

01-93850

SANDIA REPORT

SAND92-2285 • UC-721

Unlimited Release

Printed April 1993

Conceptual Structure of Performance Assessments Conducted for the Waste Isolation Pilot Plant

Jon C. Helton, Melvin G. Marietta, Rob P. Rechard

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

Conceptual Structure of Performance Assessments Conducted for the Waste Isolation Pilot Plant

Jon C. Helton¹, Melvin G. Marietta, and Rob P. Rechard

Performance Assessment Department
Sandia National Laboratories
Albuquerque, NM 87185

ABSTRACT

The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being developed by the U.S. Department of Energy as a disposal facility for transuranic waste. In support of this project, Sandia National Laboratories is conducting an ongoing performance assessment (PA) for the WIPP. The ordered triple representation for risk proposed by Kaplan and Garrick is used to provide a clear conceptual structure for this PA. This presentation describes how the preceding representation provides a basis in the WIPP PA for (1) the definition of scenarios and the calculation of scenario probabilities and consequences, (2) the separation of subjective and stochastic uncertainties, (3) the construction of the complementary cumulative distribution functions required in comparisons with the U.S. Environmental Protection Agency's standard for the geologic disposal of radioactive waste (i.e., 40 CFR Part 191, Subpart B), and (4) the performance of uncertainty and sensitivity studies. Results obtained in a preliminary PA for the WIPP completed in December of 1991 are used for illustration.

¹Arizona State University, Tempe, AZ 85287

ACKNOWLEDGMENT

The authors wish to recognize the technical reviews of this report by Martin S. Tierney (6342) and Barry M. Butcher (6345) of Sandia National Laboratories.

PREFACE

This SAND report is a reproduction of the identically titled paper published in:

Materials Research Society. To be published in *Scientific Basis for Nuclear Waste Management XVI: Proceedings of the Materials Research Society Symposia in Boston, MA, November 30-December 4, 1992*. Pittsburgh, PA: Materials Research Society.

CONCEPTUAL STRUCTURE OF PERFORMANCE ASSESSMENTS CONDUCTED FOR THE WASTE ISOLATION PILOT PLANT

J. C. HELTON*, M. G. MARIETTA AND R. P. RECHARD**

*Arizona State University, Tempe, AZ, 85287

**Sandia National Laboratories, Albuquerque, NM 87185

ABSTRACT

The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being developed by the U.S. Department of Energy as a disposal facility for transuranic waste. In support of this project, Sandia National Laboratories is conducting an ongoing performance assessment (PA) for the WIPP. The ordered triple representation for risk proposed by Kaplan and Garrick is used to provide a clear conceptual structure for this PA. This presentation describes how the preceding representation provides a basis in the WIPP PA for (1) the definition of scenarios and the calculation of scenario probabilities and consequences, (2) the separation of subjective and stochastic uncertainties, (3) the construction of the complementary cumulative distribution functions required in comparisons with the U.S. Environmental Protection Agency's standard for the geologic disposal of radioactive waste (i.e., 40 CFR Part 191, Subpart B), and (4) the performance of uncertainty and sensitivity studies. Results obtained in a preliminary PA for the WIPP completed in December of 1991 are used for illustration.

INTRODUCTION

The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being developed by the U.S. Department of Energy as a disposal facility for transuranic waste.[1-3] In support of this project, Sandia National Laboratories is conducting an ongoing performance assessment (PA) for the WIPP.[4,5] At present, a PA is carried out each year to summarize what is known about the WIPP and to provide guidance for future work.[6-8] It is anticipated that these iterative PAs will continue until the WIPP is either licensed for the disposal of transuranic waste or found to be unsuitable for such disposal.

The WIPP is a complex facility, with the result that carrying out a PA is a large undertaking. Successful organization and execution of this undertaking requires a clear conceptual structure for the PA. This presentation provides an overview of the conceptual structure currently used in PAs for the WIPP and illustrates this structure with results from a PA completed in approximately December of 1991.[8-11]

CONCEPTUAL BASIS FOR STRUCTURE OF WIPP PERFORMANCE ASSESSMENT

As proposed by Kaplan and Garrick,[12] the outcome of a PA can be represented by a set R of ordered triples of the form

$$R = (S_i, pS_i, cS_i), i=1, \dots, nS, \quad (1)$$

where S_i is a set of similar occurrences, pS_i is the probability that an occurrence in the set S_i will take place, cS_i is a vector of consequences associated with S_i , nS is the number of sets selected for consideration, and the sets S_i have no occurrences in common (i.e., the S_i are disjoint sets).

This representation formally decomposes the outcome of a PA into what can happen (the s_i), how likely things are to happen (the p_{s_i}), and the consequences of what can happen (the c_{s_i}). The s_i are typically referred to as "scenarios" in radioactive waste disposal. Similarly, the p_{s_i} are scenario probabilities, and the vector c_{s_i} contains environmental releases for individual isotopes, the normalized release defined by the U.S. Environmental Protection Agency (EPA),[13] and possibly other information associated with scenario s_i .

Although the representation in Eq. (1) provides a natural conceptual way to view risk, the set R by itself can be difficult to examine. For this reason, the risk results in R are often summarized with complementary cumulative distribution functions (CCDFs), which provide a display of the information contained in the probabilities p_{s_i} and the vectors c_{s_i} . With the assumption that a particular consequence result c_S in the vector c_S has been ordered so that $c_{s_i} \leq c_{s_{i+1}}$ for $i=1, \dots, n_S-1$, the associated CCDF is shown in Fig. 1. A consequence result of particular interest in performance assessments for radioactive waste disposal is the EPA normalized release to the accessible environment.[13,14] As indicated in Fig. 1, the EPA places a bound on the CCDF for normalized release to the accessible environment.

In practice, the outcome of a PA depends on many imprecisely known variables. These imprecisely known variables can be represented by a vector

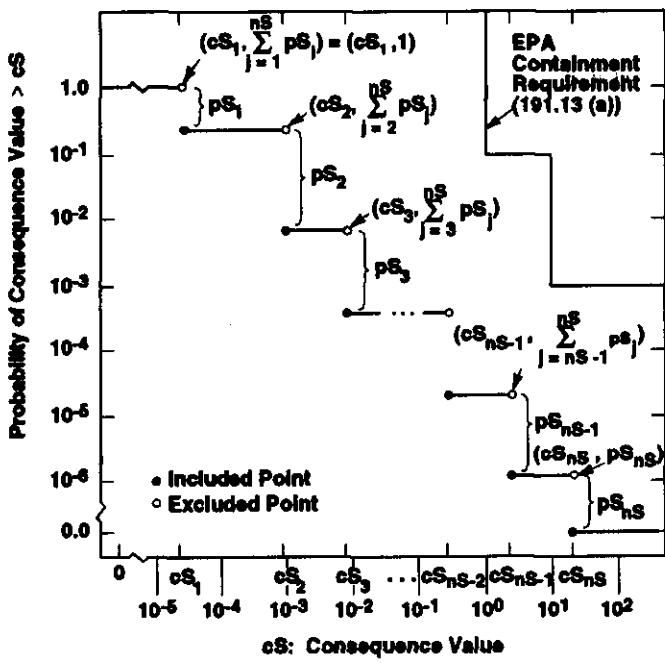
$$\mathbf{x} = [x_1, x_2, \dots, x_{n_V}], \quad (2)$$

where each x_j is an imprecisely known input required in the PA and n_V is the total number of such inputs. As a result, the set R is actually a function of \mathbf{x} :

$$R(\mathbf{x}) = [s_i(\mathbf{x}), p_{s_i}(\mathbf{x}), c_{s_i}(\mathbf{x})], \quad i=1, \dots, n_S(\mathbf{x}) . \quad (3)$$

As \mathbf{x} changes, so will $R(\mathbf{x})$ and all summary measures that can be derived from $R(\mathbf{x})$. Thus, rather than a single CCDF for each consequence value contained in c_S , there will be a distribution of CCDFs that results from the possible values that \mathbf{x} can take on.

The uncertainty in \mathbf{x} can be characterized by probability distributions


$$D_1, D_2, \dots, D_{n_V}, \quad (4)$$

where D_j is the distribution for the variable x_j contained in \mathbf{x} . The definition of these distributions may also be accompanied by the specification of correlations and various restrictions that further define the relations between the x_j . These distributions and other restrictions probabilistically characterize where the appropriate input to use in a PA might fall given that the analysis has been structured so that only one value can be used for each variable.

Once the distributions in Eq. (4) have been developed, Monte Carlo techniques can be used to determine the uncertainty in $R(\mathbf{x})$ that results from the uncertainty in \mathbf{x} . First, a sample

$$\mathbf{x}_k = [x_{k1}, x_{k2}, \dots, x_{k,n_V}], \quad k=1, \dots, n_K, \quad (5)$$

is generated according to the specified distributions and restrictions, where n_K is the size of the sample. The PA is then carried out for each sample element \mathbf{x}_k , which yields the sequence of risk results

TRN-8342-730-8

Fig. 1. Estimated CCDF for Consequence Result cS.

$$R(x_k) = [s_i(x_k), pS_i(x_k), cS_i(x_k)], i=1, \dots, nS(x_k) \quad (6)$$

for k=1, ..., nK. Each set $R(x_k)$ is the result of one complete PA carried out with a set of inputs (i.e., x_k) that the review process producing the distributions in Eq. (4) concluded was possible.

In most PAs, CCDFs are the results of greatest interest. For a particular consequence result, a CCDF will be produced for each set $R(x_k)$ shown in Eq. (6). This yields a distribution of CCDFs of the form shown in the left frame of Fig. 2, which can be summarized with mean and percentile curves as shown in the right frame.

An important distinction exists between the uncertainty that gives rise to a single CCDF in Fig. 2 and the uncertainty that gives rise to the distribution of CCDFs in this figure. A single CCDF arises from the fact that a number of different occurrences have a real possibility of taking place. This type of uncertainty is referred to as stochastic variation or uncertainty in this presentation. A distribution of CCDFs arises from the fact that fixed, but unknown, quantities are needed in the estimation of a CCDF. The development of distributions that characterize what the values for these fixed quantities might be leads to a distribution of CCDFs. In essence, a PA can be viewed as a very complex function that estimates a CCDF. Since there is uncertainty in the values of some of the variables operated on by this function, there will also be uncertainty in the dependent variable produced by this function, where this dependent variable is a CCDF.

