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_ A B S T R A C T

Ecological observations suggest that sulfate-reducing

and methanogenic bacteria might metabolize nitroaromatic

compounds under anaerobic conditions if appropriate electron

donors and electron acceptors are present in the environment,

but this ability had not been demonstrated until recently.

Most studies on the microbial metabolism of nitroaromatic

compounds used aerobic microorganisms. In most cases no

mineralization of nitroaromatics occurs, and only superficial

modifications of the structures are reported. However, under

anaerobic sulfate-reducing conditions, the nitroaromatic

compounds reportedly undergo a series of reductions with the

formation of amino compounds. For example, trinitrotoluene

under sulfate-reducing conditions is reduced to

triaminotoluene by the enzyme nitrite reductase, which is

commonly found in many Desulfovibrio spp. The removal of

ammonia from triaminotoluene is achieved by reductive

deamination catalyzed by the enzyme reductive deaminase, with

the production of ammonia and toluene. Some sulfate reducers

can metabolize toluene to CO2. Similar metabolic processes

could be applied to other nitroaromatic compounds like

nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline.

Many methanogenic bacteria can reduce nitroaromatic compounds

to amino compounds. In this paper we review the anaerobic



metabolic processes of nitroaromatic compounds under sulfate-

reducing and methanogenic conditions.

INTRODUCTION

Many xenobiotic chemicals introduced into the

environment for agricultural and industrial use are nitro-

substituted aromatics. Nitro groups in the aromatic ring are

often implicated as the cause of the persistence and toxicity

of such compounds. Nitroaromatic compounds enter soil,

water, and food by several routes such as use of pesticides,

plastics, pharmaceuticals, landfill dumping of industrial

wastes, and the military use of explosives. The

nitroaromatic compound trinitrotoluene (TNT) is introduced

into soil and water ecosystems mainly by military activities

like the manufacture, loading, and disposal of explosives and

propellants. This contamination problem may increase in

future because of the demilitarization and disposal of

unwanted weapons systems. The disposal of obsolete

explosives is a problem for the military and the associated

industries because of the polluting effect of explosives in

the environment (80). Concerns about the environmental fate

of TNT residues have intensified because the recent

vegetation of contaminated plots could allow TNT, TNT

metabolites, and plant-produced TNT intermediates to be

introduced into the food chain (33).



The toxicity of TNT is well documented (39,79). Past

methods for disposing of munitions wastes have included

dumping in the deep sea, dumping at specified landfill areas

(36), and incineration when quantities were small. All of

these methods may cause serious harm to ecosystems. For

example, incineration causes air pollution, and disposal on

land may lead to soil and groundwater contamination that will

affect aquatic life forms, humans, and animals. The

alternative may be to remove TNT through biological process.

Biotransformation of TNT by aerobic bacteria in the

laboratory has been reported frequently

(11,12,18,40,46,51,55,67,78). Biodegradation of 2,4-

dinitrotoluene by a Pseudomonas sp. has been reported to

occur via 4-methyl-5-nitrocatechol in a dioxygenase-mediated

reaction (62). White rot fungus has been shown to mineralize

radiolabeled TNT (24). The work of Spiker et al. (63) showed

that Phanerochaete chrysosporium is not a good candidate for

bioremediation of TNT contaminated sites containing high

concentration of explosives because of its high sensitivity

to contaminants. Michels and Gottschalk (48) showed that

the lignin peroxidase activity of _. chrysosporium is

inhibited by the TNT intermediate hydroxylamino-

dinitrotoluene. Valli et al. (72) found that 2,4-

dinitrotoluene is degraded completely by the white rot

fungus. Under anaerobic conditions, the sulfate-reducing

bacterium, Desulfovibrio sp. (B strain) transformed TNT to

toluene (7,8,53) by reduction followed by reductive



deamination. Gorontzy et al. (28) reported that under

anaerobic conditions, methanogenic bacteria reduced

nitrophenols and nitrobenzoic acids. Duque et al, (20)

successfully constructed a PseudomonaH hybrid strain that

mineralized TNT. However, the degree of mineralization was

not significant. The bioremediation of TNT-contaminated soil

by composting (76) has many limitations because large amounts

of additives are needed restrict the volume of soil treated.

