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1. Introduction: What is Hard Diffraction?

Since the advent of hard-collision physics, the study of diffractive processes—
“shadow physics”-—has been less prominent than before. However, there is now
a renewed interest in the subject, especially in that aspect which synthesizes
the short-distance, hard-collision phenomena with the classical physics of large
rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic
scattering from HERA, as well as the theoretical work which relates to it.

The word “diffraction” is sometimes used by high-energy physicists in a loose

way. So I here begin by defining what I mean by the term:

A diffractive process occurs if and only if there is a large rapidity gap in

the produced-particle phase space which is not ezponentially suppressed.

Here a rapidity gap means essentially no hadrons produced into the rapidity
gap (which operates in the “lego”™ phase-space of pseudo-rapidity and azimuthal
angle). And non-exponential suppression implies that the cross-section for creating
a gap with width Az does not have a power-law decrease with increasing subenergy
5 = e®", but behaves at most like some power of pseudorapidity An ~ log 5.

The term “hard diffraction” shall simply refer to those diffractive processes
which have jets in the final-state phase-space. We may also distinguish, if desired,
two subclasses, as suggested by Ingelman: [1]

i) Diffractive hard processes have jets on only one side of the rapidity gap.

17) Hard diffractive processes have jets on both sides of the rapidity gap.
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2. Reggeons and Pomerons

Rapidity gap processes are conveniently described in the language of complex
angular-momentum theory, i.e. Regge-pole theory and its generalizations [2]. While
this subject is not very much in fashion, there is no reason for this. Its foundations
are as solid as QCD itself. The Regge phenomenology for deep-inelastic scattering
is in fact not too unfamiliar. The basic results are contained in the properties of

the moments of the structure functions

1

M(n,Q%) = /dz " Fy(z, Q%) . (1)

0

For Ren large enough M(n,Q?) clearly exists. As Ren decreases, eventually M
becomes singular. It turns out that this singularity can typically be identified
with the analytically continued angular momentum J(t) of the system which is
exchanged between the virtual photon and the nucleon. {Recall that F» represents
the absorptive part of the forward elastic scattering amplitude of the virtual photon

from the nucleon.) The relationship is
n=J0)-1. (2)

For example, for / = 1 exchange (relevant for the nonsinglet structure function
F2, — Fan), the exchanged object is the p and its orbital excitations. The angular
momentum versus mass (or t) is exhibited in Fig. 1. From experiment, one knows

quite accurately J versus t and
J(0)=0.45. (3)

For a clean two-body bound state, the singularity in the n-plane of M(n, Q%) isin

fact a pole, so that as n — J(0)

2 ﬂ (Qz)ﬂnucliof_
M(n, Q%) — B @
and
Fy — 21770} (5)

In this case it is essential to realize that the location of the singularity is indepen-
dent of Q?; in fact the coeficient must factorize into the product of the coupling
of nucleon to Reggeon, and of the Q?-dependent photon-Reggeon coupling.

The physics of the singularity corresponding to “singlet exchange™ is less clear.
However Donnachie and Landshoff [3] do quite well in assuming a pole singularity in
the n-plane (or better, J-plane) at n = 0.08, as well as factorization of the residues.
Indeed they argue that this exchanged object, the “soft Pomeron.” couples to
consistent quarks in a simple way. However the dependence of J upon ¢ (or M?) is
known to be quite different (cf. Fig. 1) than for the ordinary Reggeons, suggesting
a distinctly different dynamical origin.

While the “soft-Pomeron” exchange describes photoproduction and hadron-
hadron collisions well, it fails to describe the sharp rise of F» at small r and large
@? seen at HERA. Here the structure anticipated from perturbative QCD [4], the
“BFKL Pomeron,” is the prime candidate. This singularity is not a pole but a cut

in the n plane, starting at
n = +4uwp (6)

with

12a4én 2
wp= D X 04 (
e
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Figure 1. Regge trajectories: J versus M? for the p, the “soft Pomeron”. and the “pertur-

bative Pomeron.”