Both Kaplan and Garrick[12] and a recent report by the International Atomic Energy Agency (IAEA)[15] distinguish between these two types of uncertainty. Specifically, Kaplan and Garrick distinguish between probabilities derived from frequencies and probabilities that characterize degrees of belief. Probabilities derived from frequencies correspond to the

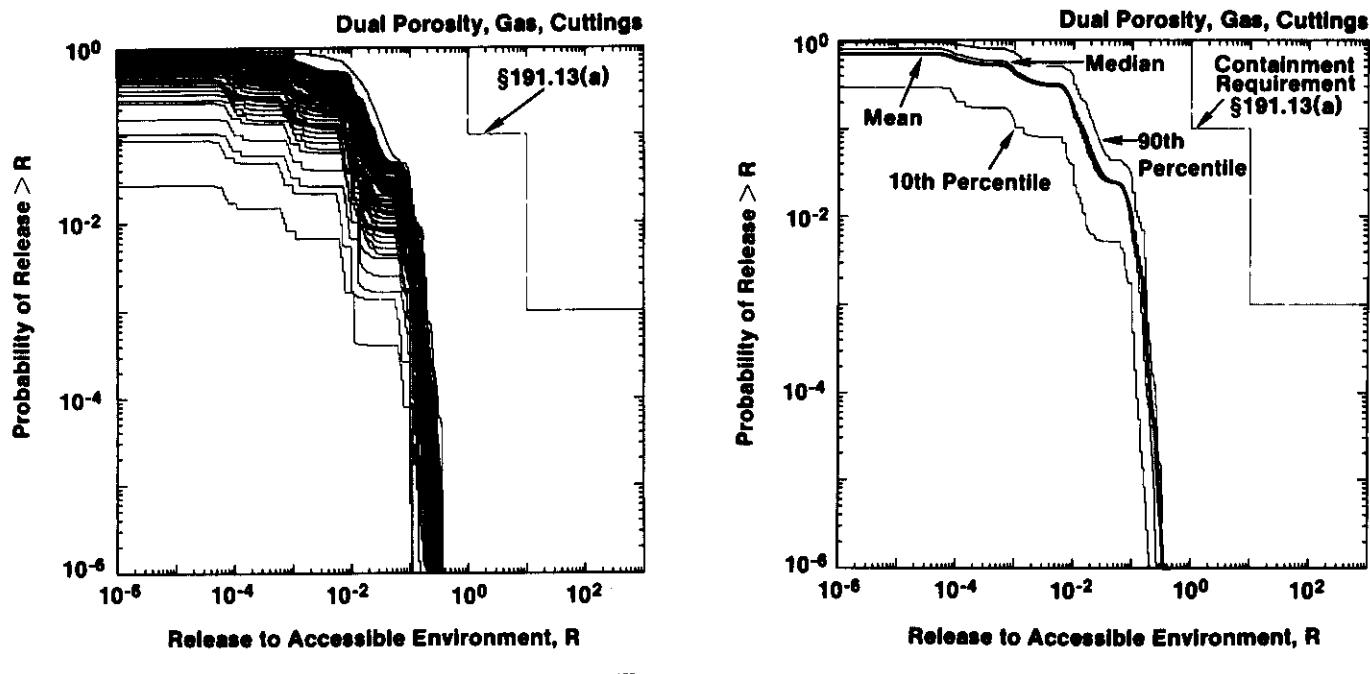


Fig. 2. Distribution of CCDFs for Normalized Release to the Accessible Environment Including Both Cuttings Removal and Groundwater Transport.

probabilities pS_i in Eq. (1), while probabilities that characterize degrees of belief (i.e., subjective probabilities) correspond to the distributions indicated in Eq. (4). The IAEA report distinguishes between what it calls Type A uncertainty and Type B uncertainty. The IAEA report defines Type A uncertainty to be stochastic variation; as such, this uncertainty corresponds to the frequency-based probability of Kaplan and Garrick and the pS_i of Eq. (1). Type B uncertainty is defined to be uncertainty that is due to lack of knowledge about fixed quantities; thus, this uncertainty corresponds to the subjective probability of Kaplan and Garrick and the distributions indicated in Eq. (4). This distinction has also been made by other authors.[14,16-18]

STRUCTURE OF 1991 WIPP PERFORMANCE ASSESSMENT

Scenarios constitute the first element S_i of the ordered triples contained in the set R shown in Eq. (1) and are obtained by subdividing the set

$$S = x: x \text{ a single 10,000-yr history beginning at decommissioning of the WIPP} . \quad (7)$$

Each 10,000-yr history is complete in the sense that it includes a full specification, including time of occurrence, for everything of importance to PA that happens in this time period. In the terminology of Cranwell et al.,[19] each history would contain a characterization for a specific sequence of "naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that could affect the release and transport of radionuclides from the repository to humans."

The development of scenarios for the 1991 WIPP PA led to a set S of the form shown in Eq. (7) in which all credible disruptions were due to drilling intrusions [Ref. 8, Ch. 4]. As a result, scenarios were defined to provide a systematic coverage of drilling intrusions. Specifically, scenarios were defined on the basis of (1) number of drilling intrusions, (2) time of the drilling intrusions, (3) whether or not a single waste panel is penetrated by two or more boreholes, of which at least one penetrates a pressurized brine pocket and at least one does not, and (4) the activity level of the waste penetrated by the boreholes.

The construction of scenarios started with the division of the 10,000-yr time period appearing in the EPA regulations into a sequence

$$[t_{i-1}, t_i], i = 1, 2, \dots, nT, \quad (8)$$

of disjoint time intervals. These time intervals lead to scenarios

$$S(n) = x: x \text{ an element of } S \text{ for which exactly } n(i) \text{ intrusions occur in time interval } [t_{i-1}, t_i] \text{ for } i=1, 2, \dots, nT \quad (9)$$

and

$$S(l,n) = x: x \text{ an element of } S(n) \text{ for which the } j^{\text{th}} \text{ borehole encounters waste of activity level } l(j) \text{ for } j=1, 2, \dots, nBH, \quad (10)$$

where

$$n = [n(1), n(2), \dots, n(nT)], l = [l(1), l(2), \dots, l(nBH)], nBH = \sum_{i=1}^{nT} n(i). \quad (11)$$

For the 1991 WIPP PA, $nT = 5$, and each time interval $[t_{i-1}, t_i]$ had a length of 2000 yrs. Additional scenarios involving penetrations of pressurized brine pockets were also defined.

Scenarios of the form $S(l,n)$ were used as the basis for the CCDFs for normalized release to the accessible environment presented in the 1991 WIPP PA (e.g., as shown in Fig. 2). Additional information on the construction of scenarios for the 1991 WIPP PA is available elsewhere [Ref. 9, Ch. 3; Ref. 20].

Probabilities for scenarios were determined under the assumption that the occurrence of boreholes through the repository follows a Poisson process with a rate constant λ [Ref. 9, Chs. 2 and 3; Refs. 20, 21]. The probabilities $pS(n)$ and $pS(l,n)$ for the scenarios $S(n)$ and $S(l,n)$ are given by

$$pS(n) = \left\{ \prod_{i=1}^{nT} \left[\frac{\lambda^{n(i)} (t_i - t_{i-1})^{n(i)}}{n(i)!} \right] \right\} \exp \left[-\lambda (t_{nT} - t_0) \right] \quad (12)$$

and

$$pS(l,n) = \left(\prod_{j=1}^{nBH} p_{L_{\lambda}(j)} \right) pS(n), \quad (13)$$

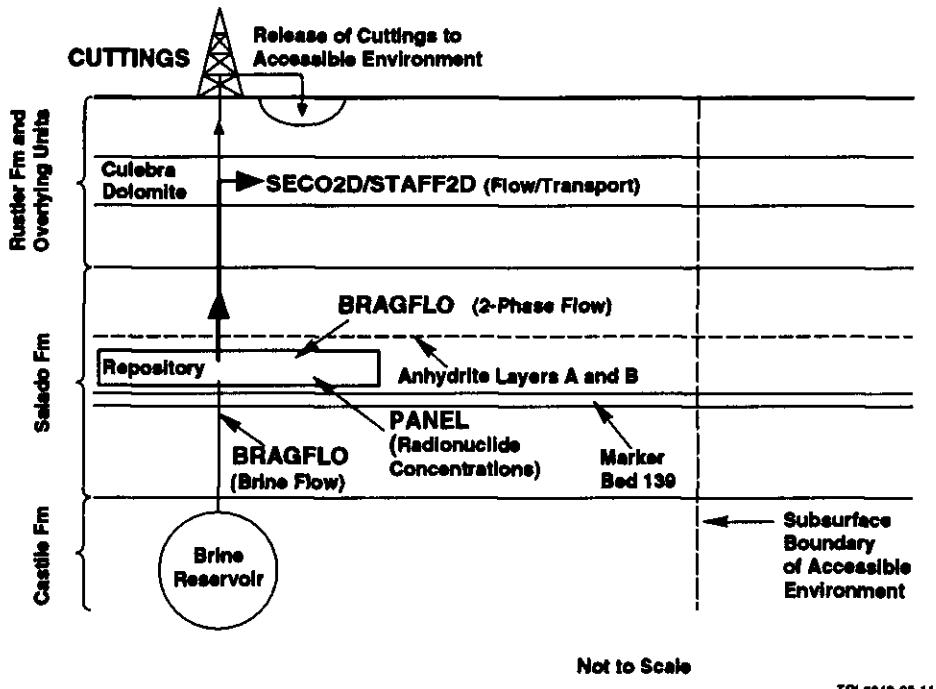
where n , l and nBH are defined in Eq. (11) and $p_{L_{\lambda}}$ is the probability that a randomly placed borehole through a waste panel will encounter waste of

activity level ℓ . Table 3-2 of Ref. 8 provides an example of probabilities $pS(n)$ calculated as shown in Eq. (12) with $\lambda = 3.28 \times 10^{-4} \text{ yr}^{-1}$, which corresponds to the maximum drilling rate suggested for use by the EPA.[13] Related expressions were also developed for the probability of scenarios that involve penetration of pressurized brine pockets [Ref. 9, Chs. 2 and 3; Refs. 20, 21].

As indicated in Fig. 3, the following computer models were used to estimate scenario consequences in the 1991 WIPP PA: CUTTINGS, BRAGFLO, PANEL, SEC02D and STAFF2D. Detailed descriptions of these models and their use in the 1991 WIPP PA are given in Ref. 9. The analyses described in this presentation were performed with gas generation in the repository due to corrosion of steel and microbial degradation of cellulosics and a dual-porosity (i.e., matrix and fracture porosity) radionuclide transport model in the Culebra Dolomite.

