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PREVIOUS RESULTS

During the last two years we have continued our
investigation of ultrasonic wave propagation in fluid-filled
porous materials. First, we studied the feasibility of using
different surface modes to characterize both synthetic and
natural rocks. We introduced a novel experimental technique based
on the direct generation of surface waves by edge excitation. We
used two low-frequency (100-500 kxHz) shear transducers in pitch-
catch mode to launch and receive the ultrasonic surface wave. The
contact transducers were coupled to the opposite edges of the
porous specimens with normal polarization relative to the
surface. The same technique was successfully used to generate
Rayleigh~type surface modes on the free surface of both dry and
water-saturated specimens, as well as Stoneley-type interface
modes on the fluid-loaded surfaces of immersed samples. Our main
achievement in this area is the realization that, due to surface
tension, practically closed-pore boundary conditions can prevail
on the free surface of a water-saturated rock for completely open
pores. As a result, the velocity of the true surface mode might
be much lower than the Rayleigh velocity of the dry skeleton.
While the shear velocity drops a meager 2-5% upon saturating the
specimen with water, the corresponding drop in the true surface
wave velocity is a disproportional 20-50% for high~permeability
rocks such as sandstones. This behavior is similar to the
transformation of a Rayleigh-type surface mode to a much slower
Stoneley~type true interface mode on the surface of a submerged
solid while the original mode.becomes leaky and quickly
disappears. To the best of our knowledge, this is the first
report on this kind of behavior of the true surface wave on the

free surface of water-saturated rocks.
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Beside investigating guided acoustic waves in water-
saturated porous materials, we also studied bulk wave propagation
in air-saturated specimens. We further developed our experimental
technique which is based on the transmission of airborne
ultrasonic waves through air-filled porous plates. This method
can be readily used to study the freguency-dependent propagation
properties of slow conpressional waves in different porous
materials including natural rocks. By simple technical.
improvements, we extended the measuring range to 1-500 kHz, so
that we could continuously cover both low-frequency (diffuse)
and high-frequency (propagating) regimes of the slow wave
propagation. In the diffuse region, which is usually below
100 kHz, both the velocity and the attenuation coefficient are
primarily determined by the static permeability of the material.
In the propagating region, the velocity depends on the tortucsity
only while the attenuation coefficient depends alsc on the pore
size and shape.

One of our main experimental results is that the attenuation
coefficient always approaches a linear dependsnce on frequency at
high frequencies. This means that the conditions for slow wave
propagation do not improve at high frequencies in the way
predicted by the Biot theory. The normalized attenuation
coefficient, i.e., the total attenuation over one wavelength, is
a key parameter in determining the feasibility of slow wave
measurements by transmission-type experiments. In the diffuse
region, the normalized attenuation coefficient is extremely high
(260 dB). We found that in the propagating region it drops to a
significantly lower value of 10 dB or so, but it also beccmes
constant. This unexpected behavior is due partly to increased
viscous drag caused by surface roughness and inherent microscopic
impurities and partly to elastic scattering caused by the uneven
cross-section of the pore channeis. These effects can be combined
into a new material parameter measuring the high-frequency
dynamic permeability of the material, which, together with the
static permeability measured at lower frequencies in the diffuse
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region, facilitates a more complete characterization of the pore
structure. Experiments were made on well-defined metallic and
ceramic porous materials as well as more complex real rocks of

approximately 100 mD or higher permeability.

PROPOSED RESEARCH

During the next two years of this proposed work we plan to
continue our investigation of ultrasonic wave propagation in
fluid-saturated porous materials. This research effort should
find applications in the geophysical evaluations of fluid-bearing
porous rocks, where parameters such as tortuosity, shape factor,
permeability, saturation level, and internal impurity are
difficult to measure by conventional technigues using low-
frequency acoustic or other methods. Our proposed work is focused
on two novel experimental techniques developed during our current
research project.

We have already demonstrated that, thanks to the surface
tension effect, the true surface wave propagating on the free
surface of a water-saturated rock can be readily used to assess
the dynamic permeability of the specimen. We are going to further
develcp our direct excitation technique to increase the measuring
accuracy by using special data acquisition techniques such as
laser interferometric detection and more sophisticated signal
evaluation methods including spectrum analysis and extensive
spatial averaging. Our analytical efforts will be directed at
develaping an inversion method for evaluating the dynamic
permeability from the velcocity and attenuation coefficient of the
true surface wave. In order to achieve this goal, further efforts °
will be made to study the frequency dependence of both
propagation parameters. The suggested technique might well
complenent the currently used Stcneley‘Wave technique whenever
the surface is not submerged in the fluid, as in most borehole
applications.



i

W e

MN \‘Iln o

&

We are going to further develop ocur slow wave inspection
technique for air-saturated porous solids, too. In particular,
two basic problems of great practical importance will be
addressed. First, we are going to modify our experimental
arrangement so that both transmission and reflection of airborne
ultrasonic waves can be used to evaluate the porous specimens. It
is expected that, in this way, the permeability threshold,
currently at approximately 100 mD, can be further reduced by at
least one order of magnitude. Such improvement would extend the
field of application of this simple material characterization
technique to many oil-bearing rocks of practical importance.
Second, we are going to study the effect of partial water-
saturation on the low- and high~frequency behavior of the dynamic
permeability. These results might find important applications in
developing new experimental techniques to measure the relative
permeability in porous materials.



I. PROGRESS REPORT

Ultrasonic evaluation of porous materials can take advantage
of some very specific acoustic phenomena which occur only in
fluid-saturated consolidated solids of continuously connected
pore structure. Certain material properties of the porous frame
such as the degree of consolidation or grain size can be readily
evaluated from the velocity or attenuation of the shear and
longitudinal waves in the dry skeleton or those of the fast
compressional wave in the fluid-saturated material.l’? Other
parameters such as tortuosity, permeability, porosity, and pore
size, shape and surface quality are inherently connected to the
porous nature of the material and can be evaluated much better
from the propagation properties of the slow compressional wave.
Unfortunately, the slow compressional wave is usually very weak
due to high attenuation caused by viscous drag between the fluid
and the solid frame. In natural rocks, the viscous drag is
further increased by clay particles deposited both within the
pore throats and on the surfaces of the rock grains.3 The
excessive attenuation results in the complete disappearance of
the slow compressional mode in water-saturated rocks. Because of
this, we have to introduce two novel experimental approaches
which are more suitable to geophysical applications where the
economic benefits of ultrasonic material characterization are
enormous.

First, we studied the feasibility of using different surface
modes to characterize the properties of water-saturated rocks.
This technique is based on the indirect observation of the slow
compressional wave through its significant effect on the velocity
of the surface mode propagating along the free surface of the wet
rock. Second, we also studied bulk slow wave propagation in air-
filled porous materials. Due to the relatively high kinematic
viscosity of air, the slow compressional'wave is even more
attenuated than in water-saturated samples, but it is the only
mode which is generated with a significant amplitude, therefore
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its detection is fairly simple. The main results of these two
research efforts are discussed separately in the following
chapters.

1.1 SURFACE WAVE TECHNIQUE

As we have mentioned before, the bulk slow wave propagating
in a water-saturated natural rock is usually far too weak to be
detected, let alone to be used for material characterization. On
the other hand, surface and interface waves guided along the
contour of a water-saturated specimen are much less attenuated
but still quite sensitive to the permeable nature of the porous
formation. Maybe the best example is a borehole Stoneley wave
which is the fundamental mode of a guided wave traveling in a
fluid-filled tube. In the case of permeable walls, because of
fluid flow into the formation, the Stoneley wave velocity
decreases and its attenuation increases. The strong correlation
between the frequency-dependent propagation parameters and
fqrmation permeability can be exploited in acoustic logging in
the field or in the laboratory.%~® It has been suggested that
other types of guided modes can be used in a similar way to
assess formation permeability, tortuosity, and other parameters
of a porous material,.?-!l

1.1.1 INTRODUCTION AND BACKGROUND

There is only one type of true interface wave which can
propagate along the free surface of an ordinary sclid. It is
called Rayleigh wave and its velocity is approximately 5-10%
below the shear wave velocity. Two types of interface waves can
propagate along the fluid-loaded surface of an immersed ordinary
solid: there is a true mode called Stoneley (or sometimes
Scholte) wave and a pseudo-mode called leaky Rayleigh wave. The
true wave is always slower than all the bulk waves in the solid
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and the fluid and it produces evanescent fields only as it
propagates along the interface. Since the energy of this mode is
strictly confined to the interface region, its generation and
detection presents a rather difficult technical problem. The
leaky Rayleigh wave is slightly faster than the true Rayleigh
wave propagating on the free surface of a solid. In most cases,
this velocity is faster than the sound velocity in the fluid,
therefore it leaks energy into the liquid as it propagates along
the interface. This mode can be easily generated and detected by
the phase-matching compressional wave in the fluid at the so-
called Rayleigh angle, at least whenever this angle is not much
higher than 60°. It should be mentioned that this mode becomes
non-propagating whenever the shear velocity in the solid is lower
than the sound velocity in the fluid, which is true for many
natural rocks.

