
__ _ 'k _"" _ Association for Information

m

,+__>N ,ONO,Oo,o,_oTOo_=,STONO0,OS'>e_.<N_.'>
BY flPPLIED IHflGE, INC. _I_

Q

• _o _4"-c7c_o5/7S-- -/
A Highly Concurrent

Transaction Management Model

Lawrence J. Henschen Julia C. Lee

Northwestern Argonne National
University Laboratory
2145 Sheridan Rd. 9700 S. Cass Ave. DIS/900

Evanston IL 60208 Argonne IL 60439
henschen @eecs.nwu.edu lee @eid.anl.gov

ABSTRACT

We describe a methodology for transforming sets of database transactions into sets of
conflict-free transactions which can be executed independently "andin parallel. The
method identifies conflicting tuples and uses buffers in high-speed memory to hold those
tuples. The separate transactions are then modified to operate on both the database and the.
relevant buffers.

Keywords: database, transactions, concurrency

3_11e sMubn_LtLedmaguscri_ has bFen authored by.a contractor of the U.S. OovernnTent under contract No. W-
-ttP$-l_tJ-_tL A.c_. rdiugly, me u.._. _oove.rnm.entretains a nonexcms_vc, myal_-fre_ fi_nse topublish

or reproauce me putmsnea torm ot was conmDuuon, or mmw omers to no so, mr u.a. uovemment pur-
poses.

DhST_TtON O_ _ E)O_L)MIEIMT IS __i't"ED

_ F C:::'1_,f EO

MASTERju,,o,g,,
OSTI

1. Introduction

A transaction in a database system is a sequence of database operations that is treated
as an atomic unit regarding execution, consistency and the like. However, with the advent
of parallel and concurrent systems, a major effort has been devoted to allowing concurrent
execution and/or interleaving of the pieces of distinct transactions to increase system
throughput. Classic transaction management systems have been developed based on con-
cepts like serializability, correctness, transaction history and two-phase locking
([BHG87], [Pap86], [U11881).However, two-phase locking requires the management of
locks and suffers a heavy degree of"blocking overhead". These difficulties will increase
in importance as technology moves more and more towards concurrent and distributed
systems. It is therefore important to develop new ways to increase concurrency in such
systems.

Several researchers have considered alternatives ([Gar83], [MRBKS92], [AAJ92],
[LKS91]). The main idea is to identify substeps within each transaction that need to be
executed atomically. The breakpoints between substeps are points at which concurrency
can be considered. However, these techniques place a severe burden on database users to
identify steps and breakpoints. Moreover, without additional knowledge about other trans-
actions that are or may be in the system, the improvement in concurrency may be limited.

Our method, inspired in part by work in deductive databases ([HN84], [MH89]), con-
siders general database operations (read, write, modify). For a set of transactions to be
executed concurrently, the method identifies the sets of conflicting tuples and arranges to
have those tuples read into one or more buffers in high-speed memory. The transactions
themselves are then suitably modified to reflect the fact that some of the tuples may be in
buffers instead of in the database. Thus, at the cost of some reading into buffers a very
lugh level of parallelism can be achieved. Thus, in a way, our methods attempts to _
"resolve" conflicts rather than simply "avoid" them as in existing methods. In this paper
we are concerned with the concurrency issue. Related details are discussed in [Lee92] and
[LH93].

Section2 gives a more detailed description of some of the characteristics of our meth-
ods. Section 3 gives some formal definitions and a more detailed description of the
method itself. Section 4 contains some concluding remarks.

2. Characteristics of the proposed transaction management model

In this section we compare our model with other existing models by summarizing its
characteristics. A more _ysternatic description will be given in Section 3.

2.1 Database operation semantics

Our model follows the direction of [GarB3] [Lyn83] [FO89] of increasing concur-
rency by exploring the semantics of the transaction. However, our model is different from
the existing models. The semantics_n which our models are based are not from some ad
hoc example but from more general and practical real-life database operations. The inter-
leaving of the database operations that our model achieves does not depend on the analysis
by each user of their transaction but is based on the existing database operations used by
all the users of relational databases. If we assume that the semantics of the transaction are
structured hierarchically [Lyn83], then our model achieves the interleaving at the lowest
and finest level.