There are too many scenarios (e.g., $S(n)$ and $S(\ell, n)$) to perform a detailed calculation for each scenario with the models indicated in Fig. 3. For example, 3003 scenarios of the form $S(n)$ are required to reach a cumulative probability of 0.9994 (i.e., all scenarios involving less than or equal to 10 intrusions) with $\lambda = 3.28 \times 10^{-4} \text{ yr}^{-1}$. Construction of a CCDF for comparison against the EPA release limits requires the estimation of cumulative probability through at least the 0.999 level. Thus, depending on the value for the rate constant λ in the Poisson model for drilling intrusions, this may require the inclusion of scenarios involving as many as 10 to 12 drilling intrusions, which results in a total of several thousand scenarios. Further, this number does not include the effects of different activity levels in the waste. To obtain results for such a large number of scenarios, it is necessary to plan and implement the overall calculations very carefully. The following describes the approach used in the 1991 WIPP PA.

As indicated in Eq. (8), the 10,000-yr time interval that must be considered in the construction of CCDFs for comparison with the EPA release limits is divided into disjoint subintervals $[t_{i-1}, t_i]$, $i = 1, 2, \dots, n_T$, for the definition of scenarios. The following results were calculated for each of the five 2000 yr time intervals used in the 1991 WIPP PA:


rG_i = EPA normalized release to the surface environment for cuttings removal due to a single borehole in time interval i with the assumption that the waste is homogeneous (i.e., waste of different activity levels is not present), (14)

rG_{ij} = EPA normalized release to the surface environment for cuttings removal due to a single borehole in time interval i that penetrates waste of activity level j , (15)

rGW_{1i} = EPA normalized release to the accessible environment due to groundwater transport initiated by a single borehole in time interval i , (16)

and

rGW_{2i} = EPA normalized release to the accessible environment due to groundwater transport initiated by two boreholes in the same waste panel in time interval i , of which one penetrates a pressurized brine pocket and one does not, (17)

Not to Scale

TRI-6342-03-11

Fig. 3. Models Used in 1991 WIPP PA.

with the assumption that the intrusions occur at the midpoints of the time intervals (i.e., at 1000, 3000, 5000, 7000 and 9000 yrs). For the calculation of r_{GW1j} and r_{GW2j} , the accessible environment is assumed to begin 5 km from the waste panels.

The cuttings releases r_{C1}, \dots, r_{C5} correspond to the cuttings releases for scenarios $S(1,0,0,0,0) \dots S(0,0,0,0,1)$ under the assumption that all waste is of the same average activity level. Similarly, the groundwater releases $r_{GW11}, \dots, r_{GW15}$ correspond to the groundwater releases for the preceding five scenarios, and $r_{GW21}, \dots, r_{GW25}$ correspond to the groundwater releases for scenarios $S^{+}(2,0,0,0,0), \dots, S^{+}(0,0,0,0,2)$, where $S^{+}(2,0,0,0,0)$ denotes the scenario in which two drilling intrusion penetrate the same waste panel in the time interval $[0, 2000 \text{ yr}]$, of which one penetrates a pressurized brine pocket and one does not, and $S^{+}(0,2,0,0,0), \dots, S^{+}(0,0,0,0,2)$ are defined similarly. In like manner, r_{C1j} corresponds to the cuttings release for scenario $S(j; 1,0,0,0,0)$ defined in Eq. (10); r_{C2j} corresponds to the cuttings release for $S(j; 0,1,0,0,0)$, and so on.

The normalized releases r_{Ci} , r_{Cij} and r_{GW1i} are used to construct the EPA normalized releases for the scenarios $S(n)$ and $S(l,n)$. For $S(n)$, the normalized release to the accessible environment, $cS(n)$, is approximated by

$$cS(n) = \sum_{j=1}^{nBH} (r_{Cm(j)} + r_{GW1m(j)}), \quad (18)$$

where $m(j)$ designates the time interval in which the j^{th} borehole occurs. The vector

$$m = [m(1), m(2), \dots, m(nBH)] \quad (19)$$

is uniquely determined once the vector n appearing in the definition of $s(n)$ is specified. The definition of $s(n)$ in Eq. (9) contains no information on the activity levels encountered by the individual boreholes, and so $cS(n)$ was constructed with the assumption that all waste is of the same average activity. However, the definition of $s(l,n)$ in Eq. (10) does contain information on activity levels, and the associated normalized release to the accessible environment, $cS(l,n)$, is approximated by

$$cS(l,n) = \sum_{j=1}^{nBH} \left[rC_{m(j),l(j)} + rGW_{m(j)} \right], \quad (20)$$

which does incorporate the activity levels encountered by the individual boreholes. Similar approximations are also possible for scenarios that involve penetrations of pressurized brine pockets. These approximation processes are illustrated in Tables 3-4 and 3-5 of Ref. 9.

The scenario probabilities in Eq. (13) and the scenario consequences in Eq. (20) were then used in the construction of CCDFs for normalized release to the accessible environment in the 1991 WIPP PA (i.e., CCDFs of the form appearing in Fig. 2).

EXAMPLE RESULTS FROM 1991 WIPP PERFORMANCE ASSESSMENT

The 1991 WIPP PA considered the effects of 45 imprecisely known variables (i.e., $nV = 45$ in Eq. (2)); a summary of these variables is given in Table 3-1 of Ref 11. As indicated in Eq. (4), a distribution characterizing subjective uncertainty was developed for each of these variables. The impact of this subjective uncertainty was then estimated with use of a Latin hypercube sample[22] of size 60 generated from these variables according to their assigned distributions (i.e., $nK = 60$ in Eq. (5)). A complete PA was conducted for each of these 60 sample elements in the manner described in the preceding section, which lead to the 60 risk representations $R(x_k)$ in Eq. (6).

The result of greatest interest in PAs for the WIPP is the CCDF for normalized release to the accessible environment that is used in comparisons with the EPA release limits. As shown in the left frame Fig. 2, 60 such CCDFs were obtained in the 1991 WIPP PA (i.e., one CCDF for each of the $nK = 60$ sets $R(x_k)$ in Eq. (6)). When taken collectively, these 60 CCDFs provide an approximation to the distribution of CCDFs for comparison with the EPA release limits that results from subjective uncertainty. Each CCDF in Fig. 2 is summarizing stochastic uncertainty. As shown in the right frame of Fig. 2, the distribution of CCDFs in the left frame can be summarized with a mean CCDF and selected percentile curves. In past studies, the mean CCDF has often been used for comparisons with the EPA release limits.[14]

As shown in Fig. 1, the CCDFs in Fig. 2 were constructed from the probabilities and normalized releases associated with individual scenarios. In turn, the releases to the accessible environment for the individual scenarios were constructed from a groundwater release component and a cuttings removal component as shown in Eqs. (18) and (20). The subjective uncertainty in the groundwater release component for selected scenarios is shown in the right frame of Fig. 4, where box plots are used to summarize the groundwater releases associated with individual scenarios (i.e., the releases rGW_{1i} and rGW_{2i} in Eqs. (16) and (17)). Each box plot summarizes the groundwater release to the accessible environment for a particular

scenario (i.e., in the element of the vectors $cS_i(x_k)$, $k = 1, \dots, nK = 60$, in Eq. (6) corresponding to groundwater release to the accessible environment for the particular scenario under consideration).

The left frame in Fig. 4 has the same structure as the right frame but is for normalized releases to the Culebra, which are then transported to the accessible environment by groundwater flow to produce the releases summarized in the right frame. As comparison of the two sets of releases shows, a given release to the Culebra produces a substantially smaller release to the accessible environment. Thus, even given the substantial uncertainties present in the analysis, the processes associated with groundwater transport in the Culebra significantly reduce releases to the accessible environment over the 10,000 yr period specified in the EPA regulations.

A summary of the cuttings releases associated with selected scenarios is given in Fig. 5 (i.e., the releases rG_j in Eq. (14)). Again, the individual box plots are summarizing subjective uncertainty. As comparison with the releases to the accessible environment due to groundwater transport in the right frame of Fig. 4 shows, the total release to the accessible environment is dominated by cuttings removal.

The results shown in Eq. (6) create a mapping from analysis inputs (i.e., x_k) to analysis results (i.e., $R(x_k)$). This mapping can be explored with sensitivity analysis techniques based on stepwise regression analysis, partial correlation analysis, examination of scatterplots, and possibly other procedures.[23,24] Such analyses are investigating the impact of subjective uncertainty in individual input variables on PA results. As an example, the results of a sensitivity analysis based on stepwise regression analysis with rank-transformed data[25] for scenario $S^+-(2,0,0,0,0)$ is presented in Table I. The importance of the individual variables is indicated by the order in which they enter the regression analysis and by the changes in R^2 values as additional variables enter the regression model.

A regression-based sensitivity analysis for scenario $S(1,0,0,0,0)$ performed poorly, producing regression models with few independent variables and low R^2 values. Due to the full stratification across the range of each sampled variable produced by Latin hypercube sampling, the examination of scatterplots often facilitates the understanding of such analyses. As shown by the scatterplots in Fig. 6, SALPERM (Salado permeability) acts as a switch, with no releases to the Culebra occurring when SALPERM is less than approximately $5 \times 10^{-21} \text{ m}^2$. However, given that a release occurs, the size of this release is controlled by SOLPU (Pu solubility). The effect of SALPERM results from its influence on the time required to fill a waste panel with brine from the Salado Formation.

