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PREVIOUS RESULTS

During the last two years we havecontinued our

investigation of ultrasonic wave propagation in fluid-filled

porous materials. First, we studied the feasibility of using

different surface modes to characterize both synthetic and

natural rocks. We introduced a novel experimental technique based

on the direct generation of surface waves by edge excitation. We

used two low-frequency (100-500 kHz) shear transducers in pitch-

catch mode to launch and receive the ultrasonic surface wave. The

contact transducers were coupled to the opposite edges of the

porous specimens with normal polarization relative to the

surface. The same technique was successfully used to generate

Rayleigh-type surface modes on the free surface of both dry and

water-saturated specimens, as well as Stoneley-type interface

modes on the fluid-loaded surfaces of immersed samples.. Our main

achievement in this area is the realization that, due to surface

tension, practically closed-pore boundary conditions can prevail

on the free surface of a water-saturated rock for completely open

pores. As a result, the velocity of the true surface mode might

be much lower than the Rayleigh velocity of the dry skeleton.

While the shear velocity drops a meager 2-5% upon saturating the

specimen with water, the corresponding drop in the true surface

wave velocity is a disproportional 20-50% for high-permeability

rocks such as sandstones. This behavior is similar to the

transformation of a Rayleigh-type surface mode to a much slower

Stoneley-type true interface mode on the surface of a submerged
oz

solid while the original mode becomes leaky and quickly

disappears. To the best of our knowledge, this is the first

report on this kind of behavior of the true surface wave on the

free surface of water-saturated rocks.
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Deside investigating guided acoustic waves in water-

saturated porous materials, we also studied bulk wave propagation

in air-saturated specimens. We further developed our experimental

technique which is based on the transmission of airborne

ultrasonic waves through air-filled porous plates. This method

can be readily used to study the frequency-dependent propagation

properties of slow conpressional waves in different porous

materials including natural rocks. By simple technical

improvements, we extended the measuring range to 1-500 khz, so

that we could continuously cover both low-frequency (diffuse)

and high-frequency (propagating) regimes of the slow wave

propagation. In the diffuse region, which is usually below

I00 khz, both the velocity and the attenuation coefficient are

primarily determined by the static permeability of the material.

In the propagating region, the velocity depends on the tortuosity

only while the attenuation coefficient depends also on the pore

size and shape.

One of our'main experimental results is that the attenuation

coefficient always approaches a linear depend_nce on frequency at

high frequencies. This means that the conditions for slow wave

propagation do not improve at high frequencies in the way

predicted by the Biot theory. The normalized attenuation

coefficient, i.e., the total attenuation over one wavelength, is

a key parameter in determining the feasibility of slow wave

measurements by transmission-type experiments. In the diffuse

° region, the normalized attenuation coefficient is extremely high

(=60 dB). We found that in the propagating region it drops to a

significantly lower value of i0 dB or so, but it also becomes

constant. This unexpected behavior is due partly to increased

viscous drag caused by surface roughness and inherent microscopicn

impurities and partly to elastic scattering caused by the uneven
-

cross-section of the pore channels. These effects can be combined

into a new material parameter measuring the high-frequency

. dynamic permeability of the material, which, together with the

static permeability measured at lower frequencies in the diffuse
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region, facilitates a more complete characterization of the pore

structure. Experiments were made on well-defined metallic and

ceramic porous materials as well as more complex real rocks of

approximately I00 mD or higher permeability.

PROPOSED RESEARCH

During the next two years of this proposed work we plan to

continue our investigation of ultrasonic wave propagation in

fluid-saturated porous materials. This research effort should

find applications in the geophysical evaluations of fluid-bearing

porous rocks, where parameters such as tortuosity, shape factor,

permeability, saturation level, and internal impurity are

difficult to measure by conventional techniques using low-

frequency acoustic or other methods. Our proposed work is focused

on two novel experimental techniques developed during our current

research project.

We have already demonstrated that, thanks to the surface

- tension effect, the true surface wave propagating on the free

surface of a water-saturated rock can be readily used to assess

the dynamic permeability of the specimen. We are going to further

develop our direct excitation technique to increase the measuring

accuracy by using special data acquisition techniques such as

laser interferometric detection and more sophisticated signal
z

evaluation methods including spectrum analysis and extensive

spatial averaging. Our analytical efforts will be directed at

developing an inversion method for evaluating the dynamic

= permeability from the velocity and attenuation coefficient of the

true surface wave. In order to achieve this goal, further efforts

will be made to study the frequency dependence of both

propagation parameters. The suggested technique might well

complement the currently used Stoneley wave technique whenever

the surface is not submerged in the fluid, as in most borehole

applications.

i
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We are going to further develop our slow wave inspection

technique for air-saturated porous solids, too. In particular,

two basic problems of great practical importance will be

addressed. First, we are going to modify our experimental

arrangement so that both transmission and reflection of airborne

ultrasonic waves can be used to evaluate the porous specimens. It

is expected that, in this way, the permeabilit_ threshold,

currently at approximately 100 mD, can be further reduced by at

least one order of magnitude. Such improvement would extend the

field of application of this simple material characterization

technique to many oil-bearing rocks of practical importance.

