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ABSTRACT

The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being
developed’ by the U.S. Department of Energy as a disposal facility for
tranauranic waste. In support of this project, Sandia National Laboratories
is conducting an ongoing performance assessment (PA) for the WIPP. The
ordered triple representation for risk proposed by Kaplan and Garrick is used
to provide a clear conceptual structura for this PA, This presentation
describes how the praceding representation provides a basis in tha WIPP PA
for (1) the definition of scenarios and tha calculation of scenario
probabilities and consequences , (2) the separation of subjective and
stochastic uncertainties , (3) tha construction of tha complementary
cumulative distribution functions raquired in comparison with the U.S.
Environmental Protection Agency’ s standard for the geologic disposal of
radioactive waste (i,e. , 40 CFR Part 191, Subpart B) , and (4) the performance
of uncertainty and sensitivity studies. Results obtained in a preliminary PA

for the WIPP completed in December of 1991 are used for illustration.
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ABSTRACT

The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being
developed by the U.S. Department of Energy as a disposal facility for trans -
uranic waste. In support of this project, Sandia National Laboratories is
conduct ing an ongoing performance assessment (PA) for the WIPP. The ordered
triple representation for risk proposed by Kaplan and Garrick is used to
provide a clear conceptual structure for this PA. This presentation des-
cribes how the preceding representation provides a basis in the WIPP PA for
(1) the definition of scenarios and the calculation of scenario probabil-
ities and consequences, (2) the separation of subjective and stochastic
uncertainties, (3) the construction of the complementary cumulative distri-

bution functions required in comparisons with the U.S. Environmental Protec-
tion Agency’s standard for the geologic disposal of radioactive waste (i.e. ,
40 CPR Part 191, Subpart B) , and (4) the performance of uncertainty and
sensitivity studies. Results obtained in a preliminary PA for the WIPP
completed in December of 1991 are used for illustration.

INTRODUCTION

The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is
being developed by the U.S. Department of Energy as a disposal facility for
transuranic waste. [1-3] In support of this project, Sandia National Labora-
tories is conducting an ongoing performance assessment (PA) for the
WIPP. [4,5] At present, a PA is carried out each year to summarize what is
known about the WIPP and to provide guidance for future work. [6-8] It iS

anticipated that these iterative PAs will continue until the WIPP is either
licensed for the disposal of transuranic waste or found to be unsuitable for
such disposal.

The WIPP is a complex facility, with the result that carrying out a PA
is a large undertaking. Successful organization and execution of this
undertaking requires a clear conceptual structure for the PA. This presen-
tation provides an overview of the conceptual structure currently used in
PAs for the WIPP and illustrates this structure with results from a PA com-
pleted in approximately December of 1991. [8-11]

CONCEPTUAL BASIS FOR STRUCTURE OF WIPP PERFORMANCE ASSESSMENT

As proposed by Kaplan and Garrick, [12] the outcome of a PA can be rep-
resented by a set R of ordered triples of the form

R- (Si, pSi, CSi), i-1, .... ns , (1)

where .si is a set of similar occurrence~, pSi is the probability that an

occurrence in the set Si will take place, tfii is a vector of consequences
associated with Si, nS is the number of sets selected for consideration, and
the sets Si have no occurrences in common (i.e. , the Si are disjoint sets) .
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‘fbis representation formally decomposes the outcome of a PA into what can
happen (the Si) , how likely things are to happen (the pSi) , and the
consequences of what can happen (the cSi) . The Si are typically referred to
as “scenarios” in radioactive waste disposal. Similarly, the pSi are
scenario probabilities, and the vector cSi contains environmental releases
for individual isotopes , the normalized release defined by the U.S,
Environmental Protection Agency (EPA),[13] and possibly other information
associated with scenario Si,

Although the representation in Eq. (1) provides a natural conceptual
way to view risk, the set R by itself can be clifficult to exsmine. For this
reason, the risk results in R are often summarized with complementary
cumulative distribution functions (CCDFS) , which provide a display of the
information contained in the probabilities pSi and the vectors cSi. With
the assumption that a particular consequence result CS in the vector CS has
been ordered so that cSi s cSi+l for i-1, .... nS-1, the associated CCDF is
shown in Fig. 1. A consequence result of particular interest in performance
assessments for radioactive waste disposal is the EPA normalized release to
the accessible environment. [13,14] As indicated in Fig. 1, the EPA places a
bound on the CCDF for normalized release to the accessible environment.

