02

® \\//”L

n: fL o
@,\\// \\//Q

n)

W@ TV

[ v
AlIM /////\% e

Ly n

s . ! W
ssociation for Information and Image Management 0 N /\\\\\g

00 We . Suite 1100 \ FRNE <> .
//,Q\ R g,

o 301/587-8202 . N
) \ ¢ \Y &2
Y 2FROA Ny, W&
Cenflime;er 3 4 5 6 7 8 9 10 11 12 13 14 15 mm
llnhmlu|1luu|uuh|uhmluuluuluulllnhmluulm1lm|lnuluuhmluuluullmlnlLlJ{nltHly'lnnll||I||‘Iuluhlll||IL%U!
IIIITIIII!IIIT]ITII]?!II||llll:|3IlTI|7_lIII|‘IHT L | '
Inches “ 10 e ke
= LB
“ T
= [l
2 L e
%7 A\
0>\/;// b///c\\ //\\//4\\ //\\\\\
e&‘\\ o Q;’ a/ Oi\ o \
0%‘5}3 \//// MANUFACTURED TO ATIM STANDARDS //61\\\ @J Zj&
0)\/ BY APPLIED IMAGE. INC. /41\\\//@\\\“
/4 2



1 of 1



S /ﬁz_s’ CA-/79 7

Cont: 940784 - )

PARALLEL METHODS FOR THE FLIGHT SIMULATION MODEL

Advanced Computer Applications Center
Argonne National Laboratory
9700 South Cass Avenue DIS/900, Argonne, IL 60439-4832

Wei Zhong Xiong
Craig Swietlik

Tel: 708-252-3749
e-mail: wei@athens.cid.anl.gov

Abstract

*

The Advanced Computer Applications Center (ACAC) at Argonne National Laboratory has been
involved in evaluating advanced parallel architecture computers and the applicability of these machines to
computer simulation models. The advanced systems investigated include parallel machines with shared
memory and distributed architectures consisting of an eight processor Alliant FX/8, a twenty four proces-.

sor Sequent Symmetry, Cray XMP, IBM RISC 6000 model 550, and the Intel Touchstone eight processor
Gamma and 512 processor Delta machines.

Since paralielizing a truly efficient application program for the parallel machine is a difficult task,
the implementation for these machines in a realistic setting has been largely overlooked. Over several
years, the ACAC has developed considerable expertise in optimizing and parallelizing application models
on a collection of advanced multiprocessor systems. One of aspect of such an application model is the

Flight Simulation Model, which used a set of differential equations to describe the flight characteristics of
a launched missile by means of a trajectory.

The Flight Simulation Model was written in the FORTRAN language with approximately 29,000
lines of source code. Depending on the number of trajectories, the computation can require several hours to-
full day of CPU time on DEC/VAX 8650 system. Therefore, there is an impetus to reduce the execution
time and utilize the advanced parallel architecture computing environment available.

ACAC researchers developed a parallel method that allows the Flight Simulation Model to be able
to run in parallel on the multiprocessor system. For the benchmark data tested, the parallel Flight Simula-
tion Model implemented on the Alliant FX/8 has achieved nearly lincar specdup.

In this paper, we describe a parallel method for the Flight Simulation Model. We belicve the
method presented in this paper provides a general concept for the design of paralicl applications. This con-
cept, in most cases, can be adapted to many other sequential application programs.

Accordingly, the U. S. Governimeat et

nanexclusive, royalty-free ticens o pub

: The submitted manuscript has Leen auiho
L e :} by 3 contractor of the U S. Governm
' oG-
“ L R undet  contract Na. W.31.10% €ENG
s Wid (1 Py
“ l

5T bisTRIBUTION OF THIS DOCUMENT IS UNLIMITED

o reproduce the  published  form ot
contabution, or slow othery 10 o s,

U, S Government purposs

T o " D) ' [



1. INTRODUCTION

The cver increasing demand for computing power has driven the development of parallel comput-
ing technology. Computer simulation models havce led many to believe that parallel computing technology
is the key to realizing performance requirements {1]. The Advanced Computer Application Center at
Argonne National Laboratory has developed a parallel program for a military simulation model. This sim-
ulation model is designed to be a Battle/Management/Control tool. It gives users the capability of model-
ing the major functions of a strategic defense system simulating the flight missile trajectories.

