o [
S - o
v ¥ AlIM / \ S
\.Q// §§:i§<:} \\\\g\% Association for Information and Image Management // P ?’Q%;J 3\
‘ii,\-ﬁ\:b X 1100 Wayne Avenue, Suite 1100

Silver Spring, Maryland 20910

Centimeter
J]lfi? 4 5 6 7 8 9 10 1 12 13 14 15 mm
1 I TTT1 !l LI ! ! ! !
Inches "m 10 Bz gz
= b=z
w 2
“I“ 1 Sl
= [l
I f1ie nie
N A\
KN R
4 b>\// N\ //4&\ //
R 4 5 &‘e\>\\// //q\\\\) D
“%2»" ’ //\\\ N
| ‘)" \ /// MANUFACTURED TO AIIM STANDARDS //61\\ %;&{%\
07\// BY APPLIED IMAGE, INC. /{1\\\ Lol

\ \\\\b// 301/587-8202 //&9\5\ DI e\g

,%/L/Z)IS/C’ P 0369Y
Confr94057/75-_/

A Highly Concurrent

Transaction Mlanagement Model

Lawrence J. Henschen Julia C. Lee

Northwestern Argonne National

University Laboratory

2145 Sheridan Rd. 9700 S. Cass Ave. DIS/900

Evanston IL 60208 Argonne IL 60439

henschen@eecs.nwu.edu lee @eid.anl.gov
ABSTRACT

~ We describe a methodology for transforming sets of database transactions into sets of
conflict-free transactions which can be executed independently and in parallel. The
method identifies conflicting tuples and uses buffers in high-speed memory to hold those
tui)les. The separate transactions are then modified to operate on both the database and the
re : o

evant buffers.

Keywords: database, tifansactions, concurrency

The submitted manuscript has been authored by-a contractor of the U.S. Government under contract No, W-
31-109-ENG-38. Accpnfitn%ly,m U.s. Govqn)\’mem retains a nonexclusjve, ro alH-free ﬁrcense to publish
or reproduce the published Torm of this contribution, or allow others to do so, for U.S. Government pur-

poses.

DiSTrualUTION OF THi8 DOCUMBENT & UNLHV:;TED

&.‘{F{";r!\ng

MASTER Jun 10 103

OSTI

1. Introduction

A transaction in a database system is a sequence of database operations that is treated
as an atomic unit regarding execution, consistency and the like. However, with the advent
of parallel and concurrent systems, a major effort has been devoted to allowing concurrent
execution and/or interleaving of the pieces of distinct transactions to increase system
throughput. Classic transaction management systems have been developed based on con-
cepts like serializability, correctness, transaction history and two-phase locking
((BHG87], [Pap86], [U1188]). However, two-phase locking requires the management of
locks and suffers a heavy degree of “blocking overhead”. These difficulties will increase
in importance as technology moves more and more towards concurrent and distributed
systems. It is therefore important to develop new ways to increase concurrency in such
systems.

d Several researchers have considered alternatives ([Gar83], [MRBKS92], [AAJ92],
[LKS91]). The main idea is to identify substeps within each transaction that need to be
executed atomically. The breakpoints between substeps are points at which concurrency
can be considered. However, these techniques place a severe burden on database users to
identify steps and breakpoints. Moreover, without additional knowledge about other trans-
actions that are or may be in the system, the improvement in concurrency may be limited.

Our method, inspired in part by work in deductive databases ((HN84)], [MH89)), con-
siders general database operations (read, write, modify). For a set of transactions to be

. executed concurrently, the method identifies the sets of conflicting tuples and arranges to
have those tuples read into one or more buffers in high-speed memory. The transactions
themselves are then suitably modified to reflect the fact that some of the tuples may be in
buffers instead of in the database. Thus, at the cost of some reading into buffers a very
high level of parallelism can be achieved. Thus, in a way, our methods attempts to
“resolve” conflicts rather than simply “avoid” them as in existing methods. In this paper
wei_I are concerned with the concurrency issue. Related details are discussed in [Lee92] and
[LH93]. ~
~ Section2 gives a more detailed description of some of the characteristics of our meth-
ods. Section 3 gives some formal definitions and a more detailed description of the
method itself. Section 4 contains some concluding remarks.