In practice, the outcome of a PA depends on many imprecisely known
variables. These imprecisely known variables can be represented by a vector

x- [xl, X2, .... Xnv], (2)

where each xj is an imprecisely known input required in the PA and nV is the
total number of such inputs. As a result, the set R is actually a function
of x:

R(x) - [Si(X), pSi(X), CSi(X)], i-1, .... nS(x) . (3)

As x changes, so will R(X) and all summary measures that can be derived from
R(x) . Thus , rather than a single CCDF for each consequence value contained
in CS, there will be a distribution of CCDFS that results from the possible
values that x can take on.

The uncertainty in x can be characterized by probability distributions

Dl, Dz, .... Dnv, (4)

where Dj is the distribution for the variable Xj contained in x. The
definition of these distributions may also be accompanied by the speci-
fication of correlations and various restrictions that further define the
relations between the x

j“
These distributions and other restrictions prob -

abilistically characterize where the appropriate input to use in a PA might
fall given that the analysis has been structured so that only one value can
be used for each variable.

Once the distributions in Eq. (4) have been developed, Monte Carlo
techniques can be used to determine tbe uncertainty in R(x) that results
from the uncertainty in X. First, a sample

xk - [Xkl, Xk2, . . . . Xk, nv], k-1, .... fi, (5)

is generated according to the specified distributions and restrictions,
where nK is the size of the ssmple. The PA is then carried out for each
sample element xk, which yields the sequence of risk results
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Fig. 1. Estimated CCDF for Consequence Result CS.

R(Xk) - [Si(Xk), pSi(Xk) , CSi(Xk) ], i-1, .... nS(Xk) (6)

for k-1, .... nK. Each set R(Xk) is the result of one complete PA carried
out with a set of inputs (i.e. , Xk) that the review process producing the
distribution in Eq. (4) concluded was possible.

In most PAe, CCDFS are the results of greatest interest. For a
particular consequence result, e CCDF will be produced for each set R(X@
shown in Eq. (6). This yields a distribution of CCDFS of the form shown in
the left frsme of Fig. 2, which can be summarized with mean and percentile
curves as shown in the right frame.

An important distinction exists between the uncertainty that gives rise
to a single CCDF in Fig. 2 and the uncertainty that gives rise to the dis-
tribution of CCDFS in this figure. A single CCDF arises from the fact that
a number of different occurrences have a real possibility of taking place.
This type of uncertainty is referred to as stochastic variation or uncer-
tainty in this presentation. A distribution of CCDFS arises from the fact
that fixed, but unknown, quantities are needed in the estimation of a CCDF.
The development of distributions that characterize what the values for these
fixed quantities might be leads to a distribution of CCDFS. In essence, a
PA can be viewed as a very complex function that estimates a CCDF. Since
there is uncertainty in ths values of some of the variables operated on by
this function, there will also be uncertainty in the dependent variable
produced by this function, where this dependent variable is a CCDF.

Both Kaplan and Garrick[ 12] and a recent report by the International
Atomic Energy Agency (IAEA) [15] distinguish between these two types of
uncertainty. Specifically, Kaplan and Garrick distinguish between
probabilities derived from frequencies and probabilities that characterize
degrees of belief. Probabilities derived from frequencies correspond to the
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Transport.

probabilities pSi in Eq. (1), while probabilities that characterize degrees
of belief (i.e., subjective probabilities) correspond to the distributions
indicated in Eq. (4) The IAKA report distinguishes between what it calls
Type A uncertainty and Type B uncertainty. The IAEA report defines Type A
uncertainty to be stochastic variation; as such, this uncertainty
corresponds to the frequency-based probability of Kaplan and Garrick and the
pSi of Eq. (1). Type B uncertainty is defined to be uncertainty that is due
to lack of knowledge about fixed quantities; thus, this uncertainty
corresponds to the subjective probability of Kaplan and Garrick and the
distributions indicated in Eq. (4). This distinction has also been made by
other authors. [14,16-18]

STRUCTURE OF 1991 WIPP PERFORMANCE ASSESSMENT

Scenarios constitute the first element Si of the ordered triples con-
tained in the set R shown in Eq. (1) and are obtained by subdividing the set

s- X: x a single 10,000-yr history beginning at decommissioning of
the WIPP . (7)

Each 10,000-yr history is complete in the sense that it includes a full
specification, including time of occurrence, for everything of importance to