Simulating missile trajectories can involve an extensive amount of computation. The basis of such
computation is a set of fourth-order ordinary differential equations describing the flight characteristics of a
launched missile. The program is designed to be used in an interactive mode with the requirement of real-
time performance. The sequential model can not meet these requirements. The parallel version of this sim-
ulation model provide better performance because it runs on a multiprocessor system, in which many pro-
cessors can work on one problem or different problems simultaneously. However, there are issues that
arise in developing such programs. The first issue is program dependencies. These dependencies must be
removed from the sequential program in order to affect the parallel structure. The second issue is problem
decomposition. We must decompose the problem into a number of subproblems. If there is-not enough
work to be done by the number of processors available, then a parallel program will show constrained

speedup. This phenoizenon is known as the Amdahl Effect (2]. The third issue is that the program may be
1/O bound. The sequential models read and write from a number of files. In a parallel program these I/O
bound pmcesses can place unnecessary, constraints upon concurrent execution,

- This paper documents a solution from our investigation on these issues and presents a parallel
method for improving the state of the art of software applications for multiprocessor systems. We demon-
strate the methodology for developing a parallel Flight Simulation Model.

2. THE FLGHT SIMULATION MODEL

The Flight Simulation Model is a program based on a DEC/VAX platform written in the FOR-
TRAN language. To simulate flight missile trajectories, the program model initializes the user-defined mis-
sile parameters and trajectory parameters, then applies a series of processing functions. The missile
parameters are used for flight calculations in the model. The missile flights can have up to three thrusted -
stages with each stage requiring certain parameters. The trajectory parameters include altitude, launch and
target positions. The simulation model can then feed this information to the flight algorithms for comput-
ing the trajectory. The core of the flight algorithms is set of the Runge-Kutta method of ordinary differen-
tial equation that evaluate the three-dimensional rocket motion equations accounting the gravity 2 , thrust

., and drag d forces. The equations are as following (3]:

dr
= =9 \Y/ i
4 (Velocity)
@ =T+ 2+ a (Acceleration)
dt
where T =12 (Thrust Acccleration)



¢ = -g(h) lz' (Gravity Acccleration)

A 19 AL Cp (v
2 m(t)

m) Prel‘ t,rel (Drag)

P = Position Vector
q(h) = air density model
h=max({§ - R, . 0) = altitude
R_ =6378.0 = earth radius
m(t) = my~ m, = mass function
m = initial mass
A

v, =Mach integer

drag = drag area of missile

Cp (i) = Drag coefficients, i=1,2,3,...
Y = V-9

2 = Thrust direction unit vector, specified by flight control programs

The physical forces acting on the flight missile at instance point P is illustrated in Figure 1.




The simulation processing consists of a nested loop of missile types and threat rockets. Pscudo-
codc for a simplificd processing flow is presented below [4]:

MAIN()
Do for each trajectory
il missile type change then
initialize missile parameters and trajectory parameters;
endif;
cali Flight Algorithm();
enddo;

return;
End;

Subroutine Runge-Kutta Routine(y,dydx,nx,h,yout,derivs)
integer n o

real h,x,dydx(n),y(n),yout(n) .

external derivs

I*Given values for the variables y(1:n) and their derivative dydx(1:n) known at x, use the forth-order
Runge-Kutta method to advance the solution over an interval h and return the incriminated variables as

yout(1:n). The user supplies the routine derivs(x,y,dydx), which compute the thrust, drag, and gravity
forces, and returns derivatives dydx at x.*/

integeri
-real h6,hh,xh,dym(50),dyt(50),yt(50)
hh=h*05
h6=h/6.0
xh=x+hh
do 11i=1,n I*First step*/
yt(i)=y(i)+hih*dydx(i)
11 enddo
call derivs(xh,yt,dyt) I*Second step*/
do 12i=1,n :
yt(i)=y(i)+hh*dyt(i)
12 enddo
call derivs(xh,yt,dym) [*Third step*/
do 13i=1,n
yt(i)=y(i)+h*dym(j)
dym(i)=dyt(i)+dym(i)

13 enddo

call derivs(x+h,yt,dyt) I*Fourth step*/

do 14i=1,n I* Accumulate increments with proper weight*/
yout(i)=y(i) +h6* (dydx(i)+dyt(i)+2.0*dym(i))

14 enddo

return

end



Subroutine denvs(x,yt,dyt)

real yt(7),dyt(7).x
/* Rocket Motion Differential Equation */

Compute Gravity() I"program segment for compute the gravity*/
Compute Drag() /*program segment for compute the drag force*/
Compute Thrust() /*program segment for compute the thrust force*/
return (dydx at x)

end

The initialization of missile and trajectory parameters accounted for as little as 5% of the execu-
tion time on sequential machines. The remaining 95% of time was spent executing the flight algorithm
where the Runge-Kutta ordinary differential equations coupled with the rocket motion equations modeled
the flight. As a result, the model is compute intensive and requires extensive CPU time. To address the per-
formance problem, the task was established to convert this model from a sequential system to the parallel
environment. This environment was the Alliant FX/8 vector multiprocessor system.

