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Abstract. The evolutionofsolitarywavesofthegBBM equationisinvestigatedcompu-
tationaUy.The experimentsconfirmpreviouslyderivedtheoreticalstabilityestimates

and, more importantly,yieldinsightsintotheirbehavior.For example,highlyener-
geticunstablesolitarywaveswhen perturbedareshown toevolveintoseveralstable
solitarywaves.

1. Introduction. The Benjamin-Bona-Mahony equation[I]isa model forunidirectionaldisper-
sivelongwaveswithfiniteamplitude.Itisa particularcaseofthegeneralizedBenjamin-Bona-Mahony
(gBBM) equationwhich isknown tohave solitary-wavesolutions.Inthispaper a numericalmethod is

used to approximatesolutionsto theinitialvalueproblem forthegBBM equation

u, + u. + (ue)= - u,=. = 0, (1.1)

where p isa positiveinteger,with theinitialcondition

u(z,o)= u°(=), (1.2)

i with theaim ofinvestigatingevolutionsemanatingfrom perturbationsof unstablesolitary-wavesolu-
tionsforlargep.

The equation(1.1)was studiedin [4],where theyanalyzedthestabilityof the l-parameterfamily
ofsolitary-wavesolutions,which may be writteninthe form

uc(=, t) = (a sech[K(=- ct)]} 2/(e-1), (1.3)
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where c > 1 is the speed and K and A are given by

K = (P-_2 1) _/_-1 and A= (p+I)(e-1)2 " (1.4)

One of the primary results of [4] is that for p > 5, the solitary-wave solution u_ is stable for c > co(p), but

unstable for e _< co(p) where e0 is given in example 3.1 from [4]. In particular, we note that e0 = 1.301
for p = 8 which corresponds to the examples reported on in Section 3 below.

2. Numerleal Approximations. In order to accurately reflect the long-time behavior of in-
stabilities and simulate solutions on the real lille, the equation (1.1) is first scaled (in space) from an
interval [0, 2500] into [0,2,r]. The initial value problem (1.1) and (1.2) is then solvedon a discrete
grid of points belonging to z E [0, 2_r] and t > 0 using periodic boundary conditions. The equation is
projected into Fourier space using de-aliased Fourier pseudo-spectral collocation techniques [2]. The re-

suiting finite-dimensional system of non-stiff ordinary differential equations for the Fourier coefficients
is then integrated forward in t using a variable-order adaptive Adams-Bashforth multistep method.
Fourier transforms are performed using the st;andard FFT package FFTPACK. The ODE solver used
is Shampine and Gordon's DEABM package [3]. The time steps between calls to DEABM are fixed in

size to enable better control of the dissipation of the scheme. The veracity of the scheme was tested by
comparing numerical solutions to exact, stable solutions of the linear and nonlinear dispersive equations.
Several norms are monitored for accuracy.

3. Numerical Simulations with Unstable Solitary Waves. As stated in Section 1 and proved

in [4], the solitary-wave solutions u_ of (1.1) are unstable if p > 5 for values of e close enough to, but
larger than 1. In this section, the results of some experiments are given for the case p = 8 in which u°
is a perturbation of u_ with values of e taken very close to 1.

In the first numerical simulation, we use as initial data the slightly perturbed solitary v_,_ve

u°(z) = _ {A sech[K(a - z0)]} 2/('-1) (3.1)

withp = 8, _ = 1.05, x0 = 7r and aspeed ofc= 1.001. The values of K and A are then given by

(1.4). The resulting evolution is presented in Figure 1 where the profile of u(z, t) is plotted at 4 different
times. (Note that the solution travels around the interval due to the periodic boundary conditions.) In
the first graph at t = 0, the initial condition is pictured. Next at t = 1600 followed by t = 3200, the
effects of the perturbation in the unstable solution are clearly evident: the amplitude grows, symmetry
is lost, and a dispersive tail forms. From t = 3200 to t = 4800, a stable soliton emerges and leaves

the remaining part of the solution behind. The soliton has a measured speed of about c = 1.71 which
corresponds to an amplitude of A = 1.18, in agreement with the final picture.

This evolution process occurs over a long time interval due to the scaling involved and the energy

present in the initial condition. The energy is given by the square of the Hi-norm

fo"E(v) = Ilvll= v'-+ (v')' dz (3.2)

which is also an invariant for the equation (1.1). In order to increase the speed at which this process

occurs and to obtain more interesting dynamics, it is helpful to increase the amount of energy in the
initial condition. This may be done by decreasing the speed and using values of c closer to 1 since

E(u_) --, c¢ as c --, 1 from above.
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Figure 1: Numerical simulation of a perturbed solitary wave )_ = 1.05.
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Figure 2: Numerical simulation of a perturbed solitary wave A = 1.40.

Instead we increase the energy in the initial condition by means of increasing the value of the
perturbation factor A. In Figure 2, we show the evolution originating from the same initial condition
as above, except now A = 1.40. In this case the first solitary wave is already developed at t = 350, and
leaves the remaining structure almost intact. Indeed, there is a sufficient amount of energy left in this
structure to permit a second solitary wave to emerge at t = 1250. By either increasing the value of A
further or making c closer to 1, it is possible to get evolutions with several stable solitons present.

The authors thank Brad Lucier for supplying a computer code, parts of which were adapted or
borrowed to produce the solver used in this study.
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