX FORTRAN-77 and contain input/output codes specific to VAX compilers. These source codes may not be transportable to other FORTRAN compilers.

```

C ****
C *
C * ENBALSTPE.FOR
C *
C * This Program Calculates Outlet Temperature from an
C * Energy Balance, Calculates Uncertainty on the Calculated
C * Temperature, Calculates Peclet and Stanton Numbers
C * both from Measured and Calculated Outlet Temperatures,
C * Contribution of Each Energy Terms
C *
C * The Program interactively asks one input and one output
C * file names
C *
C * Input File: One Input File - Free Formatted :
C * First record is hydraulic diameter (inch)
C * Each Subsequent record consists of
C * Flow Rate (gpm), Pressure Drop (psi),
C * Power (KW), Inlet Temp (F), Exit Pressure,
C * Measured Outlet Temp (F)
C *
C ****
C
C TI = Inlet Temperature (F)
C Q = Volumetric OFI flow rate (gpm)
C W = Power (MW)
C WKW = Power (KW)
C HF = Heat Flux (Btu/s-ft2)
C PE = Exit Pressure (psia)
C TM = Measured Outlet Temperature (F)
C TC = Calculated Outlet Temperature (F)
C TU = Uncertainty on Calculated Temp (F)
C PEN = Peclet Number
C STN = Stanton Number
C DP = Pressure Drop (psi)
C F = Mass Velocity (lbm/s)
C G = Mass Flux (lbm/s-ft2)
C PCT = Energy Term Percent
C DH = Hydraulic Diameter (inch)
C
C DIMENSION TI(30),
+     Q(30),
+     W(30),
+     HF(30),
+     PE(30),
+     TM(30),
+     TC(30),
+     TU(30)
C DIMENSION PEN(2,30),
+     STN(2,30),
+     DP(30),
+     F(30),
+     G(30),
+     PCT(4,30)
C
C CHARACTER C(4)*8/'I      ','
+     'O      ','
+     'EXTERNAL',
+     'MEASURED'/

```

```

C
      DATA AT,AM,AP,AK/948.056,
      +          -0.18509,
      +          1.071122E-04,
      +          0.414252/
      DATA TL,HL,PI/100.5,
      +          96.0,
      +          3.14159265/
C
C      Set up Character Variables for Reading Records
C
      CHARACTER RECORD*80,
      +          DUMMY*80,
      +          OUTFIL*25,
      +          INFIL*25
C
C      Set up Character Record Formats
C
100  FORMAT(A80)
101  FORMAT(A25)
102  FORMAT(A1)
C
C      Open OFI Input File
C
      PRINT 104
104  FORMAT(' ENTER THE OFI INPUT DATA FILE NAME ? ',\$)
      ACCEPT 101, INFIL
      OPEN(2,FILE=INFIL,STATUS='OLD',ERR=995,
      +      ACCESS='SEQUENTIAL',FORM='FORMATTED',
      +      ORGANIZATION='SEQUENTIAL',RECORDTYPE='VARIABLE')
C
C      Open Calculations Output File
C
      PRINT 105
105  FORMAT(' ENTER THE CALCULATION RESULTS OUTPUT FILE NAME ? ',\$)
      ACCEPT 101, OUTFIL
      OPEN(3,FILE=OUTFIL,STATUS='UNKNOWN',ERR=990,
      +      ACCESS='SEQUENTIAL',FORM='FORMATTED',
      +      ORGANIZATION='SEQUENTIAL',RECORDTYPE='VARIABLE')
C
C      Get Hydraulic Diameter
C
      READ(2,*) DH
      CSA = (PI/4.0) * DH * DH                      ! CROSS SECTIONAL AREA
C
C      Get the Other Input Data
C
      I = 1
10    READ(2,*,END=15) Q(I), DP(I), WKW, TI(I), PE(I), TM(I)
      W(I) = WKW / 1000.0                            ! CONVERT TO MEGAWATT
      I = I + 1
      GOTO 10
15    NR = I - 1
C
      DO 25 I=1, NR
C          Calculate Inlet Density in lbm/ft3
      CALL DENSITY(DENSI, TI(I))                    ! CALL FOR DENSITY
C          Calculate Inlet Energy Equivalent