The first step of this task was to select a portion of the model to execute in parallel. The next step
was to define a process structure .ax‘ld redefine the data structures for parallel execution. After implementa-
tion of the parallel Flight Simulation Model, tests were conducted to verify correct operation. -

3. ALLIANT FX/8 SYSTEM

The parallel Flight Simulation Model were evaluated on Alliant FX/8 system. The Alliant FX/8 is

a shared memory multiprocessor system with 8 computational elements (CEs) and 8 interactive processors -

(IPs). Each CE is a processor compatible with the MC68000 architecture. The processor contains floating
point, concurrency, and vector instructions. A'CE has vector processing capabilities and multiprocessor
support. The 8 CEs of the system are crossbar connected to the shared, direct mapped cache. The cache is
connected to the shared memory via a bus. The IP is a processor compatible with MC68000 achitecture.
The processor connects to disk, tape, terminal, printer, and communication devices through a multibus.
The memory system contains 8 eight-megabyte memory unit for a configuration of 64 megabytes [5].

The operating system, Concentrix, is a multiprocessor Unix based on Berkeley 4.2 BSD. The sys-
tem controls operations on'all CEs, IPs, and memory units. Multiprocessing is realized by concurrency
instructions. The operating system supports parallel FORTRAN and C compilers.

4. THE PARALLEL FLIGHT SIMULATION MODEL

Since the computation of trajectories is inherently highly parallel, because of the independent
equations used to calculate the trajectory, the only dependencics among the processes were the initializa-
tion for each missile type. Therefore, the removal of the data dependcnt relations between the initialization

process and computation process was a crucial issue for the design of the parallel version of the Flight
Simulation Modecl.



The scquential exccution profile also indicated during the Runge-Kutta computation, that the 3-
dimensional cquations of motion accounting for the three forces, gravity, thrust and drag were consuming,

the most CPU time. The model scquentially computes the value for thrust, gravity and drag. We identificd
that these computations can be parallelized duc to their nature.

From abovc analysis, it was dccided to take two approaches (o parallelize the entire model. The
first approach focues on the parallel numerical solution for Runge-Kutta method that. would reduce total

cvaluation times. Second approach focus on the parallel simulation that would reduce total simulation
times.

The Runge-Kutta method can be viewed as a task graph that is illustrated in figure 3. The perfro-
mance profile indicated approximately 3 million functions of evaluation calls were invoked for each trajec-
tory computation and each of them computed three physical forces sequentially.

We converted this function derivation processing into parallel form so that three physical forces
can be executed in parallel. The parallel task graph is shown in Figure 4.




The entire simulation processing can be viewed as a main program that contains a for-loop. This
for-loop iterates from 1 to the final simulation trajectory. The flight missile launch side angle and target
conditions is calculated at cach loop iteration as fetching the information from the stored tables. Then cach

trajcctory is computed independently through out the loop iteration. A flowchart of the simplified process-
ing is shown in figurc 5.

We converted the above for-loop structure to a parallel routine by rewriting the missile initializa-
tion phase which reads the missile and trajectofy parameters into memory and assigns a index key to each
record. The index key for each record woild become a key address for'each trajectory computation pro-
cessing for initializing the missile and trajectory parameters. In this way, the data dependencies are com-
pleted removed from the trajectory computation loop, so that trajectory computaiion can be distributed

across multiprocessors and completed in parallel. Figure 6 illustrates the parallel structure for simula-
tion processing.




Figure 4 and 6 arc combined in Figure 7 to show the entire parallel structure of the Flight Simuta-
tion Modecl. Since the initialization phasc of processing is about S pereent of the exccution time, the

remaining 95 percent of exccution time that is devoted to flight simulation can be executed in parallel. We
are using Amdahl’s cquation speedup =

7 and basing the calculation on 8 physical processors,

we obtain the speedup = ! =0.7.

