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. Abstract

The Advanced Computer Applications Center (ACAC) at Argonne National Laboratory has been

involved in evaluating advanced parallel architecture computers and the applicabiiity of these machines to

computer simulation models. The advanced systems investigated include parallel machines with shared
memory and distributed architeotures consisting of an eight processor Alliant FX/8, a twenty four proces-

sor Sequent Symmetry, Cray XMP, IBM RISC 6000 model 550, and the Intel Touchstone eight processor

Gamma and 512 processor Delta machines.

Since parallelizing a truly efficient application program for the parallel machine is a difficult task,

the implementation for these machines in a realistic setting has been largely overlooked. Over several
years, the ACAC has developed considerable expertise in optimizing and parallelizing application models
on a collection of advanced multiprocessor systems. One of aspect of such an application model is the
Flight Simulation Model, which used a set of differential equations to describe the flight characteristics of
a launched missile by means of a trajectory.

The Flight Simulation Model was written in the FORTRAN language with approximately 29,000
lines of source code. Depending on the number of trajectories, the computation can require several hours to"
full day of CPU time on DEC/VAX 8650 system. Therefore, there is an impetus to reduce the execution
time and utilize the advanced parallel architecture computing environment available.

ACAC researchers developed a parallel method that allows the Flight Simulation Model to be able

to run in parallel on the multiprocessor system. For the benchmark data tested, the parallel Flight Simula-
tion Model implemented on the Alliant FX/8 has achieved nearly linear speedup.

In this paper, we describe a parallel method for the Flight Simulation Model. We believe the
method presented in this paper provides a general concept for the design of parallel applications. This con-
cept, in most cases, can be adapted to many other sequential application programs.
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1. INTRODUCTION

Tile ever increasing demand for computing power has driven the development of parallel comput-
ing technology. Computer simulation models have led many to believe that parallel computing technology
is the key to realizing performance requirements [11. The AdvancedComputer Application Center at
Argonne National Laboratory has developed a parallel program for a military simulation model. This sim-
ulation model is designed to be a Battle/Management/Control tool. It gives users the capability of model-
ing the major functions of a strategic defense system simulating the flight missile trajectories.

Simulating missile trajectories can involve an extensive amount of computation. The basis of such
computation is a set of fourth-order ordinary differential equations describing the flight characteristics of a
launched missile. The program is designed to be used in an interactive mode with the requirement of real-
time performance. The sequential model can not meet these requirements. The parallel version of this sim-
ulation model provid e better performance because it runs on a multiproceasor system, in which many pro-
cessors can work on one problem or different problems simultaneously. However, there are issues that
arise in developing such programs. The first issue is program dependencies. These dependencies must be
removed from the sequential program in order to affect the parallel structure. The second issue is problem
decomposition_ We must decompose the problem into a number of subproblems. If there isnot enough
work to be done by the number of processors available, then a parallel program will show constrained
speedup. This phenoh:enon is known as the Amdahl Effect [2]. The third issue is that the program may be
I/0 bound. The sequential models read and write from a number of files. In a parallel program, these I/O
bound processes can place unnecessary, constraints upon concurrent execution.

•This paper documents a solution from our investigation on these issues and presents a parallel
method for improving the state of the art of software applications for multiprocessor systems. We demon-
strate the methodology for developing a parallel Flight Simulation Model.

2. THE FLGHT SIMULATION MODEL

The Flight Simulation Model is a program based on a DEC/VAX platform written in the FOR-
TRAN language. To simulate flight missile trajectories, the program model initializes the user-defined mis-
sile parameters and trajectory parameters, then applies a series of processing functions. The missile
parameters are used for flight calculations in the model. The missile flights can have up to three thrusted
stages with each stage requiring certain parameters. The trajectory parameters include altitude, launch and
target positions. The simulation model _ then feed this information to the flight algorithms for comput-
ing thetrajectory. The core of the flight algorithms is set.of the Runge-Kutta method of ordinary differen-
tial equation that evaluate the three-dimensional rocket motion equations accounting the gravity _ , thrust
_, and drag _ forces. The equations are as following [3]"

d...__= t) (Velocity)
dt

d...__= _, + _ + _ (Acceleration)
dt

where # = T/_ (Thrust Accclcration)



= -g (h) i-_ (Gtavity Acceleration)
Iq

Iq (h) AaragCo (v m)
d = -_ m(t) [_rel]_rel (Drag)

= Position Vector

q0a) = air density model

h = maxCJ_l- Re, 0) = altitude

R = 6378.0 = earth radius
e

m(t) = m 0 - m t = mass function

m 0 = initial mass

Adrag = drag area of missile

v m =Mach integer

C o (i) = Drag coefficients, i=1,2,3 ....

l_reI = i_--i_o

I_ = Thrust direction unit vector, specified by flight control programs

The physical forces acting on the flight missile at instance point P is illustrated in Figure 1.