The behavier predicted for Fa{r) is

F,_, ~ __I_i._ (8)
ViEn{l/z)
leading to
N M 2
Min.Q?) ~ —HQ) (9)

(n— “"p)
Note that wp may depend upon Q?; there is no contradiction with general

Regge theory because the singularity is a cut, not a pole.

o

The physics of the BFKL Pomeron is glorified 2-gluon exchange: roughly speak-
ing (and only roughly) it is exchange of a gluon ladder. The physics of the urdinary
Reggeon (such as the p) is exchange of a ladder. for which the sides are generally
regarded to be constituent quarks. The rungs of the ladder represent the binding
potential between quarks {nou-perturbative gluons?).

The physics of the “soft-Pormeron”™ is much less clear. Most theorists nowadays
also consider it as derived from two-gluon exchange [5]; indeed in principle it need
not be a singularity distinct from the BFKL singularity. But if soft and BFKL
Pomerons have a common origin, the discontinuity across the cut in the n-plane
must have a quite strong Q? dependence (cf. Fig. 2): it will be a challenge to

theory to exhibit how this comes about.

Hard

/ Pomeron

Soft
Pomeron

7 //W
5 0

—0.

4-54

ImM(n,Q?)
m

Figure 2. Schematic of the discontinuity across the n-plane (or J-plane) singularities for soft
and hard Pomerons.

An alternative view which iz my opinion is also worth consideration [ is



that the soft Pomeron has little to do with gluons but much to do with constituent
quarks and the spontaneously broken chiral phase of QCD. Manchar and Georgi (7]
have argued that at energy scales below 1 GeV (distance scales greater than 0.2f),
the appropriate description of the strong interaction is an effective action built
of constituent quarks, Goldstone pions, and a small amount of gluons. Such a
picture is motivated by the success of the additive quark model for spectroscopy
and soft-collision dynamics. as well as by the small size of the constituent quarks
(as measured by 6gq ~ 4 mb). It is certainly not obvious that the Manohar-Georgi
effective action is capable of producing the needed soft-Pomeron s-dependence. If
so, 1 would suspect that the (quite old-fashioned) ladders with pions (and ¢7). as
elements (cf. Fig. 3) have to be main ingredients in building up such a Pomeron.

A fresh look at this very old question may be of use.

Y Y
Vl”“p P
T
T T
(o)
T T
[¢]
p p= P
Y Y
494 7665A3

Figure 3. Soft-Pomeron forward scattering amplitude for scattering of real photons.

~1

3. The S-Channel View of Hard Diffraction

Traditionally ladder-exchanges are best described in #-channel Regge terms.
But it seems to be the case that most-—but not all—-of the physics of the perturba-
tive BFKL Pomeron is more transparent in s-channel language. This is especially
evident of the work of Nikolaev and Zakharov [8], and of Mueller {9]. The reason for
this can be traced back to the basics of light-cone quantization (10]. For diffractive
processes there always exists a reference frame such that zero pseudorapidity oc-
curs in the center of the rapidity gap. Consequently in such a frame all final-state
particles have small production angles; they are unambiguonsly either left-movers
or right-movers. This will be true at the parton level as weil: wee partons play a
relatively inconsequential role.

In perturbative QCD, as in QED, the essential interaction between the left-
movers and right-movers will be instantaneous Coulomb gluon-exchange. The dy-
namics is the Coulomb interaction. During this interaction the number and impact
parameters of the incident partons do not change. Most complications arc asso-
ciated with the formation of the parton configurations. With the exception of
effects related to ultraviolet-divergence renormalizations. these occur on a long
{time-dilated) time scale.

Because impact-parameter is conserved during the collision (impact-parameter
is the high energy limit of orbital angular momentum). it 1s advantageous to
Fourier-transform out of transverse-momentum space and into impact-space as
much as possible. It is also convenient to use color singlet projectiles as well, so
that the basic interaction is between color-dipoles. We shall hereafter consider
scattering of a virtual, highly spacelike photon on another less virtual. but space-

like photon. The process is double pair production of quarks QQ and ¢ via single



gluon exchange. The amplitude in impact space is easily written down (cf. Fig. 4

for some notation)

7(Q.Ql9.9) = ¥(Q,Q.20)V(Q. Qlg,9)¥(9.7. 2) - (10)