```

```

CALL HTCAP(CPI, TI(I), 2)           ! INLET ENERGY
F(I) = DENSI * Q(I) / 448.83        ! MASS VELOCITY (LBM/S)
C Initial Outlet Temperature Guess
TO1 = TI(I) + W(I) * AT / F(I)
C Calculate Outlet Density in lbm/ft3
20 CALL DENSITY(DENSO, TO1)          ! CALL FOR DENSITY
DAVE = (DENSI + DENSO) / 2.0        ! AVERAGE DENSITY
DEND = 1.0/DENSI**2 - 1.0/DENSO**2 ! DENSITY DIFFERENCE
CKE = AK * (F(I)/CSA)**2 * DEND   ! KINETIC ENERGY
CPE = AP * TL                      ! POTENTIAL ENERGY
CME = AM * DP(I) / DAVE            ! MECHANICAL ENERGY
CTE = AT * W(I) / F(I)              ! THERMAL ENERGY
DES = CTE + CKE + CPE + CME       ! DIFF. ENERGY SUM
C Calculate Outlet Energy Equivalent
CALL HTCAP(CPO, TO1, 2)             ! OUTLET ENERGY
DCP = CPO - CPI                   ! DIFF. ENERGY EQUIV.
CPA = DCP / (TO1 - TI(I))          ! AVERAGE HEAT CAPACITY
ER = DCP / DES                   ! DIFF. ENERGY RATIO
C Check Energy Balance
IF (ABS (ER-1.0) .LT. 0.0010) GOTO 30
TO1 = TI(I) + (TO1 - TI(I)) / ER
GOTO 20
C
30 TC(I) = TO1
C
C Calculate Outlet Temperature Uncertainty
C
CALL TOUTUNC(TU(I), TI(I), W(I), Q(I), DENSI, CPA)
PCT(1,I) = 100.0 * CTE / DES        ! THERMAL ENERGY %
PCT(2,I) = 100.0 * CKE / DES        ! KINETIC ENERGY %
PCT(3,I) = 100.0 * CPE / DES        ! POTENTIAL ENERGY %
PCT(4,I) = 100.0 * CME / DES        ! MECHANICAL ENERGY %
25 CONTINUE
C
111 WRITE(3,111) C(1), C(2), C(4), C(2), C(2)
111 FORMAT(' NO GPM      MW      PSI_F', 3(' T(F) ',A1),
+        ' TM-TO PSIA ',A1,' UNC ',A1)
112 FORMAT(1X,I2,1X,F7.4,1X,F8.6,1X,F6.3,3(1X,F7.3),3(1X,F6.3))
DO 40 I=1,NR
    DT = TM(I) - TC(I)
    WRITE(3,112) I,Q(I),W(I),DP(I),TI(I),TC(I),TM(I),DT,PE(I),TU(I)
40 CONTINUE
C
C Begin Peclet and Stanton Number Calculations
C
DO 50 J=1,2
    WRITE(3,113) C(J+2)
113 FORMAT(/' PECLET - STANTON NUMBERS WITH OUTLET TEMPERATURE',
+           ' FROM ',A8,' CALCULATIONS',
+           ' NO LB/S-FT2 BTU/S-FT2 BTU/LB-F BTU/S-FT-F',
+           ' T_SAT_F T_OUT_F PECLET    STANTON')
C
DO 50 I=1,NR
    IF(J .EQ. 1) THEN
        TO = TC(I)                      ! CALCULATED OUTLET TEMP
    ELSE IF(J .EQ. 2) THEN
        TO = TM(I)                      ! MEASURED OUTLET TEMP
    END IF