•We studied the concrete "building-blocks" of transactions. We don't require the users
to define semantic information required by the system other than submitting the code of
the transaction as usual. Our model uses a general mapping mechanism which accepts any
transaction code built _.viththe "building block" database operations.

More specifically, the "building-block"s of our model are READ(), INSERT(),
DELETE() and UPDATE(), which are the most popular relational database operations
used by almost every transaction on relational databases.

2.2 Resolving conflicts and achieving high concurrency
• .

We categorize the database operations into two types - Retrieval Operations and
Update Operations. Some existing research results (e.g., [AKgl]) have introduced similar
categorizations. Most of them assume the categorization at the transaction level, that is
they view certain transactions as "read-only" or "write-only" in order to allow a higher
degree of concurrency. Our categorization isdone inside the transactions. We assume a
transaction could have both retrieval and update operations. We categorize the operations
in order to analyze the impact of different operations on the database and on other transac-

tions.
We studied the structure and parameters of the database operations. After careful

study and analysis, we found that all the database operations within the scope of the
semantics we studied can be interleaved by mapping them into another set of database
operations within the same semantic scope in which conflict is eliminated and that a very
high concurrency can thus be achieved with our model. We have proved the correctness of
this result [Lee92] [LH93]. Resolving conflict of database operations is a unique charac-
teristics of our model. As many researchers have noted, the conflict among database oper-
ations is the major obstacle to increasing concurrency and efficiency of transaction
management systems.

The model regroups the retrieval database operations and update operations into two
phases. The model then maps the two groups of database operations into two sets of new
database operations which are "conflict-free" and can be executed totally in parallel. Our
model not only addresses the conventional concurrency problem, but also can be applied
to parallel processing and parallel databases. One difference between "concurrent" and
"parallel" is that the set of transactions (or processes) and their order of execution are pre-
served explicitly in concurrent settings, whereas the set of transactions (or processes) in a
parallel system may be split up and therefore preserved only implicitly.

2.3 The correctness

The correctness of our model is still based on the notion of serial execution. We
believe that the only suitable basic for determining correctness of a method is to compare
against the serial execution model.

There are some other notions of correctness which assume that the resulting database
states don't have to be accurate. As long as they fall into some predefined boundary, they
Wouldbe considered as correct or eonsistant[Gar83] [WA92]. This approach may be
acceptable for some of the applications but not for many other applications. For example,
mostbank costumers would like to avoid a service charge from an overdrawn account by
knowing the exact balance of that account rather than an estimated one.

Our model uses the idea of"Multiversion Serializability" introduced in [BHG87]
[KS88] [AK91]. The model insures not only that the database states resulting from the
parallel execution of multiple transactions are correct but also that the "image of the data-

base" to all the transactions executed are correct. That is, all the transactions should see a
consistent database when they are executed. We assume that the consistency constraints of
each transaction are ensured by the user who writes the transaction, the same as all the ref-
erences mentioned so far regarding transaction management.

We assume buffer-usage for storing intermediate database states to be used by the
new sets of database operations. The usage of the buffer may give the impression that our
method has a high memory space overhead. However, we argue that theoretically, all the
multiversion approaches would have to use about the same amount of space when they get
implemented. This fact is almost implied by the word "multiversion". Practically, most of
the existing database systems use buffers for every database operation. That means that
using buffers is not something unpopular or impractical.

2.4 Deadlock Free

Since the execution of transactions in our model is the dispatching of groups of con-
flict-free database operations, there is no possibility of deadlock. This result frees the
model (or the system to be implemented) from implementing a "deadlock prevention" or
"deadlock detecting" mechanism for concurrency control.

2.5 Recoverability

The model adopts the idea of eountersteps [Gar83] [Lyn83] [FO89] for recovery in
case of transaction failure. However, the "countersteps" or "counter operations" are well
defined in our model, and the users don't have to be burdened with'this additional respon-
sibility.