PA that happens in this time period. In the terminology of Cranwell et

al. ,[19] each history would contain a characterization for a specific
sequence of “naturally occurring and/or human- induced conditions that
represent realistic future states of the repository, geologic systems, and
ground-water flow systems that could affect the release and transport of
radionuclides from the repository to humans. “
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The development of scenarios for the 1991 WIPP PA led to a set S of the

form shown in Eq. (7) in which all credible disruptions were due to drilling
intrusions [Ref. 8, Ch. 4] , As a result, scenarios were defined to provide
a systematic coverage of drilling intrusions. Specifically, scenarios were
defined on the basis of (1) number of drilling intrusions, (2) time of the
drilling intrusions, (3) whether or not a single waste panel is penetrated
by two or more boreholes, of which at least one penetrates a pressurized
brine pocket and at least one does not, and (4) the activity level of the
waste penetrated by the boreholes.

The construction of scenarios started with the division of the
10,000-yr time period appearing in the EPA regulations into a sequsnce

[ti-1, ti], i- 1, 2, .... nT, (8)

of disjoint time intervals. These time intervals lead to scenarios

s(n) - x: x an element of s for which exactly n(i) intrusions occur in
time interval [ti-1, ti] for i-1, 2, .... nT (9)

and

s(l,n) - x: x an element of s(n) for which the jth borehole encounters
waste of activity level l(j) for j-1, 2, .... nBH , (lo)

where
nT

n- [n(l), n(2), .... n(nT)], 1- [1(1), 1(2), .... I(nBH)l, nBH - ~ n(i).
i-1 (11)

For the 1991 WIPP PA, nT - 5, and each time interval [ti-1, ti] had a length
of 2000 yrs. Additional scenarios involving penetrations of pressurized
brine pockets were also defined.

Scenarios of the form S([,n) were used as the basis for the CCDFS for
normalized release to the accessible environment presented in the 1991 WIPP

PA (e.g., as shown in Fig. 2). Additional information on the construction
of scenarios for the 1991 WIPP PA is available elsewhere [Ref. 9, Ch. 3;
Ref. 20].

Probabilities for scenarios were determined under the assumption that
the occurrence of boreholes through the repository follows a Poisson process
with a rate constant A [Ref.9, Chs. 2 and 3; Refs. 20, 21] . The probabil-
ities ps(n) and ps(l,n) for tbe scenarios s(n) and s(l, n) are given by

{[[

An(i)
nT

ps(n) - n
i-1 ‘i~~~ll]n(i)]}exp[-A~nT- tO)l

and

(12)

ps(l,n)

-[E ‘4 ‘s(n)
where n, I and nBH are defined in Eq.
randomly placed borehole through s

(13)

(11) and pL~ is the probability that a
waste panel will encounter waste of
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activity level ,!. Table 3-2 of Ref. 8 provides an example of probabilities
ps(n) calculated as shown in Eq. (12) with A - 3.28 x 10-4 yr-l, which
corresponds to the ❑aximum drilling rate suggested for use by the EPA. [13]
Related expressions were also developed for the probability of scenarios
that involve penetration of pressurized brine pockets [Ref. 9, Chs. 2 and 3;
Refs. 20, 21].

As indicated in Fig. 3, the following computer models were used to
estimate scenario consequences in the 1991 WIPP PA: CUTTINGS , BRAGFLO,
PANEL, SEC02D and STAFF2D. Detailed descriptions of these models and their
use in the 1991 WIPP PA are given in Ref. 9. The analyses described in
this presentation were performed with gas generation in the repository due
to corrosion of steel and microbial degradation of cellulosics and a dual-
porosity (i.e. , matrix and fracture porosity) radionuclide transport model
in the Culebra Dolomite.

There are too many scenarios (e.g. , s(n) and S(l,n) ) to perform a
detailed calculation for each scenario with the ❑odels indicated in Fig. 3.
For example , 3003 scenarios of the form s(n) are required to reach a
cumulative probability of O.9994 (i.e ., all scenarios involving less than or
equal to 10 intrusions) with A - 3.28 x 10-4 yr-l. Construction of a CCDF
for comparison against the EPA release limits requires the estimation of
cumulative probability through at least the O.999 level. Thus, depending on
the value for the rate constant A in the Poisson model for drilling intru-
sions, this may require the inclusion of scenarios involving as many as 10
to 12 drilling intrusions, which results in a total of sevaral thousand
scenarios. Further, this number does not include the effects of differant
activity levels in the waste. To obtain results for such a large number of
scenarios, it is necessary to plan and implement the overall calculations
very carafully. The following describes the approach used in the 1991 WIPP
PA,