```

```

      CALL HTCAP(CPO,TO,1)          ! HEAT CAPACITY
C
C      Calculate Heat Flux
C
      HF(I) = 144.0 * AT * W(I) / (PI*DH*HL)      ! BTU/S-FT2
      G(I) = 144.0 * F(I) / CSA                    ! LBM/S-FT2
      CALL THCOND(CK,TO)                         ! THERMAL COND
      CALL SATEMP(TS,PE(I))                      ! SATURATED TEMP
C
C      Calculate Peclet Number
C
      PEN(J,I) = G(I) * (DH/12.0) * CPO / CK      ! PECLET NUMBER
C
C      Calculate Stanton Number
C
      STN(J,I) = HF(I) / (G(I)*CPO*(TS - TO))      ! STANTON NUMBER
      WRITE(3,114) I, G(I), HF(I), CPO, CK, TS, TO, PEN(J,I), STN(J,I)
50      CONTINUE
114      FORMAT(1X,I2,2(1X,F9.3),1X,F8.6,1X,E10.4,2(1X,F7.3),
+                  1X,F7.0,1X,F10.8)
C
      WRITE(3,115)
115      FORMAT(/4X,'ENERGY TERMS PERCENT CONTRIBUTION',
+                  '/ NO          THERMAL',6X,
+                  'KINETIC      POTENTIAL    MECHANICAL')
C
C      Write Energy Terms Percent Contribution
C
      DO 60 I=1,NR
      WRITE(3,116) I,(PCT(J,I),J=1,4)
60      CONTINUE
116      FORMAT(1X,I2,2X,4(E12.5,2X))
      CLOSE (3)
      GOTO 999
C
990      PRINT *, ' PECLET STANTON FILE OPEN ERROR'
999      CLOSE (2)
      GOTO 998
995      PRINT *, ' OFI INPUT FILE OPEN ERROR'
998      CONTINUE
C
      STOP
      END
C
C      SUBROUTINE TOUTUNC(TUNC,T1,W,Q,D,C)
C
C      ****
C      * The Routine Determines Calculated Outlet Temperature Uncertainty *
C      * TUNC(F) with Regard to Inlet Temperature T1(F), Power W(MW),      *
C      * Flow Rate Q(GPM), Inlet Density D(LBM/FT3), and Average Heat      *
C      * Capacity C(BTU/LBM-F)                                         *
C      *
C      ****
C
      DATA A1,AP/425516.5433,
      1.071122E-04/

```

```

DATA DT,DW,DQ,DL/0.6,
+          0.008,
+          0.02,
+          0.004833/
C
C      Calculate Outlet Temperature Uncertainty
C
C      B = A1 / (D * Q * C)
C      TUNC = SQRT(DT**2 + (B*DW*W)**2 + (B*W*DQ/Q)**2 + (AP*DL)**2)
C
C      RETURN
C      END
C
C      SUBROUTINE DENSITY(D,TF)
C
C      ****
C      *
C      *      Routine calculates saturated liquid density for temp "T"
C      *      The regression equation was used from FLOWTRAN Manual
C      *      TF = Temperature (F), Pass in argument
C      *      D = Density (LBM/CU-FT), Pass out argument
C      *      Valid Range: 10 C <= T =< 300 C
C      *
C      ****
C
C      DIMENSION CD(4)
C
C      DATA (CD(I),I=1,4)/0.10048897E+4,
+          -0.26847207E+0,
+          -0.18136391E-2,
+          -0.17041217E-5/
C
C      P = 0.0                                ! INITIALIZE SUM
C
C      Calculate Saturated Density in lbm/cu-ft
C
C      T = (TF - 32.0) / 1.8                  ! CONVERT TO DEG C
C      DO 10 I=1,4
C          P = P + CD(I)*T**(I-1)
10    CONTINUE
C      D = P * 0.06242800                    ! LBM/CU_FT
C
C      RETURN
C      END
C
C      SUBROUTINE HTCAP(PP,T,IP)
C
C      ****
C      *
C      *      Routine to Calculate Heat Capacity
C      *      T = Temperature (F), pass in argument
C      *      IP = Option, Pass in argument
C      *          = 1, for normal heat capacity
C      *          = 2, for integrated heat capacity
C      *      PP = Heat capacity (BTU/LBM-F), Pass out argument
C      *      Valid Range: 50 F <= T =< 500 F
C