The recovery problem of our model is quite different from conventional models. We
will address the issue in a separate paper. However, .we point out at this time that the
model is recoverable, and complexity andefficiency of the recovery process is compatible
with other recovery mechanisms proposed so far.

3. A transaction management model with semantics

In this section we will give some definitions and sketches of the algorithms related to

our model and a more systematic description of our model.

3.1 Database and Database Operations

Definition 3.1: We adopt the definition of a database state (DBT) from [MH89].
Definition 3.2: A ..Databaseoperation in the new model is defined as a fc-lr-tuple

O= (OP, R, _ B) where OPis the type of the operation, i.e. DELETE, INSERT, etc., R
is the relation the operation is to affect, and A is the set of attribute values affected by the
operation. B is the buffer associated with this database operation. It contains a set of tuples
left after the database operation takes place. It may also contain some augmented opera-
tions to be performed on the tuples. That is B = (BS, AO).

Definition 3.3: The attribute value set A of a database o_ration O is denoted as
A= ((C/n, _'n)' (Cout' Vout)) where Cin, V,,.n are the input constant and variable
attributes of tile operation, and Cout, Vout are tlie output constant and variable attributes of
the operation, respectively.

More specifically, the input constant and variable attributes define the set of tuples to
be affected by the database operation, and the output constant and variable attributes
defines the set of tuples left in the database after the operation taking place.

Examples of database operations are (READ, R ((a, x), (a, x)))(INSERT, R, (0,
(a I, a2, a 3, a,t, a 5, a 6 !)), (UPDATE, R, ((a, b, y, w), (a, c, d, w))) where a, b, c, d are
genenc constants, ano y, w are generic variables.

Definition 3.4: The input d_.tabasestate of a database,operation is the database state
before the database operation takes place.

Definition 3.5: The affected_set AS o of a database overatio00 is defined as the tuple
set of (¢i,,, V/,,) of oapplied to the input database state.-That is
ASo=) CDBr)

• Defmiffon _._ The resultin2 set RS,, of a databa_;eoveration 0 is defined as the tuple
•set of (C,,.,, V,,.,) of O applied to the affected set of O. That is '
RS o = (_. t,-q]) (ASo).

Definl_n _." 'l_heoutput state of a database operation is the database state after the
operation takes place. If the input state of O is DB'Z'then the output state of O is O(_'/).
Notice that O (DBT) = (DBT-ASo) u RS o.

Definition 3.8: A retrieval database operation retrieves data from a database into the

buffer, and it does not change the database state. For example (READ, R, ((a,x), (a,x))).
Definition 3.9: An update database operation changes the database state, and it does

not care about the content of the buffer left after it takes place. For example (DELETE, R,
(b,y), 0)).

Definition 3.10: The retrieved set of a database operation is the set of tuples retrieved
by the operation into the buffer associated with that operation, and we denote it as TS ° .
For retrieval database operations, TSo= ASo= RSo= BS o . TS o is defined only for
retrieval operations.

Notice that AS , RS and TS_ of an operation O associated not only with the opera-. O. . .0 . 0

tion but also with an lmufil (or input) database state. Therefore, we will use notations such
as TSo-(DBT)., RS o (DBT) , etc., to represent the association.

Observation 3.1: Duplicating database tuples in any relation does not change the
database state.

Observation 3.2: If O is a retrieval database operation, we have O (DBT) = DBT.

3.2 Local Conflict and Global Conflict of Database Operations

In order to study the concurrency feature of transactions we need to investigate the
conflict among the database operations within a transaction. It is clear that for retrieval
databse operation O only TS,, has meaning to the transaction, and for an update operation
only O(_ concerns us. A6,eording to this obser:ation we try to categorize the con_c_
and have the following definitions related to different conflicts.

