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ABSTRACT

The Waste Iscolation Pilet Plant (WIPP) in southeastern New Mexico is being
developed' by the U.S. Department of Energy as a disposal facility for
transuranic waste. In support of this project, Sandia National Laboratories
is conducting an ongoing performance assessment (PA) for the WIPP. The
ordered triple representation for risk proposed by Kaplan and Garrick is used
to provide a clear conceptual structure for this PA, This presentation
describes how the preceding representation provides a basis in the WIFP PA
for (1) the definition of scenarios and the calculation of scenarie
probabilities and consequences, (2) the separation of subjective and
stochastic uncertainties, (3) the construction of the complementary
cumulative distribution functions required in comparisons with the U.S.
Environmental Protection Agency's standard for the geologic disposal of
radicactive waste (i.e., 40 CFR Part 191, Subpart B), and (4) the performance
of uncertainty and sensitivity studies. Results obtained in a preliminary PA
for the WIPP completed in December of 1991 are used for illustration.
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CONCEPTUAL STRUCTURE OF PERFORMANCE ASSESSMENTS CONDUCTED
FOR THE WASTE ISOLATION PILOT PLANT

J. C. HELTON*, M. G. MARIETTA AND R. P. RECHARD¥*
*Arizona State University, Tempe, AZ, 85287
**Sandia National Laboratories, Albuquerque, NM 87185

ABSTRACT

The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being
developed by the U.S. Department of Energy as a disposal facility for trans-
uranic waste. In support of this project, Sandia National Laboratories is
conducting an ongoing performance assessment (PA) for the WIPP. The ordered
triple representation for risk proposed by Kaplan and Garrick is used to
provide a clear conceptual structure for this PA. This presentation des-
cribes how the preceding representation provides a basis in the WIPP PA for
(1) the definition of scenarios and the calculation of scenaric probabil-
ities and consequences, (2) the separation of subjective and stochastic
uncertainties, (3) the construction of the complementary cumulative distri-
bution functions required in comparisons with the U.S. Environmental Protec-
tion Agency’s standard for the geologic disposal of radioactive waste (i.e.,
40 CFR Part 191, Subpart B), and (4) the performance of uncertainty and
sensitivity studies. Results obtained in a preliminary FA for the WIFPP
completed in December of 1991 are used for illustratiom.

INTRODUCTION

The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is
being developed by the U.S. Department of Energy as a disposal facility for
transuranic waste.[1-3] In support of this project, Sandia National Labora-

tories isg nnnr’lunring an ongoing performance assessment (pA.) for the
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WIPP.[4,5] At present, a PA 1s carried out each year to summarize what is
known about the WIPP and to provide guidance for future work.[6-8] It is
anticipated that these iterative PAs will continue until the WIPP is either
licensed for the disposal of transuranic waste or found to be unsuitable for
such disposal.

The WIPP is a complex facility, with the result that carrying out a PA
is a large undertaking. Successful organization and execution of this
undertaking requires a clear conceptual structure for the PA. This presen-
tation provides an overview of the conceptual structure currently used in
PAs for the WIPP and illustrates this structure with results from a PA com-
pleted in approximately December of 1991,f8-11]

CONCEPTUAL BASIS FOR STRUCTURE OF WIPPF PERFORMANCE ASSESSMENT

As proposed by Kaplan and Garrick,[12] the outcome of a PA can be rep-
resented by a set R of ordered triples of the form

R = (Si, pSi, €8i), i=1, ..., nS , (1)

where Sj is a set of similar occurrences, pSi 1s the probability that an
occurrence in the set 5; will take place, ¢8§ is a vector of consequences
associated with 5§, nS is the number of sets selected for consideration, and
the sets S§j have no occurrences in common (i.e., the §; are disjoint sets).
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This representation formally decomposes the outcome of a PA into what can
happen (the S3), how likely things are to happen (the pSj), and the
coensequences of what can happen (the €8;). The 5§ are typically referred to
as "scenarlos" in radioactive waste disposal, Similarly, the pSj are
scenario probabilities, and the vector €S contains environmental releases
for individual isotopes, the normalized release defined by the U.S.
Environmental Protection Agency (EPA),[13] and possibly other information

associated with scenario 8y.