```

```

C   *
C   ****
C
C   DIMENSION CP(6)
C
C   DATA (CP(I),I=1,6)/1.0105,
+      -2.7630E-4,
+      1.8461E-6,
+      -4.1051E-9,
+      5.7686E-12,
+      0.0/
C
C   P = 0.0                                ! INITIALIZE SUM
C
C   IF(IP .EQ. 1) THEN                      ! DETERMINE PROPERTY
C   Calculate Heat Capacity in Btu/lbm
C   DO 30 I=1,6
C   P = P + CP(I)*T**(I-1)                  ! BTU/LBM-F
30  CONTINUE
C   ELSE IF(IP .EQ. 2) THEN
C   Calculate Integrated Heat Capacity in Btu/lbm
C   DO 20 I=1,6
C   P = P + (CP(I)/I)*T**I                 ! BTU/LBM
20  CONTINUE
C   END IF
C   PP = P
C
C   RETURN
C
C
C   SUBROUTINE SATEMP(T,P)
C
C   ****
C   *
C   *   Routine calculates saturated temperature for pressure "P" *
C   *   The regression equation was used from FLOWTRAN Manual   *
C   *   P = Pressure (psia), Pass in argument                   *
C   *   T = Saturation Temperature (F), Pass out argument     *
C   *   Valid Range:  0.178 psi <= P <= 1246 psi           *
C   *
C   ****
C
C   DIMENSION C(6)
C
C   DATA (C(J),J=1,6)/0.37546530E+3,
+      0.89679811E+2,
+      0.11149468E+2,
+      0.99075812E+0,
+      0.52882025E-1,
+      0.12471856E-2/
C
C   TS = 0.0                                ! INITIALIZE TEMPERATURE
C
C   Calculate Reduced Pressure
C
C   PR = P / (217.6 * 14.696)                 ! REDUCED PRESSURE
C   Y = ALOG(PR)

```

```

DO 10 I=1,6
  TS = TS + C(I)*Y**(I-1)
10  CONTINUE
    T = 1.8*TS + 32.0           ! CONVERT TO DEG F
C
C      RETURN
END
C
C      SUBROUTINE THCOND (CK,TF)
C
C      ****
C      * Routine calculates liquid thermal conductivity for temp "T" *
C      * The regression equation was used from FLOWTRAN Manual      *
C      * TF = Temperature (F), pass in argument                   *
C      * CK = Thermal conductivity (BTU/S-FT-F), pass out argument *
C      * Valid Range: 10 C <= T <= 300 C                      *
C      *
C      ****
C
C      DIMENSION C(4)
C
DATA (C(J),J=1,4)/0.57032432E+3,
+          0.17996615E+1,
+          -0.72881959E-2,
+          0.32412245E-5/
C
T = (TF - 32.0) / 1.8           ! CONVERT TO DEG C
F = 0.0                          ! INITIAL SUM
DO 10 I=1,4
  F = F + C(I)*T**(I-1)
10  CONTINUE
    CK = F * 1.604969E-7         ! BTU/S-FT-F
C
C      RETURN
END

```

```

C ****
C *
C *
C *          UNCERSTPE.FOR
C *
C *      This Program Calculates Mean and Standard Deviation
C *      of Power, Heat Flux, Inlet Temp, and Exit Pressure.
C *      This Program also Calculates Uncertainties in
C *      Peclet & Stanton Numbers
C *
C *      The Program interactively asks two input and one
C *      output file names
C *
C *      Input Files: Two Input Files - Free Formatted
C *
C *      First File - The First Input File is the OFI Conditions
C *                  File. The First Record is tube ID, the
C *                  Second Record is Uncertainty on ID, the
C *                  Third Record is Ratio of Flow Rate
C *                  Uncertainty to the Flow Rate (which is
C *                  Const. for all Flow Rates), the Fourth
C *                  Record is the No. of Test Cases and the
C *                  Fifth is the No. of Sample Cases in Each
C *                  Test Case. The Subsequent Records are
C *                  Flow Rate (gpm), Peclet No., Stanton No.,
C *                  Measured Outlet Temp at OFI Condition (F)
C *                  for Each Test Case.
C *
C *      Second File - The Second File is the test Conditions File
C *                  Each Record Consists of Test Conditions
C *                  Power, Heat Flux, Exit Pres, Inlet Temp,
C *                  Ratio of Uncertainty of Power to Power
C *
C ****
C
C      DIMENSION AVPOWER(30),
C      +      SDPOWER(30),
C      +      AVHTFLX(30),
C      +      SDHTFLX(30),
C      +      AVIT(30),
C      +      SDIT(30),
C      +      AVEP(30),
C      +      SDEP(30),
C      +      AVUNPOW(30),
C      +      SDUNPOW(30),
C      +      DPOWERMESR(30),
C      +      DTINMES(30),
C      +      DTINLET(30),
C      +      TSAT(30),
C      +      TSUB(30),
C      +      NM(30)
C
C      DIMENSION TOUT(30),
C      +      QMES(30),
C      +      PE(30),
C      +      DELPE(30),
C      +      ST(30),
C      +      DELST(30),
C      +      DPOWERR(30),