Funk et al. (26) showed potential removal of TNT under

anaerobic conditions with potato starch as carbon source.

The bacterial metabolism of various other nitroaromatic

compounds has been reported by many workers

(17,19,21,29,30,31,32,35,38,50,54,60,61,62,82). Recently

Williams et al. (77) showed a novel pathway for the

catabolism of 4-nitrotoluene by Pseudomonas with the

formation of protocatechuate and _-carboxy-cis,cis-muconate.

Most of the aerobic studies described above showed only

superficial modification of the TNT molecule and not

decomposition. The initial steps in the metabolism of TNT

appear to involve a stepwise reduction of nitro groups,

through nitroso and hydroxylamino groups to amino groups

(66). Anaerobic metabolism of nitroaromatics may provide a

treatment solution for contamination with nitro compounds.

Recently Boopathy et al. (8,13) described the ability of

sulfate-reducing and methanogenic bacteria to metabolize TNT

under different growth conditions. In this paper, we review



progress in the study of anaerobic metabolism of TNT and its

usefulness in treating nitroaromatic compounds.

Anaerobic Transformation of Nitroaromat ics

Mono- and dioxygenase enzymes present in aerobic

bacteria can insert either one or two oxygen atoms into a

substrate and can degrade aromatic molecules. Anaerobes

clearly unable to use oxygen with oxygenases overcome this

metabolic problem by combining a dehydrogenation reaction

with hydration of the substrate. For example, benzoic acid

is converted to pimelic acid by RhodoPseudomonas Dalustris by

the series of dehydrogenation and hydration reactions as

shown in Fig. 1 (34,37).

The anaerobic bacterial metabolism of nitroaromatics has

not been studied as extensively as of aerobic pathways,

perhaps because of the difficulty in working with anaerobic

cultures and perhaps the slow growth of anaerobes. Earlier

studies on anaerobic metabolism of nitroaromatic compounds by

McCormick et al. (46) laid the foundations for such study and

established the usefulness of anaerobic organisms.

Successful demonstration of degradation of hexahydro-l,2,3-

trinitro-l,3,5-triazine (RDX) by sewage sludge (47) under

anaerobic conditions further demonstrated the usefulness of

anaerobes in waste treatment. RDX was reduced sequentially

by the anaerobes to the nitroso derivatives, which were
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further converted to formaldehyde and methanol. Hallas and

Alexander (32) showed successful transformation of

nitrobenzene, nitrobenzoic acid, nitrotoluene, and

nitroaniline by sewage sludge under anaerobic conditions.

The studies described above did not use specific

anaerobic conditions. Boopathy et al. (9) showed that TNT

can be transformed under anaerobic conditions by using

different electron acceptors. A soil sample collected from

the Joliet Army Ammunition Plant was incubated under sulfate-

reducing, nitrate reducing and methanogenic conditions. The

results showed that TNT was transformed under all three

conditions. However, when no electron acceptor was supplied

no TNT was transformed (Table i). The intermediates observed

during the study were 4-amino-2,6-dinitrotoluene and 2-amino-

4,6-dinitrotoluene. This study showed that if the

appropriate electron acceptor is present in the system,

anaerobic bacteria will reduce TNT to amino compounds.

Sulfate-Reducing Bacteria

The most common types of anaerobic respiration are

summarized in Fig. 2. Although oxygen is the most widely

used electron acceptor in energy metabolism, a number of

different kinds of bacteria are able to reduce other

compounds and hence use them as electron acceptors. This

process of anaerobic respiration is less energy efficient,



but it allows these bacteria to live in environments where

oxygen is absent.

Sulfate-reducing bacteria are obligate anaerobes that

are conveniently considered together because of their shared

ability to perform dissimilatory sulfate reduction, a process

analogous to aerobic respiration in that the sulfate ion acts

as an electron acceptor, like oxygen in the aerobic process.

The genera of sulfate reducers are defined on the basis of

morphology rather than physiology. All sulfate reducers are

gram positive, except D_s_ifotomacu!u_. The most frequently

encountered genus is DesulfovibriQ.