Of course, the situation becomes much more complex in the
case of a fluid-saturated porcous solid. Feng and Johnson showed
that a maximum of three different types of surface modes can
exist on a fluid/fluid-saturated porcus solid interface depending
on (i) the shear velocity of the frame and (ii) the surface
conditions, i.e. whether the pores are open or closed.?/10
However, in most natural rocks the shear velocity is lower than
the sound velocity in water and the pores are open at the
surface, therefore there is but one principal surface mode,
namely the Stoneley mode. It is important to realize that this
mode becomes leaky into the slow compreésional wave whenever its
velocity is higher, as it is in most cases of interest to us.
Although the slow wave is very highly attenuated and cannot be
directly observed in water-saturated rocks, its indirect effect
of making the Stoneley wave highly attenuated via this leakage
can be more readily observed. This attenuation mechanism is taken
advantage of for permeability assessment in the Stoneley borehole
technique. Of course, in the case of an impermeable ordinary
solid, the Stoneley wave is a true interface wave with lower
velocity than any of the bulk velocities in the surrounding
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To the best of our knéﬁledge, the corresponding effect on
the true surface wave propagating on the free surface has not
been investigated yet in the open literature. Although the
surface is free, the Rayleigh wave must become leaky into the
slow compressional mode unless its velocity is lower. On the
other hand, for well consolidated rocks of relatively high frame
modulus, the shear velocity is similar to the compressional wave
velocity in water. Since the Rayleigh velocity is approximately
90-95% of the shear velocity while the slow wave velocity is only
50~70% of the sound velocity in water, it is expected that the
layleigh mode becomes leaky in most water-saturated natural
rocks. At the same time, the true surface wave, if there is one,
must propagate with a velocity lower than the slow wave velocity
so that it cannot leak energy into the bulk of the material. In
the next chapter we present our new analytical results for the
velocity and attenuation coefficient of the modified Rayleigh
wave propagating on the free surface of a water-saturated
permeable solid. In the subsequent two chapters we describe our
experimental technique and results and present a short discussion
of these results showing the feasibility of the suggested surface
wave technique for measuring formation permeability of water-
saturated rocks.

1.1.2 ANALYTICAL RESULTS

The method of Feng and Johnson?'1% can be easily applied to
the case of a surface wave propagating along the free surface of
a water-saturated rock. It is even easier and also more
realistic, to assume that the superstrate fluid is air while the
substrate is saturated with water. Of course, the sound velccity
in air is only 340 m/s, therefore the surface wave is always
leaky into the superstrate. On the other hand, due to the very
low density of air, this leakage is quite negligible and the
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surface can be considered "free" for all practical purposes.

We are going to show that capillary forces can hold the
wetting fluid (water) in the pores and effectively extend a
membrane over the surface pores at the boundary with the non-
wetting fluid (air). This membrane is usually so strong that it
assures closed-pore boundary conditions at the surface. Of
course, the same formation exhibits open-pore boundary
conditions at the water/water-saturated porous solid interface
when the specimen is fully immersed in water.

In the ideal case of completely closed surface pores and
viscosity-free fluid, two types of surface wave can propagate
along the free surface of a fluid-saturated porous solid. First,
there is a pseudo-Rayleigh mode which leaks its énergy into the
slow compressional wave. In the case of a highly permeable solid,
the resulting attenuation might be quite significant. Second,
there is a true surface mode with velocity slightly below that of
the slow wave. This mode is a simple form of realization of the
new interface mode predicted by Feng and Johnson?:10 when the
superstrate fluid is extremely rare and highly compressible like
air.

First, we will show through the example of the true surface
mode that a minimum surface stiffness of approximately 101ON/m3
is required to produce close~pore boundary conditions. Second, we
will demonstrate that strong capillary forces in water saturated
natural rocks can easily produce a surface stiffness in excess of
101°N/m3, therefore the pores are effectively closed at the
surface of a water-saturated rock surrounded by air. Third, we
will show that under these conditions, the surface velocity is
very sensitive to the d§namic permeability of the porous sample.

Table 1 shows the material parameters used in the following
calculations. A detailed description of the boundary conditions
and the derivation of the characteristic equation can be found in
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Reference 9. The surface stiffness T, is defined as the
proportionality coefficient between the discontinuity in pressure
and relative displacement of the fluid with respect to the frame
below the interface:

p=p' = T (U,~u,), (1.1)

where p and p' denote the fluid pressure in the pore space below
the surface and in the superstrate fluid just above it,
respectively. U, and u, are the normal displacement components of
the fluid and solid below the surface, and ¢ denotes the
porosity. We adapted this form for the boundary condition because
it suits our immediate purposes better than the more general

solution of defining a surface impedance 2, by*’!2

p~p' = iwZgzp(U,~u,), (1.2)

where o denotes the angular frequency. In the case considered
here, the finite surface impedance is due to an apparent membrane
extended over the surface pores by capillary forces and its
stiffness depends on the surface tension of the fluid. In the
case of a fluid/fluid-saturated porous solid interface (e.g., in
borehole Stoneley wave experiments), the finite surface impedance
is due to the flow resistivity of the surface pores and its value
depends on the viscosity of the fluid. Naturally, in this case
the definition of Equation 1.2 is easier to adapt. Otherwise,
there is no physical difference between the two approaches and
the surface impedance can be expressed by the surface tension as

Zg = Ty/iv. (1.3)
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Table 1 Material parameters used in the surface wave

calculations.
superstrate (air) density 1.3 109 kg/m?
superstrate (air) bulk modulus 1.5 105 N/m?
substrate fluid (water) density 1.0 10° kg/m?
substrate fluid (water) bulk modulus 2.25 10° N/m?
substrate solid (glass) density _ 2.48 103 kg/m?
substrate solid (glass) bulk modulus 4.99 1030 N/m?
frame bulk modulus 6.64 10° N/m?
frame shear modulus 3.69 10° N/m?
porosity 0.3 '
tortuosity 1.79

Feng and Johnson considered two special limiting cases only:
(i) Tg=0 (i.e., p=p') corresponds to an open-pore situation with
free flow of fluid in and out of pores and (ii) Tg= ® (i.e.,
U,=u,) corresponds to a closed-pore situation at the surface when
there is nu relative flow. We extended these calculations to the
more general case of finite surface stiffness. Table 2 lists the
different bulk and surface wave velocities in dry (air-saturated)
and wet (water-saturated) porous glass. A number of important
features should be noticed here. The fast compressional w..e
velocity is approximately 12% higher while the shear velocity is
4% lower in the wet sample. The small drop in the shear
velocity is particularly important since (i) it provides a direct
measure of the inertia effect of the fluid moving within the
porous solid and (ii) the shear wave velocity is very closely
related to the Rayleigh velocity on the free surface. In the high °
frequency limit, when viscous drag between the fluid and the
frame is negligible, the shear wave velocity v, can be expressed

by

Vel = N/[(1-9)pgtépg(1-1/1)], | (2)
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Tabkle 2 Sound velocities in dry and wet porous glass.