```

```

+           DELHFLXR(30)
C
C     REAL    PE,
+     L
C     REAL*8  SQUNPOW,
+     SUMSQUNPOW,
+     SUMUNPOW,
+     AVUNPOW,
+     SDUNPOW
C
C     CHARACTER*25 INFILE1,
+     INFILE2,
+     OUTFILE
C
C     L = Length of The Tube (inch)
C     DELL = Uncertainty of Tube Length (inch)
C     DELD = Uncertainty in Tube ID (inch)
C     DELQMESR = Uncertainty in Flow Ratio (%)
C     DELRHOR = Uncertainty in Density (%)
C     DELCPR = Uncertainty in Specific Heat Ratio (%)
C     DELKR = Uncertainty in Thermal Conductivity Ratio (%)
C     DPOWERMESR = Uncertainty in Meas Power Ratio (%)
C     DELTOUT = Uncertainty in T Out (C)
C     DELTSAT = Uncertainty in Saturation Temp (C)
C     D = Tube Inside Diameter (inch)
C     N = Number of Test Cases
C     NN = Number of Samples in Each Test Case
C     QMES = Measured Flow Rate (gpm)
C     PE = Peclet Number
C     ST = Stanton Number
C     TEMPPOWER = Power in the Sample (KW)
C     TEMPHTFLX = HT Flux in the Sample (MBtu/hr-ft2)
C     TEMPEP = Exit Pressure in the sample (psia)
C     TEMPIT = Inlet Temperature in the Sample (F)
C     TEMPUNPOW = Measured Power Uncertainty Ratio in the Sample
C     AVPOWER = Average Power of the Test Case (KW)
C     AVHTFLX = Average Heat Flux of the Test Case (MBtu/hr-ft2)
C     AVIT = Average Inlet Temp of the Test Case (C)
C     AVEP = Average Exit Pressure of the Test Case (psia)
C     AVUNPOW = Average Measure Power Uncertainty Ratio of the Test Case
C     SDPOWER = S.D. of Power in the Test Case (KW)
C     SDHTFLX = S.D. of Heat Flux in the Test Case (MBtu/hr-ft2)
C     SDIT = S.D. of Inlet Temp in the Test Case (C)
C     SDEP = S.D. of Exit Pressure in the Test Case (PSIA)
C     SDUNPOW = S.D. OF Measured Power Uncertainty Ratio
C     DTINMES = Uncertainty in I. Temp Measurement (C)
C     DTINLET = Total Uncertainty in I. Temp (C)
C     DPOWERR = Ratio of Uncertainty of Power to Power
C     DELHFLXR = Ratio of Uncertainty of HT Flux to HT Flux
C     TSAT = Saturation Temperature (C)
C     TOUT = Exit Temperature (C)
C     DELGR = Ratio of Uncertainty of Flow Rate to Flow Rate
C     DELPE = Uncertainty in Peclet Number
C     DELST = Uncertainty in Stanton Number
C
C     Set up Input File Name Record Format
C
1001 FORMAT(A25)