The sensitivity analyses presented in Table I and Fig. 6 are investigating results associated with individual scenarios. As illustrated by Fig. 7, a sensitivity analysis can also be performed for the distribution of CCDFs in Fig. 2. In particular, Fig. 7 presents plots of standardized rank regression coefficients[25] for the probability of exceeding specified total release values on the abscissa of Fig. 2. In this analysis, the effects of subjective uncertainty on the characterization of stochastic uncertainty is being investigated. The dominant variable is LAMBDA (rate constant in Poisson model for drilling intrusions), with a lesser effect indicated for DBDIAM (drillbit diameter). The effect due to DBDIAM results from the discretization of the waste into a finite number of activity levels (i.e.,

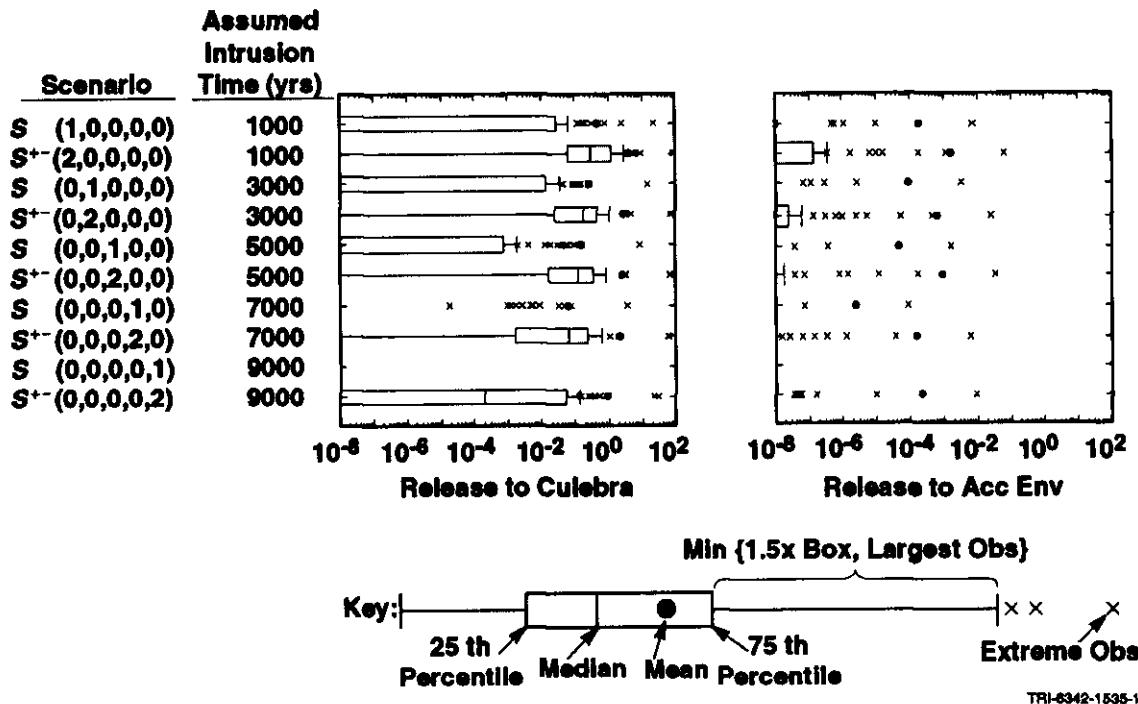


Fig. 4. Total Normalized Release to the Culebra Dolomite and to the Accessible Environment Due to Groundwater Transport.

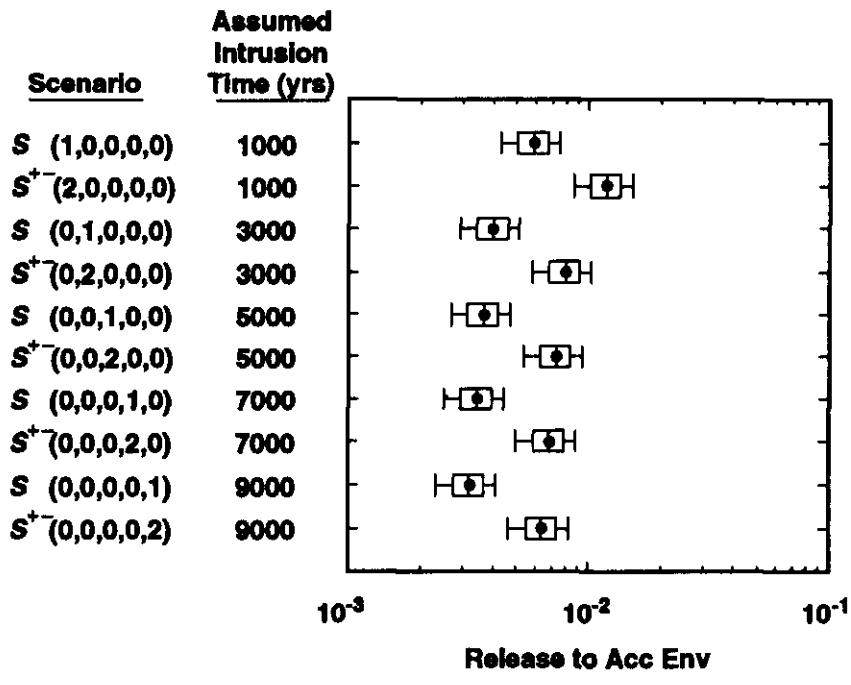
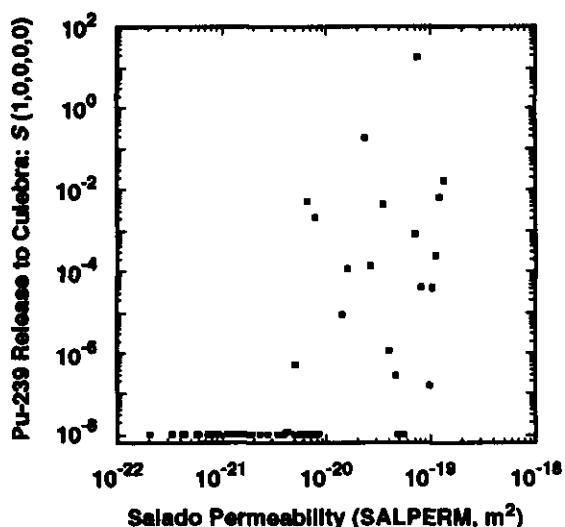
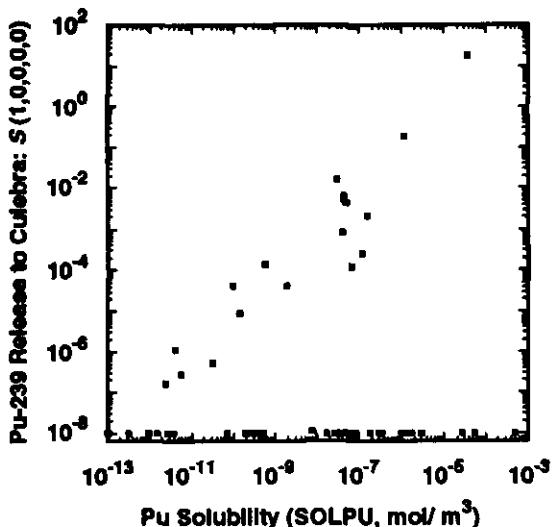




Fig. 5. Total Normalized Release to the Accessible Environment Due to Cuttings Removal from Waste of Average Activity Level.

TRI-6342-1583-1

TRI-6342-1584-1

Fig. 6. Scatterplots for Normalized Release of Pu-239 to the Culebra Dolomite for Scenario $S(1,0,0,0)$.

radioactivity concentrations in Ci/m²) for the implementation of cuttings removal and is associated with the appearance of the flattened regions in the CCDFs in Fig. 2.

DISCUSSION

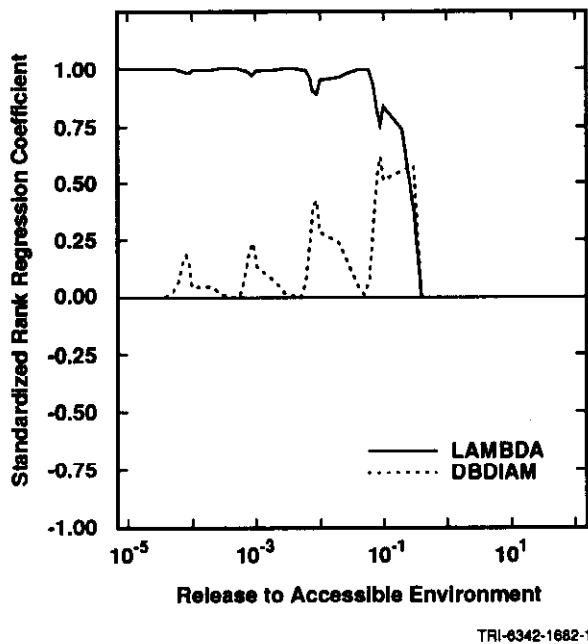
The performance of a complex analysis requires a clear conceptual structure for what is to be done. Such a structure contributes to a logically consistent analysis and provides a framework to guide the actual calculations that must be performed. The ordered triple representation for risk proposed by Kaplan and Garrick is used to provide the conceptual structure for PAs conducted for the WIPP. Use of this structure leads naturally to the many components of a PA, including (1) the development of scenarios, scenario probabilities and scenario consequences, (2) the separation of stochastic and subjective uncertainty, and (3) the construction of CCDFs for comparison with the EPA release limits.

The division of a PA into the determination of scenarios, scenario probabilities and scenario consequences provides a clear identification of the three major parts of a PA. Further, the ordered triple representation does this in a way that provides both a clear link with the theory of probability and perspective on the interpretation of calculations performed in support of a PA. As a reminder, there are actually three entities involved in the definition of probability: (1) a set S , called the sample space, that contains everything that could occur for the particular "universe" under consideration, (2) a suitably restricted set \mathcal{S} of subsets of S , called a Borel or σ -algebra, and (3) a function P defined for elements of \mathcal{S} that actually defines probability. Collectively, the triple (S, \mathcal{S}, P) is called a probability space. The scenarios considered in a PA are elements of the set \mathcal{S} and thus are subsets of a sample space. Thus, the logical

TABLE I. STEPWISE REGRESSION ANALYSES WITH RANK-TRANSFORMED DATA FOR EPA RELEASE TO THE CULEBRA DOLOMITE OVER 10,000 YR AND EPA RELEASE AT ONE QUARTER, ONE HALF AND THE FULL DISTANCE TO THE ACCESSIBLE ENVIRONMENT OVER 10,000 YR FOR SCENARIO $s^+(2,0,0,0,0)$.