Here, in an obvious notation, Q,a, ¢, 7 represent impact parameters, not momenta,
and zy, z, are longitudinal fractions of the quarks. The potential V is a dipole-dipole
potential. Recalling that a Coulomb potential in momentum space is

47 a,

V(t)= ; (11)

and that the Fourier transform of such a V' is a logarithm

@k sy d7may 2
/ = —— R = — - 9
V(b) @ e 2 adnb (12)
we get for the dipole-dipole force
V(Q.Qlp.p) = aultn(Q — ¢ + (@ ~ 7)° — n(Q ~ §)° ~ £n(Q ~ ¢)?)

(13)

@-Q9 @-9Q
:’2“’"0‘0)'[@—@)2 @-Q

where the last step is appropriate if (Q — Q)2 < (q—19)°.

For the latter case we can expect a pair of left-moving, nearly balanced high-pp
dijets with p? ~ (@ — Q). On the other hand, if there is a close collision, say,

between ) and ¢, because

—)~ Q-9 ~(Q-9°~R (14)

Ol

Q-9 <(

then

V(Q.Q) ~ a,tn .(Q—;Q (15)

and the process is just quark-quark “Coulomb”-scattering from the contents of

\t\ (1-2p)
/q Zr

W‘“&q o

Figure 4. Double pair production via gluon exchange in the collision of two spacelike virtual
photons.

somewhat “resolved” virtual photons (cf. Fig. 5), leading to nearly coplanar dijets

with a large rapidity interval between them.

Q
v —<—Q
Y g

q
404 TEE5AS

Figure 5. “Coulomb” interaction of two quarks via single gluon exchange.

We do not detail the nature of the wave functions (basically Fourier transforms
of old-fashioned-perturbation-theory energy denominators); this can be fourd else-
where [8,11]. We do however make mention of color-factors. In what follows, it
will be useful not to sum colors early. A good rule is to specify the color of each

outgoing quark (as opposed to antiquark) and the color of the quark-index of each

10



outgoing gluon. Once the color-flow diagram for the amplitude is drawn, the colors
of outgoing “antiquark” lines are fixed. When we deal with multigluon final states
these details will be very important.

So far, constructing the impact-space amplitude does not look too vital. How-
ever when one considers multigluon production the benefits multiply. In any case,
to go back to a momentum-space amplitude one writes

P EQ T (POipessT =~
HRan=/—%§%ie”W”““nanw. (16)

Setting Q = 0 and not integrating over P avoids extraneous é-functions and/or

areas of the universe. Evidently momentum conservation is implied, so

P+P+p+p=0. (17)

®a 0=

- 1 766546

Figure 6. Final-state configuration corresponding to the process in Fig. 5.

We now consider a simple hard-diffraction process, corresponding to the final
state shown in Fig. 6. A simpler electroweak prototype is obtained by replacing

each photon by a W and considering the Coulomb contribution shown in Fig. 7.

11

u (red)
W+
— <D
Y
w+
—<—d
u (green)
454 TOE5AT

Figure 7. Modification of the process in Fig. 5 by replacement of virtual photons with virtual
W’s. and the exchanged gluon with an exchanged photon.

The final state morphology is clearly what is shown in Fig. 8 and the amplitude

in impact space is just

(2]

4 — - Q) .
T =t 4(Q.Q)n {Q—f’—)l +p,7) - i
9 R?
Hadronization, according to the “antenna rules,” is localized to the regions al-
lowed by the radiation from the color dipoles. This is to be contrasted with the
.

hadronization from single gluon exchange, most conveniently described in terms of

a “double-sided lego plot” (Figs. 9 and 10) [12].

7

7

494 T] 7685A8

ol
C

Figure 8. Final state hadronization appropriate to the process in Fig. 7. The red color
dipole radiates gluons (and hadrons) only into the phase-space labeled "Red.”

12



d
\‘9- u (green)

404 7665A8

Figure 9. Color-flow diagram corresponding to the strong process in Fig 5.