As indicated in Eq, (8), the 10,000-yr time interval that must be con-
sidered in the construction of CCDFS for comparison with the EPA release
limits is divided into disjoint subintervals [ti-1, ti] , i - 1, 2, .... nT,
for the definition of scenarios. The following results were calculated for
each of the five 2000 yr time intervals used in the 1991 WIPP PA:

rCi -

rCij -

rGWli -

and

rGk’2i_

EPA normal ized release to the surface environment for cuttings
removal due to a aingle borehole in time interval i with the
assumption that the waste is homogeneous (i.e., waste of
different activity levels is not present), (14)

EPA normalized releasa to the surface environment for cuttings
removal due to a single borahole in time interval i that
penetrates wasta of activity level j , (15)

EPA normalized release to the accessible environment due to
groundwater transport initiated by a single borahole in time
interval i, (16)

EPA normalized release to the accessible environment due to
groundwater transport initiated by two boreholes in the same
waste pane 1 in time interval i, of which one penetrates a pres-
surized brine pocket and one does not, (17)
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Fig. 3. Models Used in 1991 WIPP PA.

with the assumption that the intrusions occur at the midpoints of the time
intervals (i.e. , at 1000, 3000, 5000, 7000 and 9000 yrs) . For the calcula-
tion of rGWli and rGW2i, the accessible environment is assumed to begin 5 km
from the waste panels.

The cuttings releases rCl, .... rC5 correspond to the cuttings releases
for scenarios S(1,0,0,0,0) ... s(0,0,0,0, 1) under the assumption that all
waste is of the same average activity level. Similarly, the groundwater
releases rGWll, .... rGW15 correspond to the groundwater releases for the
preceding five scenarios, and rGW21, .... rGW25 correspond to the
groundwater releases for scenarios S+-(2 ,0,0,0,0), .... S+-(0,0,0,0,2),
where S+- (2,0,0,0,0) denotes the scenario in which two drilling intrusion
penetrate the same waste panel in the time interval [0, 2000 yr], of which
one penetrates a pressurized brine pocket and one does not, and

.S+-(0,2,0,0,0), . . . . s+-(0,0,0,0,2) are defined similarlY. In like manner,
rCl

1
corresponds to the cuttings release for scenario S(j ; 1,0,0 ,0,0)

def ned in Eq. (10) ; rC2j corresponds to the cuttings release for S(j ;
0,1,0,0,0), and so on.

The normalized releases rCi, rCij and rGWli are used to construct the
EPA normalized releases for the scenarios s(n) and s(1,n) . For s(n) , the

normalized release to the accessible environment, CS(n), is approximated by

nBH
es(n) - X (rC + rGWl

j-1 m(j) m(j))’
(18)

where m(j ) designates the time interval in which the jth borehole occurs.
The vector

m - [m(l), m(2), , m(nBH)] (19)
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is uniquely determined once the vector n appearing in the definition of S(n)
is specified. The definition of S(n) in Eq. (9) contains no information on
the activity levels encountered hy the individual boreholes, and so CS (n)
was constructed with the assumption that all was te is of the same average
activity . However, the definition of S(l, n) in Eq. (10) does contain
information on activity levels, and the associated normalized release to the
accessible environment, CS (1, n) , is approximated by

nEH
cs(l, n) - x

j-1 [ 1“dj),~(j)+‘GWIIIO)‘ (20)

which does incorporate the activity levels ancountared by the individual
boreholes. Similar approximations are also possible for scenarios that in-
volve penetrations of pressurized brine pockets. These approximation prO -
cesses are illustrated in Tables 3-4 and 3-5 of Ref. 9.

The scenario probabilities in Eq. (13) and the scenario consequences in Eq.
(20) ware then used in the construction of CCDFS for normalized release to
the accessible environment in the 1991 WIPP PA (i.e. , CCDFS of the form
appearing in Fig. 2) .