Second, we are going to study the effect of partial water-

saturation on the low- and high-frequency behavior of the dynamic

permeability. These results might find important applications in
i

developing new experimental techniques to measure the relative
c

permeability in porous materials.

z



I. PROGRESS REPORT

Ultrasonic evaluation of porous materials can take advantage

of some very specific acoustic phenomena which occur only in

fluid-saturated consolidated solids of continuously connected

pore structure. Certain material properties of the porous frame

such as the degree of consolidation or grain size can be readily

evaluated from the velocity or attenuation of the shear and

longitudinal waves in the dry skeleton or those of the fast

compressional wave in the fluid-saturated material. I'2 Other

parameters such as tortuosity, permeability, porosity, and pore

size, shape and surface quality are inherently connected to the

porous nature of the material and can be evaluated much better

from the propagation properties of the slow compressional wave.

Unfortunately, the slow compressional wave is usually very weak

due to high attenuation caused by viscous drag between the fluid

and the solid frame. In natural rocks, the viscous drag is

further increased by clay particles deposited both within the

pore throats and on the surfaces of the rock grains. 3 The

i[ excessive attenuation results in the complete disappearance of

i the slow compressional mode in water-saturated rocks. Because of

this, we have to introduce two novel experimental approaches

which are more suitable to geophysical applications where the

economic benefits of ultrasonic material characterization are

enormous.

First, we studied the feasibility of using different surface

modes to characterize the properties of water-saturated rocks.

This technique is based on the indirect observation of the slow

compressional wave through its significant effect on the velocity

of the surface mode propagating along the free surface of the wet

rock. Second, we alsostudied bulk slow wave propagation in air-

filled porous materials. Due to the relatively high kinematic

viscosity of air, the slow compressional wave is even more

attenuated than in water-saturated samples, but it is the only

mode which is generated with a significant amplitude, therefore
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its detection is fairly simple. The main results of these two

reseazch efforts are discussed separately in the following

chapters.

i.i SURFACE WAVE TECHNIQUE

As we have mentioned before, the bulk slow wave propagating

in a water-saturated natural rock is usually far too weak to be

detected, let alone to be used for material characterization. On

the other hand, surface and interface waves guided along the

contour of a water-saturated specimen are much less attenuated

but still quite sensitive to the permeable nature of the porous
z

formation. Maybe the best example is a borehole Stoneley wave

which is the fundamental mode of a guided wave traveling in a

_luid-filled tube. In the case of permeable walls, because of

fluid flow into the formation, the Stoneley wave velocity

decreases and its attenuation increases. The strong correlation

between the frequency-dependent propagation parameters and

formation permeability can be exploited in acoustic logging in

the field or in the laboratory. 4-8 It has been suggested that

other types of guided modes can be used in a similar way to

assess formation permeability, tortuosity, and other parameters

of a porous material. 9"11

l.l.1 INTRODUCTION AND BACKGROUND

=

There is only one type of true interface wave which can

propagate along the free surface of an ordinary solid. It is

_ called Rayleigh wave and its velocity is approximately 5-10%

below the shear wave velocity. Two types of interface waves can

propagate along the fluid-loaded surface of an immersed ordinary

solid: there is a true mode called Stoneley (or sometimes
z

z Scholte) wave and a pseudo-mode called leaky Rayleigh wave. The

true wave is always slower tllan all the bulk waves in the solid

6



and the fluid and it produces evanesc:ent fields only as it

propagates along the interface. Since the energy of this mode is

strictly confined to the interface region, its generation and

detection presents a rather difficult technical problem. The

leaky Rayleigh wave is slightly faster than the true Rayleigh

wave propagating on the free surface of a solid. In most cases,

this velocity is faster than the sound velocity in the fluid,

therefore it leaks energy into the liquid as it propagates along

the interface. This mode can be easily generated and detected by

the phase-matching compressional waw_ in the fluid at the so-

called Rayleigh angle, at least whenever this angle is not much

higher than 60° . lt should be mentioned that this mode becomes

non-propagating whenever the shear velocity in the solid is lower

than the sound velocity in the fluid,, which is true for many

natural rocks.

Of course, the situation becomes much more complex in the

case of a fluid-saturated porous solid. Feng and Johnson showed

that a maximum of three different types of surface modes can

exist on a fluid/fluid-saturated porous solid interface depending

on (i) the shear velocity of the frame and (ii) the surface

conditions+, i.e. whether the pores are open or closed. 9,10

However, in most natural rocks the shear velocity is lower than

the sound velocity in water and the pores are open at the

surface, therefore there is but one principal surface mode,

namely the Stoneley mode. lt is important to realize that this

mode becomes leaky into the slow compressional wave whenever its

velocity is higher, as it is in most cases of interest to us.