dry wet
fast wave ‘ 2,580 m/s 2,879 m/s
slow wave 254 m/s 980 m/s
shear wave 1,458 m/s 1,405 nm/s
surface wave
= Open pores 1,344 m/s N 1,295 m/s
- closed pores 1,344 m/s 880 m/s

where N is the shear modulus of the dry frame, pg and ps denote
the solid and fluid densities, respectively; and r is the
tortuosity. As opposed to the compressibility of the material,
the rigidity is not affected by fluid saturation, therefore the
relative difference between the shear velocities of thes dry and
wet samples depends mainly on the tortuosity:

(Vg (9Y) = y (W88)) py (IFY) = 172 p./p, @/(1=9) (1=1/T), (3)

where the densities and the porosity can easily be determined
from simple weight measurements. Theoretically, Equation 3 can be
readily exploited to determine the tortuosity by comparing the
shear velocities in the dry and wet samples. Unfortunately, the
sensitivity to the tortuosity is rather low. For example, the
relative change in the shear velocity increases from 5.7% to 6.5%
as the tortuosity increases from 3 to 4. Although we could easily
measure the shear wave velocity with a relative accuracy of 0.1%,
the inertia effect might be overshadowed by inevitable small
changes in the rigidity of the sample as we saturate the solid.
From this point of view, a water-saturated natural rock might
behave significantly differently from an ideal Biot-solid. This
discrepancy can be caused by a variety of different mechanisms
such as dehydration and stiffening of clay minerals, ionization,
adsorbed water, capillary forces, etc.l? In conclusion, the small
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change in shear velocity cannot be used reliably to assess the
tortuosity, but the charge is usually negative and only a few
percent.

Goling back to Table 2, we can also note that, for a dry
sample, the surface wave velocity is approximately 7.8% lower
than the shear velocity, regardless whether the surface pores are
open or closed. There is only negligible coupling between the
solid frame and the air and the sample behaves like an ordinary
solid. For open pores, water saturation gives very similar
results as the surface velocity is again approximately 7.8% lower
than the shear velocity (of course, both velocities are somewhat
lower in the wet sample due to the above mentioned inertia
effect, but their ratio is the same). On the other hand for
closed pores, the velocity of the true surface wave becomes much
(approximately 30%) slower than the shear velocity. Actually, it
is even slower than the slow compressional wave at 980 m/s. This
has to be so since it is a true surface wave and due to the
closed pores at the surface it would otherwise leak energy into
the slow compressional wave. In the case of open pores at the
surface, a disturbance can propagate along the surface without
generating a slow wave component since, in the absence of
viscosity, there is nothing to prevent the water from flowing
through the surface pores without producing a reaction force. On
the other hand, when the surface pores are closed, the surface
mode becomes very similar to the slow compressional wave itself
although its velocity is slightly lower. This small difference
further diminishes as the frame modulus increases. In the case of
a very rigid frame with closed pores at the surface the slow
compressional wave alone satisfies the free boundary conditions
(like a horizontally polarized shear wave does in an ordinary
solid). '

Figure 1 and 2 show the calculated velocity and attenuation
coefficient of the "true" surface wave propagating on the surface
of a water~saturated porous material as a function of the surface
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stiffness. The dependence of the propagation parameters on the
surface stiffness is very similar to the frequency dependence
caused by a single relaxatiocn process. The velocity drops from
1,295 m/c to 880 m/s as the surface stiffness increases. There is
a fairly sharp turning point around 10'N/m3 where the attenuation
exhibits a maximum. The attenuation coefficient is calculated
from the imaginary part of the complex root of the characteristic
equation. Since the characteristic equation is independent of
frequency, the solution is non-dispersive and the attenuation
coefficient turns out to be linearly proportional to frequency.
Let v=v_+iv; denote the complex root of the characteristic
equation. Then

expliw(t=-x/v)] = exp[iw(t~x/vp)] exp([-ax], (4.1)
where Vo denotes the phase velocity

.Vp' = (Vrz"'viz)/vrl (4u2)

and a is the attenuation coefficient
a = ov /(v 2+v?). (4.3)

In order to retain the generality of the relationship
between the attenuation coefficient and the surface stiffness, ve
plotted the attenuation slope, i.e., attenuation coefficient
divided by frequency, in Figure 2. The maximum at approximately
107 N/m?® corresponds to a rather high 7 dB/cm attenuation
coefficient at 100 kHz. Since the wavelength is close to 1 om,
the normalized attenuation coefficient, i.e., the attenuation
over one wavelength, is 7 dB. This corresponds toc a very strongly
attenuated but still propagating wave within the reach of
experimental observation. Of course, at both lower and higher
surface stiffness, the surface wave becomes much less attenuated.
In the case of finite surface stiffnesses, the surface wave is
coupled to the slow compressional wave of lower velocity
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therefore it is attenuated by leakage of energy into that mode.

If we were to assess the velocity and attenuation
coefficient of a Stoneley-type interface wave along a
fluid/fluid-saturated porous solid boundary, we would have to
calculate the surface resistivity from the formation permeability
and the fluid viscosity. Similarly, in order to assess the
propagational parameters of the Rayleigh-type surface wave along
the free surface of a fluid-saturated porous solid, we have to
calculate the surface stiffness from the formation permeability
and the surface tension of the fluid. For the sake of simplicity,
let us assume that the pores are cylindrical holes of radius a.
The radius of the surface membrane can be calculated from the
Laplace equation:

R = 20/p¢, (5)
where o denotes the surface tension and p, is the fluid pressure:

Pt =Po=P. (6)

where p, and p denote the hydrostatic and acoustic pressure,
respectively. Capillary forces can pull the fluid column to a
maximum height h where the hydrostatic pressure reduces the
radius of the surface membrane to that of the pore, a:

h = 20/pega, (7)

where g is the gravitational acceleration. In natural rocks, the
capillary height can be as large as a few meters and, of course,
the hydrostatic pressure is much larger than the acoustic
component. The fluid volume in the pore can be written as

Ve = V- a‘m/ 4R, (8)

where Vp denotes the total volume of the pore. A small change of
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the membrane's radius dR causes

dv, = dR a‘m/4r? (9)
change in the fluid volume. From Equations 5 and 6,

dR = pR?/20 (10)

and the surface stiffness can be obtained by substituting
Equation 10 into Egquation 9 and then into Equation 1 and using
the simple relationship between the average fluid displacement
and the volume velocity

(U,-u,) a’m = dv,. (11)
Finally,
T, = 80/¢a’. (12)

For a network of cylindrical pores, the combination of the Darcy
and Poiseuille laws give the following well-known equation for
the static permeability

Ko = ¢a?/8, (13)

which can be used to establish a simple relationship between the
surface stiffness and the formation permeability:

Ty = 0/Kg. (14)

For water, ¢=2.3 10"2N/m, and even a relatively high static
permeability of k.=1,000 mD = 10~!2 m? produces a surface
stiffness in excess of 10!° N/m3. A quick comparison with Figures
1 and 2 verifies that, for all practical purposes, the pores are
sealed by such surface tension on the free surface of a water-
saturated rock. Since the true surface mode effectively becomes a
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weakly perturbed slow wave, its attenuation is expected to be as
high as that of the slow wave. This phenomenon is analogous to
the relation between the Rayleigh~type true surface mode
propagating on the free surface of an ordinary solid and the
shear wave or that of the Stoneley-~type true interface wave
propagating along a fluid/ordinary solid boundary and the
compressional wave in the fluid. Whenever the slow compressional
wave is killed by excessive attenuation, the true surface mode is
expected to suffer a similar fate. Therefore, in natural rocks of
low permeability (less than 100 mD) the dominant surface mode is
expected to switch over to the leaky Rayleigh mode.