%
u W e
% /% ’ N

Figure 10. “Double-sided” lego plot describing the hadronization from the strong Coulomb-
gluon exchange process down in Fig. 9. In the large N, limit the contributions from front and
back sides are incoherently added.

In order to obtzin a QCD diffractive amplitude. two Coulomb gluons must
be exchanged. In impact-space, this is immediate. In order to restore the color

singlet structure, both gluons must be exchanged between the quarks; thus the

replacement is simply (cf. Fig. 11)

V = asfn M = [u,fn M}~ . (19)

R.’

13

The final-state morphology of this two-gluon exchange process should be essentially
the same as that for the photon exchange process illustrated in Fig. 7 and 8. The
nonlocality of the two-gluon system is limited to a small space-time region; there is
no large “antenna” available to produce leading-log soft radiation. This assertion
has been in fact checked by Zeppenfeld [13].

In any case, to logarithmic accuracy, a, ~ log_l so that Ea. (19) implies that
the single-gluon exchange amplitude is modified by a constant factor {a, log]. Thus
the ratio of the cross-section with gap to the cross-section without gap should not
depend on the external details of positions and transverse momenta of tagging-
Jjets unless there is a gross change in the external parameters relative to what we
specified {14]. The result is roughly, when the color factors, etc.. are more carefully

considered

Tgap o2 L0
—== = 0.1 {|5] {20
Ono gap < >

with (|S|?) an absorption correction arguably not too important for this case [15].

w* _ Ul(red)
D

W+ K<— a
U (green)

404 7665A11

Figure 11. Color-flow structure of the two-gluon-exchange amplitude

Gross changes in the external parameters. however. can be of interest. If we

change the kinematics to what was discussed at Eq. (13), where (Q—0Q}? < (y—7)~.

14



then the exchanged gluon sees a small Q@ color dipole, and the modification is
V=0,@-@d = V=|o@-9-d . (21)

where d is the (large) dipole-moment provided by ¢ and g. The ratio of second-order

to first-order amplitudes is suppressed by a factor

2, (@-Q)-d=a, %l (22)
1
where P} ~ (Q - Q)% > p; ~ (¢ — §)7*. Consequently
o, p?
a ; oy
8P~ o? _‘2 (23)
Ono gap t

is power-law suppressed. This is actually very relevant to the HERA processes.
The above argument is due to Collins, Frankfurt, and Strikman [16}. and detailed
calculations are provided by Dounachie and Landshoff [17].

But within these caveats. the proportionality of two-gluon and one-gluon ex-
changes argues that (to logarithmic accuracy) the iwo-gluon-exchange “Pomeron™
in general acts the same way as a single gluon. If this is interpreted. as first
suggested by Ingelman and Schlein [18]. in terms of a “parton-distribution of the
Pomeron.” it implies [19] there will be a super-hard component ~ &(1 — r) or

{1 — )7} corresponding to this notion of *Pomeron = gluon.”

15

4. Multijet Final States

We now generalize these ideas to multigluon final states. Our {formalisi rests
heavily on recent work by Nikolaev, Zakharov, and Zoller [20], Mueller and Pa-
tel [21], Del Duca [22], and of course Lipatov {23].

Our goal is to deconstruct the BFKL Pomeron as much as possible. That is. we
would like to understand as explicitly as possible the structure in impact-parameter
space of the multijet production amplitudes and raultijet tinal states which build
the BFKL cross-section. As wiil become quite obvious, the arguments are still
sketchy and far from rigorous. In what follows, we simplify to the Jarge N, limit
of QCD.

We again consider the collision of virtual 4's with produ-tion of two pairs of

quark-antiquark jets. Now consider the modification of the original amplitude

To = v(Q.Q)V(QQlgg) v(q.7) (21)

due to the emission of an extra soft gluon into the middle of the lego plot. We
assume “multi-Regge kinematics,” i.e. that all extra gluons are well-separated from
each other in the lego plot. as well as from the leading tagging-jets. They there-
fore will not influence the conservation of energy and longitudinal momentum.
Only transverse momentum balance will matter: we will usually assurue all cmit-
ted gluons have transverse momenta (and/or impact parameters) comparable in

magnitude.