EXAMPLS RSSULTS FROM 1991 WIPP PERFORMANCE ASSESSMENT

The 1991 WIPP PA considered the effects of 45 imprecisely known
variables (i.e. , nV - 45 in Eq. (2)); a summary of these variables is given
in Table 3-1 of Ref 11. As indicated in Eq. (4), a distribution
characterizing subjective uncertainty was developed for each of these
variables. The impact of this subjective uncertainty was then estimated
with use of a Latin hyparcube sample [22] of size 60 generated from these
variables according to their aasigned distributions (i.e. , nK - 60 in Eq.
(5)). A complete PA was conducted for each of these 60 sample elements in
the manner described in the preceding section, which lead to the 60 risk
representations R(xk) in Eq. (6).

The result of greatest interest in PAs for the WIPP is the CCDF for
normalized releaae to the accessible environment that is used in comparisons
with the EPA release limits. As shown in the laft frame Fig. 2, 60 such
CCDFS were obtained in the 1991 WIPP PA (i.e., one CCDF for each of the nR -
60 sets R(xk) in Eq. (6)). When taken collectively, these 60 CCDFS provide
an approximation to the distribution of CCDFS for comparison with the EPA

release limits that results from subjective uncertainty. Each CCDF in Fig.
2 is summarizing stochastic uncertainty. As shown in the right frame of
Fig. 2, the distribution of CCDFS in the left frame can be summarized with
a mean CCDF and selected percentile curves. In past studies,, the mean CCDF
has often been used for comparisons with the EPA release limits .[14]

As shown in Fig. 1, the CCDFS in Fig. 2 were constructed from the pro-
babilities and normalized releases associated with individual scenarios. In
turn, the releases to the accessible environment for the individual
scenarios were constructed from a groundwater release component and a cut-
tings removal component as shown in Eqs. (18) and (20). The subjective
uncertainty in tbe groundwater release component for selected scenarios is
shown in the right frame of Fig. 4, where box plots are used to summarize
the groundwater releases associated with individual scenarios (i.e., the
releases rGWli and rGW2i in Eqs. (16) and (17)). Each box plot summarizes
the groundwater release to the accessible environment for a particular
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scenario (i.e. , in the element of the vectors CSi(Xk) , k - 1, .... nR - 60,
in Eq. (6) corresponding to groundwater release to the accessible
environment for the particular scenario under consideration)

The left frame in Fig. 4 has the same structure aa the right frame but
is for normalized releases to the Culebra, which are then transported to the
accessible environment by groundwater flow to produce the releases
summarized in the right frame. As comparison of the two sets of releases
shows , a given release to the Culebra produces a substantially smaller
release to the accessible environment. Thus , even given the substantial
uncertainties present in the analysis , the processes associated with
groundwater transport in the Culebra significantly reduce releases to the
accessible environment over the 10,000 yr period specified in the EPA
regulations.

A summary of the cuttings releases associated with selected scenarios
is given in Fig. 5 (i.e., the releases rCi in Eq. (14)) . Again, tha indivi-
dual box plots are summarizing subjective uncertainty. As comparison with
the releases to the accessible environment due to groundwater transport in
the right frsme of Fig. 4 shows, the total release to the accessible envi-
ronment is dominated by cuttings removal.

The results shown in Eq. (6) create a mapping from analysis inputs
(i.e., xk) to analysis results (i.e., R(xk)). ‘his mapping can be explored
with sensitivity analysis techniques based on stepwise regression analysis,
partial correlation analysis, examination of scatterplots, and possibly
other procedures. [23,24] Such analyses are investigating the impact of
subjective uncertainty in individual input variables on PA results. As an
exsmple, the results of a sensitivity analysis based on stepwise regression
analysis with rank-transformed data [25] for scenario #_-(2,0,0,0,0) is
presented in Table 1. The importance of the individual variablea is
indicated by the order in which they enter the regression analysis and by
the changes in R2 values as additional variables enter the regression model.

A regression-based sensitivity analysis for scenario s(1,0,0,0,0)
performed poorly, producing regression models with faw independent variables
and low R2 values. Due to the full stratification across the range of each
sampled variable produced by Latin hypercube sampling, the examination of
scatterplots often facilitates the understanding of such analyses. AS shown
by the scatterplots in Fig. 6, SALPERM (Salado permeability) acta as a
switch, with no releases to the Culebra occurring when SALPERM is less than

approximately 5 x 10-21 m2. However, givan that a release occurs, the size
of this release is controlled by SOLPU (Pu volubility) The effect of
SALPERJ4 results from its influence on the time required to fill a wasta

panel with brine from the Salado Formation.