The use of various non-fermentable aromatic compounds in

the absence of oxygen or nitrate is apparently of the natural

roles of sulfate-reducing bacteria. Aromatic compounds with

more than two hydroxyl groups are readily degraded by

fermenting bacteria (75). Several new types of sulfate-

reducing bacteria have been isolated directly with aromatic

compounds (2,57,74). Most of these isolates are extremely

versatile sulfate reducers that use many aliphatic compounds.

Aromatic compounds oxidized by sulfate-reducing bacteria

include benzoate, phenol, p-cresol, aniline, and the n-

heterocyclic compounds like nicotinate, indole, and

quinoline. All the known degraders of aromatic compounds are

complete oxidizers. The sulfate reducers employ reactions

like those detected in denitrifying bacteria, phototrophic
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bacteria, and methanogenic co-cultures using aromatic

compounds (5,23,71). The principal reactions recognized in

non sulfate-reducing bacteria are activation of benzoate to

benzoyl CoA (27), caroboxylation of phenol to p-

hydroxybenzoate (42,70) or the reductive removal of hydroxyl

groups (68).

Metabolism of TNT by Sulfate-Reducing Bacteria

Boopathy and coworkers (7,8) recently showed that a

sulfate-reducing bacterium, _esulfovibrio sp. (B strain) can

convert TNT to toluene. This organism isolated from an

anaerobic digester treating furfural-containing waste water

(6), used nitrate as electron acceptor apart from using

sulfate as electron acceptor. It also used nitrate as a

nitrogen source. Further experiments showed that this

bacterium could use the nitrite group present in TNT

molecules either as an electron acceptor or as a nitrogen

source.

Some sulfate-reducing bacteria can use nitrate in

addition to sulfate as their terminal electron acceptor (41).

The reaction is coupled to electron transfer phosphorylation

(64) and is catalyzed by a respiratory nitrite reductase that

has a molecular mass of 65 KDa and contains six c-type hemes.

This nitrite reductase known as the hexaheme cytochrome C3

is widely distributed in strict and facultative aerobes



(44,45). This nitrite reductase is unrelated to the

regulated nitrite reductase (nonheme iron siroheme

containing) found in many plants and bacteria (73), where its

function is nitrogen assimilation. As shown in Fig.3,

oxidation of H2 by nitrite is coupled to scalar and vectorial

proton transport. According to Steenkamp and Peck (64),

nitrite reductase is closely associated with a hydrogenase

and is probably a transmembrane protein. This conclusion is

based on the presence of proton-releasing and nitrite-binding

sites on the periplasmic aspect of the cytoplasmic membrane

and a benzyl viologen-binding site on the cytoplasmic side of

the membrane.

As Fig.4 shows, added TNT (I00 mg/L) was metabolized by

Desulfov!brio sp. (B strain) within I0 days (8), with

pyruvate as the main substrate, sulfate as the electron

acceptor and TNT as the sole nitrogen source. Boopathy et

al. (8) showed that under different growth conditions that

this bacterium used TNT as its sole source of nitrogen. This

result indicates that the isolate has the necessary enzymes

to use the nitrite groups present in TNT molecules as a

nitrogen source.

Apart from pyruvate, lactate served as the best

substrate for TNT metabolism, followed by H2 + CO2, ethanol,

and formate. Comparison of the rate of TNT biotransformation

by Desulfovibrio sp. with that of other sulfate-reducing

i0
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bacteria showed that this new isolate has a unique metabolic

ability to degrade TNT. As shown in Table 2, pesglfovibrio

sp. transformed 100% of TNT present in a relatively short

period of time (7 days). Other Desulfovibrio spp. (ATCC

cultures) converted 59-72% TNT within 21-23 days, whereas

Desulfobacterium indolic_ transformed 82% of TNT in 36 days

of incubation.

Mass spectral analyses showed that various intermediates

were produced depending upon the culture conditions of the

isolate (Table 3). When ammonium was the main nitrogen

source, 2,4-diamino-6-nitrotoluene was the major

intermediate. When TNT was the sole source of carbon and

energy, it was first reduced to 4-amino-2,6-dinitrotoluene

and then to 2,4-diamino-6-nitrotoluene. When TNT was the sole

source of nitrogen, all the TNT in the medium was converted

to 2,4-diamino-6-nitrotoluene within I0 days of incubation

and traces of 2- and 4-amino compounds were identified.