```

```

C
C      Open the OFI Input File
C
C      PRINT 1002
1002  FORMAT(' ENTER THE OFI INPUT DATA FILE NAME ? ',$)
      ACCEPT 1001, INFILE1
      OPEN(2,FILE=INFILE1,STATUS='OLD',ERR=991,
      +      ACCESS='SEQUENTIAL',FORM='FORMATTED',
      +      ORGANIZATION='SEQUENTIAL',RECORDTYPE='VARIABLE')
C
C      Open the Test Conditions Data File
C
C      PRINT 1004
1004  FORMAT(' ENTER THE TEST CONDITIONS INPUT DATA FILE NAME ? ',$)
      ACCEPT 1001, INFILE2
      OPEN(3,FILE=INFILE2,STATUS='OLD',ERR=993,
      +      ACCESS='SEQUENTIAL',FORM='FORMATTED',
      +      ORGANIZATION='SEQUENTIAL',RECORDTYPE='VARIABLE')
C
C      Open the Output File
C
C      PRINT 1006
1006  FORMAT(' ENTER THE OUTPUT FILE NAME ? ',$)
      ACCEPT 1001, OUTFILE
      OPEN(4,FILE=OUTFILE,STATUS='UNKNOWN',ERR=995,
      +      ACCESS='SEQUENTIAL',FORM='FORMATTED',
      +      ORGANIZATION='SEQUENTIAL',RECORDTYPE='VARIABLE')
C
C      Static Input Values
C
C      L = 96.0
C      DELL = 0.038
C      DELRHOR = 0.001
C      DELCPR = 0.001
C      DELKR = 0.001
C      DELTOUT = 1.0
C      DELTSAT = 0.024
C
C      Read Tube ID, ID Uncertainty, Flow Rate Uncertainty Ratio
C      # of Test Cases, # of Sample in the Test Case,
C      OFI Flow Rate, Peclet #, Stanton #, Measured Outlet Temp at OFI
C
C      READ(2,*) D
C      READ(2,*) DELD
C      READ(2,*) DELQMESR
C      READ(2,*) N
C      READ(2,*) (NN(I),I=1,N)
C
C      DO 10 I=1,N
C          READ(2,*) QMES(I),PE(I),ST(I),TOUT(I)
10      CONTINUE
C
C      Echo of Input
C
C      WRITE(4,1010)
1010  FORMAT(20X,'Echo of Input')
      WRITE(4,1020) N
1020  FORMAT(//5X,'No. of Test Case = ',I4)

```

```

      WRITE(4,1030)
1030  FORMAT(5X,' TEST CASE      NO. OF SAMPLES')
      WRITE(4,1040) (I,NN(I),I=1,N)
1040  FORMAT(2(10X,I4))
      WRITE(4,1050)
1050  FORMAT(5X,'FLOW RATE (GPM)      PECLET #      STANTON #',
+          '      MEAS OUTLET TEMP (F)')
      DO 20 I=1,N
      WRITE(4,1060) QMES(I),PE(I),ST(I),TOUT(I)
1060  FORMAT(5X,F8.3,7X,F12.0,5X,F10.8,5X,F10.2)
20    CONTINUE
C
C      Calculation of Average & S.D. of the Sample
C
      DO 30 I=1,N
      SUMSQPOWER=0.0
      SUMSQHTFLX=0.0
      SUMSQIT=0.0
      SUMSQEP=0.0
      SUMSQUNPOW=0.0
      SUMPOWER=0.0
      SUMHTFLX=0.0
      SUMIT=0.0
      SUMEP=0.0
      SUMUNPOW=0.0
      DO 25 J=1,NN(I)
      READ(3,*) TEMPPOWER, TEMPHTFLX, TEMPEP, TEMPIT, TEMPUNPOW
      SQPOWER=TEMPPOWER*TEMPPOWER
      SQHTFLX=TEMPHTFLX*TEMPHTFLX
      SQIT=TEMPIT*TEMPIT
      SQEP=TEMPEP*TEMPEP
      SQUNPOW=TEMPUNPOW*TEMPUNPOW
      SUMSQPOWER=SUMSQPOWER+SQPOWER
      SUMSQHTFLX=SUMSQHTFLX+SQHTFLX
      SUMSQIT=SUMSQIT+SQIT
      SUMSQEP=SUMSQEP+SQEP
      SUMSQUNPOW=SUMSQUNPOW+SQUNPOW
      SUMPOWER=SUMPOWER+TEMPPOWER
      SUMHTFLX=SUMHTFLX+TEMPHTFLX
      SUMIT=SUMIT+TEMPIT
      SUMEP=SUMEP+TEMPEP
      SUMUNPOW=SUMUNPOW+TEMPUNPOW
25    CONTINUE
C
      AVPOWER(I)=SUMPOWER/NN(I)
      AVHTFLX(I)=SUMHTFLX/NN(I)
      AVIT(I)=SUMIT/NN(I)
      AVEP(I)=SUMEP/NN(I)
      AVUNPOW(I)=SUMUNPOW/NN(I)
      SDPOWER(I)=SQRT((SUMSQPOWER-NN(I)*AVPOWER(I)*AVPOWER(I))/(
+          (NN(I)-1)))
      SDHTFLX(I)=SQRT((SUMSQHTFLX-NN(I)*AVHTFLX(I)*AVHTFLX(I))/(
+          (NN(I)-1)))
      SDIT(I)=SQRT((SUMSQIT-NN(I)*AVIT(I)*AVIT(I))/(NN(I)-1))
      SDEP(I)=SQRT((SUMSQEP-NN(I)*AVEP(I)*AVEP(I))/(NN(I)-1))
      SDUNPOW(I)=SQRT((SUMSQUNPOW-NN(I)*AVUNPOW(I)*AVUNPOW(I))/(
+          (NN(I)-1)))
30    CONTINUE