We used the following techniques to create a parallel Flight Simulation Model. To insure proper
synchronization, we built an internal table with an index keys for the process identifier. This allowed each
process to write data independently to an array held in memory. We also restructured several procedures
from the Runge-Kutta algorithm which reduced the repeated overhead of multiple procedure calls. All I/O

statement used for the diagnostics file where saved in the internal arrays and written out after the parallel
computation was done.

5. PERFORMANCE

To measure the performance of parallel algorithms implemented on the multiprocessor sysiem, the
speedup and efficicncy are the important metrics. The common definition of speedup achicved by a paralicl




algorithm running on a1 processors, is the ratio between the elapsed time taken by that multiprocessor sys-
tem cxccuting the scrial algorithm and the clapsed time taken by the same system cxccuting the parallel

algorithm using n proccssors. The cfficicncy of a parallel algorithm running on a1 processors is the speedup
divided by n.

In our parallel flight simulation model, we have carcfully studied the output of the parallel version,
before conducting any timing tests. The correct output of the parallel version was verified by comparing

the results with the output from the scrial version. The results of the two versions were verified to be iden-
tical.

Next, performance of the parallel version was measured using two sets of test data, one contained
S missile types with 76 trajectories, another contained 5 missile types with 142 trajectories. The results

from the experiments on the Alliant FX/8 are shown as below in table 1 for timing data and table 2 for effi-
ciency data.

Table 1: Timing Data

Numberof | Elapsed time Elapsed time Speedup
trajectory (serial) (parallel)
76 8126.4 seconds .1480.6 seconds 5.6
142 15102.3 seconds | 2398.4 seconds 6.3 .
Table 2: Efficiency Data
Number of Speedup Number of Efficiency
trajectory processors
76 5.6 8 70%
142 6.3 8 ~80%

The above speedup factor is the elapsed time (wall clock time) of the serial version divided by the
times for the parallel version. The result above indicates that an increase in the problem size would
improve the speedup. This reflects the Amdahl effect.

6. CONCLUSIONS

In this project, we developed a parallel application specifically designed for execution on multi-
processor systems. The objective is to improve the state of the art in developing software for high-perfor-
mance computing applications. This project has demonstrated the feasibility of parallel processing
technology at application level with respect to performance of the softwarc. This project has also demon-

9



strated an innovative application of parallel processing techniques to solve differential equations using a
fourth-order Runge-Kutta method.

Parallel processing is still a highly experimental science in which the designs ¢« both uscr and sys-
tem programs are undergoing simultaneous study. To gain further insight into the behavior of parallel pro-
grams, experiments can be conducted to address issues such as implementing the parallel [light
Simulation Model upon a distributed memory system such as the Intel Touchstone Delta System [6].

The idea of formulating parallel algorithms in terms of processes that pass messages back and
forth, but share no memory, is very attractive. In our approach, the parallel structure of tl ~ model is well
suited to this type of paradigm. If this abstraction is chosen, an algorithm can be implemented on an

extremely broad class of machines with minimal differences in the actual code, thereby enhancing porta-
bility.

ACKNOWLEDGMENTS

We are grateful to Peter Campbell, Lou Kvitek, and Roger Hanscom for supporting much of this
project.

Disclaimer:

Review of this material does not imply Department of Defense endorsement, factual accuracy or
opinion.

* This work was supported under a military interdepartmental purchase request from the U.S Department of Defense,
J-8 Directorate of the Joint Chiefs of Staff, through U.S. Department of Encrgy contract W-31-109-Eng-38

10




REFERENCE

(1). CORBIN and LISA, The supercomputer: Faster than a speeding Machine, Govemment Execu-
tive, Sept., 1993, pp. 58-60

[2]). Q. J. MICHAEL, Designing Efficient Algorithms For Parallel Computer, McGraw-Hill Book
Company, 1987, pp. 17-18

(3]. Technical Reference Manual, Mission Effectiveness Model Version 11, United States Air Force
Head Quarter Space Systems Division, September, 1989, pp, 2-4

(4]. Threat Version 10.B (Threat Flight Routine), Fortran Program Document, Science Application
International Corporation, March, 1 1988

(S1}.  Using the Alliant FX/8, Argonne National Laboratory/MCS-TM-69, Revision 3, Argonne, Illinois,
October 1988, pp. 1-3

(6]. Touchstone Delta System User's Guide, Supercomputer Division, Intel Corporation, Oct., 1991,
pp. 1-7

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

11