Later these intermediates were converted to toluene. The

quantitative analysis of the aqueous and gas phases of the

culture bottle by GC (equipped with a purge and trap unit)

showed a good mass balance of TNT. From the initial i00 mg/L

of TNT, 30 mg/L toluene was found in the gas phase and 68

- mg/L toluene was identified in the liquid phase (8).

Nitroaromatic compounds are considered resistant to

microbial attack (25,30), partly because the reduction of

l
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electron density in the aromatic ring by the nitro groups can

hinder electrophilic attack by oxygenases and thus prevent

aerobic degradation of nitroaromatic compounds (17). Under

anaerobic conditions, the sulfate-reducing bacteria

metabolized TNT. Of all the metabolites produced, the

formation of toluene from TNT seems to be very significant in

the biotreatment of soil and water contaminated with TNT.

The mass balance of toluene further indicates that TNT

conversio_i was nearly stoichiometric.

TNT was reduced to diamino-nitrotoluene by the isolate

through the 2-amino- and 4-amino-dinitrotoluenes when

pyruvate served as the main substrate in the presence of

sulfate and ammonia (Fig. 5), in a simple reduction process

carried out by the enzyme nitrite reductase. Most

Desulfovibrio spp. have nitrite reductase enzymes that reduce

nitrate to ammonia (74). This isolate reduced the nitrite

groups present in TNT to amino groups. When TNT served as the

sole source of nitrogen, toluene was formed from the TNT.

Figure 6 elaborates a general pathway for the transformation

of TNT, involving the initial reduction of aromatic nitro

groups to aromatic amines. The presence of diamino-

nitrotoluene as a major intermediate in the initial period of

incubation suggests that two nitro groups of TNT are reduced

to amino groups by nitrite reductase via the formation of 4-

amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene.

This diamino-nitrotoluene is further reduced to

12



triaminotoluene. McCormick et al. (46) showed that TNT was

reduced by H2 in the presence of enzyme preparations of

Veillonella _ikalescens to triaminotoluene: 3 mol H2 is

required to reduce each nitro group to the amino group.

Recently Preuss et al. (53) observed the formation of

triaminotoluene from TNT by a sulfate reducing bacterium

isolated from sewage sludge.

Boopathy et al. (8) speculated the formation of

triaminotoluene by reduction. This was reductively

deaminated to toluene. In the process, the isolate used the

ammonium released from the original TNT molecule as a

nitrogen source for growth. A toluene concentration of 98

mg/L was observed in the culture sample, and virtually no

nitrite ions were detected during TNT metabolism. The

aromatic ring structure was not cleaved, and no metabolites

other than toluene appeared even after six months of

incubation. Reductive deamination is catalyzed by a

deaminase enzyme in Pseud0mQna8 sp. (49). Reductive

deamination reactions were postulated first for 2-

aminobenzoate degradation by methanogenic enrichment cultures

(69). Reductive dehydroxylation of gentisate to benzoate and

acetate was demonstrated in the fermenting bacterium HQGOI

(65).

According to Preuss et al. (53), the nitro groups in

positions 2 and 4 are easily reduced by the sulfate-reducing

13



bacteria in a reaction that appears to be rather unspecific

and is probably mediated by enzymes that reduce low-potential

electron carriers like ferredoxin. The rate-limiting step is

the reduction of the nitro group in position 6 of the

intermediate 2,4-diamino-6-nitrotoluene. The first reductlon

step, leading to the formation of 2,4-diamino-6-hydroxyl-

aminotoluene is also catalyzed by ferredoxin-reducing enzymes

like hydrogenase and carbon monoxide dehydrogenase. This

reaction is considered to be rather unspecific because it

also occurs with reduced ferredoxin or methyl viologen in the

absence of enzyme. The rate of reduction in the presence of

the enzyme is higher by order of magnitude than in its

absence, indicating an additional involvement of the enzyme

in the reaction. Preuss et al. (53) suggested that

converting 2,4-diamino-6-nitrotoluene to triaminotoluene

involves two reduction steps. The first is catalyzed by

hydrogenase or carbon monoxide dehydrogenase, and the second

is mediated by an enzyme especially active in the sulfate-

reducing bacteria. The formation of the intermediate

diamino-hydroxyl-toluene in the presence of carbon monoxide

led to the conclusion that the enzyme was inhibited or

inactivated by carbon monoxide. An enzyme especially active

in sulfate-reducing bacteria and known to react with carbon

monoxide is the dissimilatory sulfite reductase (43). The

work of Boopathy et al. (8) suggested that some sulfate-

reducing bacteria have the enzyme reductive deaminase, which

is responsible for converting triaminotoluene to toluene by

14



deaminating all the amino substituents in the aromatic ring.