```

```

C
      WRITE(4,3000)
3000  FORMAT('1')
      WRITE(4,3010)
3010  FORMAT(1X,'AV POWER SD POWER AV HT FLX SD HT FLX',
+           ' AV MES POW UNR SD MES POW UN',
+           ' (KW) (KW) (MBTU/HR-FT2) (MBTU/HR-FT2) ',
+           ' (%) (%) ')
      DO 110 I=1,N
         WRITE(4,3020) AVPOWER(I),SDPOWER(I),AVHTFLX(I),SDHTFLX(I),
+           AVUNPOW(I),SDUNPOW(I)
3020  FORMAT(1X,3(F10.6,2X),3(F10.6,2X))
110  CONTINUE
C
      WRITE(4,3030)
3030  FORMAT(/5X,'AV I. TEMP SD I. TEMP AV E. PRES'
+           ' SD E. PRES',
+           ' 5X, '(C) '(C) (PSIA) '
+           ' (PSIA) ')
      DO 120 I=1,N
         WRITE(4,3040) AVIT(I),SDIT(I),AVEP(I),SDEP(I)
3040  FORMAT(5X,4(F10.4,2X))
120  CONTINUE
C
C      Calculate Error in Inlet Temp Measurement
C
      DO 40 I=1,N
         DTINMES(I)=SQRT((0.25*0.25)+0.00005*AVIT(I)*0.00005*AVIT(I) +
+           (0.02*0.02))
         DTINMES(I)=DTINMES(I)*5.0/9.0
         SDIT(I)=SDIT(I)*5.0/9.0
         DTINLET(I)=SQRT(SDIT(I)*SDIT(I)+DTINMES(I)*DTINMES(I))
40    CONTINUE
C
C      Calculate Error in Power
C
      DO 50 I=1,N
         DPOWERMESR(I)=AVUNPOW(I)+2.0*SDUNPOW(I)
         DPOWERR(I)=SQRT(2.0*SDPOWER(I)/AVPOWER(I)*
+           2.0*SDPOWER(I)/AVPOWER(I) +
+           DPOWERMESR(I)*DPOWERMESR(I))
50    CONTINUE
C
C      Calculation of Saturation Temp
C
         CT1 = 0.37546530E+3
         CT2 = 0.89679811E+2
         CT3 = 0.11149468E+2
         CT4 = 0.99075812E+0
         CT5 = 0.52882025E-1
         CT6 = 0.12471856E-2
         PC = 22.064
         DO 70 I=1,N
            PR = (AVEP(I)/(14.5*10.0))/PC
            Y = ALOG(PR)
            TSAT(I) = CT1+CT2*Y+CT3*Y**2+CT4*Y**3+CT5*Y**4+CT6*Y**5
70    CONTINUE
C