Step ^a	Release to Culebra		Release at Quarter Distance		Release at Half Distance		Release at Full Distance	
	Variable ^b	R ^{2c}	Variable ^b	R ^{2c}	Variable ^b	R ^{2c}	Variable ^b	R ^{2c}
1	BHPERM	0.46 (+)	MKDU	0.26 (-)	MKDU	0.25 (-)	MKDU	0.24 (-)
2	SOLAM	0.57 (+)	CULFRSP	0.40 (+)	CULFRSP	0.43 (+)	CULFRSP	0.44 (+)
3	BPPRES	0.66 (+)	GRCORI	0.46 (-)	GRCORI	0.49 (-)	GRCORI	0.51 (-)
4	SOLPU	0.69 (+)	BHPERM	0.52 (+)	BHPERM	0.55 (+)	SOLNP	0.58 (+)
5	BPSTOR	0.73 (+)	SOLNP	0.58 (+)	FKDPU	0.60 (-)		
6	SOLU	0.76 (+)	FKDPU	0.63 (-)	MKDNP	0.64 (-)		
7			MKDNP	0.68 (-)	SOLNP	0.68 (+)		
8			FKDNP	0.71 (-)				

SUMMARY OF VARIABLES APPEARING IN REGRESSION ANALYSES


BHPERM	Borehole permeability. Range: 1×10^{-14} to $1 \times 10^{-11} \text{ m}^2$.
BPPRES	Initial pressure of brine pocket in Castile Formation. Range: 1.1×10^7 to $2.1 \times 10^7 \text{ Pa}$.
BPSTOR	Bulk storativity of brine pocket in Castile Formation. Range: 2×10^{-2} to 2 m^3 .
CULFRSP	Fracture spacing in Culebra. Range: 6×10^{-2} to 8 m .
FKDNP	Fracture distribution coefficient for Np in Culebra. Range: 0 to $1 \times 10^3 \text{ m}^3/\text{kg}$.
FKDU	Fracture distribution coefficient for U in Culebra. Range: 0 to $1 \text{ m}^3/\text{kg}$.
GRCORI	Gas generation rate for corrosion of steel under inundated conditions. Range: 0 to $1.3 \times 10^{-8} \text{ mol/m}^2 \text{ surface area steel} \cdot \text{s}$.
MKDNP	Matrix distribution coefficient for Np in Culebra. Range: 0 to $1 \times 10^2 \text{ m}^3/\text{kg}$.
MKDU	Matrix distribution coefficient for U in Culebra. Range: 0 to $1 \text{ m}^3/\text{kg}$.
SOLAM	Solubility of Am ⁺³ in brine. Range: 5×10^{-14} to 1.4 mol/l .
SOLNP	Solubility of Np in brine. Range: 3×10^{-16} to $2 \times 10^{-5} \text{ mol/l}$ for Np ⁺⁴ and 3×10^{-11} to $1.2 \times 10^{-2} \text{ mol/l}$ for Np ⁺⁵ .
SOLPU	Solubility of Pu in brine. Range: 2×10^{-16} to $4 \times 10^{-6} \text{ mol/l}$ for Pu ⁺⁴ and 2.5×10^{-17} to $5.5 \times 10^{-4} \text{ mol/l}$ for Pu ⁺⁵ .
SOLU	Solubility of U in brine. Range: 1×10^{-15} to $5 \times 10^{-2} \text{ mol/l}$ for U ⁺⁴ and 1×10^{-7} to 1 mol/l for U ⁺⁶ .

a Steps in stepwise regression analysis.

b Variable selected at each step in regression analysis.

c R^2 value at each step with sign of regression coefficient in parentheses.

starting point in scenario development is the determination of the sample space S . Then, the actual scenarios used in a PA (i.e., the s_i in Eq. (1)) are subsets of this sample space. There is no unique way to develop these scenarios and the level of detail used in the definition of scenarios will depend on the needs and constraints associated with a particular analysis. However, scenarios will always be subsets of the sample space and thus scenario probabilities (i.e., the p_{s_i} in Eq. (1)) are defined for subsets of the sample space. Similarly, consequence results (i.e., the c_{s_i} in Eq. (1)) are calculated as one outcome to be used as the result associated with every element of a set (i.e., the elements of the set or scenario s_i in Eq. (1)).

TRI-6342-1682-1

Fig. 7. Standardized Rank Regression Coefficients for Exceedance Probabilities Associated with Individual CCDFs in Fig. 2 for Normalized Release to the Accessible Environment.

The separation of stochastic and subjective uncertainty is very important in a PA for a complex system. Without this separation, it is difficult to assess the meaning of probabilistic statements coming out of the assessment (i.e., do these statements represent different possibilities that have a real potential of occurring, a degree of belief with respect to different alternatives, or some combination of the preceding). The probabilities p_{S_i} appearing in Eq. (1) represent stochastic uncertainty. As indicated Eqs. (2), (3) and (4), subjective uncertainty enters the PA due to analyst uncertainty with respect to how to formulate the risk representation in Eq. (1). What is referred to as uncertainty and sensitivity analysis is typically an attempt to assess the impact of subjective uncertainty. Uncertainty and sensitivity analysis play an important role in a PA by both indicating how much confidence should be placed in the results and where efforts can be invested most productively to improve this confidence.

With respect to stochastic and subjective uncertainty, there are actually two probability spaces: A probability space (S_{st} , δ_{st} , p_{st}) for stochastic uncertainty and a probability space (S_{su} , δ_{su} , p_{su}) for subjective uncertainty. A PA typically uses a different experimental design to cover each space. The division of the space S_{st} associated with stochastic uncertainty into the scenarios S_i in Eq. (1) is a form of importance sampling. The scenarios S_i are the strata in this design and the scenario probabilities p_{S_i} are the strata probabilities. Importance sampling is often used to assure the inclusion of potentially important, but low probability, events in an analysis. The sample space S_{su} associated with subjective uncertainty is covered with a design based on random or Latin hypercube sampling. This design is used to assure the full coverage of the range of each variable and is often used when either there is not enough information to plan an analysis based on importance sampling or the presence of a large number of potential dependent variables makes the use of importance sampling impractical. Due to the large number of independent and

dependent variables, classical experiment designs (e.g., factorial, fractional factorial, ...) are typically not very useful for covering s_{su} .

The primary focus of the EPA standard for the geologic disposal of radioactive waste[13] is a CCDF for normalized radionuclide release to the accessible environment that is required to fall below the bound indicated in Fig. 1. This CCDF is displaying the effect of stochastic uncertainty and is constructed from the probabilities p_{Si} and the vectors cS_i in Eq. (1). Further, as illustrated in Fig. 2, the presence of subjective uncertainty leads to a distribution of such CCDFs. Upon first encounter, many individuals feel that this standard is novel. However, the EPA standard is actually an example of the Farmer limit line approach to specifying acceptable risk[26] and is conceptually equivalent to the large release safety goal proposed by the U.S. Nuclear Regulatory Commission for nuclear reactors.[27,28]

REFERENCES

1. U.S. DOE, DOE/EIS-0026, 1980.
2. U.S. DOE, DOE/EIS-0026-FS, 1990.
3. U.S. DOE, DOE/EM/48063-2, 1991.
4. S.G. Bertram-Howery, et al., SAND89-0178, 1989.
5. A.R. Lappin, et al., SAND89-0462, 1989.
6. M.G. Marietta, et al., SAND89-2027, 1989.
7. S.G. Bertram-Howery, et al., SAND90-2347, 1990.
8. WIPP Performance Assessment Division, SAND91-0893/1, 1991.
9. WIPP Performance Assessment Division, SAND91-0893/2, 1991.
10. WIPP Performance Assessment Division, SAND91-0893/3, 1991.
11. J.C. Helton, et al., SAND91-0893/4, 1992.
12. S. Kaplan and B.J. Garrick, *Risk Analysis* 1, 11-27 (1981).
13. U.S. EPA, *Federal Register* 50, 38066-38089 (1985).
14. J.C. Helton, "Risk, Uncertainty in Risk and the EPA Release Limits for Radioactive Waste Disposal," *Nuclear Technology*, to appear.
15. International Atomic Energy Agency, Safety Series Report No. 100, 1989.
16. W.E. Vesely and D.M. Rasmussen, *Risk Analysis* 4, 313-322 (1986).
17. M.E. Paté-Cornell, *Nuclear Engineering and Design* 93, 319-327 (1986).
18. G.W. Parry, *Reliability Engineering and System Safety* 23, 309-314 (1988).
19. R.M. Cranwell, et al., NUREG/CR-1667, SAND80-1429, 1990.
20. J.C. Helton and H.J. Iuzzolino, "Construction of Complementary Cumulative Distribution Functions for Comparison with the EPA Release Limits for Radioactive Waste Disposal," *Reliability Engineering and System Safety*, to appear.
21. J.C. Helton, "Drilling Intrusion Probabilities for Use in Performance Assessment for Radioactive Waste Disposal," *Reliability Engineering and System Safety*, to appear.
22. M.D. McKay, et. al., *Technometrics* 21, 239-245 (1979).
23. J.C. Helton, et al., SAND90-7103, 1991.
24. J.C. Helton, "Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal," *Reliability Engineering and System Safety*, to appear.
25. R.L. Iman, *Technometrics* 21, 499-509 (1979).
26. F.R. Farmer, *Nuclear Safety* 8, 539-548 (1967).
27. U.S. NRC, *Federal Register* 51(162), 30028-30033 (1986).
28. J.C. Helton and R.J. Breeding, "Calculation of Reactor Accident Safety Goals," *Reliability Engineering and System Safety*, to appear.

