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Quadrupole Configuration for the Normal Setting.
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Target Quad 1 Quad2 Quad3 Hod 1

Figure 1: Quadrupole configuration in the horizontal plane.

U U |

Target Quad 1 Quad2 Quad3  Hod1

Figure 2: Quadrupole configuration in the vertical plane.
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Particle Identification in Experiment NA44
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Figure 3: Cypr as a function of Qinv. The systematic and statistical errors have been
added in quadrature.
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Table 1: Table of experimental results and corrections

Qinv | Craw SPC Acceptance Coorr Coulomb C%.B.T 8C siatistic 6Coynenulic
(MeV/c) correction | correction correction
3 1.169 1.220 0.514 0.733 1.565 1.148 | 0.031 0.126
15 1.143 1.224 0.710 0.994 1.161 1.134 | 0.011 0.032
25 1.136 1.226 0.720 1.003 1.074 1.077 | 0.008 0.029
35 1.080 1.224 0.706 2.933 1.037 0.968 | 0.007 0.026
45 1.034 1.223 0702 0.887 1.020 0.905 | 0.007 0.023
55 1.004 1.220 0.701 0.838 1.012 0.868 | 0.008 0.017
65 0.992 1.217 0.698 0.842 1.009 0.849 | 0.008 0.016
75 0970 | 1.214 0.701 0.826 1.007 0.831 | 0.008 0.012
85 0.979 1.210 0.705 0.835 1.005 0.840 | 0.008 0.012
95 0.942 1.206 0.700 0.796 1.005 0.799 | 0.008 0.007
110 0.946 1.200 0.713 0.809 1.003 0.812 | 0.006 0.006
130 0.942 1.189 0.716 0.802 1.003 0.805 | 0.007 0.004
150 0.937 1.179 0.720 0.796 1.002 0.797 | 0.007 0.004
170 0.946 1.170 0.718 0.795 1.002 0.796 { 0.008 0.004
190 0.945 1.160 0.726 0.797 1.001 0.797 | 0.009 0.004
225 0.934 1.139 0.739 0.785 1.001 0.785 | 0.007 0.004
275 0.947 1.108 0.768 0.805 1.001 0.807 | 0.012 0.004
325 0.901 1.080 0.790 0.769 1.001 0.770 | 0.022 0.004
375 0.890 1.054 0.798 0.749 1.000 0.749 | 0.059 0.004
Table 2: Fitted results of Gaussian and exponential parametrizations
Parametrization | Normalization A Riny (fm) | x*/Naos
Gaussian 0.800 + 0.002 [ 0.46 £ 0.04 | 4.50 £0.31 | 18.1/16
Exponential 0.794 + 0.004 | 0.77 +£0.08 | 3.54 £ 0.33 | 12.0/16
for the Gaussian parametrization and
CiBr(Qine) = A(1 + A2 Fliny) (14)

for the exponential parametrization. The fitted parameters are listed in Table 2 and shown
together with the data in Fig. 3, where a renormalization to the Gaussian fitting result
has been applied (i.e. divided by 0.80). If the standard Gamow correction is used instead
of the Coulomb wave-function correction applied here, the resulting parameters for the
Gaussian fit are A = 0.52 + 0.04, Rin, = 4.12 £ 0.20 fm.

It is seen that the Gaussian fit deviates from the data mainly around 80 MeV, whilst
the exponential fit is excellent.

The Gaussian fit 1) allows comparison with other experiments and models, despite
its larger x2. The value in Table 2 is much larger than that obtained in experiments on
hadron collisions, consistent with the picture that we are measuring a geometrical effect
related to the large dimensions of the nuclear system. However, it is not much larger than

1) It is important to note that the Rin, in the Gaussian is very often introduced in such
a way that the value is /2 larger than in this paper. We have decided to adhere to the
definition used in Ref. [18].
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T+ 7+ Results of Experiment NA44

The following results are corrected with gamov, acceptance and single pas

distortion. Directional analysis are done in the 4 GeV pion rest frame (cent

the acceptance).
1. Fit to Q;n

A

Riny (fm)

S-Pb Peripheral

0.53 £ 0.01

3.86 = 0.11

2.0

S-Pb Central

0.59 £ 0.02

9.02 £ 0.15

1.7

p-Pb

0.47 £ 0.01

2.54 £ 0.07

2.1

- R. Fit to Qrs, Qro, Q1

A

Rrs (fm)

RTO (fm)

R; (fm)