Although the representation in Eq. (1) provides a natural conceptual
way to view risk, the set R by itself can be difficult to examine. For this
reason, the risk results in R are often summarized with complementary
cumulative distribution functions (CCDFs), which provide a display of the

information contained in the probabilities pS; and the vectors ¢$4. With
the assumption that a particular consequence result cS in the vector ¢S has
been ordered so that cSj < cSi4] for i=1, ..., nS-1, the associated CCDF is

shown in Fig. 1. A consequence result of particular interest in performance
assessments for radioactive waste disposal is the EPA normalized release to
the accessible environment.[13,14] As indicated in Fig. 1, the EPA places a
bound on the CCDF for normalized release to the accessible environment,

In practice, the outcome of a PA depends on many imprecisely known
variables. These imprecisely known variables can be represented by a vector

X = [xlv X2, ..y anJ, (2)

where each x4 1s an imprecisely known input required in the PA and nV is the
total number of such inputs., As a result, the set R is actually a function
of x:

R(X) = [51(x), pSj(x), ¢8i(x)], i=1, ..., nS(x) . (3)

As X changes, so will R(x) and all summary measures that can be derived from
R(x). Thus, rather than a single CCDF for each consequence value contained
in ¢S, there will be a distribution of CCDFs that results from the possible
values that x can take on.

The uncertainty in X can be characterized by probability distributions
Dy, D2, ..., Dpv, (%)

where Dj is the distribution for the wvariable xj contained in x. The
definition of these distributions may also be accompanied by the speci-
fication of correlations and various restrictions that further define the
relations between the x4y. These distributions and other restrictions prob-
abilistically characterize where the appropriate input to use in a PA might
fall given that the analysis has been structured so that only one value can
be used for each variable.

Once the distributions in Eq. (4) have been developed, Monte Carlo
techniques can be used to determine the uncertainty in R(x) that results
from the uncertainty in x. First, a sample

Xk = [xkx1, *xk2, ..., Xk nvl], k=1, ..., nK, (5)

is generated according to the specified distributions and restrictions,
where nK is the size of the sample. The PA is then carried out for each
sample element Xj, which yields the sequence of risk results
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Fig. 1. Estimated CCDF for Consequence Result c¢S5.

R(xg) = [S1(xk), pS1(xK), €Si(xk)], i=1, ..., nS(xK) (6)

for k=1, ..., nK. Each set R{(xg) 1s the result of one complete PA carried
out with a set of inputs (i.e., Xgx) that the review process producing the
distributions in Eq. (4) concluded was possible.

In most PAs, CCDFs are the results of greatest interest, For a
particular consequence result, a GCCDF will be produced for each set R(Xy)
shown In Eq. (6). This yilelds a distribution of CCDFs of the form shown in
the left frame of Fig. 2, which can be summarized with mean and percentile
curves as shown In the right frame.

An important distinction exists between the uncertainty that gives rise
to a single CCDF in Fig. 2 and the uncertainty that gives rise to the dis-
tribution of CCDFs in this figure. A single CCDF arises from the fact that
a number of different occurrences have a real possibility of taking place.
This type of uncertainty is referred to as stochastic variation or uncer-
tainty in this presentation. A distribution of CCDFs arises from the fact
that fixed, but unknown, quantities are needed in the estimation of a CCDF.
The development of distributions that characterize what the values for these
fixed quantities might be leads to a distribution of CCDFs. In essence, a
PA can be viewed as a very complex function that estimates a CCDF. Since
there is uncertainty in the values of some of the variables operated on by
this function, there will also be uncertainty in the dependent variable
produced by this function, where this dependent variable is a CCDF.