DISTRIBUTION

(Send Distribution list changes to M.M. Gruebel, Dept. 6342, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-5800)

Federal Agencies

US Department of Energy (2)
Office of Environmental Restoration and Waste Management
Attn: L.P. Duffy, EM-1
C. Frank, EM-50
Washington, DC 20585

US Department of Energy (3)
Office of Environmental Restoration and Waste Management
Attn: M. Frei, EM-34 (Trevion II)
Director, Waste Management Projects
Washington, DC 20585-0002

US Department of Energy
Office of Environmental Restoration and Waste Management
Attn: J. Lytle, EM-30 (Trevion II)
Washington, DC 20585-0002

US Department of Energy
Office of Environmental Restoration and Waste Management
Attn: S. Schneider, EM-342
(Trevion II)
Washington, DC 20585-0002

US Department of Energy (3)
WIPP Task Force
Attn: G.H. Daly
S. Fucigna
B. Bower
12800 Middlebrook Rd.
Suite 400
Germantown, MD 20874

US Department of Energy (4)
Office of Environment, Safety and Health
Attn: R.P. Berube, EH-20
C. Borgstrum, EH-25
R. Pelletier, EH-231
K. Taimi, EH-232
Washington, DC 20585

US Department of Energy (5)
WIPP Project Integration Office
Attn: W.J. Arthur III
R. Becker
P. Dickman
L.W. Gage
P.J. Higgins
D.A. Olona
PO Box 5400
Albuquerque, NM 87115-5400

US Department of Energy (10)
WIPP Project Site Office (Carlsbad)
Attn: A. Hunt (4)
V. Daub (4)
J. Lippis
K. Hunter
PO Box 3090
Carlsbad, NM 88221-3090

US Department of Energy, (5)
Office of Civilian Radioactive Waste Management
Attn: Deputy Director, RW-2
Associate Director, RW-10
Office of Program Administration and Resources Management
Associate Director, RW-20
Office of Facilities Siting and Development
Associate Director, RW-30
Office of Systems Integration and Regulations
Associate Director, RW-40
Office of External Relations and Policy
Office of Geologic Repositories
Forrestal Building
Washington, DC 20585

US Department of Energy
Attn: National Atomic Museum Library
Albuquerque Operations Office
PO Box 5400
Albuquerque, NM 87185

US Department of Energy
Research & Waste Management Division
Attn: Director
PO Box E
Oak Ridge, TN 37831

US Department of Energy (2)
Idaho Operations Office
Fuel Processing and Waste
Management Division
785 DOE Place
Idaho Falls, ID 83402

US Department of Energy
Savannah River Operations Office
Defense Waste Processing
Facility Project Office
Attn: W.D. Pearson
PO Box A
Aiken, SC 29802

US Department of Energy (2)
Richland Operations Office
Nuclear Fuel Cycle & Production
Division
Attn: R.E. Gerton
825 Jadwin Ave.
PO Box 500
Richland, WA 99352

US Department of Energy (3)
Nevada Operations Office
Attn: J.R. Boland
D. Livingston
P.K. Fitzsimmons
2753 S. Highland Drive
Las Vegas, NV 89183-8518

US Department of Energy (2)
Technical Information Center
PO Box 62
Oak Ridge, TN 37831

US Department of Energy (2)
Chicago Operations Office
Attn: J.C. Haugen
9800 South Cass Avenue
Argonne, IL 60439

US Department of Energy
Los Alamos Area Office
528 35th Street
Los Alamos, NM 87544

US Department of Energy (3)
Rocky Flats Area Office
Attn: W.C. Rask
G. Huffman
T. Lukow
PO Box 928
Golden, CO 80402-0928

US Department of Energy
Dayton Area Office
Attn: R. Grandfield
PO Box 66
Miamisburg, OH 45343-0066

US Department of Energy
Attn: E. Young
Room E-178
GAO/RCED/GTN
Washington, DC 20545

US Bureau of Land Management
101 E. Mermod
Carlsbad, NM 88220

US Bureau of Land Management
New Mexico State Office
PO Box 1449
Santa Fe, NM 87507

US Environmental Protection
Agency (2)
Office of Radiation Protection
Programs
ANR-460
Washington, DC 20460

US Nuclear Regulatory Commission
Division of Waste Management
Attn: H. Marson
Mail Stop 4-H-3
Washington, DC 20555

US Nuclear Regulatory Commission (4)
Advisory Committee on Nuclear Waste
Attn: D. Moeller
M.J. Steindler
P.W. Pomeroy
W.J. Hinze
7920 Norfolk Ave.
Bethesda, MD 20814

**Defense Nuclear Facilities Safety
Board**
Attn: D. Winters
625 Indiana Ave. NW
Suite 700
Washington, DC 20004

**Nuclear Waste Technical Review
Board (2)**
Attn: Library
1100 Wilson Blvd., Suite 910
Arlington, VA 22209-2297

**Energy and Science Division
Office of Management and Budget**
Attn: K. Yuracko
725 17th Street NW
Washington, DC 20503

US Geological Survey (2)
Water Resources Division
Attn: C. Peters
4501 Indian School NE
Suite 200
Albuquerque, NM 87110

State Agencies

**New Mexico Bureau of Mines
and Mineral Resources**
Socorro, NM 87801

**New Mexico Energy, Minerals and
Natural Resources Department**
Attn: Librarian
2040 South Pacheco
Santa Fe, NM 87505

**New Mexico Energy, Minerals and
Natural Resources Department**
New Mexico Radioactive Task Force (2)
(Governor's WIPP Task Force)
Attn: A. Lockwood, Chairman
C. Wentz, Policy Analyst
2040 South Pacheco
Santa Fe, NM 87505

Bob Forrest
Mayor, City of Carlsbad
PO Box 1569
Carlsbad, NM 88221

Executive Director
Carlsbad Department of Development
Attn: C. Bernard
PO Box 1090
Carlsbad, NM 88221

**New Mexico Environment Department
Secretary of the Environment (3)**
Attn: J. Espinosa
PO Box 968
1190 St. Francis Drive
Santa Fe, NM 87503-0968

New Mexico Environment Department
Attn: P. McCasland
WIPP Project Site Office
PO Box 3090
Carlsbad, NM 88221-3090

New Mexico State Engineer's Office
Attn: M. Chudnoff
PO Box 25102
Santa Fe, NM 87504-5102

Environmental Evaluation Group (5)
Attn: R. Neill
7007 Wyoming Blvd. NE
Suite F-2
Albuquerque, NM 87109

Advisory Committee on Nuclear Facility Safety

John F. Ahearne
Executive Director, Sigma Xi
99 Alexander Drive
Research Triangle Park, NC 27709

James E. Martin
109 Observatory Road
Ann Arbor, MI 48109

WIPP Panel of National Research Council's Board on Radioactive Waste Management

Charles Fairhurst, Chairman
Department of Civil and
Mineral Engineering
University of Minnesota
500 Pillsbury Dr. SE
Minneapolis, MN 55455-0220

John O. Blomeke
3833 Sandy Shore Drive
Lenoir City, TN 37771-9803

John D. Bredehoeft
Western Region Hydrologist
Water Resources Division
US Geological Survey (M/S 439)
345 Middlefield Road
Menlo Park, CA 94025

Fred M. Ernsberger
1325 NW 10th Avenue
Gainesville, FL 32601

Rodney C. Ewing
Department of Geology
University of New Mexico
200 Yale NE
Albuquerque, NM 87131

B. John Garrick
PLG, Inc.
Suite 400
4590 MacArthur Blvd.
Newport Beach, CA 92660-2027

Leonard F. Konikow
US Geological Survey
431 National Center
Reston, VA 22092

Jeremiah O'Driscoll
505 Valley Hill Drive
Atlanta, GA 30350

Christopher Whipple
Clement International Corp.
160 Spear St.
Suite 1380
San Francisco, CA 94105-1535

National Research Council (3)
Board on Radioactive
Waste Management
RM HA456
Attn: P.B. Myers (2)
G.J. Grube
2101 Constitution Ave.
Washington, DC 20418

Performance Assessment Peer Review Panel

G. Ross Heath
College of Ocean and
Fishery Sciences, HN-15
583 Henderson Hall
University of Washington
Seattle, WA 98195

Thomas H. Pigford
Department of Nuclear Engineering
4159 Etcheyerry Hall
University of California
Berkeley, CA 94720

Thomas A. Cotton
JK Research Associates, Inc.
4429 Butterworth Place NW
Washington, DC 20016

Robert J. Budnitz
President, Future Resources
Associates, Inc.
2000 Center Street
Suite 418
Berkeley, CA 94704

C. John Mann
Department of Geology
245 Natural History Bldg.
1301 West Green Street
University of Illinois
Urbana, IL 61801

Frank W. Schwartz
Department of Geology and Mineralogy
The Ohio State University
Scott Hall
1090 Carmack Rd.
Columbus, OH 43210

National Laboratories

Argonne National Laboratory (2)
Attn: A. Smith
D. Tomasko
9700 South Cass
Bldg. 201
Argonne, IL 60439

Battelle Pacific Northwest Laboratory (3)

Attn: R.E. Westerman
S. Bates
H.C. Burkholder

Battelle Boulevard
Richland, WA 99352

Idaho National Engineering Laboratory (2)

Attn: H. Loo
R. Klinger
Mail Stop 5108
Idaho Falls, ID 83403-4000

Los Alamos National Laboratory
Attn: B. Erdal, CNC-11
PO Box 1663
Los Alamos, NM 87545

Los Alamos National Laboratory
Attn: A. Meijer
PO Box 1663, Mail Stop J514
Los Alamos, NM 87545

Los Alamos National Laboratory (3)
HSE-8
Attn: M. Enoris
L. Scholt
J. Wenzel
PO Box 1663
Los Alamos, NM 87545

Los Alamos National Laboratory
EM-7
Attn: S. Kosiewicz
PO Box 1663, Mail Stop J595
Los Alamos, NM 87545

Oak Ridge National Laboratory
Transuranic Waste Manager
Attn: D.W. Turner
PO Box 2008
Bldg. 3047
Oak Ridge, TN 37831-6060

Pacific Northwest Laboratory
Attn: B. Kennedy
PO Box 999
Richland, WA 99352

Savannah River Laboratory (3)

Attn: N. Bibler
M.J. Plodinec
G.G. Wicks
Aiken, SC 29801

Savannah River Plant (2)

Attn: R.G. Baxter
Bldg. 704-S
K.W. Wierzbicki
Bldg. 703-H
Aiken, SC 29808-0001

Corporations/Members of the Public

Benchmark Environmental Corp.
Attn: C. Frederickson
4501 Indian School NE
Suite 105
Albuquerque, NM 87110

City of Albuquerque
Public Works Department
Utility Planning Division
Attn: W.K. Summers
PO Box 1293
Albuquerque, NM 87103

Deuel and Associates, Inc.
Attn: R.W. Prindle
7208 Jefferson NE
Albuquerque, NM 87109

Disposal Safety, Inc.
Attn: B. Ross
1660 L Street NW
Suite 314
Washington, DC 20036

Ecodynamics (2)
Attn: P. Roache
R. Blaine
PO Box 9229
Albuquerque, NM 87119-9229

EG & G Idaho (3)
1955 Fremont Street
Attn: C. Atwood
C. Hertzler
T.I. Clements
Idaho Falls, ID 83415

Geomatrix
Attn: K. Coppersmith
100 Pine Street, Suite 1000
San Francisco, CA 94111

Golder Associates, Inc. (3)
Attn: M. Cunnane
R. Kossik
I. Miller
4104 148th Avenue NE
Redmond, WA 98052

INTERA, Inc.
Attn: A.M. LaVenue
1650 University Blvd. NE
Suite 300
Albuquerque, NM 87102