S-Pb Peripheral

0.41 £ 0.02

1.32+0.14

2.17x0.15

2.66 = 0.20

S-Pb Central

0.53 £ 0.04

4.22 £+ 0.41

4.19 1+ 0.28

2.871+0.36

«
o

p-Pb

0.40 £ 0.01

1.52 + 0.08

1.70 £ 0.08

1.06 £0.13

2.1

3. Fit to Qr, @1, Qo

A

Rr (fm)

Ry (fm)

7 (fm)

S-Pb Peripheral

0.43 £ 0.02

2.30 £0.11

2.541+0.15

0.00 & 0.44

2.7

S-Pb Central

0.53 £0.03

3.97 £ 0.16

2.84 £+ 0.24

0.00 £ 0.54

2.1

p-Pb

1.68 £ 0.05

1.11 £ 0.09

0.00 £ 0.15

2.5

0.43 £ 0.01
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Two Kaon Correlation
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Two Kaon Correlation
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Two Kaon Correlation
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Two Kaon Correlation
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Interferometry Results

from E802/E859/E866

George Stephans
MIT
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Includes work of thesis students Richard Morse, Vasilios
Vutsadakis, Ron Soltz, Vince Cianciolo, Ole Vossnack.

= Detailed description of the data (Radius, what radius?).

= Comments on dynamical correlations between position and
momentum (using ARC).

Physics Goals

* Protons
s Participant volume.
¢ Exparsion?
¢ Shadowing?

° Pions
e Particle production volume.
¢ Secondary interactions?
¢ Shadowing?

¢ Kaons

¢ Strange particle production volume.
* Reinteractions and shadowing minimal?

G.S.F.Stephans BNL interferometry Workshop Apr i6, 1993



Data Characterization

« All data uses hardware gates on charged particle multiplicity (TMA).
e Central gate typically 10-15%. No additional offline cuts made.
¢ Non-central data use hardware gates on TMA.
¢ Non-central data gated in software on a range of actual TMA.
e Some Si + Al central data has been additicnally cut using a software

trigger on Zero-Degree Calorimeter (ZCAL).

e Most data taken with the spectrometer spanning a laboratory angle of
~14°- 26° relative to the beam (the so-called 14° setting). Vertical
aperture is about 13°.

¢ Integrated field of typically ~0.5 Tm results in a minimum laboratory
momentum of ~400 MeV/c.

¢ Particle identification using Time-of-Flight (TOF). Cutdff is at +3c from
expectzd TOF.
* Contamination estimated to be a few % or less.
¢ Upper momentum cut-off ~1.8 GeV/c for pions and kaons, ~3.5 GeV/c for
protons.

* Resolution in relative momentum is gq-15 MeV/e. (protoas p - (G,

* Pair reconstruction inefficiencies relatively small above q~20 MeV/c.

G.S.F.Stephans BNL Interferometry Workshop Apr 16, 1993
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System

E802
Si + Au

Si + Al

E859
Si + Au

Si + Al

ES802/E859/E866 Correlation Data
Number of pairs (in 1000's)

Number in parentheses are unanalyzed

Central

Central

Central

Peripheral
Semi-Peripheral
Central (19°)
Central (24°)

Central
Peripheral
Semi-Peripheral

Si + Ag Central

E866

Au + Au Central (21*)

G.S.F.Stephans

Detected Particle
n+ n- Proton Kt
30 59 82
8 23
(~100) (~100) 16.5
(16.5 and 3K")
52
52
86
(~10)
41 38
42
42
42
120

BNL Interferometry Workshop Apr 16, 1993



C,(q) for different radii
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Analysis Procedure

< Data displayed as Cz(q)=Prob(p1,p2)/Prob(p1)Prob(p2) with different
pormalization conventions for plots.

e Denominator in C2 (by convention called "Background”), is formed by
mixing particles from different pair events.

e Guarantees singles distribution is from correct event type.

e Guarantees presence of residual correlations.

¢ Protons
e Correlation only weakly affected by Fermi statistics.
¢ Correlation dominated by proton-proton resonance.
« Source size affects height of enhancement in relative momentum.
e Can only measure source volume, not different components of source
size.
e Coulomb correction typically not divided out in displayed data.

* Displayed data fit to a calculation of the combined effect of the
resonance, the Coulomb repulsion, and the Fermi statistics.

e Start with radius to calculate theoretical Cg(q).
e This needs to be parameterized to save time.
e Add experimental effects to theoretical prediction.
« Response function gencrated with full GEANT simulation.
o Biggest effect is resolution in measuring relative momentum.
o Compare to data, optimize radius to fit data.
¢ Data normalized to theory at large relative momentum.

o Small Lorentz correction necessary. Effect is larger for Si+Al due to
acceptance of spectrometer.