Up to this point, viscous losses were completely neglected.
Actually, they play a very important role in both attenuation and
velocity of the surface wave. The easiest way to model viscous
losses in the fluid-saturated porous solid is to assume a complex
tortuosity rather than a pure real one based simply on the
geometry of the pore channels. The complex tortuosity 7 (w) is
related to the dynamic permeability x(w) of the specimen:14

T(w) = ing/ux(w), (1.5.1)

where n is the kinematic viscosity of the saturating fluid, and
the complex wave number k can be expressed as

k(o) = ott/2(0)/v,. (15.2)

It has been shown that the complex tortuosity has a nearly
universal form determined by four basic parameters, namely the
high-frequency tortuosity r,, the static permeability Ko, the
porosity ¢, and a length parameter A determined by the average
pore size and shape:?i4

T(0) = To+i(ne/wk,) (1-4it,?x 20/nA2¢?)1/2, (16.1)

Relatively small viscous effects can be accounted for by a
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simplified version of this general form:

T(w) = 1o[1l+(iL)/?7, (16.2)
where L denotes the loss factor

L = 4n/wA?. o (16.3)

Figures 3 and 4 show the calculated velocity and attenuation
coefficient of the "true" and leaky Rayleigh surface waves
propagating on the free surface of a water-saturated porous solid
in the case of closed-pore boundary conditions. The velocity of
the "true" surface mode increases significantly with increasing
viscous losses. The attenuation slope (attenuation coefficient
divided by frequency) also increases at first, then flattens off
as the loss factor reaches approximately 10%. The leaky Rayleigh
velocity is much less affected by the complex nature of the
tortuosity. Its velocity drops slightly as the fluid becomes

- immobilized within the pores. This small drop in velocity is

primarily due to the added inertia effect of the fluid, which
affects the shear wave in a similar way (see Equations 2 and 3).
Its attenuation slope is basically constant since the loss is
mainly due to energy leakage into the slow compressional wave.
This loss is more or less the same whether the slow wave is
strongly attenuated or not. Experimental results indicate that in
real water-saturated rocks the shear wave is much more attenuated
than is predicted by the Biot theory. Similarly, we expect that
the Rayleigh-type surface wave is also much more attenuated than
one would assume from these simple calculations.

The most important conclusion we can draw from these results
is that not only the attenuation, but also the velocity of the
"true" surface wave is greatly affected by the loss factor, i.e.,
the dynamic permeability of the porous solid. According to our
calculations, in low-permeability rocks, the surface wave
velocity drops but a meager 3-4% when the sample is saturated by

19



i

Cooda il

T , el

ul

1ok

'

PR

Surimce Wave Velocily (1073 m/=)}

0.9

0.8

Figure 3

-t b= g e = = e e 8D
- N W e 2N OO

Attenuation Slope [dB/m Kiz)
-
(-]

O = N W e e N DO

Figure 4

“lesky" Rayleigh mode

] /,u-" surface mode

—

e
//
/
- / .
,/
_.1
T 1] T T 1 T T
0 0.1 0.2 0.3 0.4
Loss Factor
Surface wave velocity versus loss factor on the
free surface of a wet rock.
- "true" surface mode
- “leaky” Rayieigh mode
T 1 |l r 1 1 T
1] 0.1 0.2 0.3 0.4
Loss Factor
surface wave attenuation versus loss factor on the

free surface of a wet rock.

20

[ TR RN R TI

R R L T R R

[}



PRI T o

T

water. On the other hand, in high-permeability samples, the
corresponding drop might be as much as 30-40%, i.e., one order of
magnitude larger. Our experimental efforts were focused on
verifying these predictions.

1.1.3 EXPERIMENTAL TECHNIQUE AND RESULTS

Recently, we have introduced a new experimental technique
for surface and interface wave generation by direct excitation
using conventional contact transducers.:5/16 The schematic
diagram of the experimental arrangement is shown in Figure 5. Two
contact transducers are placed directly over the opposite edges
of the specimen so that they can generate a bulk mode in the
interior of the sample as well as guided modes along the surface.
In this particular case, we used shear transducers of vertical
polafization, i.e., normal to the surface, Figure 6 shows the
detected signals on a 90-mm=-long aluminum sample. The first
arrival is a shear-type bulk wave which is followed by a slightly
slower Rayleigh-type surface wave. It is important to notice that
the bulk signal is much sharper, i.e., it has more high-frequency
components than the surface mode. This difference raises the
question of energy partition between the two principal modes of
propagation. The center part of the transducer, which is directly
over the interface region within approximately one wavelength,
generates mostly surface modes while the lower part, which is
father away from the surface, generates mostly bulk waves.
According to this very simple model, the total energy will be
divided between the surface and bulk modes proportionally to the
ratio between the wavelength and the transducer radius. Since the
wavelength is inversely proportional to frequency, the low-
frequency components contribute to the surface mode only while
the high-frequency components go mostly intc the bulk mode. This
conclusion is confirmed by Figure 7 showing the complemental
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Figure 6 The received signals through a 90-mm-long aluminum
sample.
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Figure 7 Frequency spectra of the two principal pulses
shown in Figure 6.
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frequency spectra of the two principal pulses of Figufe 6. Since
the high-frequency‘componénts are usually much more attenuated in
both dry and wet porous materials than in aluminum, the surface
mode becomes the stronger of the two.

As opposed to bulk modes, surface modes are not polarized
strictly normal or parallel to the propagation direction.
Therefore, the vertically polarized shear transducer might be
replaced by a longitudinal transducer. In the case of true or
leaky Rayleigh waves, the polarization is dominantly normal to
the surface therefore a shear transducer givaé somewhat better
sensitivity. In the case of a Stoneley-type interface wave
propagating along a fluid/high-density solid boundary, the
polarization is dominantly parallel to the interface and a
longitudinal transducer should be used. In{the case of a low-
density solid, like most natural rocks, the Stoneley-type
interface wave is strongly coupled to both media and the particle
displacement has significant components in both directions
therefore either shear or longitudinal transducers would work.
Actually, in the case of a longitudinal transducer, the operation
is rather similar to the widely-used borehole Stoneley wave
technique, although the axisymmetric arrangement is obviously

- more sensitive.

Previously,‘we successfully used this technique to generate
and detect Stoneley-type interface modes propagating along
fluid/fluid-saturated porous solid interfaces. This time, we
concentrated on the apparently simpler case of Rayleigh-type
surface modes propagating on the free surface of both dry and wet
porous solids. Because of the excessive attenuation of the high-
frequency components in real rocks, the shear wave is usually too
weak to be detected in the presence of the much stronger low-
frequency surface wave. Therefore, we measured the shear wave
velocity by simply moving the transducers from the surface to the
interior of the sample where the shear wave produced the only
detectable signal.
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Figure 8 shows the significant change in the time of arrival
of the shear component upon saturating\a Sunset Blush Massillon
Sandstone sample with water. The detected signal was digitally
recorded at 5-second-intervals. The sample's thickness was 52 mm
and the shear velocity was found to be approximately 1,620 m/s in
the dry sample. In order to clearly demonstrate the effect of
water-saturation on the velocity of the transmitted shear wave,
we kept the signal amplitude at its initial level by continuously
increasing the gain of the receiver. Actually, the signal _
amplitude dropped by 23 dB during the experiment, which explains
the somewhat higher noise level observed after approximately
three minutes saturation time. It is less apparent that the shape
of the signal has changed a little, too, as the high-frequency
components are much more attenuated than the low-frequency ones.