Definition 3.11: We say that two database operations O l and Oa ate locally conflict-
j.Rg.if

(1) 02, is a retrieval operation, and O 1 is either a retrieval operation or an update
operation;
(2) TSo2 (DBT) _ TS,,2 (01 (DBT)) .
Observation 3.3:Tw6 retrieval, operations O1 and 0 2 are no_ locally conflicting

since we have, in this case, that Of (DOT) = DBT.
Definition 3.12: We say that iwo database operations are globally conflicting with

each other if:
(1) At least one of O t , O_ is an update operation;
(2) 02 (01 (DBT)) _ 0 l-(02 (DBT)),

Observation 3.4: A retrieval operation 01 is not globally conflicting with an update
database operation 0 2. Since O)(DBT) = DBT, we have
01 (O_ (DBT))- O_ (O I (DB.T))= 0 2 (DBT).

Observation 3._ Two database operation O 1 and 02 are not globally or locally con-
flicting if they operate on two different relations.

3.3 Resolving Conflict

Before we present the new transaction manageme/ffmodel, we introduce two theo-
rems related to transactions and to the conflict among the database operations within a
transaction. The proofs can be found in [I_e92] and [LH93]. Before the theorems can be
introduced we also need a clear definition of the meaning of conflict resolution.

Definition 3.13: If a retrieval operation O2is locally conflicting with an update oper-
ation O l in a sequence of database operations O 1, 02, by resolving the conflict we mean
to convert O_ into O'_ so that RSo. 2 (DBT) = RSo2 (0 ! (DBT)) .

Definiti6n 3.14: Eftwo ordered update database operfitions Ol, O2 are globally con-
flicting with each other, by resolving global conflict we mean to convert O!, O_into
q.JO' i where 1 <i<4 sothat IItTi(DBT) = H'tTi(DBT) where IIt_ i _/nd l'I'O i are
airy two permutations of LJ O';.

Theorem 3.1: The lotial conflict of any ot_rati0n can be resolved.
The proof and resulting algorithm delmnd on the use of a buffer. There arc four cases

depending on the order of the conflicting ol_rations -I-R, D-R, U-R, R-R (insert followed
by read, etc.) Within each of these four cases there are subcases depending on the relation-
ship (inclusion, equal, mutually exclusive) of the input subsets for the two ol_rations. The
complete algorithm and proof are given in [LH93]. We presem an example here to give the
main ideas.
Example: O1: (DELETE, R, ((a,b,x), 0), ((a,b,x), O))

02: (READ,R,((a,y,x),(a,y,x)),(Ca,m), O))
Here the tuples to be deleted arc a subset of the tuples to be read. The idea for this

case is to read into a buffer all of the tuples for 02. After this, the DELETE operation can
be performed in parallel on the database AND THE BUFFER. Finally, the tuples left in
the buffer are used as the output corresponding to 02. After the initial read operation, the
operations on the buffer and the database can be done in parallel. Of course, the operations

in thebuffer would be much fasterthan theones on the databasebecause thebuffer would
be in fast memory.The resulting conflict-free transaction is:

(READ-TO-BUFFER, R, ((a,y,x), (a,y,x)), ((a,y,x), 0))
I

I I
(DELETE,R, ((a,b,x), 0), ((a,b,x), 0) (DELETEB,R, ((a,b,x), 0), ((a,b,x), 0))

USE the data in the BUFFER

Theorem 3.2: The global conflict of anytwo updatedatabaseOp¢.rationscan be
resolved.

This time there are seven cases - I-D, D-I,I-U, U-I, D-U, U-D and U-U. Again, each
case can have several subcases depending on the input sets of the operations. The com-
plete algorithm and proof are given in [LH93]. We present a simple example here.
Example.: O1"(UPDATE, R, ((a,z,c,y), (a,n,d,y)), ((a,n,d,y), 0))

O2: (DELETE, R, ((a,n,x,h), 0), ((a,n,x,h), 0))
" If R contained the tuple (a,b,c,h), then O1changes this to (a,n,d,h), which is deleted

by 02. On the other hand, if 02 is performed first, this tuple survives, after which O1
changes it to (a,n,d,h) and leaves it in R. Our method uses a buffer into which is read all
the tuples in the input set of O1. Those tuples are then removed from the database.We are
then free to do the delete operation in the database. In parallel we can perform the update
on the buffer followed by the delete operation on the buffer. (Recall, buffer operations are
relatively fast.) Any tuples left in the buffer are then transferred back to R. This leads to
the following transaction