G.S.F.Stephans BNL Interferometry Workshop Apr 16, 1993
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* Pions and Kaons
¢ Correlation dominated by Bose-Einstein statistics.
* Non-Coulomb residual interaction negligible.
¢ Source size affects width of enhancement in relative momentum.

¢ Can use different components of relative momentum to measure
different components of the source dimension.

¢ Coulomb correction typically divided out in displayed data.
e Displayed data fit to an analytical parameterization.

¢ Data normalized to 1.0 at large relative momentum.

G.S.F.Stephans BNL Interferometry Workshop Apr 16, 199
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Q, .Q, Distributions for K” and " Pairs
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Praliminary

Q, and Q; Distributions for K" and " Pairs
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Radii Summary
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Si+Al = 2 +X
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Si+Au/Al:

Radius vs. Multiplicity
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Summary

¢ Pion central and non-central data follow a general scaling with the number
of projectile participants.

¢ Differences between Si + Al and Si + Au, as well as between n+ and n>
need to be understood.

¢ Kaons come from a source that may be slightly smaller than that for pions.
¢ Protons follow a general scaling with the total number of participants.

¢ ARC predicts large effects due to dynamical correlations between the
direction of the momentum and the location in the source.

* Lots of exciting opportunities to study the dynamics of particle production.

G.S.F.Stephans BNL Interferometry Workshop Apr 16, 1993
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- TwaPariicle Correlations-
W+umummaes

—— Dy Mew— Baikd Collntonysions BEER; 681, MGt Univ:, Univ.-of Pitt: -
SUNY Stony ecols, Uain o e Paske, Wayae State Usiv., Yale Ualv.

o @ Tworpaticia comelation functions — Space-Time info.
203 ~ 200 A-GeV/c;

Appuéﬂ soutce size obtained;
Resonance effect: A ‘ﬂ'i w, &

e The reaction:
14.6 A-GeV/c#Si + Pb — 2 pa.rtxcles + X (a/a,,,m <10%)

e The correlation functions:

Co{Qune) = %"J(%*'—'% Que = 03-yPE

No(Qune)-same m‘; N“(Q‘,,,)—mi_xing event8

o Theresults: ~287 o 1991 3 days
(1) Result of the two-proton correlations
(2) Result of the two-pion correlations, arx® xt-x~
(3) Correlation functions from RQMD

e Conclusions
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th (GeV/c)

#Si+ Pb = ©*,p + X

C661 Y24 A1outwijald ‘G8ZY v 183
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Summary

e Proton and pion correlation functions, studied in the E814
forward spectrometer, are reported;

e Non-Gaussian distributions in #*-x* and x~-7~ correla-
tion functions, especially with the low p; pion pairs, were
observed;

e RQMD simulations: Gaussian distribution with excluding
A, non-Gaussian like distribution in normal event.

The two-pion correlation function
is sensitive to resonances, e.g. A.
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Method

RQMD (Heinz Sorge)
stop at t=50fm/c

l

Apply y,pr (but not phi) cut

'

List of P, T of particles

l

Correlation Function Code
(Scott Pratt)
“phi” cut applied (p,<40MeV/c)




Technique

Given: r and p of last interaction

Calculate: symmetrized wave-function = ¢;3(r;, p1,rs, p2)
7+~ pairs: Coulomb + strong wave-functions
K* pairs: Coulomb wave-functions
|#2|? normalized such that for plane-waves it is
1+ cos(g - (r1 — r2))

1 i I I R
q
Calculated correlation function (in a given bin of g) is then
Na o
Colg) = ¥ 42 /N (), (1)

where:

numerator analogous to N in ¢ bin in an experiment,
denominator N(g) = N pairs in bin,
analogous to N pairs in experimental “background” sample



Bose-Einstein Correlations
of Pion Pairs and Kaon Pairs from RQMD
(LA-UR-92-3191)

J. P. Sullivan, M. Berenguer, B. V. Jacak,
M. Sarabura, J. Simon-Gillo, H. Sorge,
and H. van Hecke
Los Alamos National Laboratory, Los Alamos, NM 87545

S. Pratt
Michigan State University, East Lansing, MI 48824

Bose-Einstein correlations between charged pion and K7 pairs
are calculated using the space-time and four-momentum distri-
butions from RQMD for 200 GeV /nucleon 3254+ Pb and compared
to pion correlation measurements from two CERN experiments.
Good agreement is found. The predicted apparent radii from
the K+ correlation functions are smaller than the corresponding
pion radii — reflecting differences in their space-time distribu-
tions, the influence of detector acceptance, experimental trigger
conditions, and differing contributions from resonances.
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Contributions of long—lived resonances
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Contrlbutlons of Iong—llved resononces