Both Kaplan and Garrick[l2] and a recent report by the International
Atomic Energy Agency (IAEA)[15] distinguish between these two types of
uncertainty. Specifically, Kaplan and Garrick distinguish between
probabilities derived from frequencies and probabilities that characterize
degrees of belief. Probabilities derived from frequencies correspond to the
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Transport.

probabilities pSy in Eq. (1), while probabilities that characterize degrees
of beljef (i.e., subjective probabilities) correspond to the distributions
indicated in Eq. (4). The IAEA report distinguishes between what it calls
Type A uncertainty and Type B uncertainty. The IAEA report defines Type A
uncertainty to be stochastic variation; as such, this uncertainty
corresponds to the frequency-based probability of Kaplan and Garrick and the
pSi of Eq. (l). Type B uncertainty is defined to be uncertainty that is due
to lack of knowledge about fixed quantities; thus, this uncertainty
corresponds to the subjective probability of Kaplan and Garrick and the
distributions indicated in Eq. (4). This distlnction has also been made by
other authors,[14,16-18]

Scenarios constitute the first element Sj of the ordered triples con-
tained in the set R shown in Eq. (1) and are obtained by subdividing the set

x: x a single 10,000-yr history beginning at decommissioning of
the WIPP . (7)

S =

Each 10,000-yr history is complete in the sense that it includes a full

ecification, including time of occurrence, for everything of importance to
PA that happens in this time period. In the terminology of Cranwell et
al,,[19] each history would contain a characterization for a specific
sequence of "naturally occurring and/or human-induced conditions that
represent realistie future states of the repository, geologic systems, and
ground-water flow systems that could affect the release and transport of

radionuclides from the repository to humans."
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The development of scenarios for the 1991 WIPP PA led to a set S of the
form shown in Eq. (7) in which all credible disruptions were due to drilling
intrusions [Ref. 8, Ch. 4]. As & result, scenarios were defined to provide
a systematic coverage of drilling intrusions. Specifically, scenarios were
defined on the basis of (1) number of drilling intrusions, (2) time of the
drilling intrusions, (3) whether or not a single waste panel is penetrated
by two or more boreholes, of which at least one penetrates a pressurized
brine pocket and at least one does not, and (4) the activity level of the
waste penetrated by the boreholes.

The construction of scenarios started with the division of the
10,000-yr time period appearing in the EPA regulations into a sequence

[ti-1, ti], L =1, 2, ..., nT, (8)
of disjoint time intervals. These time intervals lead to scenarios

s(n) = x: x an element of § for which exactly n(i) intrusions occur in

time interval [tj-1, ti] for i=1, 2, ..., nT (9
and
s(n) = x: x an element of s{n) for which the jth borehole encounters
waste of activity level £¢j) for j=1, 2, ..., nbBH , {103
where
nT
n=[n{l), n(2), ..., n(aT)], I = [£(1), £(2), ..., £(nBH)], nBH = X n(i).
i=1 (11)

For the 1991 WIPP PA, nT = 5, and each time interval [tj-1, ti] had a length
of 2000 yrs. Additional scenarios involving penetrations of pressurized

Scenarios of the form s(I,n) were used as the basis for the CCDFs for
normalized release to the accessible environment presented in the 1991 WIPP
PA (e.g., as shown in Fig. 2). Additional information on the construction
of scenarios for the 1991 WIPF PA is available elsewhere {Ref. 5, Ch. 3;
Ref. 20].

Probabilities for scenarios were determined under the assumption that
the occurrence of boreholes through the repository follows a Poisson process
with a rate constant A [Ref.9, Chs. 2 and 3; Refs. 20, 21]. The probabil-
ities pS(n) and pS(l,n) for the scenarios s(n) and S(l,n) are given by

[“T [An(i)fti - ti_lln(i)]] r . W1
pS(n) = 1121l A e N o JJ expl-l[tnT - tOJJ (12)
and
nBH
PS(Il") - jn_l Plx(j)] PS("), (13)

where n, i and nBH are defined in Eq. (11) and plLy is the probability that a
randomly placed borehole through a waste panel will encounter waste of
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activity level £. Table 3-2 of Ref. 8 provides an example of probabilities
pS(n) calculated as shown in Eq. (12) with A = 3.28 x 10-4 yr'l. which
corresponds to the maximum drilling rate suggested for use by the EPA.[13]
Related expressions were alsc developed for the probability of scenarios
that involve penetration of pressurized brine pockets [Ref, 9, Chs. 2 and 3;
Refs. 20, 21].