2. Characteristics of the proposed transaction management model

In this section we compare our model with other existing models by summarizing its
characteristics. A more systematic description will be given in Section 3.

2.1 Database operation semantics

Our model follows the direction of [Gar83] [Lyn83] [FO89] of increasing concur-
rency by exploring the semantics of the transaction. However, our model is different from
the existing models. The semantics™on which our models are based are not from some ad
hoc example but from more general and practical real-life database operations. The inter-
leaving of the database operations that our model achieves does not depend on the analysis
by each user of their transaction but is based on the existing database operations used by
all the users of relational databases. If we assume that the semantics of the transaction are
structured hierarchically [Lyn83], then our model achieves the interleaving at the lowest
and finest level.

- We studied the concrete “building-blocks” of transactions. We don’t require the users
to define semantic information required by the system other than submitting the code of
the transaction as usual. Our model uses a general mapping mechanism which accepts any
transaction code built with the “building block™ database operations.

More specifically, the “building-block”s of our model are READ(), INSERT(),
DELETE() and UPDATE(), which are the most popular relational database operations
used by almost every transaction on relational databases. ‘ '

2.2 Resolving conflicts and achieving high concurrency

We categorize the database operations into two types - Retrieval Operations and -
Update Operations. Some existing research results (e.g., [AK91]) have introduced similar
categorizations. Most of them assume the categorization at the transaction level, that is
they view certain transactions as “read-only” or “write-only” in order to allow a higher
degree of concurrency. Our categorization is done inside the transactions. We assume a
transaction could have both retrieval and update operations. We categorize the operations
in order to analyze the impact of different operations on the database and on other transac-

tions.

We studied the structure and parameters of the database operations. After careful
study and analysis, we found that all the database operations within the scope of the
semantics we studied can be interleaved by mapping them into another set of database
operations within the same semantic scope in which conflict is eliminated and that a very
high concurrency can thus be achieved with our model. We have proved the correctness of
this result [Lee92] [LH93]. Resolving conflict of database operations is a unique charac-
teristics of our model. As many researchers have noted, the conflict among database oper-
ations is the major obstacle to increasing concurrency and efficiency of transaction
management systems.

The model regroups the retrieval database operations and update operations into two
phases. The model then maps the two groups of database operations into two sets of new
database operations which are “conflict-free” and can be executed totally in parallel. Our
model not only addresses the conventional concurrency problem, but also can be applied
to parallel processing and parallel databases. One difference between “concurrent” and
“parallel” is that the set of transactions (or processes) and their order of execution are pre-
served explicitly in concurrent settings, whereas the set of transactions (or processes) in a
parallel system may be split up and therefore preserved only implicitly.

2.3 The correctness

The correctness of our model is still based on the notion of serial execution. We -
believe that the only suitable basic for determining correctness of a method is to compare
against the serial execution model.

There are some other notions of correctness which assume that the resulting database
states don’t have to be accurate. As long as they fall into some predefined boundary, they
would be considered as correct or consistant[Gar83] [WA92). This approach may be
acceptable for some of the applications but not for many other applications. For example,
most bank costumers would like to avoid a service charge from an overdrawn account by
knowing the exact balance of that account rather than an estimated one.

Our model uses the idea of “Multiversion Serializability” introduced in [BHG87]
[KS88] [AK91]. The model insures not only that the database states resulting from the
parallel execution of multiple transactions are correct but also that the “image of the data-

base” to all the transactions executed are correct. That is, all the transactions should see a
consistent database when they are executed. We assume that the consistency constraints of
each transaction are ensured by the user who writes the transaction, the same as all the ref-
erences mentioned so far regarding transaction management.