Although the slow wave is very highly attenuated and cannot be

directly observed in water-saturated rocks, its indirect effect

of making the Stoneley wave highly attenuated via this leakage

can be more readily observed. This attenuation mechanism is taken

advantage of for permeability assessment in the Stoneley borehole

technique. Of course, in the case of an impermeable ordinary

solid, the Stoneley wave is a true interface wave with lower

velocity than any of the bulk velocities in the surrounding

7
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media.

To the best of our knowledge, the corresponding effect on

the true surface wave propagating on the free surface has not

been investigated yet in the open literature. Although the

surface is free, the Rayleigh wave must become leaky into the

slow compressional mode unless its velocity is lower. On the

other hand, for well consolidated rocks of relatively high frame

modulus, the shear velocity is similar to the compressional wave

velocity in water. Since the Rayleigh velocity is approximately

90-95% of the shear velocity while the slow wave velocity is only

50-70% of the sound velocity in water, it is expected that the

]_ayleigh mode becomes leaky in most water-saturated natural

rocks. At the same time, the true surface wave, if there is one,

must propagate with a velocity lower than the slow wave velocity

so that it cannot leak energy into the bulk of the material. In

. the next chapter we present our new analytical results for the

velocity and attenuation coefficient of the modified Rayleigh

wave propagating on the free surface of a water-saturated

permeable solid. In the subsequent two chapters we describe our

experimental technique and results and present a short discussion

of these results showing the feasibility of the suggested surface

wave technique for measuring formation permeability of water-

saturated rocks._

_

1. i. 2 ANALYTICAL RESULTS

i The method of Feng and Johnson 9,10 can be easily applied to

the case of a surface wave propagating along the free surface of

z a water-saturated rock. It is even easier and also more

realistic, to assume that the superstrate fluid is air while the

substrate is saturated with water. Of course, the sound vei_ity

in air is only 340 m/s, therefore the surface wave is always

: leaky into the superstrate. On the other hand, due to the very

low density of air, this leakage is quite negligible and the
_
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surface can be considered "free" for all practical purposes.

We are going to show that capillary forces can hold the

wetting fluid (water) in the pores and effectively extend a

membrane over the surface pores at the boundary with the non-

wetting fluid (air). This membrane is usually so strong that it

assures closed-pore boundary conditions at the surface. Of

course, the same formation exhibits open-pore boundary

conditions at the water/water-saturated porous solid interface

when the specimen is fully immersed in water.

In the ideal case of completely closed surface pores and

viscosity-free fluid, two types of surface wave can propagate

along the free surface of a fluid-saturated porous solid. First,

there is a pseudo-Rayleigh mode which leaks its energy into the

slow compressional wave. In the case of a highly permeable solid,

the resulting attenuation might be quite significant. Second,

there is a true surface mode with velocity slightly below that of

the slow wave. This mode is a simple form of realization of the

new interface mode predicted by Feng and Johnson 9,10 when the

superstrate fluid is extremely rare and highly compressible like

air.

First, we will show through the example of the true surface

mode that a minimum surface stiffness of approximately 1010N/m 3

is required to produce close-pore boundary conditions. Second, we

will demonstrate that strong capillary forces in water saturated

natural rocks can easily produce a surface stiffness in excess of

1010N/m 3, therefore the pores are effectively closed at the

surface of a water-saturated rock surrounded by air. Third, we

will show that under these conditions, the surface velocity is

very sensitive to the dynamic permeability of the porous sample.

Table 1 shows the material parameters used in the following

calculations. A detailed description of the boundary conditions

and the derivation of the characteristic equation can be found in

9
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Reference 9. The surface stiffness Ts is defined as the

proportionality coefficient between the discontinuity in pressure

and relative displacement of the fluid with respect to the frame

below the interface:

p-p, = Ts (Uz-uz), (1.1)

where p and p' denote the fluid pressure in the pore space below

: the surface and in the superstrate fluid just above it,

respectively. Uz and u z are the normal displacement components of

the fluid and solid below the surface, and _ denotes the

porosity. We adapted this form for the boundary condition because

- it suits our immediate purposes better than the more general

, solution of defining a surface impedance Z s by 4'12

L

p-p, : izs (uz-u,), (1.2)

where _ denotes the angular frequency. In the case considered

here, the finite surface impedance is due to an apparent membrane

extended over the surface pores by capillary forces and its

stiffness depends on the surface tension of the fluid. In the
-

case of a fluid/fluid-saturated porous solid interface (e.g., in

borehole Stoneley wave experiments), the finite surface impedance

is due to the flow resistivity of the surface pores and its value

depends on the viscosity of the fluid. Naturally, in this case

the definition of Equation 1.2 is easier to adapt. Otherwise,

there is no physical difference between the two approaches and
-

the surface impedance can be expressed by the surface tension as

q Z e = Taiu. (1.3)