```

```

C      Calculate Subcooling
C
C      DO 87 I=1,N
C          TOUT(I)=(TOUT(I)-32.0)/1.8
C          TSUB(I)=TSAT(I)-TOUT(I)
87    CONTINUE
C
C      Calculation of Uncertainties
C
C      Calculation of Uncertainty of Peclet Number
C
C      DO 90 I=1,N
C          DELPE(I) = PE(I)*SQRT(DELCP*DELCP+(DELD/D)*(DELD/D) +
C          +(DELQMSR)*(DELQMSR)+DELKR*DELKR+DELRHOR*DELRHOR)
90    CONTINUE
C
C      Calculation of Uncertainty of Stanton Number
C
C      DO 100 I=1,N
C          A1 = (DELCP*DELCP+DELQMSR*DELQMSR+DPOWER(I)*DPOWER(I) +
C          + DELRHOR*DELRHOR)
C          A2 = (DELD/D)*(DELD/D)+(DELL/L)*(DELL/L)
C          A = A1+A2
C          B = (DELTOUT*DELTOUT+DELTSAT*DELTSAT)/
C          + ((TSAT(I)-TOUT(I))*(TSAT(I)-TOUT(I)))
C          DELST(I) = ST(I)*SQRT(A+B)
100   CONTINUE
C
C      Write the Output
C
C      WRITE(4,2010)
2010  FORMAT(//10X,' Output of Uncertainty Calculation ')
C      WRITE(4,2012) L
2012  FORMAT(/5X,'Heated Length (inch) = ',F6.2)
C      WRITE(4,2014) DELL
2014  FORMAT(5X,'Uncertainty in Heated Length (inch) = ',F8.5)
C      WRITE(4,2016) D
2016  FORMAT(5X,'Inside Diameter of Heater Tube (inch) = ',F8.5)
C      WRITE(4,2018) DELD
2018  FORMAT(5X,'Uncertainty in Inside Diameter (inch) = ',F8.5)
C      TEMP=DELQMSR*100.0
C      WRITE(4,2020) TEMP
2020  FORMAT(5X,'Uncertainty in Measured Flow Rate (%) = ',F6.3)
C      TEMP=DELRHOR*100.0
C      WRITE(4,2040) TEMP
2040  FORMAT(5X,'Uncertainty in Density (%) = ',F6.3)
C      TEMP=DELCP*100.0
C      WRITE(4,2060) TEMP
2060  FORMAT(5X,'Uncertainty in Specific Heat (%) = ',F6.3)
C      TEMP=DELKR*100.0
C      WRITE(4,2080) TEMP
2080  FORMAT(5X,'Uncertainty in Thermal Conductivity (%) = ',F6.3)
C      WRITE(4,2100) DELTOUT
2100  FORMAT(5X,'Uncertainty in Exit Temperature (C) = ',F6.3)
C      WRITE(4,2110) DELTSAT
2110  FORMAT(5X,'Uncertainty in Saturation Temperature (C) = ',F6.3)
C
C      WRITE(4,3050)

```

```

3050  FORMAT(/5X,'SAT TEMP          EXIT TEMP          SUB COOL'/
+           5X, ' (C)          (C)          (C)'/)
      DO 130 I=1,N
        WRITE(4,3060) TSAT(I),TOUT(I),TSUB(I)
3060  FORMAT(5X,3(F10.4,2X))
130   CONTINUE
C
      WRITE(4,4000)
4000  FORMAT('1')
      WRITE(4,4010)
4010  FORMAT(//10X,'Uncertainty in PECLET numbers')
      WRITE(4,4020)
4020  FORMAT(/3X,'FLOW RATE(GPM)  PECLET NUMBER  DEL PECLET NUMBER'
+           '          UNCR PE (%)')
      DO 210 I=1,N
        TEMP=DELPE(I)*100.0/PE(I)
        WRITE(4,4030) QMES(I),PE(I),DELPE(I),TEMP
4030  FORMAT(6X,F5.2,10X,2(F8.0,10X),F5.2)
210   CONTINUE
C
      WRITE(4,5010)
5010  FORMAT(//10X,'Uncertainty in STANTON numbers')
      WRITE(4,5020)
5020  FORMAT(/3X,'FLOW RATE(GPM)  STANTON NUMBER  DEL STANTON NUMBER'
+           '          ST-DELST  UNCR ST (%)')
      DO 305 I=1,N
        TEMP=ST(I)-DELST(I)
        TEMP1=DELST(I)*100.0/ST(I)
        WRITE(4,5030) QMES(I),ST(I),DELST(I),TEMP,TEMP1
5030  FORMAT(6X,F5.2,9X,3(F10.8,7X),F5.2)
305   CONTINUE
C
      GOTO 999
C
991   PRINT *, ' ERROR TO OPEN OFI INPUT FILE '
      GOTO 999
993   PRINT *, ' ERROR TO OPEN TEST CONDITIONS FILE '
      GOTO 999
995   PRINT *, ' ERROR TO OPEN OUTPUT FILE '
      GOTO 999
C
999   CONTINUE
      CLOSE (2)
      CLOSE (3)
      CLOSE (4)
C
      STOP
      END

```

**END**

**DATE  
FILMED**

**8/19/92**