' We assume buffer-usage for storing intermediate database states to be used by the
new sets of database operations. The usage of the buffer may give the impression that our
method has a high memory space overhead. However, we argue that theoretically, all the
multiversion approaches would have to use about the same amount of space when they get
implemented. This fact is almost implied by the word “multiversion”. Practically, most of
the existing database systems use buffers for every database operation. That means that
using buffers is not something unpopular or impractical.

2.4 Deadlock Free

Since the execution of transactions in our model is the dispatching of groups of con-
flict-free database operations, there is no possibility of deadlock. This result frees the
model (or the system to be implemented) from implementing a “deadlock prevention” or
“deadlock detecting” mechanism for concurrency control.

2.5 Recoverability

The model adopts the idea of countersteps [Gar83] [Lyn83] [FO89] for recovery in
case of transaction failure. However, the “countersteps” or “counter operations” are well
defined in our model, and the users don’t have to be burdened withthis additional respon-
sibility. ' ~

The recovery problem of our model is quite different from conventional models. We
will address the issue in a separate paper. However, we point out at this time that the
model is recoverable, and complexity and efficiency of the recovery process is compatible
with other recovery mechanisms proposed so far.

3. A transaction management model with semantics

In this section we will give some definitions and sketches of the algorithms related to

our model and a more systematic description of our model.
3.1 Database and Database Operations

Definition 3.1: We adopt the definition of a database state (DBT) from [MHS89].
Definition 3.2: A Database operation in the new model is defined as a feir-tuple
= (OP R, 4, B) where OPis the type of the operation, i.e. DELETE, INSERT, etc., R

is the relation the operation is to affect, and A is the set of attribute values aftected by the
operation. B is the buffer associated with this database operation. It contains a set of tuples
left after the database operation takes place. It may also contain some augmented opera-
tions to be performed on the tuples. That is B = (BS, A0) .

Definition 3.3: The attribute value set 4 of a database operation O is denoted as

A= ((C,p Vi)» (Cup Vo)) Where C, . V. are the input constant and variable
attributes of the operation, and C,,, ¥, ,, are the output constant and variable attributes of
the operation, respectively.

More specifically, the input constant and variable attributes define the set of tuples to
be affected by the database operation, and the output constant and variable attributes

defines the set of tuples left in the database after the operation taking place.
: Examples of database operations are (READ, R ((a, x), (a, x)))(INSERT, R, ((),
(ay, ay, a3, a4, a5, ag), (UPDATE, R, ((a, b,y, w), (a,c,d,w))) where a, b, c,d are
generic constants, and y, w are generic variables. :

Definition 3.4: input datal state data operation is the database state
before the database operation takes place.

Definition 3.5: The affected set AS_ _of a database operation O is defined as the tuple
setof (C,, of O applied to the input database state. That is
AS, = (Cy, V) (DBT) |

“Definition 3.6? The resulting set RS, of a database operation O is defined as the tuple
setof (C,, ¥,) of O applied to the affected set of O. That is
RS, = (& Y) (AS).

Definifion 34- The output state of a database operation is the database state after the -
operation takes place. If the input state of O is DBT then the output state of O is O(DB7).
Notice that O (DBT) = (DBT-AS,)) URS,,. _

Definition 3.8: A retrieval database operation retrieves data from a database into the

v,
%

buffer, and it does not change the database state. For example (READ, R, ((a, x), (a, x))).

Definition 3.9: An update database operation changes the database state, and it does
not care about the content of the buffer left after it takes place. For example (DELETE, R,
(5,5), Q).

Definition 3.10: The retrieved set of a database operation is the set of tuples retrieved
by the operation into the buffer associated with that operation, and we denote it as TS .

For retrieval database operations, T7S,= AS = RS = BS . TS is defined only for
retrieval operations.

Notice that AS,, RS and TS of an operation O associated not only with the opera-
tion but also with an initial (or input) database state. Therefore, we will use notations such
as TS (DBT), RS, (DBT) , etc., to represent the association.