(READ-TO-BUFFER,R, ((a,z,c,y), (a,z.,c,y)),((a,z,c,y), 0))
I

I I
(DELETE, R, ((a,n,x,y), 0), ((a,n,.c,y), O)) (UPDATEB,R, ((a,z,c,y),

(a,n,d,y)),((a,n,d,y),O))
(DELETEB,R, ((a,n,X,h), 0),((a,n,x,h),O))
(INSERT,R, (0, (a,n,d,y)), ((a,n,d,y), O))

Theorem 3.3: al 'c o "evaloneration withv_n_quence of rite-
.cedingupdate o_rations can be resolved.

Theorem 3.4: The global conflict amongany sequenceof updateoperationscan be
resolved.

These two theoremsuse the algorithmsin Theorems3.1 and 3.2 above within two
nested loops looping on the first databaseoperationand the second databaseopera, on
chosen from the same set [Lee92]. The orderof the algorithmsareO(n) and O(n-),
respectively.

3.4 The transaction management model

We now have the base to introduceourtransactionmanagementmodel. We will fol-
low the traditionalmodel to define the execution or (history) of transactionsbecause only
the execution of a transaction tells the differencebetween models.

Definition 3.15: A databasetransactionin ourmodel is definedas a four-tuple(T,
IDBT, ODBT) where T= { 01, 02, ..., On} , g'is a totalorderon T, IDBT is the input
databasestate of the transactionand ODBT is the outputdatabasestate of the transaction.

We assume that IDBT and ODBT comply with the database constraints defined for
the database as we pointedout in Section 1.

Definition 3.16: An execution of a set of transactionsT= {T t, T2, ..., Tn} in our
model is a four tuple (f, T', _, X), where T' is a set of new subtransactions(or database
operations),f is a many to many mappingfromT to T' where
T'= { T n, T I, T_, ..., T,,), Ris a total orderon T i , and Xis a mappingfromT' to a
database_stat_.T o is a p/6cess which groupsthe trafisactionsand theirdatabase opera-
tions accordingto certaincriteria.Foreach T i 0 < i in T' Ti = (ti0, ti, tif) where tio is
the pseudo-initial transactionfor T i, and t.o thepseudo-final transactionfor T.• . ! ! ! • |"

ti m each T i Is ti-- (O ,_,O ,,i, P) wl_ereO ,.i= {orl I, o,i2, ..., ora} asanew set of
retrie_,aloperationsniappedfiom ihe retrievalope;_tion addthe-update6_erationsof T by

! _ O'f, and 0 ui- { °uit, ,,i_, "", °,,ik} is a new setof updateoperationsmappedfrom the
update of_i_rationsof T byf, an_i_'is the orderrelationwhich has the same definition for
all the T. 's in T'. The definitionof _' is suchthat all new retrievaloperations o i"pre-
cede all t_e new updateoperations o .. for a specific i and a!lj within each t.. N"_s.special
orderamong the retrieval operations_{ amongthe updateoperationsis requi_ed.Each ti0
is a specific execution off which includes the implementationof the algorithms which
resolve the local and global conflictsof the databaseoperations in theoriginal T and maps

T into T'. Each tit in T i is tif= (RO'ui, HFi) where RO'i= { rOuil, rOui2, ..., rOuik} is
a set of reverse u_date operations (or counter operations) corresponding to O'.i mapped
from the operations in T by f, and HF i is a house-keeping function which det6i'mines
none, one, or more than one of the ro .. s which need to be executed and also passes• . uU

reformation to t t i + 1_0 when needed.
o,,'s and o'_, 's'are defined as (O.Pu,, Ri_ Aii, Bii) where theOPii, Ril, Aii and B,

are defihed as in'Definition 2.2 and Definition 2.3." "

Notice that the use ,_f Bo and the corresponding BS//and AOii as defined in Defini-
tion 2.2 can be seen as _:reatihg input and/or output states _ofdatabase operations as in the
existing models of View Serializable and Moltiple-Versi0n Seria!izable [BHG87] [KS88].