As indicated in Fig. 3, the following computer models were used to
estimate scenario consequences in the 1991 WIPP PA: CUTTINGS, BRAGFLO,
PANEL, SECO2D and STAFF2D. Detailed descriptions of these models and their
use in the 1991 WIPP PA are given iIn Ref, 9. The analyses described in
this presentation were performed with gas generation in the repository due
to corrosion of steel and microbial degradation of cellulosics and a dual-
porosity (i.e., matrix and fracture porosity) radionuclide transport model
in the Culebra Dolomite.

There are too many scenarios (e.g., $(n) and s(ln)) to perform a
detailed calculation for each scenario with the models Iindicated in Fig. 3.
For example, 3003 scenarios of the form S(n) are required to reach a
cumulative probability of 0.9994 (i.e., all scenarios Involving less than or
equal to 10 intrusions) with A = 3.28 x 104 yr-l. Construction of a CCDF
for comparison against the EPA release limits requires the estimation of
cumulative probability through at least the 0.999 level. Thus, depending on
the value for the rate constant A in the Poisson model for drilling intru-
sions, this may require the inclusion of scenarios involving as many as 10
to 12 drilling intrusions, which results in a total of several thousand
scenarios. Further, this number does not include the effects of different
activity levels in the waste. To obtain results for such a large number of
scenarios, it is necessary to plan and implement the overall calculations
very carefully. The following desecribes the appreoach used in the 1991 WIPP

PA,

As indicated in Eq., (8), the 10,000-yr time interval that must be con-
sidered in the construction of GCDFs for comparison with the EPA release
limits is divided into disjoint subintervals [tjy.7, ti{], i -1, 2, ..., nT,
for the definition of scenarios. The following results were calculated for
each of the five 2000 yr time intervals used in the 1991 WIPP PA:

rC{ = EPA normalized release to the surface environment for cuttings
removal due to a single borehole in time interval 1 with the
assumption that the waste is homogeneous (i.e., waste of
different activity levels is not present), (14)

rCiy = EPA normalized release to the surface enviromment for cuttings
removal due to a single borehole in time interval { that
penetrates waste of activity level j, (15)

rGWly = EPA normalized release to the accessible environment due to
groundwater transport initiated by a single borehole in time
interval i, (16)

and

rGW2; = EPA normalized release to the accessible environment due to
groundwater transport initiated by two boreholes in the same
waste panel in time interval i, of which one penetrates a pres-
surized brine pocket and one does not, (17)
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with the assumption that the intrusions occur at the midpoints of the time
intervals (i.e., at 1000, 3000, 5000, 7000 and 9000 yrs). For the calcula-
tion of rGWlj and rGW2j, the accessible environment is assumed to begin 5 km
from the waste panels.

The cuttings releases rCy, ..., rC5 correspond to the cuttings releases
for scenarios 4‘!1 .0, n ﬂ m I;'t'n n Q,0, 'l\ under the agssumntion that all
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waste is of the same average activity level. Similarly, the groundwater
releases rGWlj, ..., rGWls correspond to the groundwater releases for the
preceding five scenarios, and rGW2;, ..., rGW2s5 correspond to the
groundwater releases for scenarios s§%-(2,0,0,0,0), ..., §%-(0,0,0,0,2),
where 5+v-(2,0,0,0,0) denotes the scenario in which two drilling intrusion
penetrate the same waste panel in the time interval [0, 2000 yr], of which
one penetrates a pressurized brine pocket and one does not, and
s+-(0,2,0,0,0), ..., §+-(0,0,0,0,2) are defined similarly. 1In like manner,
rC1y corresponds to the cuttings release for scenario $§(j; 1,0,0,0,0)
deflned in Eq. (10); rCzj corresponds to the cuttings release for S(j
0,1,0,06,0), and so on.