Observation 3.1: Duplicating database tuples in any relation does not change the
database state. ‘

Observation 3.2: If O is a retrieval database operation, we have O (DBT) = DBT.

3.2 Local Conflict and Global Conflict of Database Operations

In order to study the concurrency feature of transactions we need to investigate the
conflict among the database operations within a transaction. It is clear that for retrieval
databse operation O only TS | has meaning to the transaction, and for an update operation
only O(DB17) concerns us. According to this observation we try to categorize the conflicts
and have the following definitions relatcd to different conflicts. S

Definition 3.11: We say that two database operations O, and O, are locally conflici-
ing if ~ | .

(1) o, is a retrieval operation, and O, is either a retrieval operation or an update

operation;

(2) TS,, (DBT) #TS , (0, (DBT)).

Observation 3.3: Two retrieval operations O, and O, are noi locally conflicting
since we have, in this case, that O, (D3T) =. DBT.

Definition 3.12: We say that two database operations are globally conflicting with
each other if:

(1) At least one of O,, O, is an update operation;

(2) 0, (0, (DBT)) #0,(0,(DBT)). .

Observation 3.4: A retrieval operation O, is not globally conflicting with an update
database operation O, . Since O, (DBT) = DBT, we have
0,(0,(DBT))= 0, (0, (DBN))= 0, (DBT).
O?bservation 3.5: Two database operation O, and O, are not globally or locally con-
flicting if they operate on two different relations.

3.3 Resolving Conflict

Before we present the new transaction managemerf model, we introduce two theo-
rems related to transactions and to the conflict among the database operations within a
transaction. The proofs can be found in [Lee92] and [LH93]. Before the theorems can be
introduced we also need a clear definition of the meaning of conflict resolution.

Definition 3.13: If a retrieval operation 0, is locally conflicting with an update oper-
ation O, in a sequence of database operations b , 0,, by resolving the conflict we mean
to convert O, into O', so that RS, (DBT) = ksoz (0, (DBT)) .

Definition 3.14: ff two ordered update database operations O, O, are globally con-

flicting with each other, by resolving global conflict we mean to convert O,, O, into
UO'; where 1 <i<4 so that I10,(DBT) = IT'0,;(DBT) where I10; and h'di are
ahy two permutations of U 0';. :

Theorem 3.1: The logal conflict of any operation can be resolved.

The proof and resulting algorithm depend on the use of a buffer. There are four cases
depending on the order of the conflicting operations - I-R, D-R, U-R, R-R (insert followed
by read, etc.) Within each of these four cases there are subcases depending on the relation-

- ship (inclusion, equal, mutually exclusive) of the input subsets for the two operations. The
complete algorithm and proof are given in [LH93]. We present an example here to give the
main ideas. '

Example: Ol: (DELETE, R, ((a,b,x), (), ((a,b,x), ©))
02: (READ, R, ((2,5,x),(a,3,x)), ((a,)x), D))

Here the tuples to be deleted are a subset of the tuples to be read. The idea for this
case is to read into a buffer all of the tuples for O2. After this, the DELETE operation can
be performed in parallel on the database AND THE BUFFER. Finally, the tuples left in
the buffer are used as the output corresponding to O2. After the initial read operation, the
operations on the buffer and the database can be done in parallel. Of course, the operations

in the buffer would be much faster than the ones on the database because the buffer would
be in fast memory. The resulting conflict-free transaction is:
(READ-TO-BUFFER, R, ((a,y,X), (a,5,%)), ((a,y,x), &))
|

| |

(DELETE, R, ((a,b,x), (), ((a,b,x), @) (DELETEB,R, ((a,b,x),), ((a,b,x), D))
USE the data in the BUFFER

Theorem 3.2: The global conflict of any two update database operations can be
resolved.