Definition 3.17: The execution of a set of transactions T= (T_, Tz, ..., Tn) is correct
if the retrieval operations of all the transactions retrieve the same data into the transaction
as they do in a serial execution of the transactions, and the update operations leave a final
database state which is the same as the final state of a serial execution of the transactions.

More intuitively, our model takes a set of transactions to be executed simultaneously,
converts them ir_totwo sets of new database operations - one set of new retrieval database
operations, possibly with augmented database operations, and a set of new update data-
base operations, possibly with buffers. The model also generates the reverse operation sets
based on the input database operations. The model then dispatches the retrieval database
operations to be executed in parallel first and then dispatches the update database opera-
tions to be.executed in parallel next. The model invokes the reverse operations according
to the finishing status of the execution. Notice that it is possible that the operations of the
original transaction are subgrouped before they get converted into new database opera-
tions. This is reflected in the definition as more than one tio, ti, tif subtransaction after
conversion.

Consider a relation R with attributes: fli'ght number, departure date, departure time,
row number, seat number, customer name, destination (including intermediate stops). The
relation contains, initially, two tuples

(385, 5/20/93, 1000, 6, A, Cleveland, St. Louis),
(385, 5/20, 1000, 10, A, Sehuman, Kansas City).

Consider two transactions T 1 and T2.0Ve will use simplified forms for ol_rations. A
"*" in the form represents the same attribute set as the previous one.)

TI: (READ, R, (385, 5/20/93, x3 , x4, x 5, xcl, Chicago), (*)),((*), O))i

(INSERT, R, (0, (385, 5/20/93, 1030, 6, B, Henry, Chicago)), ((*), O)),
(DELETE, R, ((385, 5/20/93, 1000, x4, xs, Schuman, XT), 0), ((*), O))

T2: (READ, R, ((385, 5/20/93, 1000, _x4, Xs,X6, XT), (*)), ((*), 0)),
(UPDATE, R, ((385, 5120193, 1000, x4, x_, x6, x7) _

(385, 5/20/93, 1030, x4, x_, x 6, Chicago)), ((*), O)), _
(INSERT, R, (0, (385, 5/20/93, 1030, 6, C, Lee, Chicago)), ((*), O)).

The operations within T I and T2 are in conflict with each other. Therefore, T2 needs
to wait until TI finishes or until the last database operation DELETE(385, 5/20/93, 1000,
x 4, x_, Schuman, x 7) finishes before it can start.

Our method aUows T1 and T2 to execute in parallel if they arrive at about the same
time by mapping the operations in T1 and T2 into a set of new operations using local buff-
ers. The new retrieval operations include:

Ori I = (READ, R, ((385, 5/20/93, x3, x4, x 5, x 6, Chicago), (*)), ((*), O)),
Orl2 : [(READ, R, ((385, 5/20/93, 1000, x4, x 5, x 6, xT), (*)), ((*), ._O))

where .flO is:

[(DELETEB, R, ((385, 5/20/93, 1000, x4, x5 , Schuman, x7), 0))].
Readers are referred to [LH93] for the mapping.
The new update operations include:

O,l I = (INSERT, R,(0, (385, 5/20/93, 1030, 6, B, Henry, Chicago)), ((*), O)),
Oul2 = (DELETE, R, ((385, 5/20/93, 1000, x4, x5 , x¢, x 7), 0), ((*), O)),
oul 3 : (INSERT, R, (0, (385, 5/20/93, 1030, x 4, x5 , x_, Chicago)),

((385, 5/20/93, 1030, 6, A, Cleveland, Chicago), O))

Oum,S: (INSERT, R, (0, (38-_i,5/20/93, 1030, 6, C, Lee, Chicago)), ((*), O)).
Readers are referred to [Lee92] :forthe mapping.
Other elements of the example according to the model defined above are:

O 1= .(o,I I, o,12), O ,.1= (o,.j,, o,._, o,,,_, o,._4), t_n Is a particular execution off,
t 1- (0 n_."0ul, ffl) ,?_r (R_ uP I_Fj) Is th_ reverse operation set and house keepmg
f6nctions for rexovery, 7'-- (ti0, t_, t,t). Notice that in this case only one new-sub-trans-
action t I and its associated pseud6-in/fial and pseudo-final transactions are mapped. We
also assume that the set of new mapped database operations is small enough to be dis-
patched at the same time.