The normalized releases rCj, rCi4 and rGWlj are used to construct the
EPA normalized releases for the scenarios S(n} and s(l,n). For s(n), the
normalized release to the accessible environment, cS5(n), is approximated by

nBH

eS(n) = I (rC_ ., + TGWl ,.\), (18)
3=1 myj/ D]

where m(j) designates the time interval in which the jth borehole occurs.
The vector

m= [m(1l), m(2), ..., m(nBH)) (19)
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is uniquely determined once the vector n appearing in the definition of s(n)
is specified. The definition of S(n) in Eq. (9) contains no information on
the activity levels encountered by the individual boreholes, and so <5(n)
was constructed with the assumption that all waste is of the same average
activity. However, the definition of s(l,n) in Eq. (10) does contain
information on activity levels, and the associated normalized release to the
accessible environment, ¢S{l,n), is approximated by

nBH [ )
csS¢l,n) = jfl lrcm(j),z(j) + rGWlm(j)J, {20)

which does incorporate the activity levels encountered by the individual
boreholes. Similar approximations are also possible for scenarios that in-
volve penetrations of pressurized brine pockets. These approximation pro-
cesses are illustrated in Tables 3-4 and 3-5 of Ref. 9.

The scenario probabilities in Eq. (13) and the scenario consequences in Eq.
(20) were then used in the construction of CCDFs for normalized release to
the accessible environment in the 1991 WIPP PA (i.e., CCDFs of the form
appearing in Fig. 2).

EXAMPLE RESULTS FROM 1991 WIPP PERFORMANCE ASSESSMENT

The 1991 WIPPF PA considered the effects of 45 imprecisely known
variables (i.e., nV = 45 in Eq. (2)); a summary of these variables is given
in Table 3-1 of Ref 11. As indicated in Eq. (4), a distribution
characterizing subjective uncertainty was developed for each of these
variables, The impact of this subjective uncertainty was then estimated
with use of a Latin hypercube sample[22] of size 60 generated from these
variables according to their assigned distributions (i.e., nK = 60 in Egq.
(5)). A complete PA was conducted for each of these 60 sample elements in
the manner described in the preceding section, which lead to the 60 risk

representations R(Xx) in Eq. (6).

The result of greatest interest in PAs for the WIPP is the CCDF for
normalized release to the accessible environment that is used in comparisons
with the EPA release limits. As shown in the left frame Fig. 2, 60 such
CCDFs were obtained in the 1991 WIPP PA (i.e., one CCDF for each of the nk =
60 sets R(Xg) in Eq. (6)). When taken collectively, these 60 CCDFs provide
an approximation to the distribution of CCDFs for comparison with the EPA

release limits that results from subjective uncertainty. Each CCDF in Fig.

2 is summarizing stochastic uncertainty. As shown in the right frame of
Fig. 2, the distribution of CCDFs in the left frame can be summarized with
a magn OCDF and gslactaed marcantile curveg, In nasgt studiesg the maan CCDF
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has often been used for comparisons with the EPA release limits.[1l4]

As shown in Fig. 1, the CCDFs in Fig. 2 were constructed from the pro-
babilities and normalized releases associated with individual scenarios. In
turn, the releases to the accessible environment £or the individual
scenarios were constructed from a groundwater release component and a cut-
tings removal component as shown in Egs. (18) and (20). The subjective
uncertainty in the groundwater release component for selected scenarios is
shown in the right frame of Fig. 4, where box plots are used to summarize
the groundwater releases associated with individual scenarios (i.e., the
releases rGWlj and rGW2j; in Eqs. (16) and (17)). Each box plot summarizes
the pgroundwater release to the accessible enviromment for a particular
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scenario (i.e., in the element of the vectors €Sj(xk), k=1, ..., nK = 60,
in Eq. (6) corresponding to groundwater release to the accessible
environment for the particular scenario under comnsideration).