This time there are seven cases - I-D, D-LI-U, U-I, D-U, U-D and U-U. Again, each
case can have several subcases depending on the input sets of the operations. The com-
plete algorithm and proof are given in [LH93]. We present a simple example here.
Example.. Ol: (UPDATE, R, ((a,z,,), (a,n,d,y)), ((a,n,d)y), D))

02: (DELETE, R, ((a,n,x,h), ()), ((a,n,x,}), B))

* If R contained the tuple (a,b,c,h), then Ol changes this to (a,n,d,h), which is deleted
by O2. On the other hand, if O2 is performed first, this tuple survives, after which O1
changes it to (a,n,d,h) and leaves it in R. Our method uses a buffer into which is read all
the tuples in the input set of O1. Those tuples are then removed from the database. We are
then free to do the delete operation in the database. In parallel we can perform the update
on the buffer followed by the delete operation on the buffer. (Recall, buffer operations are
relatively fast.) Any tuples left in the buffer are then transferred back to R. This leads to
the following transaction

(READ-TO-BUFFER, R, ((a,z,c,yl), (a,2,¢,y)), ((a,3,¢,y), D))
I 1

(DELETE, R, ((a,n,%,y), 0), ((&,n,x,y), @)) (UPDATEB, R, ((a,7,¢,y),
~_(a,ndy))((a,ndy), D))
(DELETEB, R, ((a,n,x,h),)),((a,n,x,h), D))
- (INSERT, R, (0), (a,n,d,y)), ((a,n,d,y), D))

Theorem 3.3: The nflict of @

Theorem 3.4: The global conflict among any sequence of update operations can be

resolved.
These two theorems use the algorithms in Theorems 3.1 and 3.2 above within two

nested loops looping on the first database operation and the second datapase operatjon
chosen from the same set [Lee92]. The order of the algorithms are O(n"~) and O(n"),
respectively.

3.4 The transaction management model

We now have the base to introduce our transaction management model. We will fol-
low the traditional model to define the execution or (history) of transactions because only
the execution of a transaction tells the difference between models.

Definition 3.15: A database transaction in our model is defined as a four-tuple (T, B
IDBT, ODBT) where T= {0O,, O,, ..., 0.} , Pis a total order on T, IDBT is the input
database state of the transaction and ODBT is the output database state of the transaction.

We assume that IDBT and ODBT comply with the database constraints defined for
the database as we pointed out in Section 1.

Definition 3.16: An execution of a set of transactions T= {T,, T,, ..., T,} inour
model is a four tuple (f, T’, R, X), where T’ is a set of new subtransactions (or database
operations), f is a many to many mapping from T to T where
T= {Ty, T, T,....T,}, Kis atotal order on T';, and Xis a mapping from T’ to a
database state. T" is a process which groups the transactions and their database opera-
tions according to certain criteria. Foreach T, 0<i in T’ T; = (o, 85 t,) where 1, is
the pseudo-initial transaction for T';, and ¢, the pseudo-final transaction for T i

t;ineachT;ist= (0',, 0' ., P) where O0', = {0,;,0,,...,0,,} isanew set of
retrieval operations mapped from the retrieval operation and the update operations of T by
fand O' ;= {0,,,0. .5, --., 0., } is anew setof update operations mapped from the
update operations of by gy §A and P is the order relation which has the same definition for-
all the T'; ‘s in T*. The definition of % is such that all new retrieval operations o . pre-
cede all the new update operations o, for a specific i and all j within each ¢;. I\Iro{special
order among the retrieval operations or among the update operations is required. Each ¢,
is a specific execution of f which includes the implementation of the algorithms which
resolve the local and global conflicts of the database operations in the original T and maps

Tinto T*. Each t,.in T, is t;= (RO' , HF;) where RO'= {ro, wizr -+ T4} s
a set of reverse u]gdate opera ions (or dounter operations) corresponémg to 0' ; mapped
from the operations in T by f, and HF, is a house-keeping function which determines
none, one, or more than one of the rom ’s which need to be executed and also passes
information to ¢, 10 when needed.
‘sand o, .. ‘S are defined as (O%,, A;» B

are deﬁned as in Befinition 2.2 and Deﬁmﬁonjz 3.