Figure 9 shows the additional attenuation caused by water=-
saturation. The experimental data was obtained by subtractiiig the
modulus- of the frequency spectrum of the first signal in Figure 8
(completely dry rock) from that of the last one (completely wet
rock) . The solid line is the best fitting linear regression. The
induced attenuation seems to be proportional to frequency and the
above mentioned 23 dB gain adjustment needed to keep the peak-to-

- peak amplitude constant during :he experiment is approximately

the same as the actual attenuation at 160 kHz, i.e., at the
center of the frequency band. The induced time delay is
approximately 2 us corresponding to 5.6% drop in the shear wave
velocity. This change is in reasonably good agreement with our
expectations based on the added inertia effect. By assuming
Pg/Pg=2.3, ¢=23% connected porosity, and r=3 tortuosity, Equation
3 gives 4.3%. As we have mentioned before, better quantitative
agreement cﬁpnot be expected because of the simplicity of the
model used to derive the shear wave velocity in a fluid-saturated
perous rock.
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Figure 8 The effect of gradual water-saturation on the
transmitted shear wave through a S52-mm-thick
sunset Blush Massillon Sandstone specimen.
Vertical scale (saturation time) is 6 minutes,
horizontal scale (propagation time) is 60 us.
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Figure 9 Saturation induced attenuation of the shear wave
in a 52-mm-thick Sunset Blush Massillon Sandstone
specimen as a function of frequency.
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In order to eétablish the feasibility of the suggested
experimental technique for surface wave velocity measurements in
natural rocks, we have measured the velocity of the dominant
surface mode in a number of both dry and wet rocks. The 1"-
diameter, low-frequency (100-500 kHz) shear transducers were
pressed against the samples by a constant weight of approximately
30 lbs. All samples were cut into rectangular blocks so that two
significantly different dimensions were accessible for.
comparison. The "short" and "long” dimensions were typically 2
and 4 inchés, respectively. As an example, Figure 10 shows the
detected surface wave signals on a Cavallo Buff Massillon
Sandstone specimen in dry and wet conditions. The surface wave
velocity was directly calculated from the differences ir
propagation length and time. Table 3 summarizes our experimental
results on 16 different rocks used in this study. The
experimental uncertainty is estimated to be approximately 5%. The
main source of this significant experimental error is the
distortion of the shape of the observed signals which renders the
overlapping, and therefore the time delay measurement, too,
somewhat uncertain. Also, because of the inherent inhomogeneity
and anisotropy of most natural rocks, the accuracy of such
measurements is inherently limited.

On the average, the Rayleigh velocity in the dry samples
(1,610 m/s) is 10% lower than the shear velocity (1,790 m/s),
while the surface wave velocity in the water-saturated samples
(1,400 m/s) is 13% lower than in the dry ones. The ratio between
the experimentally determined surface wave velocities is clearly
higher than the approximately 5% one would expect from the
inertia effect of water-saturation. The uneven distribution of
this ratio is even more interesting: it is in excess of 30% in
the five most permeable rocks but only a few percent for the
least permeable ones.
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Table 3 Shear and surface wave velocities of different
natural rocks.
Type Origin Velocity [m/s]
‘ shear surface
dry dry wet
Berea Sandstone (100 mD) Cleveland, Qhio 1530 1290. 1290
Berea Sandstone (200 mD) Cleveland, Ohio 1580 1410 1300
Berea Sandstone (300 mD) Cleveland, Ohio 1450 1220 950
Berea Sandstone (450 mD) Cleveland, Ohio 1470 1330 970
Massillon Sandstone
(600 mD) (LLNL) 1560 1460 1070
Cavallo Buff Massillon Coshocton County,
Ohio 1790 1490 1060
Sunset Blush Massillon Coshocton County,
Ohio 1620 1420 1010
Buff Limestone Indiana 2510 2230 2210
Ledge Rock Sandstone Tennessee 1960 1740 1740
McDermott Buff Sandstone McDermott, Ohio 1300 1260 1030

Seneca Valley Sandstone Brown County, Ohio 1510 1420 1250
Salt Creek Buff

Limestone Latham, Ohio 2810 2370 2130
McDermott Blue-Gray
Sandstone McDermott, Ohio 1570 1320 1060
Waverly Sandstone Waverly, Ohio 1690 1670 1560
Berea Sandstone Peninsula, Ohio 2360 2360 2000
Berea Sandstone Warrensburg,

Montana 1890 1800 1710

i
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Figure 11 shows the Rayleigh velocity-to-shear velocity
ratio for the first five samples of Table 3 (the permeabilities
of these samples were measured at the Lawrence Livermore National
Laboratory). There seems to be a weak trend of increasing ratio
at higher permeabilities, which corresponds to an increasing
Poisson's ratio. This would indicate weaker consolidation in the
high~permeability samples, but the effect is not really
significant since it is well beiow the experimental uncertainties
indicated by the error bars. It should be mentioned that these
error bars correspond to 7% combined uncertainty in the data,
which, as for the ratio of the two velocities, might be a little
too pessimistic. Some uncertainties present in the raw data
(caused by inhomogeneity and anisotropy) cancel out in.the
comparison and the actual error might be well below 5%.

Figure 12 shows the ratio between the surface wave
velocities in dry and wet samples as a function of permeability.
The solid line is just an arbitrary fit to the experimental data
to emphasize the trend of increasing ratio at higher
permeabilities. The importance of these results lies in the
relationship between fluid mobility and sound velocity. On the
other hand, Fiéures 3 and 4 clearly demonstrated a similar effect
between fluid mobility and surface wave attenuation, too. This
aspect of the surface wave propagation along the free surface of
a fluid-saturated rock needs to be further investigated. As an
example Figure 13 shows the saturation induced attenuation
increase in a Cavallo Buff Massillon Sandstone specimen. This is
the difference between the attenuation spectra calculated from
the time~domain signals shown in Figure 10 and it corresponds to
added attenuation over a propagation length of 1.9". The induced
attenuation is approximately one order of magnitude higher than
in low-permeability rocks where the relative motion between the
fluid and solid is negligible. It is also interesting to notice
that the attenuation of this kind of surface wave seems to be
proportional to the square of frequency while it is more like a
linear relationship for the shear or ordinary Rayleigh waves.
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1.1.4 DISCUSSION AND CONCLUSIONS

Our research effort was based on the realization that, due
to surface tension, practically closed-pore boundary conditions
can prevail on the free surface of a water-saturated natural
rock. We showed through the example of the true surface mode that
approximately T,=107 N/m? surface stiffness is sufficient to
produce such conditions. This is significantly less than the
T.=10 N/m?® value used by Feng and Johnson in their original
calculations to model an idéally closed pore.? Our results are
also in good agreement with the predictions of Wu at al.l? They
showed that the reflection coefficient from a water/water-
saturated porous solid interface approaches its closed-pore
asymptotic value above T,=10" N/m?, i.e., well before the four
orders of magnitude higher value assumed by Feng and Johnson to
make their numerical calculations more accurate.

Our calculations showed that capillary forces can easily
produce closed-pore boundary conditions at the interface between
a non-wetting fluid (air) and a porous solid saturated by a
wetting fluid (water). The stiffness of the membrane extended
over the surface pores depends on the surface tension of the
wetting fluid and the pore size and shape. We derived a simple
approximation relating the boundary stiffness to the formation
permeability. We found that the boundary stiffness is around
1010 N/m3 in most natural rocks, i.e., well above the threshold
value required to achieve closed-pore boundary conditions. Under
these conditions, the Rayleigh-type surface wave becomes strongly
attenuated by energy leakage into the slow compressional wave and
the yelocity of the true surface mode drops below the slow wave '
velocity. Of course, the mobility of the water is badly limited
by viscous drag between the fluid and the solid frame. This
effect is particularly strong in natural rocks where the drag is
greatly increased by inherent impurities such as submicron clay
particles sticking to the pore walls and clogging the narrow
throats of the pore channels. We modeled this effect in the usual
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way by introducing a complex tortuqsity which then describes both
added inertia and viscous drag effects. We found that viscous
loss increases both the velocity and the attenuation of the
surface wave.