0.08
. 200 GeV/u S+Pb (RQMD)
£ K*, 2<y<4
= 0.04 —+ .
SRR *
S L .‘. . ‘ + p
05 =50 7600 > 750" *2b00
pr (MeV/c)
¢ 47 9 3%
other 95% other 97%

NA44 2<y<4



& [ // /,
.@.‘%;\\r\&/,L \\\\Q/%/ 0
AW y \\ o,

ROR SR
* .g%:h &:\5%0/ \\//

5 5 Association for Information and Image Management

T 2 4, g §
\‘i;,.‘v, \\\\// 1100 Wayne Avenue, Suite 1100 //// \ I:\// f@@?// //\id‘

Silver Spring, Maryland 20910
301/587-8202

Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm
nulnnlnnlnuh|||I|m|n|llunlunhu|||1|lhmll||ll|mluull|||||ml|n||11||luu|||||!nnlnuinuh|||l1nlluuluuluuluuL
Illl]llTllHH(llllllllI|Hll|l|ll|ll|l||lll|l|II|IIII]|IIII
1 2 3 4 5

Inches B 128 fi2s

10 e

=== w [ 22

_ L "=

\Ng _2-__-_0—

LD

= s

6%// ::"s
~;§/// A /// o 'x ﬂ' .
b R ' &
By /// 2\ e
£y \ MANUFACTURED TO AIIM STANDARLS O SON
oy BY APPLIED IMAGE, INC. 4
//// A\






1.8

1.41

0.6

= 0.90
= 5.4fmA/Z = 3.8

RQMD ~*", 122mr

200

100

—500 300
qinv

cawm2dt . xamac,



1.8

1.4:

0.6

A =0.83
R = 6.5fm/ﬁ =4.¢

o0
o —0220000,6950°

RQMD ntt ddmr

|

L

100 200 300

qinv

400



2.3

0.9

93/02/01 17.58

1.6}

K* vs K~ from RQMD

oK*

oK-

t

WWHH

V

60 200
aw (MeV/c)

300



2.5

1.5 J
A ; ]

X W..WM#WM Wﬁﬁﬁ
S ——

N

93/04/01 17.20

—K pairs

| T T T T T T

1
i

B NA44 K~

-

Z}tﬁﬁ* A RQMD K- (Preltm:«ary)

L E A A e ey e s
¢+ B NA44 K° ]
| e O RQMD K*(Pvdz‘m:wy)

15_ POo

[ -lﬁ

'f o ﬂq"fﬂ‘?
0.5~ ———700 200 300300

Qi (MeV/c)



Intermittency and Interferometry?

Michael Tannenbaum
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Results from AGS E802

Negative Binomial Distribution Fits to
Multiplicity Distributions in Restricted én Intervals
from Central O+Cu Collisions at 14.64 GeV/c
and their Implication for “Intermittency”

M. J. Tannenbaum, BNL
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How is this related to Intermittency?

There is a phenomenology, dubbed “Intermittency” \\
which attempts to explain
the large single event (JACEE) bin-by-bin multiplicity fluctuations
as the result of large local fluctuations on many scales
which exhibit self-similarity and power-law scaling.
According to this phenomenology,
intermittency would be indicated by a
power-law increase of Normalized Factorial Moments of multiplicity
in rapidity bins 67 as the bin size is reduced:

Fy(én) o (8n)™* . (1)

The Factorial Moment with the clearest interpretation is

=<n(n-1)>=1+£_l @)

F;
! <n>? woop

Since we start from the Negative Binomial Distribution
we know ALL the moments

Y AU A UG S Y |
o= “(l+k) p’—p+k F,-l+k (3)

The Normalized Factorial Moments of the NBD are particularly simple.
_<n(n-1)...(rR-g+1)>

Fy <ot (4)
1
Fg = l+‘k-
o= (14 )(142)
Fo= (140450143

-1
F, = Fen(t+1) (5)
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Negative Binomial
Instead of the probability of m successes on n independent trials,
each with probability p of success & q = 1 — p of failure,
one can fix the required number of successes k
and ask the distribution of n for fixed k.
This is negative binomial. Let [ =n — &

I+k-1) |
Mk -1y P 1 (1)

and P(1) is normalized for 0 < I < oo.