Just as in Weiszacker-Williams QED, the momentum-space amplitude for emis-

sion of a soft (left-moving) gluon from a (left-moving) quark is just e‘k;,'ki

16



Fourier transformation to impact space leaves this structure the same

b (25)

—1
25 b2

&£k ek | —i &k ~i )
[ e [ = g v

It is therefore clear that the appropriate modification to the impact-space left-

moving amplitude is

€9-Q) e(¢-Q
(9-@Q) (- Q) (26)

= ¥(Q.Q,9)¢- VoV (Q.719Q)

¥(Q.Q) = ¥(Q.Q.9) [

where ¢ = g is the transverse coordinate of the gluon. We now scatter this left-
moving system with the right-moving system by Coulomb-gluon exchauge. There
are two ways of doing this corresponding to the gluon jet being either on the front
side or the back side of the lego plot. In accordance with Figs. 12 and 13 we obtain

two terms. Tp; has the gluon emitted onto the front side of the lego plot:
Tor = ¥(Q.Q.9) V{Q7l99)v(q9)
=¥(QQ) -V, V(QQlga)] V(Qqlg7)v(g7) -
The rear-side amplitud= Tyg is (cf. Fig. 13):
Tio = ¥(Q.Q.9)V(9Qlg9)¥(47) = ¥(QQ) [e- V, V(QQIg7)] V(9Qlqg)v(q7) -
(28)
Notice these two amplitudes will not interfere: the color structure of the final states

is totally different. This will be true in general and leads to important differences

from the structure of QED intermediate states.

17

Q (red)

3
L__),_ g {green)
l i (g=-9)

q (blue)

01

Front
side

= Back
Q @ side

%

Ql
R=2

Red

4 n 7685412
Figure 12. Color-flow diagram for single-gluon production: structure of the lego plot

Note also that in the above expressions for T and Ty; we have considerable
symmetry. It should be the case that we get the same answer no matter whether ¢
1s associated with the wave function of the right-moving system or the left-moving
system. While it is tempting to assume that a parts-integration allows the gradient
operation €+ V, to be performed either to the right or to the left. this is not quite
the case.

The residual dependence is probably compensated by similar dependencies of
virtual corrections. We set this problem aside; regrettably the virtual-correction
issue is beyond the scope of this talk.

In any case, when we generalize to production of n gluons a different formal

18



Q (red) Q (red)
Q
g(green)
~ g(green)
{blue)
q (blue) 9
\+ a
V.,
W%/ Front
Q f@ / side
&1 )
78w

al

N
DN\

76ESA13

Figure 13. The amplitude for gluon g emitted onto the rear of the lego plot.

structure 1s convenient. We consider the transverse z,y plane to be the complex

plane, and replace the impact parameter b by its complex representation
bz,y)=> (z+1y)=b (29)
with
b* = (z —1y). (30)

Then for a circularly polarized gluon our generic “antenna amplitude” is simply

e-b e 1 1 (b-0")
YV = — — = e = 3
€ V‘ = Iblz Ibalz b b bb; ( )

If the other circular polarization is chosen, then one simply complex-conjugates
the expression. But in general none of the multigluon amplitudes we consider will
interfere with any other multigluon amplitude. So only one convenient polarization
need be chosen, as long as one remembers at the appropriate times a factor 2 for

sumn over polarizations as well as the factor 3 for the sum over colors.

Q (red)

g,(green)
gz(yellow)

q (blue)

\ \\\ E
0@\\\5\\ ¢

Figure 14. Two-gluon emission amplitude.

Upon writing down T3 {cf. Fig. 14, and recognize that ¢ = §) we see a pattern

20



of cancellation emerge:

Tozr = ¥(QQ) [e- V1 V(QQl91,9)] [e- V2 V(QT1929)] V(Q9:219D)v(47)

— 1 1 1 1 v =
= — —- 1% P fy
Qe (Q - Q- 91) ((Q —g2) (91— 92)) (Qg2leai¥(aa)

Q-Q

= ¥{(QQ) RS V(Q72199)¢¥(99)
(32)
and evidently
Tom = 0(QQ) Q= QVIQIID) (33)

(Q@—g1){g1—g2)--(gn-1— gn)