Notice that the use of B, and the corresponding BS and 40;; as defined in Defini-
tion 2.2 can be seen as t.reanﬂg input and/or output states of databale operations as in the
existing models of View Serializable and MQJMQB_SML@E_[BHG87] [KS88].

Definition 3.17: The execution of a set of transactions 7= (T , T,,) is correct

if the retrieval operations of all the transactions retrieve the same data into thé transaction
as they do in a serial execution of the transactions, and the update operations leave a final
database state which is the same as the final state of a serial execution of the transactions.

- More mtumvely, our model takes a set of transactions to be executed simultaneously,
converts them irto two sets of new database operations - one set of new retrieval database
operations, possibly with augmented database operations, and a set of new update data-
base operations, possibly with buffers. The model also generates the reverse operation sets
based on the input database operations. The model then dispatches the retrieval database
operations to be executed in paralle] first and then dispatches the update database opera-
tions to be executed in parallel next. The model invokes the reverse operations according:
to the finishing status of the execution. Notice that it is possible that the operations of the
original transaction are subgrouped before they get converted mto new database opera-
tions. This is reflected in the definition as more than one t,, #;, t,, subtransaction after
conversion.

Consider a relation R with attributes: flight number, departure date, departure time,
row number, seat number, customer name, destmatlon (mcludmg mtermedlate stops). The,
relation contains, initially, two tuples

(385, 5/20/93, 1000, 6, A, Cleveland, St. Louxs)
(385, 5/20, 1000, 10, A, Schuman Kansas City). '

Consider two transactions T1 and T2.(We will use simplified forms for operatxons A
“*” in the form represents the same attribute set as the previous one.)

T1: (READ, R, (385, 5/20/93, x5, x,, x5, x4, Chicago), (*)),((*), @),

)wheretheOfPu,R A andB

(INSERT, R, ((), (385, 5/20/93, 1030, 6, B, Henry, Chicago)), ((*), ©)),
. (DELETE, R, ((385, 5/20/93, 1000, x,, x, Schuman, x.), ()), ((*), ©))
T2: (READ, R, ((385, 5/20/93, 1000, x4,x5,x6,x7) (), (¥, D)),

(UPDATE, R, ((385, 5/20/93, 1000 X4,

(385, 5/20/93, 1030, x,., x, X, Cfncago); (), D)),

(INSERT. R. (0. (385, 520193, 1030.%, C. Lee, Chicago)), (*), @)).

The operations within T1 and T2 are in cenflict with each other. Therefore, T2 needs
to wait until T1 finishes or until the last database operation DELETE(385, 5/20/93, 1000,

x4, Xs, Schuman, x,) finishes before it can start.
6ur method allows T1 and T2 to execute in parallel if they arrive at about the same

time by mapping the operations in T1 and T2 into a set of new operations using local buff-

ers. The new retrieval operations include:
0, =(READ, R, ((385, 5/20/93, x,, x,, x5, x4, Chicago), (*)), ((*), D)),

0,2 = [(READ, R, ((385, 5/20/93, 1000, Xgr X5y Xgs Xq) (), ((*), 20))
where A0 is:
[(DELETEB, R, ((385, 5/20/93, 1000, X4y Xs, Schuman, x4), 0N}