The left frame in Fig. 4 has the same structure as the right frame but
is for normalized releases to the Culebra, which are then transported to the
accessible environment by groundwater flow to produce the releases
summarized in the right frame. As comparison of the two sets of releases
shows, a given release to the Culebra produces a substantially smaller
release to the accessible environment. Thus, even given the substantial
uncertainties present in the analysis, the processes associated with
groundwater transport in the Culebra significantly reduce releases to the
accessible environment over the 10,000 yr period specified in the EPA
regulations,

A summary of the cuttings releases associated with selected scenarios
is given in Fig. 5 (i.e., the releases rCjy in Eq. (14)). Again, the indivi-
dual box plots are summarizing subjective uncertainty. As comparison with
the releases to the accessible environment due to groundwater transport in
the right frame of Fig. 4 shows, the total release to the accessible envi-
ronment is dominated by cuttings removal.

The results shown in Eq. (6) create a mapping from analysis inputs
(i.e., Xxx) to analysis results (i.e., R(xk)). This mapping can be explored
with sensitivity analysis techniques based on stepwise regression analysis,
partial correlation analysis, examination of scatterplots, and possibly
other procedures,[23,24] Such analyses are investigating the impact of
subjective uncertainty in individual input variables on PA results. As an
example, the results of a sensitivity analysis based on stepwise regression
analysis with rank-transformed data[25] for scenario s+-¢2,0,0,0,0) is
presented in Table 1I. The importance of the individual variables is
indicated by the order in which they enter the regression analysis and by
the changes in RZ values as additional variables enter the regression model.

A regression-based sensitivity analysis for scenario s(1,0,0,0,0)
performed poorly, producing regression models with few independent variables
and low RZ values. Due to the full stratification across the range of each
sampled wvariable produced by Latin hypercube sampling, the examination of
scatterplots often facilitates the understanding of such analyses. As shown
by the scatterplots in Fig. 6, SALPERM (Salado permeability) acts as a
switch, with no releases to the Culebra occurring when SALPERM is less than
approximately 5 x 10-21 @2, However, given that a release occurs, the size
of this release is controlled by SOLPU (Pu solubility). The effect of
SALPERM results from its influence on the time required to fill a waste
panel with brine from the Salado Formation.

The sensitivity analyses presented in Table I and Fig. é are investi-
gating results associated with individual scenarios. As illustrated by Fig.
7, a sensitivity analysis can also be performed for the distribution of
CCDFs in Fig. 2. In particular, Fig. 7 presents plots of standardized rank
regression coefficients([25] for the probability of exceeding specified total
release values on the abscissa of Fig. 2. In this analysis, the effects of
subjective uncertainty on the characterization of stochastic uncertainty is
being investigated. The dominant variable is LAMBDA (rate constant in
Poisson model for drilling intrusions), with a lesser effect indicated for
DBDIAM (drillbit diameter). The effect due to DBDIAM results from the
discretization of the waste into a finite number of activity levels (i.e.,
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Fig. 5. Total Normalized Release to the Accessible Environment Due to
Cuttings Removal from Waste of Average Activity Level.
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Fig. 6. Scatterplots for Normalized Release of Pu-239 to the Culebra Dolo-
mite for Scenario 5(1,0,0,0,0).

radioactivity concentrations in Ci/m2) for the implementation of cuttings
removal and is associated with the appearance of the flattened regions in
the CCDFs in Fig. 2.

DISCUSSION

The performance of a complex analysis requires a clear conceptual
structure for what is to be done. Such a structure contributes to a
logically consistent analysis and provides a framework to guide the actual
calculations that must be performed. The ordered triple representation for
risk proposed by Kaplan and Garrick 1s used to provide the conceptual
structure for PAs conducted for the WIPP, Use of this structure leads
naturally to the many components of a PA, including (1) the development of
scenarios, scenario probabilities and scenario consequences, {2) the
separation of stochastic and subjective uncertainty, and (3) the
construction of CCDFs for comparison with the EPA release limits.