Beller et al. (4) and Edwards et al. (22) demonstrated the

complete mineralization of toluene under sulfate-reducing

conditions. These toluene degrading sulfate reducers could

be used in combination with the Desulfovibrio sp. described

by Boopathy et al (8) to degrade TNT completely to CO2.

The very limited literature available on the metabolism

of TNT by sulfate-reducing bacteria suggests that under

anaerobic conditions the best candidates for bioremediation

of TNT are sulfate reducers. Much basic work remains to be

done in elucidating the enzyme mechanisms and studying the

continuous and semi-continuous modes of reactor operation for

treating nitroaromatic compounds with sulfate reducers.

Anaerobic Removal of Other Nitroaromatics by Sulfate-

Reducing Bacteria

Test of its ability to metabolize various nitroaromatics

showed that the Des_ifovibr_o sp. (B strain) can metabolize

2,4-dinitrophenol (2,4-DNP), 2,4-dinitrotoluene (2,4-DNT),

2,6-dinitrotoluene (2,6-DNT), and aniline. As shown in Fig.

7 the Desulfovibrio sp. used all the nitroaromatics studied

as a sole source of nitrogen. It also used 2,4-DNT, 2,6-DNT

and 2,4-DNP as electron acceptors in the absence of sulfate

(I0). The GC/MS analyses of the culture samples showed the

presence of phenol from 2,4-DNP and benzene from aniline as

15



intermediates. The quantitative analyses of the gas and

aqueous p_ases showed nearly stoichiometric conversion of

these intermediates. As described earlier where TNT was

reduced and reductively deaminated to toluene, a similar

mechanism may be used by the bacterium to metabolize 2,4-DNP.

2,4-DNP might have been first reduced to diaminophenol and

this diaminophenol reductively deaminated to phenol.

Similarly the amino group in the aniline was reductively

deaminated to yield benzene and the ammonia released from the

aromatic ring was used by the bacterium as a nitrogen source.

Gorontzy et al. (28) showed transformation of nitrophenols

and nitrobenzoic acids by the sulfate reducers Desu!fovibrio

desulfuricans, _. giqas, Desu!fococcus multivorans, and

Desulfotomaculum orien_is. All of the nitroaromatics were

transformed to corresponding amino compounds.

Schnell et al. (57) isolated a new sulfate-reducing

bacterium, Desulfobacter anilini, which degraded aniline

completely to carbon dioxide and ammonia with stoichiometric

reduction of sulfate to sulfide. This is the first obligate

anaerobic bacterium observed to grow in pure culture with

aniline as its sole electron donor and carbon source. The

organism oxidizes aniline completely to carbon dioxide and

releases the amino nitrogen quantitatively as ammonia. Two

metabolic pathways were suggested. First, aniline could be

carboxylated to 2-aminobenzoate or 4-aminobenzoate, with the

aminobenzoate then reductively deaminated to benzoate and

16
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metabolized further (81). Alternatively, aniline could be

deaminated hydrolytically to phenol, which is subsequently

degraded either by carboxylation to 4-hydroxybenzoate or by

reductive transformation to cyclohexanol or cyclohexanone.

Both pathway appear possible, because the bacterial strain

used each of these intermediates as a sole source of carbon.

Schnell and Schink (58) reported that Desulfobacterium

anilini degraded aniline via reductive deamination of 4-

aminobenzoyl CoA (Fig. 8). The first step, the carboxylation

of aniline to 4-aminobenzoate, is followed by activation of

4-aminobenzoate to 4-aminobenzoyl CoA, which is reductively

deaminated to benzoyl CoA. This product enters the normal

benzoate pathway leading to three acetyl CoA. Carbon

monoxide dehydrogenase and formate dehydrogenase are present

in Desulfobacterium _ni!ini indicating that acetyl residues

are oxidized via the carbon monoxide dehydrogenase pathway

(56).