Readerscan easily verify thatthe resultdatabasestateafter T is the same as the data-
base state for T1 followed by T2 which is

R= ((385, 5/20/93, 1030, 6, A, Cleveland, Chicago),
(385, 5/20/93, 1030, 6, B, Henry,Chicago),
(385, 5/20/93, 1030, 6, C, Lee, Chicago)).

One can also verify that the dataretrieved by the two new READ() operations at the
beginningof t I arethe same as thedataretrievedby theoriginalREAD0s in the sequence
ofT1, T2.

In the model we assume that the completed definitionsof each of the transactions are
knownat the time of submissionof the transaction,which is the normalcase for most
existing databasesystems.

4. Closing remarks

"Nebelieve the methodology can be appliedto other concurrentparallelsituations in
databasetechnology [VEF92].Forexample, the algorithm in Section 3 could be used in a
parallelbatch transaction system or a concurrentsystem to resolve conflict amongdistinct
transactions submittedwithin a given time window and to be executed in parallel. In fact,
with minimal adjustment,the method canbe appliedalso to the notion of "sagas" for long-
lived transactions ([MS87], [Lyn83],[FO89]).

We have presenteda new model for transactionmanagementusing the semantics
explored in other papers to resolve the conflicts among the database operations.This
makes ourmodel very different fromthe existing models and achieves much higher con-
currencethan exis0ingtransactionmodels, We hope that thisworkwill contribute ideas to
research in the areaof transaction.management.We hope also that this model will give
some idea on how the databasemanagementsystem could be implemented on parallel
machines.

We would like to say a few more wordsabout the recovery issue. We expect that the
recovery processfor this model is going to be more complex than the one for existing
models in some cases. Reverseprocessesareneeded when failureis detected. In some
cases, it could be a re-processingof all the transactionsinvolved. However,since normally
the probabilityof failureis muchless than the probabilityof success in general cases, the

advantageof havinga highlyconcurrentmodel with a morecomplex recovery process
over having a model with verylow degree of concurrencyand a simplerrecovery process
should bejustified. Besides, the reverse processes or operationsare to be generated by the
system, ratherthanby the useras in some othermodels. This is anadvantageover the
existing models whichuse reverse processes (or counterprocesses).

There is room for furtherstudy on related topics.This work has concentratedon con-
currentcontrol,not on the issue of recovery. Therecoverymethods related to this model in
case of non-batchprocessing need to be carefully studied.This paperdid not discuss the
validation of databaseconstraintsrelated to transactionmanagement and/or to the data-
base operations discussed here,andthis needs to be explored. The semantics of other
typesof database operationssuch as object-orienteddatabaseoperationsneed to be
exploredfurtherfor thepurposeof increasingconcurrency.How to divide thecode which
does not access databaseand to attachthe code to parallel databaseoperations is another
importantand broadarea to be studied.

Acknowledgments

Many thanks to ProfessorSheuermannandProfessorCliftonof NorthwesternUniver-
sity for introducing some of the importantreferencesfor this studyand for suggestions on
early drafts.The workdiscussed in this paperwas partiallysupported by the U. S. Depart-
ment of Energy undercontractW-31-109-Eng-38.

References

[AA.[92] D. Agrawal, A. El Abbadi, R..leffers "Using Delayed Commitment in Lock
ing Protocols for Real-time Databases";Proceeding of the 1992 ACM
SIGMOD;San Diego, CaliforniaJune 2-5 Page: 104-113; 1992.