We used the direct excitation technique to measure surface
wave velocity and attenuation on both wet and dry rocks. The
Rayleigh velocity of dry rocks is approximately 10% lower than
their shear velocity. The surface wave velocity of water-
saturated rocks of low permeability (below 100-200 mD) is 5-10%
lower than the Rayleigh velocity of the dry specimen. This drop
in velocity is primarily due to the added inertia of the
saturating fluid, which is also apparent in the similar decrease
in the shear wave velocity. The surface wave velocity of water-
saturated rocks of high permeability is much lower, approximately
60-70% of the Rayleigh velocity of the dry specimen. This strong
correlation between the observed surface wave velocity change
caused by water-saturation and the formation permeability can be
used for ultrasonic assessment of the dynamic permeability.
Further investigation is needed to establish a reliable
theoretical model for the observed phenomenon and to develop
inversion techniques for the quantitative evaluation of material
properties from the velocity and attenuation of the surface wave
propagating on the free surface of a fluid-saturated rock.
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1.2 AIR-SATURATION TECHNIQUE

The most interesting feature of acoustic wave propagation in
fluid-saturated porous media is the appearance of a second
compressional wave, the so-called slow wave. The existence of a
slow compressional wave in an isotropic and macroscopically
homogeneous fluid-saturated porous medium was predicted by Biot
in 1956.18/19 The main characteristic of this mode is that its
velocity is always lower than both compressicnal wave velocities
in the fluid and soliq‘frame. Below a critical frequency, which
depends on the pore sigéwin the frame and the kinematic viscosity
of the fluid, the slow‘ngpressional wave is highly dispersive
and strongly attenuated ' over a single wavelength. Above this
critical frequency;“it becomes a dispersion-free propagating wave
witn‘increasiné but fairly low attenuation. The slow
COmpfessicnalfwave represents a relative motion between the fluid
and the solid frame. This mqtion'is very sensitive to the
kinematic viscosity of the fluid and the dynamic permeability of

the porous formation. Naturally, low-viscosity liquids such as

water are the fluids most often used in such experiments. In our
current research effort, we have been studying the feasibility of
using gaseous fluids such as air to saturate the porous
specimens.

1.2.1 INTRODUCTION AND BACKGROUND

since 1980, when Plona was able to observe slow wave

propagation in artificial rocks made of sintered glass beads,2°
the question of why slow waves cannot be detected in real rocks
has been one of the major issues in the acoustics of fluid-
saturated materials. Recently, Klimenatos and McCann showed that
this lack of perceivable slow wave propagation is probably due to
inherent internal impurities, such as submicron clay particles,
found in all types of natural rocks.? These clay particles,

36



Lk o

deposited both within the pore throats and on the surfaces of the
rock grains, greatly increase viscous drag between the fluid and
solid frame, which results in excessive attenuation and usually
complete disappearance of the slow wave. One way to reduce the
excessiVe attenuation of slow waves in porous materials is to use
special fluids of very low viscosity to saturate the specimen.
For instance, superfluid %He below 1.1K has been shown to work
very well in fused glass Lkead samples,,21 superleak materials
consisting of compacted powders,?2724 ands in sandstcnes,?5 but
the technique is obviously very cumbersome.

The question of whether or not excessive attenuation in
viscous fluid-saturated natural rocks renders the detection of
slow waves impossible arises. Not necessarily! Even a very weak
slow wave attenuated by as much as 50~60 dB could easily be
detected but for the presence of much stronger background "noise"
caused by the direct arrivals and scattered componénts of the
fast compressional and/or shear waves. If we could generate a
slow wave only and nothing else, it would be much easier to
detect in spite of the substantial attenuation. Compared to the.
solid frame, liquids like water usually have a lower, but still
comparable density p, and bulk modulus B,. Although their
viscosity u is also relatively high, which makes saturation of
the porous sample somewhat troublesome, their kinematic viscosity
n=u/pe is fairly low. On the other hand, gaseous fluids like air
have very low density, bulk modulus, and viscosity as well, while
their kinematic viscosity is usually rather high. Therefore, it
is very simple to saturate a porous sample by air, but the slow
wave 1s expected to be highly dispersive and strongly attenuated.
In spite of these adverse effects, slow waves can be readily
observed when an air-filled porous sample is insonified by
airborne ultrasonic waves. Because of the tremendous acoustical
mismatch between the incident compressional wave and the porous
solid, all the energy is either reflected or transmitted via the
slow wave without generating appreciable fast compressional or
shear transmitted waves.
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In order to demonstrate this crucial effect, Fig. 14 shows
the slow, fast, and shear wave transmission coefficients through
water and air-saturated glass bead specimens. The physical
parameters of the glass bead specimen and details of the
calculation are given in Ref. 17. In the case of water
saturation, the slow co&pressional wave is usually 5-10 dB weaker
than the fast compressional or shear modes and it is much more
attenuated. Also, because of its slower velocity, it arrives
later than the other modes and it is often overshadcwed by
multiple reflections and scattered components of these stronger
signals. Maybe the only exception is when the shear velocity is
sufficiently high so that we can work above the second critical
angle where the slow compressional wave becomes the Only
propagating mode in the fluid-saturated sample. Unfortunately,
this does not happen in most natural rocks‘where the shear
velocity is rather low. On the other hand, in the case of air
saturation, the slow compressional wave is at least 70 dB
stropger than all other modes and, due to the very low sound
velocity in air, the shear critical angle drops to below 15°,
above which only the slow wave is transmitted through the sample.
This means that a highly attenuated slow wave will be submerged.
in electrical noise rather than spurious signals so it can be
easily recovered by simple time-averaging.

In spite of the excellent coupling between the incident
compressional wave and the transmitted slow wave and the obvious
advantage of saturating the specimen with low-viscosity air
rather than high-viscosity water, slow wave propagation in air-
filled porous samples has never been extensively studied in
natural rocks. It should be mentioned that considerable work has °
been done on other air-filled porous materials at relatively low
frequencies between 50 Hz and 4 kHz.26"3% The apparent lack of
interest is probably due to unusual technical difficulties
associated with the generation and detection of airborne
ultrasound and to the fact that slow waves are not expected to
propagate in air-saturated porous samples as easily as in water-
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saturated ones!. Since the kinematic viscosity of air is so
large and the velocity of sound in air is so small, there is but
a very narrow frequency window where the attenuation coefficient
is sufficiently low to observe a dispersion-free, scattering-free
slow wave. This "window" is set by the conditions that the
viscous skin depth é=(2n/w)l/?2 be less than the pore size a, and,
simultaneously, the wavelength A be larger than the grain size
ag. Table 4 summarizes the relevant physical parameters of water
a.d air as well as f,;, and f,,,, i.e., the limits of the
frequency window where slow wave propagation is expected.
ag=200um grain diameter and ¢=30% porosity were assumed in the
calculations. The slow wave velocity at high frequencies can be
easily calculated by assuming a perfectly stiff frame as
v=vf/rl/2, while the tortuosity 7 can be estimated from the
porosity ¢ as t=1/2 (¢~+1).3! To determine f,;, and f,,,, we
assumed that the pore size is approximately 15% of the grain size
and at least four times larger than the viscous skin depth to
account for the smaller cross sections at the crucial pore

throats:

fnin = N/7(0.04a,)? (17.a)
and

Lmax = V/2mag. (17.Db)

Table 4 clearly demonstrates the greatly reduced frequency
window where dispersion~free and (more or less) attenuation-free
slow wave propagation can be expected in air-filled samples of
approximately 200um grain size. On the other hand, these results
do not exclude slow wave propagation over a much larger frequency
range. They simply mean that the slow wave becomes increasingly
dispersive below 100 kHz and very strong attenuation can be
expected above 200 kHz.
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Table 4 Physical parameters of water and air at 20°C.

Pe Ve n Lain £ nax

(kg/m®)  (m/s) (mm?/s)  (kHz) (kHz)
Water 1000 1480 1 5 810
Alr 1.3 332 15 75 180

1.2.2 ANALYTICAL RESULTS

For the special case of air-saturated permeable solids of
random formation, Attenborough's theoretical model?? can be used
to determine both the complex wave number X and the complex
acoustic impedance Z: |

k(w) = o[p(w)/K(0)]1/2, (18.a)

and

Z(e) = [p(w)K(w)]/2, (18.b)

where p and K denote the complex density and the complex modulus,
respectively, of the air-saturated material. The complex density
includes the effect of viscosity

plw) = peTo/0[1-T(§)], (19.a)

while the complex modulus includes the somewhat weaker effect of
heat conduction in air

K(w) = Re/o(1+(y=1)T(Pri/2E)]. (19.b)
y denotes the specific heat ratio (x1.4 for air) and Pr is

the Prandtl number (=0.74 for air). T is a simple function of the
normalized pore radius £:

T(E) = 27, ([-1)Y/28)/((~-1)Y/2E)a ((-11Y/2E),  (20.a)
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where J, and J, are the zero- and first-order Bessel functions
and I is the imaginary unit. For cylindrical tubes, the
normalized pore radius is exactly known:

E=a (o/n)1/?, (26.b)

where a denotes the actual pore radius. For real porous materials
of random pore geometry, there is no. corresponding exact
solution. Attenborough?® suggested that the normalized pore
radius should be calculated as

E = (21akqu/ensy?) /2, (20.c)

where x, is the static permeability, 7, is the high-frequency
tortuosity, and Sp is the so-called pore shape factor ratio which
is usually between 0.1 and 0.5.