There is only one simple denominator-factor for each color-dipole associated with
the front side of the lego plot [24]. This simplification allows an easy generalization
for inclusion of gluons emitted onto the back of the lego plot as well. ror example
for emission of one gluon on the backside, with rapidity between the first and

second of two front-side gluons, we get

‘I’(QQ){ HQQ\f:b)H -‘(Qfxlf«b)H - \(bfdf»q)]ubf \g7)(qd)

oh

(@-09) o @-hH) (b— 1)
(L-QUH-Q) (b=Q)b~f) (b-f)h~-f)

= ¥(QQ)

x V(bflqq)v(qq)

_ Y(QA)Q ’—Q—)‘lb‘fziﬁ)d’(%ﬁ) ‘
(b= Q)b— £)] (@ — M) — f)]

(34)
The important feature of this structure is that the answer does not depend upon
whether the rapidity of gluon b is large or small compared to fi-—or for that matter

fo. The transverse dynamics on the front of the lego plot is decoupled from the

2

transverse dynamics on the rear. With this example it should be clear what the
general amplitude with m gluons by ... bm on the back of the lego plot and n gluons

fi-.. fu on the front:

o YQQQ-QPV(bnTalet)v(e) (35)
(@-QNQ - f).--(fam1 = fa)fn = bm)(bm — bu—1) ... (b1 = Q) '

This expression is constructed for the case in which all partons except ¢ and § are
left-movers. We are motivated to describe the more general case, since it would
clearly allow generalization of the rapidity gap theorem described in the previous

section. This invites the following restructuring

T = _W(QQ)Q ~ Q)*Clbnfalad)g - 3)*¥(47) C(36)
Q-QQ-h) - (fa—)g—G—bm)..- (b1 — Q) '

The “Coulomb kernel™ (¢ which must be inserted, in a reference frame in which

7 = 0 lies between gluons b = by, b' = by and f = fr. f' = feyg 15 defined as

=N =b) (b= ) =)

cFIf b = , 37)
A0 = = = v (%

The final form of the amplitude is thus
W(Q.Q)NQ - QY COFIS B ) g — D' (g.9)S (38)

where the string function S is just the product of denominator factors around the
entire color loop. It is perhaps more suggestive to write
c__ ,—F 24
S=c¢ n(g, — grv1) (39)
1€ loop

exhibiting a string-like, nearest-neighbor Coulomb interaction between neighboring

gluons in impact space. The “Coulomb operator™ € acting on & cuts the single

[
[



Q Q Q Q
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. —>—f . f
484 T665A15

Figure 15. Effect of the Coulomb operator on the “string function.”

closed loop into two loops, one left-moving and one right-moving, which locally
interact with each other via the dipole-dipole potential (cf. Fig. 15).

Again the structure of Eq. (38) invites the supposition that the amplitude
as written does not depend upon which choice of reference frame one makes, i.e.
which of the gluons are right movers. It is not hard to show that if one changes
frames so that one of the gluons, say f, is turned from left-mover into right-mover,
then the difference of amplitudes is a total derivative with respect to f. However
we have not succeeded in arguing away the surface-term. The omission of virtual

corrections is, at the least, one possible reason for the failure.

With all these preliminaries and caveats it is now immediate to generalize the
rapidity gap theorem stated in the previous section. The amplitude with one-gluon

exchange is of the form

23

o ___¥QQ)Q-0p [a log (=L = 8')
"TR-Q@-f)(F-b)--(b—Q) L (- -0

(g - 7)%¢¥(qq) }
(-G-8 -7)---(h-9f

The color structure is totally explicit here, so that it is now trivial to see that just

(40)

as before, the second gluon is inserted between the interacting left-moving and

right-moving dipoles in order to create the gap. Again the result is

ap _ RO gap | a n(b_f')(f_bl)]
182 =18 foun (=] “n

Is the argument of the logarithm large or small? For it to be large one pair of
partons must have a close encounter while the others do not. From the structure
of the amplitude Tinn, Eq. (40), it would appear that if @ and § are close together
while Q and g are much further apart then the ratio of the pt scale on the back
side of the lego plot to that on the front will go as the ratio of |Q — ¢ to |Q — .
This follows from the scale-invariance of the underlying dynamics. It seems in fact
reasonable that most of the time this will be the case and that on average, it is
unlikely that both sides of the lego plot get populated with BFKL jets of comparable

pe. It will be interesting to examine this assertion in a more quantitative and
systematic manner.