INTERA, Inc.
Attn: J.F. Pickens
6850 Austin Center Blvd.
Suite 300
Austin, TX 78731

INTERA, Inc.
Attn: W. Stensrud
PO Box 2123
Carlsbad, NM 88221

INTERA, Inc.
Attn: W. Nelson
101 Convention Center Drive
Suite 540
Las Vegas, NV 89109

IT Corporation (2)
Attn: R.F. McKinney
J. Myers
Regional Office, Suite 700
5301 Central Avenue NE
Albuquerque, NM 87108

John Hart and Associates, P.A.
Attn: J.S. Hart
2815 Candelaria Road NW
Albuquerque, NM 87107

John Hart and Associates, P.A.
Attn: K. Lickliter
1009 North Washington
Tacoma, WA 98406

MACTEC (2)
Attn: J.A. Thies
D.K. Duncan
8418 Zuni Road SE
Suite 200
Albuquerque, NM 87108

Newman and Holtzinger
Attn: C. Mallon
1615 L Street NW
Suite 1000
Washington, DC 20036

RE/SPEC, Inc. (2)
Attn: W. Coons
4775 Indian School NE
Suite 300
Albuquerque, NM 87110

RE/SPEC, Inc.
Attn: J.L. Ratigan
PO Box 725
Rapid City, SD 57709

Reynolds Elect/Engr. Co., Inc.
Attn: E.W. Kendall
Building 790
Warehouse Row
PO Box 98521
Las Vegas, NV 89193-8521

Science Applications International Corporation (SAIC)
Attn: H.R. Pratt
10260 Campus Point Drive
San Diego, CA 92121

Science Applications International Corporation (2)
Attn: D.C. Royer
C.G. Pflum
101 Convention Center Dr.
Las Vegas, NV 89109

Science Applications International Corporation (2)
Attn: M. Davis
J. Tollison
2109 Air Park Road SE
Albuquerque, NM 87106

Science Applications International
Corporation (2)
Attn: J. Young
D. Lester
18706 North Creek Parkway, Suite 110
Bothell, WA 98011

Southwest Research Institute
Center for Nuclear Waste Regulatory
Analysis (2)
Attn: P.K. Nair
6220 Culebra Road
San Antonio, TX 78228-0510

Systems, Science, and Software (2)
Attn: E. Peterson
P. Lagus
Box 1620
La Jolla, CA 92038

TASC
Attn: S.G. Oston
55 Walkers Brook Drive
Reading, MA 01867

Tech Reps, Inc. (6)
Attn: J. Chapman
C. Crawford
D. Marchand
J. Stikar
P. Oliver
D. Scott
5000 Marble NE, Suite 222
Albuquerque, NM 87110

Tolan, Beeson & Associates
Attn: T.L. Tolan
2320 W. 15th Avenue
Kennewick, WA 99337

TRW Environmental Safety Systems (2)
Attn: I. Sacks, Suite 800
L. Wildman, Suite 1300
2650 Park Tower Drive
Vienna, VA 22180-7306

Westinghouse Electric Corporation (5)
Attn: Library
L. Trego
C. Cox
L. Fitch
R.F. Kehrman
PO Box 2078
Carlsbad, NM 88221

Westinghouse Hanford Company
Attn: D.E. Wood
MSIN HO-32
PO Box 1970
Richland, WA 99352

Western Water Consultants
Attn: D. Fritz
1949 Sugarland Drive #134
Sheridan, WY 82801-5720

Western Water Consultants
Attn: P.A. Rechard
PO Box 4128
Laramie, WY 82071

P. Drez
8816 Cherry Hills Road NE
Albuquerque, NM 87111

D.W. Powers
Star Route Box 87
Anthony, TX 79821

Shirley Thieda
PO Box 2109, RR1
Bernalillo, NM 87004

Jack Urich
c/o CARD
144 Harvard SE
Albuquerque, NM 87106

Universities

University of California
Mechanical, Aerospace, and
Nuclear Engineering Department (2)
Attn: W. Kastenberg
D. Browne
5532 Boelter Hall
Los Angeles, CA 90024

University of California
Mine Engineering Dept.
Attn: N. Cook
Rock Mechanics Engineering
Berkeley, CA 94720

University of Hawaii at Hilo
Attn: S. Hora
Business Administration
Hilo, HI 96720-4091

University of New Mexico
Geology Department
Attn: Library
Albuquerque, NM 87131

University of New Mexico
Research Administration
Attn: H. Schreyer
102 Scholes Hall
Albuquerque, NM 87131

University of Wyoming
Department of Civil Engineering
Attn: V.R. Hasfurther
Laramie, WY 82071

University of Wyoming
Department of Geology
Attn: J.I. Drever
Laramie, WY 82071

University of Wyoming
Department of Mathematics
Attn: R.E. Ewing
Laramie, WY 82071

Libraries

Thomas Brannigan Library
Attn: D. Dresp
106 W. Hadley St.
Las Cruces, NM 88001

Hobbs Public Library
Attn: M. Lewis
509 N. Ship Street
Hobbs, NM 88248

New Mexico State Library
Attn: N. McCallan
325 Don Gaspar
Santa Fe, NM 87503

New Mexico Tech
Martin Speere Memorial Library
Campus Street
Socorro, NM 87810

New Mexico Junior College
Pannell Library
Attn: R. Hill
Lovington Highway
Hobbs, NM 88240

Carlsbad Municipal Library
WIPP Public Reading Room
Attn: L. Hubbard
101 S. Halagueno St.
Carlsbad, NM 88220

University of New Mexico
General Library
Government Publications Department
Albuquerque, NM 87131

NEA/Performance Assessment Advisory Group (PAAG)

P. Duerden
ANSTO
Lucas Heights Research Laboratories
Private Mail Bag No. 1
Menai, NSW 2234
AUSTRALIA

Gordon S. Linsley
Division of Nuclear Fuel Cycle and
Waste Management
International Atomic Energy Agency
PO Box 100
A-1400 Vienna, AUSTRIA

Nicolo Cadelli
Commission of the European Communities
200, Rue de la Loi
B-1049 Brussels, BELGIUM

R. Heremans
Organisme Nationale des Déchets
Radioactifs et des Matières
Fissiles
ONDRAF
Place Madou 1, Boitec 24/25
B-1030 Brussels, BELGIUM

J. Marivoet
Centre d'Etudes de l'Energie Nucléaire
CEN/SCK
Boeretang 200
B-2400 Mol, BELGIUM

P. Conlon
Waste Management Division
Atomic Energy Control Board (AECB)
PO Box 1046
Ottawa, Canada K1P 559, CANADA

A.G. Wikjord
Manager, Environmental and Safety
Assessment Branch
Atomic Energy of Canada Limited
Whitehell Nuclear Research
Establishment
Pinewa, Manitoba ROE 1L0
CANADA

Jukka-Pekka Salo
Teollisuuden Voima Oy (TVO)
Fredrikinkatu 51-53 B
SF-00100 Helsinki
FINLAND

Timo Vieno
Technical Research Centre of Finland
(VTT)
Nuclear Energy Laboratory
PO Box 208
SF-02151 Espoo, FINLAND

Timo Äikäs
Teollisuuden Voima Oy (TVO)
Fredrikinkatu 51-53 B
SF-00100 Helsinki, FINLAND

M. Claude Ringeard
Division de la Sécurité et de la
Protection de l'Environnement (DSPE)
Commissariat à l'Energie Atomique
Agence Nationale pour la Gestion des
Déchets Radioactifs (ANDRA)
Route du Panorama Robert Schuman
B. P. No. 38
F-92266 Fontenay-aux-Roses Cedex
FRANCE

Gérald Ouzounian
Agence Nationale pour la Gestion des
Déchets Radioactifs (ANDRA)
Route du Panorama Robert Schuman
B.P. No. 38
F-92266 Fontenay-aux-Roses Cedex
FRANCE

Claudio Pescatore
Division of Radiation Protection and
Waste Management
OECD Nuclear Energy Agency
38, Boulevard Suchet
F-75016 Paris, FRANCE

M. Dominique Greeneche
Commissariat à l'Energie Atomique
IPSN/DAS/SASICC/SAED
B.P. No. 6
F-92265 Fontenay-aux-Roses Cedex
FRANCE

Robert Fabriol
Bureau de Recherches Géologiques et
Mines (BRGM)
B.P. 6009
45060 Orléans Cedex 2, FRANCE

P. Bogorinski
Gesellschaft für Reaktorsicherheit
(GRS) mbH
Schwertnergasse 1
D-5000 Köln 1, GERMANY

R. Storck
GSF - Institut für Tieflagerung
Theodor-Heuss-Strabe 4
D-3300 Braunschweig, GERMANY

Ferrucio Gera
ISMES S.p.A
Via del Crociferi 44
I-00187 Rome, ITALY

Hiroyuki Umeki
Isolation System Research Program
Radioactive Waste Management Project
Power Reactor and Nuclear Fuel
Development Corporation (PNC)
1-9-13, Akasaka
Minato-ku
Tokyo 107, JAPAN

P. Carboneras Martinez
ENRESA
Calle Emilio Vargas, 7
R-28043 Madrid, SPAIN

Tönis Papp
Swedish Nuclear Fuel and Waste
Management Co.
Box 5864
S 102 48 Stockholm, SWEDEN

Conny Hägg
Swedish Radiation Protection Institute
(SSI)
Box 60204
S-104 01 Stockholm, SWEDEN

J. Hadermann
Paul Scherrer Institute
Waste Management Programme
CH-5232 Villigen PSI, SWITZERLAND

J. Vigfusson
USK- Swiss Nuclear Safety Inspectorate
Federal Office of Energy
CH-5303 Würenlingen, SWITZERLAND

D. E. Billington
Departmental Manager-Assessment
Studies
Radwaste Disposal R&D Division
AEA Decommissioning & Radwaste
Harwell Laboratory, B60
Didcot Oxfordshire OX11 ORA
UNITED KINGDOM

P. Grimwood
Waste Management Unit
BNFL
Sellafield
Seascale, Cumbria CA20 1PG
UNITED KINGDOM

Alan J. Hooper
UK Nirex Ltd
Curie Avenue
Harwell, Didcot
Oxfordshire, OX11 ORH
UNITED KINGDOM

Jerry M. Boak
Yucca Mountain Project Office
US Department of Energy
PO Box 98608
Las Vegas, NV 89193