This analytical technique provides a unified mcdel for both
low-frequency (diffuse) and high~frequency (propagating) regimes
of the slow compressional wave in air-saturated porous solids. It
uses four basic parameters, namely porosity (¢), high-frequency
tortuosity (r,), static permeability (x,), and pore shape factor
ratio (sp), to describe the porous formation. We chose it instead
of the previously mentioned dynamic permeability model of Johnson
et al.!?% because the later one is limited to fluids of negligible
thermal expansicn coefficient. Comparison of the two models
reveals that the actual difference between them is rather small.
The best agreement can be achieved by asymptotic matching of
Equations 15, 16 and 19-21. From the low- and high-frequency
asymptotes, we get identical results if s, = y1/2 ~ 0.423 and
A = (5.6 Tyx,/9)1/%2. As an example, Figure 15 shows the
calculated attenuation coefficient of the slow compressicnal wave
in a porous solid of ¢ = 0.3, 7T, = 1.79, x, = 2.2 10'12m'2, and
Sp = 0.423. The largest discrepancy between the two models occurs
at the transition between the diffuse and propagating regimes,
but it never exceeds 12%.
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Since the static permeability x, and the pore shape factor
ratio Sp always occur in the same combination through the
normalized pore radius {, they cannot be separated by acoustical
measurements. According to the dynamic permeability theory of
Johnson et al.,!* at low frequencies, the complex wave number of
the slow compressional wave can be approximated as

k(1¥) = k. (ipn/x 0)i/2. . (21a)
Attenborough's model yields a similar form of

k(o) = k. (ign/x,0)1/2, | (21b)
where k, denotes the acoustic permeability:

K, = x°/4ysp2. (21¢)

Only three independent parameters can be determined from
acoustic measurements on air-filled porous solids: porosity ¢,
high-frequency tortuosity r7,, and the low-frequency acoustic
permeability x,, which is a combination of the static
permeability x, and the pore shape factor ratio Spe Sp is always
less than 0.5 while y is higher than one for gases. As we
mentioned above, the acoustic permeability equals the static one
for s;=0.423. For cylindrical pores, the pore shape factor ratio
reaches its maximum of 55,=0.5 and the acoustic permeability is
slightly lower than the static permeability. This is because the
specific heat ratio is higher than one in air and the slow wave
velocity depends on the isothermal sound velocity vr=vf/yl/2
rather than on the adiabatic velocity which is measured in an
infinite medium. For pores with non-circular cross-sections, the
pore shape factor ratio Sp can be much lower than 0.5. For
example, in the case of equilateral triangle cross-section, Sp is
as low as 0.158.29 We shall show that, in the case of natural
rocks, the pore shape factor ratio is usually between 0.2 and
0.4, therefore the acoustic permeability is somewhat higher than
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the static one.

In order to demonstrate the main features of slow wave
propagation in air-filled porous solids, we used Attenborough's
technique to calculate the sound velocity and attenuation as well
~as the complex acoustic impedance in sintered glass bead
specimens of different grades. Table 5 lists the material
parameters used in these calculations. The porosity and static
permeability were obtained from the manufacturer's (Eaton
Products International, Inc.) specifications. The high-frequency
tortuosity was taken from Ref.l as the parameter giving the best
agreement between experimental measurements and theoretical
predictions for the slow wave velocity in water-saturated
sintered glass bead samples. This value is very close to other
published data on similar materials.?':32/33 pinally, the pore
shape factor ratios were chosen by matching the analytical
results to our experimental data to be presented in the next
chapter.

Table § Material parameters of sintered glass bead specimens.

Grade ¢ Ko[1071%m™2] To Sp

15 0.3 2.2 1.79 0.460
40 0.3 6.5 1.79 0.460
55 0.3 11.0 1.79 0.475
90 0.3 27.0 1.79 0.475
175 0.3 67.0 1.79 0.475

Figure 16 shows the normalized velocity v/v, and the
attenuation coefficient of the slow compressiocnal wave in the
air-filled porous samples listed in Table 5 as functions of
frequency. In the diffuse regime, i.e., at low frequencies, both
the velocity and the attenuation coefficient are proportional to
the square-root of frequency:
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vilow) jve = (okg/2neys,?) L/2 (22.a)
and

alloW) = (2ungys,?/x,ve?) /2, ' | (22.b)

therefore the normalized attenuation coefficient «,, i.e., the
total attenuation over one wavelength, is constant

an(low) =a v/f = 2m [Neper] = 55 dB. (22.¢)

In the propagating regime, i.e., at high frequencies, the
velocity approaches a constant value while the attenuation
coefficient remains proportional to the square-root of frequency,
although the proportionality coefficient is slightly different
from the low-frequency value (see Figure 15).

V‘hlgh)/vf = Tm-l/z (22-d)
and
a(Mioh) = (unergs,?/ave?e,) Y21+ (y-1) /Prt/2) ), (22.e)

where the second term of Equation 22.e is approximately 1.46 for
air. It is interesting to note that the ratio between the high-
and low-frequency asymptotic values of the attenuation
coefficients is

a(high)/a(low) 2 0.43 Tml/zl (22-f)

i.e., fairly close to one for most porous solids of interest to
us. Of course, in the propagating regime, the normalized
attenuation coefficient decreases with fregquency, at least to a
point where other attenuation mechanisms such as scattering are
still negligible.

Figure 17 shows the real and imaginary components of the
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acoustic impedance in air-filled sintered glass bead specimens as
functions of frequency for five different grades. Both components
were normalized to the acoustic impedance of the saturating air,
Zg = Vepe. At low frequencies, the moduli of both components.are
very large and decreasing with frequency. At high frequencies,
the real part approaches a finite asymptotic value

z(high)/zf = fml/2/¢’ . (23)
while the imaginary part diminishes.

In the diffuse regime, where transmission-type measurements
are not feasible because of the very high normalized attenuation
coefficient, we have to rely on determining the complex acoustic
impedance from reflection-type measurements. In the propagating
regime we can use transmission measurements to determine the
velocity and attenuation coefficient of the slow compressional
wave. Even then, but especially in the transition region between
the diffuse and propagating regimes, we have to take into account
the total transmission loss T, caused by the significant
acoustical impedance mismatch between the air and the air-filled
specimen:

Ty = 4/ (2+2/Zs+2%4/2) . (24)

The easiest thing to do is to approximate the actual
acoustic impedance by its real-valued high-~-frequency asymptote.
For example, T,("*9") ~ -4.5 dB for ¢ = 0.3 and 7, = 1.79. In this
way, we inevitably underestimate the total transmission loss and,
consequently, overestimate the attenuation coefficient. Also,
because of the phase-shift caused by the complex nature of T,, we
slightly underestimate the slow wave velocity in samples of small
thickness. In order to get better agreement between experimental
measurements and theoretical calculations, we can easily correct
our analytical results for the difference between the actual
transmission loss T, and its real valued asymptote T,(hih),
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The measured transmission coéfficient frquency
Tr(w) = Tg(m) exp(iwd/v) exp(~ad) (25.a)
can be expréssed as
T (0) = T,(0i9R) (o) exp(ied/v,) exp(-a,d), (25.b)

where d is the thickuness of the specimen and v, and a, are the
apparent velocity and attenuation coefficient, which are
corrected according to d. Figure 18 shows the apparent velocity
and attenuation coefficient of the slow compressional wave in
air-filled sintered glass bead specimen Grade 55 as functions of
frequency for different sample thicknesses. Because of the larger
impedance mismatch and the additional phase-shift at lower
frequencies, the apparent velocity drops while the apparent
attenuation increases in thin samples. In the propagating regime
(above .= 60 kHz), the corrections are negligible. In the next
chapter, we are going to‘compare our experimental data to such
corrected analytical results.
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Figure 18 Apparent velocity (a) and attenuation
coefficient (b) of the slow compressional wave
in air-filled sintered glass bead specimen
Grade 55 as a function of frequency for
different sample thicknesses.
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1.2.3 EXPERIMENTAL TECHNIQUE AND RESULTS