In any case, the estimate of rapidity gap fraction made in the previous section
can be applied directly here. The ratio of gap-cross-section to that without a gap

(for a given choice of gap) is

do, e Ty Dty - 2 :
y Sap('ll Tns Pty Pin) - 03 <log pt.2from> . (42)
Tno gap(7]1~-'7]ﬂ7plx Pl;v) t rear

This estimate must still be scrutinized with respect to additional non-perturbative

(or higher-order) corrections. We will return to this question later.
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We have in this section claimed that these tree-approximation amplitudes build
the BFKL cross section. This is an oversimplification, because virtual corrections
(in particular ultraviolet renormalizations) have been ignored. We believe these
corrections do not greatly modify the conclusions drawn here, because we take
ratios of amplitudes to make the argument, and the renormalizations can be ex-
pected, to good approximation, to drop out. It is actually very interesting to
take the amplitudes as constructed, square them, integrate over gluon phase space
and sum over m and n. As is clear from Eq. (35) infinities will occur when
impact-parameters of neighboring gluons (on the same side of the lego plot) coin-
cide. A regularization procedure is needed. Nikolaev, Zakharov, and Zoller [20]
have introduced a regularization prescription which suffices to produce the energy-
dependence of the BFKL cross section. Their regularization is very close to the
( ) recipe often used to regularize collinear divergences in the more conventional
DGLAP evolution equation [25]. However the corresponding ( )+ operation is
here carried out not in momentum space, but in impact space, and regularizes

(box-diagram) ultraviolet divergences.

5. The Nature of the Virtual Photon

In most of the previous discussion we have assumed the applicability of per-
turbative QCD. This, even for the scattering of spacelike virtual photons from
each other, is inadequate. There are good reasons, both experimental and theo-
retical, for expecting the virtual photon at very small z to have nonperturbative
structure. From the experimental side, one sees an A-dependence of deep-inelastic
scattering at very small z which goes as A?/3 indicative of a nontrivial photon

substructure which can be geometrically absorbed on a large nucleus [26]. This is
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also a reasonable expectation from the theoretical side [27]. We now re\.ew these
arguments.

At very small z, generalized vector-dominance arguments, as we used in the
previous sections, are correct as a matter of kinematics, not dynamics. The ba-
sic issue, as addressed at length in the previous subsection within the context of
perturbative QCD, is what constitutes the substructure of the components of the
photon wave function on arrival at the target (which here we take as a nucleus,
in the fixed-target reference frame). There are two important cases, as we might

already anticipate from the discussion in Section 4.

1. The simpler case: The photon converts virtually to a symmetric high-p; QQ
pair (plus BFKL extras), which on arrival at the nucleus is a small pene-
trating color-dipole, and which leaves leading dijets in the lego plot. Such
a mechanism leads to a virtual photon cross-section or which scales and is

proportional to A:

— A (43)

2. The less-simple case: In this case the photon converts virtually to an asym-
metric Q@ pair; so asymmetric (in z and (1 — z)) that the @ and @ “jets”
have pr < 1 GeV. This configuration is unlikely (the probability is roughly
1 GeV/Q?), but when it does happen there is so much color separation
that non-perturbative parton evolution occurs between the @ and Q. On
arrival the distribution of partons in the virtual photon, up to a parton en-
ergy ~ (1 GeV/z), is arguably as nonperturbative as those in an ordinary
hadron [28]. This is quite sufficient to allow such a virtual photon to be

absorbed in nuclear matter in a way not dissimilar to how a p or other ordi-
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nary hadron is absorbed. The cross-section o7 in this case is 7 R - A3 the
geometrical cross section, multiplied by (1 GeV?/Q?), the probability of the
aligned configuration

or ~ (g-;’i) xR AP (44)
In the generic case, no jets will be seen in the lego plot.