The sensitivity analyses presented in Table I and Fig. 6 are investi-
gating results associated with individual scanarios. As illustrated by Fig.
7, a sensitivity analysis can also be performed for the distribution of
CCDFS in Fig. 2. In particular, Fig. 7 presents plots of standardized rank
regression coefficients [25] for the probability of exceeding specified total
release values on the abscissa of Fig. 2. In this analysis, the effects of
subjective uncertainty on the characterization of stochastic uncertainty is
being investigated. The dominant variable ia L4MBDA (rate constant in
Poisson model for drilling intrusions) , with a lesser effect indicated for
DBDIAM (drillbit diamater) . The effect due to DBDIAM results from the
discretization of the waste into a finite number of activity levels (i.e.,
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radioactivity concentrations in Ci/m2) for the implementation of cuttings
removal and is associated with the appearance of the flattened regions in
the CCDFS in Fig. 2.

DISCUSSION

The performance of a complex analysis requires a clear conceptual
structure for what is to be done. Such a structure contributes to a
logically consistent analysis and provides a framework to guide the actual
calculations that must be performed. The ordered triple representation for
risk proposed by Kaplan and Garrick is used to provide the conceptual
structure for PAs conducted for the WIPP. Use of this structure leads
naturally to the many components of a PA, including (1) the development of
scenarios , scenario probabilities and scenario consequences, (2) the
separation of stochastic and subjective uncertainty, and (3) the
construction of CCDFS for comparison with the EPA release limits.

The division of a PA into the determination of scenarios, scenario
probabilities and scenario consequences provides a clear identification of
the three major parts of a PA. Further, the ordered triple representation
does this in a way that provides both a clear link with the theory of
probability and perspective on the interpretation of calculations performed
in support of a PA. As a reminder, there are actually three entities
involved in the definition of probability: (1) a set S, called the sample
space, that contains everything that could occur for the particular
“universe” under consideration, (2) a suitably restricted set $ of subsets
of S, called a Borel or u-algebra, and (3) a function P defined for elements
of 8 that actually defines probability. Collectively, the triple (s,~,p) is
called a probability space. The scenarios considered in a PA are elements
of the set S, and thus are subsets of a sample space. Thus , the logical



~ABLE1. STEPWISE REGRESSION ANALYSES WITH RANK-TRANSFORMED DATA FOR EPA
RELEASE TO THE CULEBRA DOLOMITE OVER 10, OOOYRAND EPA RELEASE ATONE
QUARTER, ONE HALF AND THE FULL DISTANCE TO THE ACCESSIBLE ENVIRONMENT
OVER 10,I%O YR FOR SCENARIO S+-(2,0,0,0,0).

Releaae at Release at Releeaeat
Release to Culebra Quarter Distance Half Distance Full Distance

Stepe variaMeb R2C Variableb R2C VarieMeb R2C Varlableb R2C

BHPERM 0.46 + MKDU
1 II

MKDU

II I

0.25 -
SOIAM

MKDU
0.57 + CULFRSP

0.24 -

3 BPPRES
CULFRSP 0.43 + CULFRSP 0.44 +

0.66 + GRCORI GRCORI 0.49 - GRCORI
4 SOLPU

0.51 -
0.69 + BHPERM BHPERM 0.55 + SOLNP

5 BPSTOR
0.58 +

0.73 + SOLNP FKDPU
6 SOLU 0.76 +

0.60 -
MKDNP

7
0.64 -

SOLNP o.6a +
FKDNP6

BHPERM

BPSTOR

CULFRSP

FKDNP

FKDU

MKDNP

MKDU

SOLAM

SOLNP

SOLPU

SOLU

SUMMARY OF VARIABLES APPEARING IN REGRESSION ANALYSES

Borehofeparmeebility. Range lxlCr14to lxlCrllm2.

lnitiaf preeeure of brine pocket lnCeetlle Formation. Range l.lx107t02.1 x107 Pa.

BulketoretlvHy of brlnepocket lnCeetlle Formetlon. Range 2x10-2 t02m3.

Frecture epacingln Culebre. flange 6x10-2 t08m.

Frecturedlstribuflon coefficient for Npln Culebra. Range 0tolx103m3/kg.

Frecturedlatributlon coefficient for Lfln Culebre. Range 0tolm3/kg.

Gas enemtlon mteforcorroalon ofateel under lnutiatdco~hions. Range Otol.3
$xIO mol/r#aurface araaateel. a.