The division of a PA into the determination of scenarios, scenario
probabilities and scenario consequences provides a clear identification of
the three major parts of a PA. Further, the ordered triple representation
does this in a way that provides both a clear 1link with the theory of
probability and perspective on the Interpretation of calculations performed
in support of a PA. As a reminder, there are actually three entities
involved in the definition of probability: (1) a set S, called the sample
space, that contains everything that could occur for the particular
"universe" under consideration, (2) a suitably restricted set § of subsets
of 8, called a Borel or o-algebra, and (3) a function P defined for elements
of § that actually defines probability, Collectively, the triple (S8,8,p) is
called a probability space. The scenarios considered in a PA are elements
of the set § and thus are subsets of a sample space. Thus, the logical
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TABLE|. STEPWISE REGRESSION ANALYSES WITH RANK-TRANSFORMED DATA FOR EPA
RELEASE TO THE CULEBRA DOLOMITE OVER 10,000 YR AND EPA RELEASE AT ONE
QUARTER, ONE HALF AND THE FULL DISTANCE TO THE ACCESSIBLE ENVIRONMENT
OVER 10,000 YR FOR SCENARIO s5*-(2,0,0,0,0).

Release at Release at Release at
Release to Culebra Quarter Distance Half Distance Full Distance

Step@ Variableb  R2cC Variable®  R2¢  Varlableb R2c Variableb R2c

1 BHPERM 0.46 (+) MKDU  0.26 (- MKDU 0.25(-) MKDU 0.24 (-
2 SOLAM 0.57 (+) CULFRSP 0.40 (+ CULFRSP 0.43 (+) CULFRSP 0.44 (+
3 BPPRES 0.66 (+) GRCORI 0.46 (- GRCORI 0.49(-) GRCORI 051 (-
4 SCLPU 0.69 (+) BHPERM 0.52 (+ BHPERM 0.55 (+) SOLNP 0.58 (+
5 BPSTOR 0.73 (+) SOLNP  0.58 (+ FKDPU 0.60 ( -
6 soLy 0.76 (+) FKDPU 063 (- MKDNP  0.64 (-
7 MKDNP 0.68 ( - SOLNP 0.68 (+
8 FKDNP  0.71 (-
SUMMARY OF VARIABLES APPEARING IN REGRESSION ANALYSES
BHPERM Borehole permeability. Range: 1x10-14to 1 x 10-11m2,
BPPRES Initial pressure of brine pocket in Castile Formation. Range: 1.1 x 107 to 2.1 x 107 Pa.
BPSTOR Bulk storativity of brine pocket in Castlle Formation. Range: 2 x 10-2to 2 m3,
CULFRSP Fracture spacing In Culebra. Range: 6 x 10-2to 8 m.
FKDNP Fracture distribution coefflcient for Np in Cutebra. Range: 0to 1 x 103 m3/kg.
FKDU Fracture distribution coefficient for U in Culebra. Range: 0 to 1 m3/kg.
GRCCRI Gas generation rate for corrosion of steel under inundated conditions. Range: 010 1.3
x 108 mol/m? surface area steei-s.
MKDNP Matrix distribution coefficlent for Np in Culebra. Range: 0 to 1 x 102 m3/kg.
MKDY Matrix distribution coefficlent for U in Culebra. Range: 0to 1 m3/kg.
SOLAM Solubility of Am+3 in brine. Range: 5 x 10-14 to 1.4 mol/ 2.
SOLNP Solubility of Np In brine. Range: 3 x 10-16 to 2 x 10-5 mol/2 for Npt4and3x 1011 to
1.2 x 102 mol/ 2 for Np+5.
SOLPU Solubility of Pu In brine. Range: 2 x 10-16 to 4 x 106 mol/2 for Pu+4 and 2.5 x 10-17
10 5.5 x 104 mol /£ for Pu+5.
SOLU Solubllity of U In brine. Range: 1 x 10-15to 5 x 10-2 moi/2 for Ut4 and 1 x 107 to 1
mol/2 for U+6,