This less-simple case is in fact the vector-dominant description of the final state
to be expected in the old-fashioned, pre-QCD parton model. It is still the most
reasonable description outside the kinematic region of BFKL enhancement. And
even within the BFKL framework discussed in Section 4, the “back side of the lego
plot” could still be at—or beyond—the edge of applicability of perturbative QCD
when, for example, the pr of the tagging jets @ and § becomes small, but wher
the pr of jets @ and ¢ rem.ain large.

The best test for distinguishing the two cases is clearly to look for the leading

Q — Q dijets as tags.

6. Hard Diffraction at HERA

Finally we reach the territory of greatest contemporary experimental interest.
There are several mechanisms for diffractive final states in deep-inelastic processes.
For the “simple” photon configuration we may entertain the diffractive final states
shown in Fig. 16. Cases (a) and (b) are diffractive hard processes; it is reasonable
to use the two-gluon exchange picture for these cases. Cases (c) and (d) are hard
diffractive processes, and for this situation again the two-gluon exchange picture

(with BFKL enhancement if necessary) is appropriate.
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Figure 16. Examples of hard diffraction relevant to HERA. The mechanisms ¢~ creation of
a dijet from a small QQ color-dipole (a) coherent from the proton, (b) incoherent but soft, (c)
incoherent but harder, (d) via a mechanism analogous to that exhibited in Figs. 8 and 11. The
lego plots are drawn for reference frames for which the virtual photon and proton are collinear.

We must distinguish whether the momentum-transfer ¢ is large or small com-
pared to Q?. If t is small, there can be expected to be, for balanced dijets, the
suppression of the diffracted final state, as discussed in Section 3 (Eq. (23)). If
t =~ Q? the diffractive cross-section may be small, but the ratio of one-gluon ex-

change may be enhanced (cf. Eq. (23)).

Most of these cases are already reasonably well-studied by others and in any
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case not well-studied by myself. The only additional comment to make here is that
in all the cases discussed above, the characteristic mass of the diffracted system
(the virtual-photon fragments) is $ 1/Q?. This will be in contrast to the situation

for the structured virtual photon (case 2 in the previous section).

Figure 17. Single and double soft diffraction.

N
A
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The generic final state for the “not-so-simple” aligned-jet photon configuration
is a uniform distribution not too dissimilar from hadron-nucleon scattering. If the
virtual-photon is just as opaque as a pion, we could expect diffraction-dissociation,
via the non-perturbative “soft-Pomeron” physics, to occur just as often. This
happens a large fraction of the time, ~ 10%. The final state, shown in Fig. 17,
typically will have a diffracted mass M;" large compared with Q?; because the gap

width is not exponentially suppressed

. do do

. ——— = —— = constant . 45
X a’Mi, d"]gap ( )
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However, it is not clear how structured the “aligned-jet” virtual photon really
is. But a reasonable guess is that it is as opaque as a single constituent quark.
The picture is that the slow member of the pair has time to be “fully dressed,”
while the fast member does not, and acts as a pointlike parton. If this notion is
true, one might be able to obtain information on constituent-quark opacity from
deep-inelastic scattering from nuclei.

Of this profusion of options for diffractive final states, one discriminant stands
out rather clearly:

For the color-dipole, simple “direct” mechanism, the distribution of diffracted
masses is peaked near Q?, while for the aligned jet mechanism it is broader. 1

would suggest plotting /W}YdN/d}WfY versus M%/Q?. Here

dN = 1 do (46)
o

is differential in other phase space variables as appropriate. If the variable
= (47)

is preferred, one might try BdN/df versus § instead. The generic behavior for
the two cases are sketched in Fig. 18. Especially interesting will be to map the
transition from the photoproduction limit, where some soft diffraction should exist,

to the BFKL region of Q> 2 10 GeV? seen in the HERA data.

It is clear that this field is making great progress both theoretically and exper-
imentally. We can expect major advances in the understanding of the nature of

the virtual photon and of hard diffraction in the near future.
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Figure 18. Expected behaviors for (a) the diffractively produced symmetric dijets, and (b)
soft non-perturbative diffraction.
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