P(n)y = P()], =

k
<n>=- <I>=<n>-—k=k> (2)
p p
2 2 q
o,=0;=k= 3
| I p? (3)
This goes to the standard form with the substitution
<l>= - =1 _ _k (4)
R PETYE TP
Poisson

The Poisson Distribution is the limit of the Binomial Distribution
. for large number of trials n with very small probability of success p
such that the expectation value p = np is fixed

P(m)|, = — (5)
<m>=p oh=p (6)
o? 1
W "
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0+Cu Central Multiplicity data in eta bins
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NBD O+Cu Central Multiplicity in eta
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~ Results of NBD Fits to J.Kang data MJT
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Correlations and Multiplicity Distributions
The Mueller Moments —'
“Physics Highlights of 1972"

Al Mueller pointed out that Multiplicity Distributions would be
POISSON
Only if the particles were emitted INDEPENDENTLY,
WITH NO CORRELATION

The “inclusive” probability of observing a particle at rapidity ¥ is:
ldo dn

—_ —— = — 1
The Joint probabibility of a particle at ¥, and another at y; is:
1 d%
p2(y1,92) = P (2)
and for g particles at y1,¥2..-Yq
1 dio
po(¥1s--Y%) = S dy (3)
If there is no correlation,
then the emission of the particles is statistically independent, and
p2(y1,92) = pim1)pr(v2) (4)
pours---9a) = pa(w)er(y2) - P1(va) ()

Factorial Moments Appear

The integrals of the g-particle densities pg(y1,- - 1 Yq) OR aNY interval are
the unnormalized Factorial Moments on that interval:

/dylfdyg pa(y1,92) =< n(n—1) > =<n>? F (6)

/dyl--udyq pq(yl,...yq) =< n(n—l)...(n—-q+1) > =<n>1F, (7)



The Mueller Moments and Correlation Functions

Mueller Introduced a series of
Moments and Correlation Functions
“Mueller Moments”

The Mueller moments are just the unnormalized Factorial Moments,
with all combinations of lower order g-particle correlations subtracted:

fo = <n>*F-fi
fi = <n>'F—(fi +3fif2)
fo = <n>*Fy— (fi+6fif2+3f; +4f1f3)

where f; =<n>.

The Mueller Moments are the integrals of
the Mueller Correlation functions

fa= /dylfdyz Ca(y1,¥2) (2)

where C, are the g-particle rapidity densities p,
with all combmat:ons of lower order correlations subtracted out.
The most famous being:

Ca(y1, 12) = p2(y1,92) — p1(¥1)P1(3e) (3)

The 2-particle correlation is also expressed
in the Reduced or normalized form

_ C2(y1’y2) _ P2(y11y2) _
By 92) = 200 N oi(wn) ~ pa(w)en(v2) ' ®)

Note that the 2-particle correlation function used for the study of
Quantum Statistical (Hanbury-Brown Twiss) Correlations is

Pz(yl,yz)

pi()pr(vs) Ry 32) +1 (5)

Tz(yl,yz) =
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Two Particle Correlations, Intermittency and NBD

The importance of Two-Particle correlations
to completely determine the multiplicity distribution
was pointed out by Fowler and Weiner Phys Rev D17, 3118 (1978)

More recently, Carruthers and Sarcevic PRL 63, 1562 (1989)
contended that “the increase of bin-averaged factorial moments
with decreasing size of the rapidity bin 6y can be understood on the basis
of conventional short range correlations... .”

The Reduced 2-particle Correlation is parameterized
in an exponential form

Ca(y1,¥2) e
R 5 = ____—’-—— — e ]yl yz|/€ 1
(y1,¥2) A )
Then
én ‘
I Fy—1= f dy1dy; C2(1, ¥2) _n(l- e~6n/%) 2
<n>? >t 6n/2£

where ¢ is the correlation length.



My Neat Formula
but Van Hove did it first!

Since I knew the distribution to be NBD, with F, —1=1/k

6
k(éﬂ) = kO(l _176/—265/26) (3)
where
11
&=%—Rm®' (4)

Note that this formula represents a mathematical expression of my conjecture that the
observed linear increase of k with §7 is an indication of the randomness of the multiplicity
in adacent 67 bins, while the constancy of k with increasing §n would be an indication of
100% correlation. In the limit §7 < £, when the 67 interval is well inside the correlation
length, k(89)=k,, a constant. In the limit §n >> £, k increases linearly with &7,
k(6n) ~ 6m/2¢, as expected from convolutions of independent bins.
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2.0, 32 and 65 respectively. This indicates a collective effect as the source of fluctua-
tions and Bose-Einstein correlations are an obvious candidate. Simulated events from the
Fritiof model [33) which does not produce nonstatistical fluctuations, were used to verify
that background and detector effect do not reproduce the obscrved moments.