Figure 19 shows the block diagram of the experimental system
used in this study. It is based on our recently developed method
using the transmission of airborne ultrasonic waves through thin
plates of air-filled porous specimens to investlgate the
propagation parameters of the slow compre851onal wave. 3% standard
ultrasonic NDE equipment was used without any particular effort
to obtain high generation or detection sensitivity. The rather
poor coupling between the applied contact transducers and air
resulted in a rather low, but fairly constant, sen51t1vity over a
wide frequency range of 50-500 kHz. In the case of necessity, we
replaced the ultrasonic transmitter and receiver by a commercial
tweeter and electret microphone so that measurements could be
done between 10 kHz and 50 kHz, too. In order to assure an
acceptable signal-to-noise ratio, extensive signal averaging was
used, up to 10° samples. The transmitter was driven by a tope-
burst of five cycles. The received signals with and without the
specimen placed between the transducers were digitally stored.
Then the computer selected the first five cycles of the signal,
from which the computer determined the insertion loss L; and
insertion delay T;. The iasertion loss was calculated by Fourier
transforming the gated signals and calculating the ratio between
the maximum amplitudes in the two spectra. The insertion delay
was determined by finding the maximum of the cross-correlation
function of the two signals. Finally, the apparent attenuation
coefficient and normalized velocity'were calculated as

@, = (Ly~T,)/d (26.a)

a
and

Va/Ve = 1/(1+T;ve/d), (26.Db)

respectively. The thicknesses of the specimens were varied
between 1 and 5 mm to accommodate different permeabilities over
the widest possible frequency range.
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Figure 19 Block diagram of the experimental systemn.
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Measurements were made on different ceramic, metallic, and
polymer filter materials as well as natural rocks. First, let us
show some typical results on synthetic materials of well-defined
porous structure to demonstrate the accuracy of the measurement.
Second, we shall present similar results on different natural
rocks of much more complicated pore structure to demonstrate the
feasibility of the developed technique for ultrasonic evaluation
of such less~-permeable formations.

The first series of experiments were conducted on sintered
glass bead specimens listed above in Table 5. Generally, we found
very good agreement between the theoretically predicted and
experimentally measured slow wave velocities. As an example,
Figure 20 shows the comparison between the theoretical and
experimental results for Grades 55 and 90. For the attenuation
coefficient, the agreement is less perfect. Figure 21 shows the
comparison between the thecretical and experimental results for
Grades 15 through 175. For the smallest pore size (Grade 15) the
agreement is still acceptable indicating that the total
attenuation is dominated by viscous losses throughout the whole
frequency range. As the pore size is gradually increased, at
first only at higher frequencies (Grades 40 and 55) then
throughout the whole frequency range (Grades 90 and 175), viscous
losses drop below scattering losses and the attenuation
coefficient approaches a linear asymptote (dashed-lines in Figure
20.b-e) . The same behavior was also observed in other synthetic
materials such as sintered steel and bronze specimens.
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The primary purpose of our experiments on synthetic porous
materials was to improve the accuracy of the measuring system and
to verify the feasibility of Attenborough's simple model for
random but statistically relatively well-defined permeable
formations. Naturally, our next s@ep was the adaptation of this
technique to natural rocks of rel&fively high permeability
between 100 and 1000 mD. Basically, the results were fairly
similar to those obtained for synthetic materials, although the
scatter of the data became somewhat‘larger due to inherent
macroscopic inhomogeneities found in most natural porous
materials. Table 6 lists the materials used in this part of the
study as well as their relevant properties. With the exception of
the permeability of the Berea Sandstone specimen, which was
measured at the Lawrence Livermore National Laboratory, all
parameters were adjusted to obtain the‘beSt agreement between the
analytical results and the experimental data. Later we plan to
determine the three basic material parameters, namely the
porosity, the permeability, and the tortuosity, by separate
measurements and adjust only the pore shapé factor ratio, which
is the only truly independent acoustic parameter. = -

Table 6 Material parameters of natural rocks.

Type ¢ K Tw s d
(107122 P [mm)

Cavallo Buff

Massillon 0.15 0.7 2.6 0.3 2.4

Sunset Blush

Massillon 0.15 0.6 2.8 0.3 2.1

Cu Variegated

Sandstone 0.13 0.6 2.3 0.3 1.7

Berea

Sandstone 0.12 0.2 3.2 0.2 1.5
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Figures 22-25 show the normalized slow wave velocity and
total insertion loss in different natural rock specimens. Again,
the experimentally measured velocity agrees very well with the
analytical results while the attenuation exhibits higher-than-
predicted attenuation and more or less linear frequency

- dependence. The samples were approximately 4" in diameter and

showed significant inhomogeneity of the attenuation distribution
within this area. Because of the very high attenuation. in these
samples, resonance peaks in the transmission are generally very
weak but sometimes, especially at lower frequencies, faintly
visible.
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Figure 22 Normalized slow wave velocity and total ;nsertion
loss in a 2.4-mm-thick Cavallo Buff Massillon
sandstone specimen.
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1.2.4 DISCUSSION AND CONCLUSIONS

Transmission of airborne ultrasonic waves through thin air-
filled porous plates was used to stﬁdy slow wave propagation in
permeable solids. We used Attenborough's theoretical model?? to
fit the experimental data and found good agreement except at high
frequencies where scattering losses dominated the attenuation of
the sldw wave. This discrepancy has been expected since, for air
saturation, there is no frequency "window" where both viscous and
scattering losses are weak simultaneously. Due to the excellent
sensitivity of the suggested experimental technique, low-
permeability materials including natural rocks can be inspected,
too. Currently, the threshold sensitivity of our system is
approkimately 100 mD. Further improvéments can be expected from
reflection-type measurements to be discussed later in more detail
in the following proposal. '

In the diffuse regime, i. e., at low frequencies, the
velocity and the attenuation coefficient contain the same
information on the permeable formation. The attenuation is
linearly while the velocity is inversely proporticnal to the
square-root of ¢sp2/x°. Since the static permeability x, and the

pore shape factor ratio s, always occur in the same combination

through the normalized poie radius £, they cannot be separated by
acoustical measurements. Instead, xo/sp2 was used to define a new
material parameter, the so-~called acoustic permeability x,, which
can be determined from the low-frequency propagation parameters
of the slow compressional wave. Comparison of the acoustic
permeability x, and the static permeability x, yields valuable

information on the geometry of the pore space.

Although the porosity ¢ is most easily determined by simple
weight measurements on the dry and wet sample, it should be
mentioned that it can be assessed by purely acoustical means,
too. This is possible because both real and imaginary parts of
the acoustical impedance are proportional to the square-root of
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; spz/x°¢, i, e.,‘a different combination of the same parameters
affecting the velocity and the attenuation coefficient of the
slow wave. In the diffuse regime, the acoustic impedance is
usuaily determined by reflection measurements.?730

In the propagating regime, i. e., at high frequencies, only
the velocity seems to be in good agreement with the‘theoretical
predictions. Anyway, the velocity by itself is sufficient to
determine the high-frequency tortuosity 7, of the material while
the attenuation coefficient would provide only redundant
information on ¢s,?/x, which is better determined from the low-
frequency behavior. The high-frequency attenuation contains
valuable additional information on the geometry of the pore
space, which is related to the inhomogeneity of the pore
channels. Random changes in the cross-sections of these channels
cause excess attenuation by increasing the viscous drag as well
as by elastic scattering. Further analytical efforts are needed
to develop appropriate models for these attenuation mechanisms so
that the measured data can be evaluated in terms of geometrical
properties of the permeable formation. In the following proposal,
we shall suggest specific techniques to develop such models.
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