Readers are referred to [LH93] for the mapping.
The new update operations include:
0,1, = (INSERT, R, (0, (385, 5/20/93, 1030, 6, B, Henry, Chicago)), ((*), ©)),
0,12 = (DELETE, R, ((385, 5/20/93, 1000, x,, x5, x¢, X5), ()), ((*), D)),
= (INSERT, R, ((), (385, 5/20/93, 1030, x,, x5, x4, Chicago)),
((385, 5/20/93, 1030, 6, A, Cleveland, Chicago), &))
0,,4 = (INSERT, R, ((), (385, 5/20/93, 1030, 6, C, Lee, Chicago)), ((*), a)).
Readers are referred to [Lee92] for the mapping.
o Otlzer elemen;s o(t; the ex(ample according to th)e model deﬁ::ld a})ove are: tr
= (0,11,0 1= (0,419,120 13: O toisa cular execution o
t ! (0., & ul ',l 1) ¢ 51 fl‘} “Sthe reversg) o rfnon set and house keeping
functxons for recovery, F (100) Notice that in this case only one new-sub-trans-
action ¢, and its associated pseudo-uﬁ{lal and pseudo-final transactions are mapped. We

also assume that the set of new mapped database operations is small enough to be dis-
patched at the same time.

%413

Readers can easily verify that the result database state after T is the same as the data-
base state for T1 followed by T2 which is
R= ((385, 5/20/93, 1030, 6, A, Cleveland, Chicago),
(385, 5/20/93, 1030, 6, B, Henry, Chicago),
(385, 5/20/93, 1030, 6, C, Lee, Chicago)).

One can also verify that the data retrieved by the two new READ() operations at the
bcginnjlt‘lzg of ¢, are the same as the data retrieved by the original READ()s in the sequence
of T1, T2.

In the model we assume that the completed definitions of each of the transactions are
known at the time of submission of the transaction, which is the normal case for most
existing database systems.

4. Closing remarks

“Ne believe the methodology can be applied to other concurrent parallel situations in
database technology [W'T92]. For example, the algorithm in Section 3 could be used in a
parallel batch transaction system or a concurrent system to resolve conflict among distinct
transactions submitted within a given time window and to be executed in parallel. In fact,
with minimal adjustment, the method can be applied also to the notion of “sagas” for long-
lived transactions ([MS87], [Lyn83], [FO89]). '

We have presented a new model for transaction management using the semantics
explored in other papers to resolve the conflicts among the database operations. This
makes our model very different from the existing models and achieves much higher con-
currence than existing transaction models. We hope that this work will contribute ideas to
research in the area of transaction management. We hope also that this model will give
some idea on how the database management system could be implemented on parallel
machines. -

We would like to say a few more words about the recovery issue. We expect that the
recovery process for this model is going to be more complex than the one for existing
models in some cases. Reverse processes are needed when failure is detected. In some -

* cases, it could be a re-processing of all the transactions involved. However, since normally
the probability of failure is much less than the probability of success in general cases, the

advantage of having a highly concurrent model with a more complex recovery process
over having a model with very low degree of concurrency and a simpler recovery process
should be justified. Besides, the reverse processes or operations are to be generated by the
system, rather than by the user as in some other models. This is an advantage over the
existing models which use reverse processes (or counter processes).

There is room for further study on related topics. This work has concentrated on con-
current control, not on the issue of recovery. The recovery methods related to this model in
case of non-batch processing need to be carefully studied. This paper did not discuss the
validation of database constraints related to transaction management and /or to the data-
base operations discussed here, and this needs to be explored. The semantics of other
types of database operations such as object-oriented database operations need to be
explored further for the purpose of increasing concurrency. How to divide the code which
does not access database and to attach the code to parallel database operations is another
important and broad area to be studied.

Acknowledgments

Many thanks to Professor Sheuermann and Professor Clifton of Northwestern Univer-
sity for introducing some of the important references for this study and for suggestions on
carly drafts. The work discussed in this paper was partially supported by the U. S. Depart-
ment of Energy under contract W-31-109-Eng-38.

References

[AAJ92] D. Agrawal, A. El Abbadi, R. Jeffers “Using Delayed Commitment in Lock
ing Protocols for Real-time Databases’’; Proceeding of the 1992 ACM
SIGMOD; San Diego, California June 2-5 Page: 104-113; 1992,

[AK91] D.Agrawal, V. Krishnaswamy; “Using Multiversion Data for Non-interfering
Execution of Write-Only Transactions” Proceeding of the 1992 ACM
SIGMOD; Denver, Colorado May 29-31, 19 Page: 98-107; 1991.