The simulation processing consists of a nested loop of missilc tyt_s and threat rockets. Pseudo-
code for a simplified processing flow is prescnted below [41"

MAIN()
Do lot each trajectory
it missile type change then
initialize missile parameters and trajectory parameters;

endil;
call Flight Algorithm();
enddo;

End

Subroutine Fight Algorithm0

call Runge-Kutta Routine();

return;
End;

Subroutine Runge-Kutta Routine(y,dydx,n,x,h,Y0Ut,dedvs)
integer n
real h,x,dydx(n),y(n),yout(n) .
external derivs

t

/*Given values lor the variables y(1:n) and their derivative dydx(1:n) known at x, use the forth-order
Runge-Kutta method to advance the solution over an interval h and return the incriminated variables as
yout(l:n). The user supplies the routine derivs(x,y,dydx), which compute the thrust, drag, and gravity
forces, and returns derivatives dydx at x.°/

integer i
•real h6,hh,xh,dym(S0),dyt(S0),yt(50)
hh=h*05
h6=h/6.0
xh=x+hh

do 11i=l,n /*First step*/
yt(i)=y(i)+hh*dydx(i)

11 enddo

call derivs(xh,yt,dyt) /*Second step*/
do 12 i=1 ,n

yt(i)=y(i)+hh*dyt(i)
12 enddo

call derivs(xh,yt,dym) /*Third step*/
do 13 i=1 ,n

yt(i)=y(i)+h'dym(i)
dym(i)=dyt(i)+dym(i)

13 enddo

call derivs(x+h,yt,dyt) /*Fourth step*/
do 14 i=1,n /*Accumulate increments with proper weight*/

yout(i)=y(i)+h6°(dydx(i) +dyt(i)+2.0*dym(i))
14 enddo
return
end



Subroutine dedvs(x,yt,dyt)
real yt(7),dyt(7),x
/" Rocket Motion Differential Equation */
Compute Gravity() /'program segment for compute the gravity'/
Compute Drag() /*program segment lor compute the drag torce*/
Compute Thrust() /*program segment lor compute tho thrust lorce°/
return (dydx at x)
end

The initialization of missi_e and trajectory parameters accounted for as little as 5% of the execu-

tion time on sequential machines. The remaining 95% of time was spent executing the flight algorithm

where the Runge-Kutta ordinary differential equations coupled with the rocket motion equations modeled

the flight. As a result, the model is compute intensive and requires extensive CPU time. To address the per-

formance problem, the task was established to convert this model from a sequential system to the parallel

environment. This environment was the Alliant FX/8 vector multiprocessor system.

The first step of this taskwas to select a portion of the model to execute in parallel. The next step

was to define a process structure and kedefine the data sfxuctures for parallel execution. After implementa- "

tion of the parallel:Flight Simulation Model, tests were conducted to verify correct operation. "

• 3. ALLIANT FX/8 SYSTEM
,.

The parallel Flight Simulation Model were evaluated on Alliant FX/8 system. The Alliant FX/8 is
a shared memory m_tiprocessor system with 8 computational elements (CEs) and 8 interactive processors

(liPs). Each CE is a processor compatible With the MC68000 architecture. The processor contains floating

point, Concurrency, and vector instructions. ACE has vector processing capabilities and multiprocessor

support. The 8 CEs of the system are crossbar connected to the shared, direct mapped cache. The cache is

connected to the shared memory via a bus. The IP is a processor compatible with MC68000 a,chitecture.

The processor connects to disk, tape, terminal, printer, and communication devices through a multibus.

The memory system contains 8 eight-megabyte memory unit for a configuration of 64 megabytes [5].

The operating system, Coneentrix, is a multiprocessor Unix based on Berkeley 4.2 BSD. The sys-
tem controls operations onall CEs, IPs, and memory units. Multiprocessing is realized by concurrency
instructions. The operating system supports parallel FORTRAN and C compilers.

• .

4. THE PARALLEL FLIGHT SIMULATION MODEL

Since the computation of trajectories is inherently highly parallel, because of the independent
equations used to calculate the trajectory, the only dependencies among the processes were the initializa-
tion for each missile type. Therefore, the removal of the data dependent relations between the initialization
process and computation process was a crucial issue for the design of the parallel version of the Flight
Simulation Model.
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The sequential execution prolile also indicated during thc Rungc-Kuua COml)utatioll, that the 3-

dimensional equations of motion accounting for the three forces, gravity, thrust and drag were consuming

the most CPU time. 31_e model sequentially computes the value for thrust, gravity and drag. We identified

that these computations can be parallelized due to their nature.

From above analysis, it was decided to take two approaches to parallelize the entire model. The

first approach focues on the parallel numerical solution for Runge-Kutta method that would reduce total

evaluation times. Second approach focus on the parallel simulation that would reduce total simulation
times.