& Steps in stepwise regression analysis.
b variable selected at each step in regression analysis.
¢ R2 value at each step with sign of regression coefficient in parentheses.

starting point in scenario development is the determination of the sample
space §. Then, the actual scenarios used in a PA (i.e., the Sy in Eq. (1))
are subsets of this sample space. There is no unique way to develop these
scenarios and the level of detail used in the definition of scenarios will
depend on the needs and constraints associated with a particular analysis.
However, scenarios will always be subsets of the sample space and thus
scenario probabilities (i.e., the pS{ in Eq. (1)) are defined for subsets of
the sample space. Similarly, consequence results (i.e., the €¢8j in Eq. (1))
are calculated as one outcome to be used as the result associated with every
element of a set (i.e., the elements of the set or scenario Si in Eq. (1)).
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Fig. 7. Standardized Rank Regression Coefficients for Exceedance Prob-
abilities Associated with Individual CCDFs in Fig. 2 for Normalized
Release to the Accessible Environment.

The separation of stochastic and subjective uncertainty is very

important in a PA for a complex system. Without this separation, it is

difficult to assess the meaning of probabilistic statements coming out of
the assessment (i.e., do these statements represent different possibilities
that have a real potential of occurring, a degree of belief with respect to
different alternatives, or some combination of the preceding). The
probabilities pSj appearing in Eq. (1) represent stochastic uncertainty. As
indicated Eqs. (2), (3) and (4), subjective uncertainty enters the PA due to
analyst uncertainty with respect to how to formulate the risk representation
in Eq. (1). What is referred to as uncertainty and sensitivity analysis is
typically an attempt to assess the impact of subjective uncertainty.
Uncertainty and sensitivity analysis play an important role in a PA by both
indicating how much confidence should be placed in the results and where
efforts can be invested most productively to improve this confidence.

With respect to stochastic and subjective uncertainty, there are act-
ually two probability spaces: A probability space (Sgt, &st, Pst) for
stochastic uncertainty and a probability space (Sgy. 8su, Psu) for
subjective uncertainty. A PA typically uses a different experimental design
to cover each space. The division of the space Sgr associated with
stochastic uncertainty intc the scenarios §; Iin Eq. (1) is a form of
importance sampling. The scenarios Sj are the strata in this design and the

scenario probabilities pSj; are the strata probabilities. Importance
sampling is often used to assure the inclusion of potentially important, but
low probability, events in an analysis. The sample space Sg,; associated

with subjective uncertainty is covered with a design based on random or
Latin hypercube sampling. This design is used to assure the full coverage
of the range of each variable and is often used when either there is not
enough information to plan an analysis based on importance sampling or the
presence of a large number of potential dependent variables makes the use of
importance sampling impractical. Due to the large number of independent and
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dependent varlables, classical experiment designs (e.g., factorial,
fractional factorial, ...) are typically not very useful for covering Sgy.

The primary focus of the EPA standard for the geologic disposal of
radioactive waste[l3] is a CCDF for normalized radionuclide release to the
accessible environment that is required to fall below the bound indicated in
Fig. 1. This CCDF is displaying the effect of stochastic uncertainty and is
constructed from the probabilities pS; and the vectors €8§ in Eq. (1).
Further, as illustrated in Fig. 2, the presence of subjective uncertainty
leads to a distribution of such CCDFs. Upon first encounter, many
individuals feel that this standard is novel. However, the EPA standard is
actually an example of the Farmer limit line approach to specifying
acceptable risk([26] and is conceptually equivalent to the large release
safety goal proposed by the U.S. Nuclear Regulatory Commission for nuclear
reactors.[27,28]
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