To further investigate the source of the fluctuations Bose-Einstein correlations as well
as Coloumb interactions of pions were introduced in an approximate manner into the
Fritiof model [34]. The parameters were chosen to reproduce the experimental correlation
function C2(Qrnv)- The resulting moments which include the contributions from the
detector background a:r_e'j shown in Fig. 1.d for OAu central collisions. One finds that the
data in Fig. 11b can be'reproduced to a large extent.

i
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Fig. 12: Central OAu collisions: normalized factorial moment Fy = versus the number
of phase-space cells M and correlation function C;' versus m* = my,, — 2my for data
(a,b) and the modified Fritiof model with detector simulation (c,d). Full and open symbols
in (a.c) show results defore and after removing electrons (preliminary).

The number of pion pairs of opposite charge is not enhanced by Bose-Einstein correla-

tions. However pairs of oppositely charged particles are contaminated by electron-positron
pairs from photon conversion. Figure 12 displays the normalized moment F;'(M) and

12
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£082 04 Cy Contral( ZCAL) Multiplicity distributions in bins of pseudo-

wgidity 3y = 6.1,0.2,0.3...1.0 exhibit excellent fits to Negative Bino-
wial Distributions.

The k paramater of the NBD fit increases linearly with the &7 interval
which is an unexpected and particularly striking result.

Due to the well known property of the NBD under convolution, the lin-
ear evolution of the NBD parameter k(6n) with §n for Central 1¥0+Cu
collisions indicates that the multiplicity distributions in adjacent bins
of pseudorapidity 6n ~ 0.1 are largely statistically independent.

This explains the large single event bin-by-bin multiplicity fluctuations
observed ty the JACEE collaboration from a Cosmic Ray Si+AgBr
event.

The evolution of k(6n) can be neatly related to the 2-particle short-
range correlation strength and correlation length.

1 <n(6n)>? _ 1 én/2¢
-1 f'dy;dm Ci(v1, ¥2) R(0,0) (1 — e=7/¥)

The derived parameters from the E802 k(én) indicate a weak correla-
tion strength R(0,0) = 0.066 + 0.004 and a very short rapidity corre-
lation length § = 0.12 %+ 0.01, e.g. compared to p— p collisions where
UAS5 measured R(0,0) ~ 2/3 and § ~ 3.

k(én) = F (1)

The weak short-range correlation in nucleus-nucleus collisions had been
predicted—since the conventional nucleon-nucleon short-range correla-
tions should be washed out by the random superposition of correlated
sources so that eventually only Quantum Statistical (Bose-Einstein)
Correlations should remain.

Direct measurements of this B-E correlation in the variable 67 (instead
of the usual variable (Q = p; — p2) are being attempted—to verify the
derived parameters.

»



Bose—Einstein Correlations

in 200A GeV S+Au Collisions
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Table 2 - TPC Parameters.

Drift Volume

Readout Area

Sampled Track Length

Drift Length

Drift Field Ne(Ar)/10%CHq

Max. Drift Time Ne(Ar)

No. of Readout Modules

Module Dimensions

Pad Size

No. of Pad Rows/Module (Total)
No. of Pads/Row

No. of Pads equipped with Electronics
Gap Sense Wire-Pad (Grid cathode)
Sense Wire Diameter

Field Wire Diameter

Sense Wire Voltage (19

approx. 2500x1000x1400 mm?
2370x1260 mm3
1200 mm

1000 mm
200(115) V/em
30(20) us

6

790x630 mm?
39.5x5.5 mm?
15(30)

128

5376

3(4) mm

20 pm

125 ym
approx. 1200 V
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HBT Correlations at STAR

John Cramer
University of Washington
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Silicon Vertex Tracker (SVT)
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Maximum Measurable Radius

h

pr) = X
rt(Q") qt, q1 pt) \/5'2 + qt2

1 IKo(vU12 F vi2)l®
\J2 109(2 Ko(FFF)Ko(52) )

Transverse masses:

my = \/(pt + gr)? + p?

mo = \/(Pt —gr)% + p?

Functions:

up = [51,2:(77&1 + my) + ’izﬁg(ml — my)]?
_ 1\2,,70,2 w2l
vi2 = 2[(57) +(3) Jmyma sinh?[5(y1 y2)]

Ko = Irregular Modified Bessel Function.



Source Parameter Sensitivity
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An Experimentalist's
Wish List

An event generator that includes Bose-
Einsteir. correlations to all orders.

A "T.C." multi-particle Coulomb
correction for HBT correlations.

A tractable formalism for analyzing
multi-particle HBT correlation data.

Better ways of including experimental
error in all aspects of HBT data analysis.