[AK91] D.Agrawal,V.Krishnaswamy;"Using MultiversionData for Non-interfering
Execution of Write-OnlyTransactions"Procee_ng of the 1992 ACM
SIGMOD; Denver,ColoradoMay 29-31, 19 Page:98-107; 1991.

[BHG87] P.A.Bernstein,V.Hadzilacos,N.Goodman;"ConcurrencyControland

t

Recovery in Database Systems"; Addison-Wesley Publishing Company
Page: 1-45; 1987.

[FO89] Abdel Aziz Farrag,M. TamerOzsu; "Using Semantic Knowledge of
Transactions to Increase Concurrency"; ACM Transactions on Database
Systems; ACM TODS Dec 1989.; Page: 503-525; 1989.

[Gar83] Hector Garcia-Molina; "Using Semantic Knowledge for Transaction
Processing in a Distributed Database"; ACM transaction on Database Systems;
ACM TODS June 1983.; Page: 186-213; 1983.

[HN84] Lawrence J. Henschen and Shamin A. Naqvi "On Compiling Queries in
Recursive First-Order Database"; Journal of the Association for Computing
Machinery; JACM Vol.31, No. 1, January 19 Page: 47-85; 1984.

[KS88] Henry F. Korth, Gregory D. Speegle; "Formal Model of Correctness Without
Serializability'; Proceeding of SIGMOD International Conference on
Management of Data; ACM Chicago IL June 1-3.; Page: 379-386; 1988.

[LH93] Julia C. Lee, Lawrence, J, Henschen; "The Semantics and the Conflicts of
Relational Database Operations"; Submitted to Data & Knowledge
Engineering Journal; 1993.

[LKS91] Eliezer Levy, Henry F. Korth, Abraham Sil "An Optimistic Commit Protocol
for Distributed Transaction Management"; Proceeding of the 1992 ACM SIG
MOD; Denver, Colorado May 29-31, 19 Page: 88-97; 1991.

_92] Julia C. Lee "A Transaction Management Model with Relational Database
Operation Semantics"; Ph.D Dissertation Northwestern University; Evanston
Dec, 1992

['Lyn83] Nancy A. Lynch; "Multilevel Atomicity-A new correctness Criterion for
Database Concurrency Control"; ACM Transactions on Database Systems;
ACM TODS Dec 1983.; Page: 485-502; 1983.

[MH89] William W. McCune and Lawrence J. Henschen "Maintaining State
Constraints in Relational Database"; Journal of the Association for Computing
Machinery; JACM Vol.36, No. 1, January 19 Page: 46-68; 1989.

[MRBKS92]
Sharad Mehrotra, Rajeev Rastogi, Yuri Brietbart, Henry E Korth,
Avi Silberschatz "The Concurrency Control Problem in Multidatabases:
Characteristics and Solutions"; Proceeding of the 1992 ACM SIGMOD;
San Diego, California June 2-5 Page: 288-297; 1992.

[MS87] Hector Garcia-Molina, Kenneth Salem; "SAGAS"; Proceeding of SIGMOD,;
ACM San Francisco, CA, May 27- Page: 249-259; 1987.

[Ma189] Carl Malamud; "INGRF_ Tools for building an Information Architecture";
Van Nostrand Reinhold; Page: 57-188; 1989.

[Pap86] C. Papadimitrio; "The Theory of Database Concurrency Control"; Computer
Science Press,; Computer Science Press; Page: -; 1986.

['01188] Jeffrey D. Ullman; "Chapter 9 Transaction Management"; Database and
Knowledge-base Systems; Computer Science Press; Page: 467-542; 1988.

[WA92] M.H. Wong & D. Agrawal; "Tolerating Bounded Inconsistency for Increasing
Concurrency in Database Systems"; Proc_g of ACM 1lth Principles of
Database Systems; San Diego, CA 1992.; Page: 236-245; 1992.

[WT92] Paul Watson and Peul Townsend; "The EDS Parallel Relational Database
System"; Parallel Database Systems; Lecture Notes in Computer Science
Page: 212-222; 1992.

/./1/./3
// l/ .4=