The Runge-Kutta method can be viewed as a task graph that is illustrated in figure 3. The peffro-

manee profile indicated approximately 3 million functions of evaluation calls were invoked for each trajec-

tory computation and each of them computed three physical forces sequentially.

We converted this function derivation p_'ocessing into parallel form so that three physical forces

c,-xt be executed in parallel. The parallel task graph is shown in Figure 4.
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The entire simulalioll processing can Ix: viewed as a main progralu that contains a for-loop. This

for-loop iterates from I to ,_lie final simulation trajectory. The flight missile launch side angle and target

conditions is calculated at each loop iteration as fetching the information from the stored tables. Then each

trajectory is computed independently through out the loop iteration. A flowchart of the simplified process-

ing is shown in figure 5.

I

We converted the above for-loop structure .to a parallel routine by rewriting the missile initializa-

tion phase which reads the missile and trajectory parameters into memory and assigns a index key to each

record. The index key for each record would become a key address foreach trajectory computation pro-

cessing for initializing the missile and trajectory parameters. In this way, thedata dependencies are com-

pleted removed from the trajectory computation loop, so that trajectory computation can be distributed

across multiprocessors and completed in parallel. Figure.6 illustrates the parallel structure for simula-

tion processing.
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Figure 4 aud6 :ire coml)itlcd in Figutc 7 to ,_howIhc ci_lilc parallel slntcturc of tl_ciqiglu Simula-

tion Model. Sinc_,cIh¢ initializatioll l)h;.L,,;cof I)focc.',;sit_gis alx)ut 5 i)crcct_t t)f titc cxccuti()zi liitic. [he
rcmainin B95 percent of execution lime that is devoted to flight simulation can be executed in parallel. We
are using Amdahl's equation speedup = 1 and basing the calculation on 8 physical processors,

(t-/_+/-
i r

we obtain the speedup = = 6.7.
( 1 - 0.95) + 0.9____558

We used the following techniques to create a parallel Flight Simulation Model. To insure proper

synchronization, we built an internal table with an index keys for the process identifier. This allowed each

process to write data independently to an array held in memory. We also restructured several procedures

from the Runge-Kutta algorithm which reduced the repeated overhead of multiple procedure calls. All I/O

statement used for the diagnostics file where saved in the internal arrays and written out after the parallel

corttputation was done.

5. PERFORMANCE

To measure the performance of parallel algorithms implemented on the muitiproccssor system, the

speedup and efficiency are the important metrics. The common definition of speedup achievedby a parallel

+ 8



algorithm runninB Oil n prOcessOrs,is llic ratio I_tw'ccn the elapscd time lakc_ by ll'_al muitiptoccssor SyS-

tem executing the serial algorithm and the elapsed time taken by the same system executing the parallel

algorithm using n processors. The efficiency of a parallel algorithm ntnning on n processors is the speedup

divided by n.

In our parallel flight simulation model, we have carefully studied the output of the parallel version,

before conducting any timing tests. The correct output of the parallel version was verified by comparing

the results with the output from the serial version. The results of the two versions were verified to be iden-

tical.

Next, performance of the parallel version was measured using two sets of test data, one contained

5 missile types with 76 trajectories, another contained 5 missile types with 142 trajectories. The results

from the experiments on the Alliant FX/8 areshown as below in table 1 for timing data and table 2 for effi-

ciency data.

Table 1: Timing Data

Number of Elapsed time Elapsed time Speedup
trajectory (serial) (parallel)

T

76 8126.4 seconds .1480.6 seconds 5.6

142 15102.3 seconds 2398.4 seconds 6.3

Table 2: Efficiency Data

Number of Speedup Number of Efficiency
trajectory processors

,,

76 5.6 8 70%
,,

142 6.3 8 -80%
......

The above speedup factor is the elapsed time (wall clock time) of the serial version divided by the

times for the parallel version. The result above indicates that an increase in the problem size would

improve the speedup. This reflects the Amdahl effect.

6. CONCLUSIONS

In this project, we developed a parallel application specifically designed for execution on multi-
processor systems. The objective is to improve the state of the art in developing software for high-perfor-
mance computing applications. This project has demonstrated the feasibility of parallel processing

technology at application level with respect to performance of the software. This project has also demon-



strated an innovative application of parallel processing techniques to solve differential equations using a

fourth-order Runge-Kutta method.

Parallel processing is still a highly experimental science in which the designs c _both user and sys-
tem programs are undergoing simultaneous study. To gain further insight into the behavior of parallel pro-
grams, experiments can be conducted to address issues such as implementing the parallel night
Simulation Model upon a distributed memory system such as the Intel Touchstone Delta System [6].

The idea of formulating parallel algorithms in terms of processes that pass messages back and
forth, but share no memory, is very attractive. In our approach, the parallel structure of tl " model is well
suited to this type of paradigm. If this abstraction is chosen, an algorithm can be implemented on an
extremely broad class of machines with minimal differences in the actual code, thereby enhancing porta-
bility.
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