MatrLxdlatrlbuflon coefficient for Npln Culebre. flange 0tolx102m3/kg.

Matrix distribution coefficient for Uin Culebre. Range: 0tolm3/kg.

Volubility of Am+3in brine. Range 5x10_ 14tol.4mol/A

Volubility of Nplnbrina. Range: 3x10-16 t02x10_5mol/l for Np+4and3x10-l~to
1.2 x 10-2 mol/.l for NP+5.

SOfubllity of Pu In brine. Range 2 x IO-16 to 4 x 10* mol/2 for PU+4 and 2.5 x 10-17
to 5.5x104 mol/1 for Pu+5.

.%fubility of U-in brine. Range 1 x 1015 to 5 x 10_2 red/l for U+4 and 1 x 10-7 to f
mol/.l for U +5,

a Staps in etapwise ragreselon anelysis.
b Variable edacted at each step In regression analysis.
c R2 value at each stepwith sign of regression coafflcient in parentheses.

starting point in scenario development is the determination of the sample
space S. Then, the actual scenarios used in a PA (i.e., the Si in Eq. (l))
are subsete of this sample space. There is no unique way to develop these
scenarios and the level of detail used in the definition of scenarios will
depend on the needs and constraints associated with a particular analysis.
However, scenarios will always be subsets of the sample space and thus
scenario probabilities (i.e., the pSi in Eq. (l)) are defined for subsets of
the sample apace. Similarly, consequence results (i.e. , the cSi in Eq. (1))
are calculated as one outcome to be used as the result associated with every
element of a set (i.e., the elements of the set or scenario Si in Eq. (1)).
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Fig. 7. Standardized Rank Regression Coefficients for Exceedance Prob-
abilities Associated with Individual CCDFS in Fig. 2 for Normalized
Release to the Accessible Environment.

The separation of stochastic and subjective uncertainty is very
important in a PA for a complex system. Without this separation, it is
difficult to assess the meaning of probabilistic statements coming out of
the assessment (i.e., do these statements represent different possibilities
that have a real potential of occurring, a degree of belief with respect to
different alternatives, or some combination of the preceding) The
probabilities pSi appearing in Eq. (1) represent stochastic uncertainty. As
indicated Eqs. (2), (3) and (L), subjective uncertainty enters the PA due to
analyst uncertainty with respect to how to formulate the risk representation
in Eq. (1) What is referred to as uncertainty and sensitivity analysis is
typically an attempt to assess the impact of subjective uncertainty.
Uncertainty and sensitivity analysis play an important role in a PA by both
indicating how much confidence should be placed in the results and where
efforts can be invested most productively to improve this confidence.

With respect to stochastic and subjective uncertainty, there are act-
ually two probability spaces: A probability apace (S~t, ti=t, pat) for
stochastic uncertainty and a probability space (SSU, &u) PSU) fOr
subjective uncertainty. A PA typically uses a different experimental design
to cover each space. The division of the space S~t associated with
stochastic uncertainty into the scenarioa Si in Eq. (1) is a form of
importance sampling. The scenarios Si are the strata in this design and the
scenario probabilities pSi are the strata probabilities. Importance
sampling is often used to assure the inclusion of potentially important, but
low probability, events in an analyais. The sample space S=u associated
with subjective uncertainty is covered with a design based on random or
Latin hypercube sampling. This design ia used to assure the full coverage
of the range of each variable and is often used when either there is not
enough information to plan an analysis based on importance sampling or the
presanca of a large number of potential dependent variables makes the use of
importance sampling impractical. Due to the large number of independent and



14
dependent variables, classical experiment designs (e.g. , factorial,
fractional factorial, .,.) are typically not very useful for covering SSU.

The primary focus of the EPA standard for the geologic disposal of
radioactive waste [13] is a CCDF for normalized radionuclide release to the
accessible environment that is required to fall below the bound indicated in
Fig. 1. This CCDF is displaying the effect of stochastic uncertainty and is
constructed from the probabilities pSi and the vectors cSi in Eq. (1).
Further, as illustrated in Fig. 2, the presence of subjective uncertainty

leads to a distribution of such CCDFS. Upon first encounter, many
individuals feel that this standard is novel. However, the EPA standard is
actually an example of the Farmer limit line approach to specifying
acceptable risk[ 26 ] and is conceptually equivalent to the large release
safety goal proposed by the U.S. Nuclear Regulatory Commission for nuclear
reactors. [27,28]
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