Schnell and Schink (59) isolated a sulfate-reducing

bacterium that oxidized 3-aminobenzoate to carbon dioxide

with concomitant reduction of sulfate to sulfide and release

of ammonium. High activity of carbon monoxide dehydrogenase

indicated that acetyl CoA is oxidized via the carbon monoxide

dehydrogenase pathway, although 2-oxoglutarate synthase

activity was found as well. Similar activity was found with

pyruvate as substrate. Perhaps both synthase activities can

17



1

be attributed to an enzyme needed in assimilatory metabolism.

Carbon monoxide dehydrogenase and pyruvate synthase are

probably also key enzymes during autotrophic growth with

hydrogen and sulfate. The complete oxidation of 3-

aminobenzoate yields -186 kJ per mole according to the

following equation:

2 C7H6NO 2- + 7 SO42- + ii H + > 14 CO2 + 2 NH4 + + 7 HS-

+ 4 H20 _Go' = -180 kJ

The first step in degradation of 3-aminobenzoate by this

new sulfate-reducing bacterium was found to be activation to

3-aminobenzoyl CoA (59). Further reduction of 3-aminobenzoyl

CoA did not yield benzoyl CoA, but rather a product

tentatively described_-_s_-a--reduced CoA-ester. The activation

of"'benzoyl CoA depends on the presence of the cofactors, ATP

and Mg 2+. Acyl-CoA synthetase reactions were identified as

the initial step in the degradation of benzoate by anaerobic

bacteria.

Methanogenic Bacteria

Methanogens are obligate anaerobes that grow in an

environment with an oxidation-reduction potential of less

than -300 mV. They transform various substrates to Cl

products such as CH4 and HCOOH. The role of some novel

18



compounds and the mechanism of single carbon flow in these

bacteria remain to be formally proved, along with the

arrangement of the electron transport chain. Because of the

limited substrate capabilities, the metabolism of more

complex molecules to methane depends on the activity of non

methanogens in association with the methanogens. Under pure

culture conditions, methanogens have not been reported to

degrade aromatic compounds.

Biotransformation of Nitroaromatics by Methanogenic

Bacteria

The studies of Gorontzy et al. (28) on microbial

transformation of nitroaromatic compounds by methanogenic

bacteria revealed that methanogens can transform

nitroaromatic compounds to corresponding amino compounds.

Boopathy and Kulpa (13) isolated a methanogen Methanococcus

sp. from a lake sediment which transformed TNT to 2,4-
.....

diaminonitrotoluene. Its action on various nitroaromatic

compounds (14) is summarized in Table 4. All the compounds

tested were transformed by the methanogen. The intermediates

observed were amino derivatives of the parent compounds.

Comparison of the metabolic activities of the Methanococcus

sp. with those other methanogenic bacteria suggest that the

range of species for which transformation of nitroaromatics

has been demonstrated extends to a new Methanococcus sp.

According to some reports, the reductive transformation of

19
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nitroaromatic compounds leads to detoxification of the

substance (3,15). The specific enzymes responsible for the

reduction process in methanogens is not yet characterized.

Angermeier and Simon (i) suggested that the reduction of

aromatic compounds may be catalyzed by hydrogenase and

ferredoxin. The amino intermediates produced by the

Methanococcus sp. did not undergo further degradation, even

after 60 days of incubation. This result suggests that the

reduction of nitro substituents by an unspecific

detoxification reaction mediated by certain enzymes or

cofactors present in the methanogens.

This review indicates that, under anaerobic conditions,

the combining of sulfate reducers and methanogens with other

toluene-degrading sulfate reducers will enhance the complete

metabolism of nitroaromatic compounds. A co-culture study of

all these organisms together or the sequential removal of the

compounds under separate specific conditions will confirm

the feasibility of using specific anaerobes to remediate

contaminated sites.

Conclusions and Implications

The observation of sulfate reducers and methanogenic

bacteria by many workers (7,8,13,14,28,53) suggests that

these organisms could be exploited for bioremediation under

20



anaerobic conditions by supplying proper electron donors and

electron acceptors.