[BHG87] P.A.Bernstein, V.Hadzilacos, N.Goodman;"Concurrency Control and

[FO89]

[Gar83]

(HN84]

[KS88]

(LH93]

[LKS91]

[Lee92]

[Lyn83]

Recovery in Database Systems™; Addison-Wesley Publishing Company
Page: 1-45; 1987.

Abdel Aziz Farrag, M. Tamer Ozsu; “Using Semantic Knowledge of
Transactions to Increase Concurrency”; ACM Transactions on Database
Systems; ACM TODS Dec 1989.; Page: 503-525; 1989.

Hector Garcia-Molina; “Using Semantic Knowledge for Transaction
Processing in a Distributed Database”; ACM transaction on Database Systems;
ACM TODS June 1983.; Page: 186-213; 1983.

Lawrence J. Henschen and Shamin A. Nagvi “On Compiling Queries in
Recursive First-Order Database”; Journal of the Association for Computing
Machinery; JACM Vol.31, No. 1, January 19 Page: 47-85; 1984.

Henry F. Korth, Gregory D. Speegle; “Formal Model of Correctness Without
Serializability”; Proceeding of SIGMOD International Conference on
Management of Data; ACM Chicago IL June 1-3.; Page: 379-386; 1988.

Julia C. Lee, Lawrence, J, Henschen; “The Semantics and the Conflicts of
Relational Database Operations”; Submitted to Data & Knowledge
Engineering Journal; 1993.

Eliezer Levy, Henry F. Korth, Abraham Sil “An Optimistic Commit Protocol
for Distributed Transaction Management”; Proceeding of the 1992 ACM SIG
MOD; Denver, Colorado May 29-31, 19 Page: 88-97; 1991.

Julia C. Lee “A Transaction Management Model with Relational Database
Operat;gg Semantics”; Ph.D Dissertation Northwestern University; Evanston
Dec, 1 :

Nancy A. Lynch; “Multilevel Atomicity-A new correctness Criterion for
Database Concurrency Control”; ACM Transactions on Database Systems;
ACM TODS Dec 1983.; Page: 485-502; 1983.

[MHB89]

William W. McCune and Lawrence J. Henschen “Maintaining State
Constraints in Relational Database”; Journal of the Association for Computing
Machinery; JACM Vol.36, No. 1, January 19 Page: 46-68; 1989.

[MRBKS92]

[MS87]

[Mal89]

[Pap86]

[U1188]

[WA92]

(WT92)

Sharad Mehrotra, Rajeev Rastogi, Yuri Brietbart, Henry F. Korth,

Avi Silberschatz “The Concurrency Control Problem in Multidatabases:
Characteristics and Solutions”; Proceeding of the 1992 ACM SIGMOD;
San Diego, California June 2-5 Page: 288-297; 1992.

Hector Garcia-Molina, Kenneth Salem; “SAGAS”; Proceeding of SIGMOD,;
ACM San Francisco, CA, May 27- Page: 249-259; 1987.

Carl Malamud; “INGRES Tools for building an Information Architecture”;
Van Nostrand Reinhold; Page: 57-188; 1989.

C. Papadimitrio; “The Theory of Database Concurrency Control”; Computer
Science Press,; Computer Science Press; Page: -; 1986.

Jeffrey D. Ullman; “Chapter 9 Transaction Management”; Database and
Knowledge-base Systems; Computer Science Press; Page: 467-542; 1988.

M. H. Wong & D. Agrawal; “Tolerating Bounded Inconsistency for Increasing
Concurrency in Database Systems’; Proceeding of ACM 11th Principles of
Database Systems; San Diego, CA 1992.; Page: 236-245; 1992.

Paul Watson and Paul Townsend; “The EDS Parallel Relational Database
System”; Parallel Database Systems; Lecture Notes in Computer Science
Page: 212-222; 1992.