More consideration of high-multiplicity
effects: (super-radiance, stimulated
emission, coherence, coalesence, ... )

More consideration of "information
theory" aspects of HBT: (source imaging,
extraction of higher

moments, ... )
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HBT Interferometry with
PHENIX

Bill Zajc
Columbia
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CHAPTER 3. PHYSICS CAPABILITIES

Table 3.1: Physics Variables to be Measured by the PHENIX Experiment

S —
Quantity to be Measured

Category”

—Physics Objective

ete™, uty~

*

BCD = Basic collisions dynamics.
QGP = Effect of QGP phase transition.

°p— utu~/p— 7w, do/dp, BCD Basic dynamics (7. . etc.,) for a hot gas,
w — ete” Jw — nw, do/dp, transverse flow, etc.

e ¢-meson’s width and me_.c+.- QGP Mass shift due to chiral transition (C.T.) (2]
¢ —ete /o — K*K™ QGP Branching ratio change due to C.T. (3]
¢-meson yield (e*e”) ES Strangeness production (gg — s5)

o/ —ete,uty” QGP, QCD | Yield suppression and the distortion
Y = ptp” of pr spectra due to Debye screening
T,—ptp” in deconfinement transition (D.T.) [4]

o1 <mp(ltl") <3 GeV ES, QGP | Thermal radiation of hot gas, and

(rate and shape) effects of QGP [5. 6, ?]
o mps- > 3 GeV = pty” QCD A-dependence of Drell-Yan, and
QGP thermal ptpu~ [5, 6,7, 8]

o0 — wr,ete, 7Y QGP Mass shift, narrow width due to C.T. 2]

ey coincidence

o ey, e(pr > 1 GeV/c) QCD, QGP | ¢t background, charm cross section [9)]

Photons
00.5<pr <3GeV/cy ES, QGP | Thermal radiation of hot gas, and
(rate and shape) effect of QGP [6, 7]

e pr > 3 GeV/c 1 QCD A-dependence of QCD v

e 79, n spectroscopy BCD Basic dynamics of hot gas, strangeness in 7

o N(x°)/N(x* 4 x~) fluctuations QGP Isospin correlations and fluctuations (10, 11]

o High pr x° 1 from jet QGP Reduced dE/dz of quarks in QGP [12]

Charged Hadrons
o pr spectra for 7*, K*, p, p BCD Basic dynamics, flow, T, baryon density,
stopping power, etc.
QGP Possible second rise of < pr > (13

e ¢ = K*K~ ES, QGP | Branching ratio, mass width (3, 14]

e K/x ratios ES Strangeness production

e v + KK HBT BCD Evolution of the collision, Ry

QGP Long hadronization time (FRout > Raide) [19)

e Antinuclei QGP High baryon susceptibility due to C.T.? [16)

e high pr hadrons from jet QGP Reduced dE/dz of quarks in QGP (12)

Global
o Nio: (total multiplicity) BCD Centrality of the collision
e dN/dn,d*N/dndé,dEr[dn BCD Local energy density, entropy
QGP Fluctuations, droplet sizes [17)

ES

.

= Thermodynamics at early stages.

QCD = Study of basic QCD processes.
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6-2 CHAPTER 6. TRACKING SYSTEM
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Figure 6.1: Schematic of PHENIX detector including the tracking subystem.
<K sepamh
to ~ 2 GeV

loss (dE/dz) information.

The momentum measurement is accomplished by placing the low mass drift chambers
as close to the vertex as track densities allow. Location at small radii allows an easier
measurement of the bend angle from the axial field magnet and better identification of
tracks not originating from the vertex. The TEC is located behind the RICH so that photon
conversions generated by its material (about 0.8% X,) do not degrade the performance of
the Cherenkov counter. Pad detector locations are determined by their need to be positioned
close to both the detectors providing track vectors (DC and TEC) and those with which they
interact on the trigger level (RICH and EMCal).

M




6.5. SYSTEM PERFORMANCE 6-39

PHENIX Tr.Momentum Resolution

3-0 :l T I I' L] ¥ I LB SR l I T T l' T 5
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E - -
™ 1.0
S
S
0.7
0.5
0.3 Ll l l 1 1 l J . ll I 4 [l l L

0.1 0.2 05 1.0 2.0 5.0
Transv.Momentum (GeV/c)

Figure 6.34: Transverse momentum resolution of PHENIX t.ra.cking detector.

the pr of the track. The calculation uses only the information provided by DC1, DC2,
and PCl. The resolution is dominated at low pr by multiple scattering and at high pr
by the intrinsic position resolution of the detectors. The moment arm of the momentum
measurement affects the resolution to a lesser degree. The dependence of multiple scattering
on the momentum and velocity 1/p3d, accounts for the poorer resolution for the kaon as
compared io the electron. At high pr, both kaon and electron momenta, are measured
equally well.