Seth M. Coplan (Chairman)
US Nuclear Regulatory Commission
Division of High-Level Waste
Management
Mail Stop 4-H-3
Washington, DC 20555

A. E. Van Luik
INTERA/M&O
The Valley Bank Center
101 Convention Center Dr.
Las Vegas, NV 89109

NEA/PSAG User's Group

Shaheed Hossain
Division of Nuclear Fuel Cycle and
Waste Management
International Atomic Energy Agency
Wagramerstrasse 5
PO Box 100
A-1400 Vienna, AUSTRIA

Alexander Nies (PSAC Chairman)
Gesellschaft für Strahlen- und
Institut für Tieflagerung
Abteilung für Endlagersicherheit
Theodor-Heuss-Strasse 4
D-3300 Braunschweig, GERMANY

Eduard Hofer
Gesellschaft für Reaktorsicherheit
(GRS) MBH
Forschungsgelände
D-8046 Garching, GERMANY

Andrea Saltelli
Commission of the European Communities
Joint Research Centre of Ispra
I-21020 Ispra (Varese), ITALY

Alejandro Alonso
Cátedra de Tecnología Nuclear
E.T.S. de Ingenieros Industriales
José Gutiérrez Abascal, 2
E-28006 Madrid, SPAIN

ENRESA (2)
Attn: M. A. Cuñado
F. J. Elorza
Calle Emilio Vargas, 7
E-28043 Madrid, SPAIN

Pedro Prado
CIEMAT
Instituto de Tecnología Nuclear
Avenida Complutense, 22
E-28040 Madrid, SPAIN

Nils A. Kjellbert
Swedish Nuclear Fuel and Waste
Management Company (SKB)
Box 5864
S-102 48 Stockholm, SWEDEN

Björn Cronhjort
Swedish National Board for Spent
Nuclear Fuel (SKN)
Sehlstedtsgatan 9
S-115 28 Stockholm, SWEDEN

Richard A. Klos
Paul-Scherrer Institute (PSI)
CH-5232 Villingen PSI
SWITZERLAND

NAGRA (2)
Attn: C. McCombie
F. Van Dorp
Parkstrasse 23
CH-5401 Baden, SWITZERLAND

N. A. Chapman
Intera Information Technologies
Park View House, 14B Burton Street
Melton Mowbray
Leicestershire, LE13 1AE
UNITED KINGDOM

Daniel A. Galson
Galson Sciences Ltd.
35, Market Place
Oakham
Leicestershire LE15 6DT
UNITED KINGDOM

David P. Hodgkinson
Intera Information Technologies
Chiltern House
45 Station Road
Henley-on-Thames
Oxfordshire RG9 1AT, UNITED KINGDOM

Brian G.J. Thompson
Department of the Environment: Her
Majesty's Inspectorate of Pollution
Room A5.33, Romney House
43 Marsham Street
London SW1P 2PY, UNITED KINGDOM

Intera Information Technologies
Attn: M.J. Apted
3609 South Wadsworth Blvd.
Denver, CO 80235

US Nuclear Regulatory Commission (2)
Attn: R. Codell
N. Eisenberg
Mail Stop 4-H-3
Washington, DC 20555

Battelle Pacific Northwest
Laboratories
Attn: P.W. Eslinger
PO Box 999, MS K2-32
Richland, WA 99352

Center for Nuclear Waste Regulatory
Analysis (CNWRA)
Southwest Research Institute
Attn: B. Sagar
PO Drawer 28510
6220 Culebra Road
San Antonio, TX 78284

Geostatistics Expert Working Group (GXG)

Rafael L. Bras
R.L. Bras Consulting Engineers
44 Percy Road
Lexington, MA 02173

Jesus Carrera
Universidad Politécnica de Cataluña
E.T.S.I. Caminos
Jordi, Girona 31
E-08034 Barcelona, SPAIN

Gedeon Dagan
Department of Fluid Mechanics and Heat
Transfer
Tel Aviv University
PO Box 39040
Ramat Aviv, Tel Aviv 69978
ISRAEL

Ghislain de Marsily (GXG Chairman)
University Pierre et Marie Curie
Laboratoire de Géologie Appliquée
4, Place Jussieu - T.26 - 5^e étage
75252 Paris Cedex 05
FRANCE

Alain Galli
Centre de Géostatistique
Ecole des Mines de Paris
35 Rue St. Honore
77035 Fontainebleau, FRANCE

Steve Gorelick
Department of Applied Earth Sciences
Stanford University
Stanford, CA 94305-2225

Peter Grindrod
INTERA Information Technologies Ltd.
Chiltern House
45 Station Road
Henley-on-Thames
Oxfordshire, RG9 1AT
UNITED KINGDOM

Alan Gutjahr
Department of Mathematics
New Mexico Institute of Mining and
Technology
Socorro, NM 87801

C. Peter Jackson
Harwell Laboratory
Theoretical Studies Department
Radwaste Disposal Division
Bldg. 424.4
Oxfordshire Didcot Oxon OX11 ORA
UNITED KINGDOM

Peter Kitanidis
60 Peter Coutts Circle
Stanford, CA 94305

Rae Mackay
Department of Civil Engineering
University of Newcastle Upon Tyne
Newcastle Upon Tyne NE1 7RU
UNITED KINGDOM

Dennis McLaughlin
Parsons Laboratory
Room 48-209
Department of Civil Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Shlomo P. Neuman
College of Engineering and Mines
Department of Hydrology and Water
Resources
University of Arizona
Tucson, AZ 85721

Christian Ravenne
Geology and Geochemistry Division
Institut Francais du Pétrole
1 & 4, Av. de Bois-Préau BP311
92506 Rueil Malmaison Cedex
FRANCE

Yoram Rubin
Department of Civil Engineering
University of California
Berkeley, CA 94720

Foreign Addresses

Studiecentrum Voor Kernenergie
Centre D'Energie Nucleaire
Attn: A. Bonne
SCK/CEN
Boeretang 200
B-2400 Mol, BELGIUM

Atomic Energy of Canada, Ltd. (3)
Whitehell Research Estab.
Attn: M.E. Stevens
B.W. Goodwin
D. Wushke
Pinewa, Manitoba
ROE 1L0, CANADA

Esko Peltonen
Industrial Power Company Ltd.
TVO
Fredrikinkatu 51-53
SF-00100 Helsinki 10, FINLAND

Jean-Pierre Olivier
OECD Nuclear Energy Agency (2)
38, Boulevard Suchet
F-75016 Paris, FRANCE

D. Alexandre, Deputy Director
ANDRA
31 Rue de la Federation
75015 Paris, FRANCE

Claude Sombret
Centre D'Etudes Nucleaires
De La Vallee Rhone
CEN/VALRHO
S.D.H.A. BP 171
30205 Bagnols-Sur-Ceze, FRANCE

Bundesministerium fur Forschung und
Technologie
Postfach 200 706
5300 Bonn 2, GERMANY

Bundesanstalt fur Geowissenschaften
und Rohstoffe
Attn: M. Langer
Postfach 510 153
3000 Hanover 51, GERMANY

Gesellschaft fur Reaktorsicherheit
(GRS) (2)
Attn: B. Baltes
W. Muller
Schwertnergasse 1
D-5000 Cologne, GERMANY

Institut fur Tieflagerung (2)
Attn: K. Kuhn
Theodor-Heuss-Strasse 4
D-3300 Braunschweig, GERMANY

Physikalisch-Technische
Bundesanstalt
Attn: P. Brenneke
Postfach 33 45
D-3300 Braunschweig, GERMANY

Shingo Tashiro
Japan Atomic Energy Research
Institute
Tokai-Mura, Ibaraki-Ken
319-11, JAPAN

Netherlands Energy Research
Foundation (ECN)

Attn: L.H. Vons
3 Westerduinweg
PO Box 1
1755 ZG Petten, THE NETHERLANDS

Johan Andersson
Swedish Nuclear Power Inspectorate
Statens Kärnkraftinspektion (SKI)
Box 27106
S-102 52 Stockholm, SWEDEN

Fred Karlsson
Svensk Kärnbransleforsörjning
AB SKB
Box 5864
S-102 48 Stockholm, SWEDEN

Nationale Genossenschaft fur die
Lagerung Radioaktiver Abfalle
(NAGRA) (2)
Attn: S. Vomvoris
P. Zuidema
Hardstrasse 73
CH-5430 Wettingen, SWITZERLAND

AEA Technology
Attn: J.H. Rees
D5W/29 Culham Laboratory
Abingdon
Oxfordshire OX14 3DB, UNITED KINGDOM

AEA Technology
Attn: W.R. Rodwell
044/A31 Winfrith Technical Centre
Dorchester
Dorset DT2 8DH, UNITED KINGDOM

AEA Technology
Attn: J.E. Tinson
B4244 Harwell Laboratory
Didcot, Oxfordshire OX11 ORA
UNITED KINGDOM

D.R. Knowles
British Nuclear Fuels, plc
Risley, Warrington
Cheshire WA3 6AS, 1002607
UNITED KINGDOM

Internal

1	A. Narath
20	O.E. Jones
1502	J.C. Cummings
1511	D.K. Gartling
6000	D.L. Hartley
6115	P.B. Davies
6119	E.D. Gorham
6119	Staff (14)
6121	J.R. Tillerson
6121	Staff (7)
6233	J.C. Eichelberger
6300	D.E. Ellis
6302	L.E. Shephard
6303	S.Y. Pickering
6303	W.D. Weart
6305	S.A. Goldstein
6306	A.L. Stevens
6312	F.W. Bingham
6313	L.S. Costin
6331	P.A. Davis
6341	Sandia WIPP Central Files (100)
6342	D.R. Anderson
6342	J.C. Helton (20)

6342 Staff (30)
6343 S.A. Orrell, Acting
6343 Staff (3)
6345 R.C. Lincoln
6345 Staff (9)
6347 D.R. Schafer
6348 J.T. Holmes
6351 R.E. Thompson
6352 D.P. Garber
6352 S.E. Sharpton
6400 N.R. Ortiz
6613 R.M. Cranwell
6613 R.L. Iman
6613 C. Leigh
6622 M.S.Y. Chu
6641 R.E. Luna, Acting
7141 Technical Library (5)
7151 Technical Publications
7613-2 Document Processing for
DOE/OSTI (10)
8523-2 Central Technical Files
9300 J.E. Powell
9310 J.D. Plimpton
9330 J.D. Kennedy