The first step in the metabolism of nitroaromatics is

reduction. This step is followed by reductive deamination,

which removes all the nitro groups present in the ring,

leaving the ring intact and forming toluene and ammonia as

end products. The toluene can be further degraded by toluene

degrading denitrifiers or toluene degrading sulfate-reducing

bacteria.

Several reports on the aerobic transformation of TNT have

shown the production of dead-end products like amino

derivatives or azoxy compounds. Therefore, the applicability

of aerobes in bioremediation of nitroaromatics-contaminated

sites is doubtful at present. However, the use of anaerobes

like sulfate-reducing bacteria may prove useful in

decontaminating environmental sites polluted with nitro

compounds.
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Table 1 Biotransformation of TNT under anaerobic conditions a

mwm_ m _Imm_

Growth Conditions Bacterial % TNT Removal Intermediates
Growth Produced
Protein
(rag/L)

Nitrate reducing 85 82 2- and 4- amino
dinitrotoluenes

Sulfate reducing 18 30 2- and 4- amino
dinitro6oluenes

Methanogenic 19 35 2- and 4- amino
dinitrotoluenes

No specific
electron acceptors 0 0 None

a Data from Ref. 9

i



Table 2 Comparison of TNT metabolism among different sulfate
reducers a

Bacteria % TNT transformed Metabolites Produced
and days in

paranthesis

Desulfovibrio vulgaris 72 (23) 2,4-Diamino-6-nitrotoluene

D. gigas 59 (22) 2,4-Diamino-6-nitrotoluene

D. desulfuricans 66 (21) 2,4-Diamino-6-nitrotoluene

DesulfobacCerium indolicum 82 (36) 2,4-Diamino-6-nitrotoluene

4-Amino-2,6-dinitrotoluene
Desulfovibrio sp. (B strain) i00 (7) 2-Amino-4,6-dinitrotoluene

2,4-Diamino-6-nitrotoluene
Toluene

a Data from Ref. 8



Table 3 Metabolites of TNT under different growth conditions for

Desulfovibrio sp. (B strain) a

Growth Condition Metabolites Produced.

Pyruvate as electron donor, 2-Amino-4,6-dinitrotoluene
Sulfate as electron acceptor, 4-Amino-2,6-dinitrotoluene
ammonium as nitrogen source in 2,4-Diamino-6-nitrotoluene
the presence of TNT

Pyruvate as electron donor,
TNT as electron acceptor, 2,4-Diamino-6-nitrotoluene
ammonium as nitrogen source

TNT as sole source of carbon 4-Amino-2,6-dinitrotoluene
and energy, sulfate as electron 2,4-Diamino-6-nitrotoluene
acceptor, ammonium as nitrogen
source

Pyruvate as electron donor, 2-Amino-4,6-dinitrotoluene
Sulfate as electron acceptor, 4-Amino-2,6-dinitrotoluene
TNT as nitrogen source 2,4-Diamino-6-nitrotoluene

Toluene

a Data from Ref. 8
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TABLE 4 Transformation of nitroaromatic compDunds by
methanogenic bacteria*a

i

Organism Transformation of Nitroaromatic Compounds (%)#

2,4 -DNT 2,6- DNT DNP TNB DNB TNT

----------------_--------------------------------------------

Methanococcus
strain B 98 95 85 100 98 100

Methanococcus
deltae 75 65 50 70 55 20

Methanococcus
thermoli thotrophicus 50 55 40 65 40 i0

Methanosarcina
barkeri 0 0 0 0 0 0

Me than oba c teri um

thermoautotrophicum 0 0 0 0 0 0

Me thanobrevi ba c ter
ruminan tium 0 0 0 0 0 0

a Data from Ref. 14

* Cultures were incubated for 30 days.

# Concentration of nitroaromatics used was 0.5 mM.
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Figure 1. Degradation of benzoic acid by R. palustris.
Adapted from Ref. 37.
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Figure 2. Various anaerobic respiration processes. Adapted from Ref. 16
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Figure 4. Metabolism of TNT by Desulfovibrio
sp. (B strain), with TNT as the sole source of nitrogen.
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Figure 5. Transformation of TNT to 2,4-diamino-6-nitrotoluene by Desulfovibrio sp. (B strain), with

ammonium as the nitrogen source. Adapted from Ref. 8.
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