To calculate the particle momenta, a thorough investigation was conducted of the trajec-
tories of charged particles in the focussing field of the Phenix spectrometer. This information
was used to generate a table in which a, {, z;, and ¢ were determined as functions of pr, 2,
8(p:/pr). and ¢o. The parameter a is the angle of incidence of a track relative to the local
normal of DC1. The z position of a track at PCl is z;. The DCI hit location in cylindrical
coordinates in the plane normal to the beam direction is ¢. The parameter ( is the angle
the track makes to the normal of PC1 in a plane containing the beam, and the intersection
of the track with PC1. The vertex position is z,, and ¢y is the initial direction of travel of
a particle trajectory in a plane perpendicular to the beam direction. The first four variables
are those measured by the detectors. The tables were inverted to obtain related tables that
could be used to calculate the three momenta of the tracks from the information measured



HBT MEASUREMENTS
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ESTIMATE OF SYSTEMATIC ERROR
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PHENIX DRQ CAPABILITIES

® Risumy  full (net D‘3‘) machine L <+
® Rssumes uconlin% ot 20 Mb/s

p-p(MB) [ T n77| 276390 30 413
0-O(MB) | 3867 3822898 413 1127
ISI-Si(MB) l 2597 8704569 950 1401
u-Cu(MB) | 1280 25810850 2787 1685 ||
i-1MB) | 641| 60380222 6519 1823
IAU-Au(MB) __408| 100578350 10859 1873
p-p(Cn) 2479 9548222 1031 1426
0-0(Cn) 1371| 23537099 2541 1665
Si-Si(Cn) 796| 48806000 5053 1789
lcu-cucn) | 344| 120433972| 13003 1887
-{Cn) 162| 265818035 28699 1926
: 101| 433805798| 46836 1939
6699 462640 50 516
6480 569789 62 563
6116 783988 85 642
5756 1046486 13 719
5511 1259515 136 772
1161| 29339385 3168 1711
1003| 35320618 3813 1745

925 39048793 4216 1761
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Pion Interferometry
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Pion Interferometry
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Three Pion Correlations

John Cramer
University of Washington
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Two-Body Coulomb Corrections
to Pion HBT Interferometry

Sommerfeld parameter

My = ziZ;0/ B
o, = fine-structure constant= 1/137

Bij = relative velocity between i and j

z; = charge of i particle

Gamow Penetrability

215
G(nl_]) = e2m;; _Jl

Correction to HBT Correlation Function

Con(Gij) = G(Mj) Cran( i)




Three-Body Coulomb Corrections
to Pion HBT Interferometry

e There is no general solution to the 3-body
Coulomb problem.

@ There are sophistocated numerical methods,
but these have never been applied to the
contunuum appropriate to HBT interferometry.

@ However, exact analytic solutions can be
obtained in high- and low-momentum limits:

Limit 1: Nz — 0, Ny — 0, N3 — 0
Limit 2. N = I, Nz — 0, N3 — 0
leit 3: nlz —> 0o, n23 —> ©o, n3l —>

(z3 is negative)




Limiting Cases of
Three-Body Coulomb Corrections

Limit 1: Niz — 0, Nys — 0, N3 — 0
G3(MizyMazs M) = 1 - TN 12N 25+ M)

Limit 2: Niz2 = 1, N2 — 0, N1 — 0
G3(ﬂ12,n23,n31) — G(ﬂu)

Limit 3: Niz =, N2z > 0, N33 > @

G3(Miz, Nz M) = =N*eaN with a=6m

lelt 4: Tllz —> 09, n23 — =00, ']']31 —) -00
(z3 is negative)

G3(MizsN23sNat) = = .114




Ad Hoc "Candidates" for
Three-Body Coulomb Corrections

Fi(Riverside): GS(Tllz,T\za,n:n) = G(M 12)GM2)GM31)

F,(JGO): G3(MizsN2zsN31) = UG(n 12)G(Mx+Na) +
G(nzs)G(Tlsl‘*‘ﬂu) + G(M,)G(M 12+ MN2)]

F3(JGC): G3(Mizs N2z Nat) = G(M i+ M2+Ns0)
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Conclusion:
Preferred Ad Hoc
Three-Body Coulomb Correction

F4(JGC): G3(T\12,n23,n31) =

G(T]12+T\23+n31)[1 +C( ;\‘lg + EL; + T,\l%_l")%]
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Pion Correlations in Proton—-induced

Reactions at Relativistic Beam Energies

Wolfgang Bauer
Michigan State
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