_

c_

=
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Table i Material parameters used in the surface wave

calculations.

superstrate (air) density 1.3 I00 kg/m 3

superstrate (air) bulk modulus 1.5 105 N/m 2

substrate fluid (water) density 1.0 103 kg/m 3

substrate fluid (water) bulk modulus 2.25 109 N/m 2

substrate solid (glass) density .. 2.48 10 3 kg/m3

substrate solid (glass) bulk modulus 4.99 1010 N/m 2

frame bulk modulus 6.64 109 N/m 2

frame shear modulus 3.69 109 N/m 2

porosity 0.3

tortuosity 1.79

Feng and Johnson considered two special limiting cases only:

(i) Ts=0 (i.e., p=p') corresponds to an open-pore situation with

free flow of fluid in and out of pores and (ii) Ts= _ (i.e.,

Uz=Uz) corresponds to a closed-pore situation at the surface when

there is nu relative flow. We extended these calculations to the

more general case of finite surface stiffness. Table 2 lists the

different bulk and surface wave velocities in dry (air-saturated)

and wet (water-saturated) porous glass. A number of important

features should be noticed here. The fast compressional w_,e

velocity is approximately 12% higher while the shear velocity is

4% lower in the wet sample. The small drop in the shear

velocity is particularly important since (i) it provides a direct

measure of the inertia effect of the fluid moving within the

porous solid and (ii) the shear wave velocity is very closely

related to the Rayleigh velocity on the free surface. In th6 high

= frequency limit, when viscous drag between the fluid and the

frame is negligible, the shear wave velocity vs can be expressed

by

vs 2 = N/[ (l-_)pe+_pf(l-i/T) ], _. (2)

11



Table 2 Sound velocities in dry and wet porous glass.

dry wet

fast wave 2,580 m/s 2,879 m/s

slow wave 254 m/s 980 m/s

shear wave 1,458 mis 1,405 m/s

surface wave

- open pores 1,344 mis " 1,295 m/s

- closed pores 1,344 m/s 880 m/s

where N is the shear modulus of the dry frame, Ps and pf denote

the solid and fluid densities, respectively; and T is the _

tortuosity. As opposed to the compressibility of the material,

the rigidity is not affected by fluid saturation, therefore the

relative difference between the shear velocities of the dry and

wet samples depends mainly on the tortuosity:

(rs (dzT)- vs(w't))Iv.(4_7) = 1/2 Pf/PB _I(1-@) (1-11f), (3)

where the densities and the porosity can easily be determined

from simple weight measurements. Theoretically, Equation 3 can be

readily exploited to determine the tortuosity by comparing the

shear velocities in the dry and wet samples. Unfortunately, the

sensitivity to the tortuosity is rat_er low. For example, the

relative change in the shear velocity increases from 5.7% to 6.5%

as the tortuosity increases from 3 to 4. Although we could easily
J

measure the shear wave velocity with a relative accuracy of 0.1%,q

the inertia effect might be overshadowed by inevitable small

changes in the rigidity of the sample as we saturate the solid.

From this point of view, a water-saturated natural rock might

behave significantly differently from an ideal Biot-solid. This

discrepancy can be caused by a variety of different mechanisms

such as dehydration and stiffening of clay minerals, ionization,

adsorbed water, capillary forces, etc. 13 In conclusion, the small



change in shear velocity cannot be used reliably to assess the

tortuosity, but the char_ge is usually negative and only a few

percent.

Going back to Table 2, we can also note that, for a dry

sample, the surface wave velocity is approximately 7.8% lower

than the shear velocity, regardl_ss whether the surface pores are

open or closed. There is only negligible coupling between the

solid frame and the air and the sample behaves like an ordinary

solid. For open pores, water saturation gives very similar .

results as the surface velocity is again approximately 7.8% lower

than the shear velocity (of course, both velocities are somewhat

lower in the wet sample due to the above mentioned inertia

effect, but their ratio is the same). On the other hand for
=

closed pores, the velocity of the true surface wave becomes much

(approximately 30%) slower than the shear velocity. Actually, it

is even slower than the slow compressional wave at 980 m/s. This

has to be so since it is a true surface wave and due to the

closed pores at the surface it would otherwise leak energy into

= the slow compressional wave. In the case of open pores at the

surface, a disturbance can propagate along the surface without

- generating a slow wave componentsince, in the absence of

viscosity, there is nothing to prevent the water from flowing

through the surface pores without producing a reaction force. On

the other hand, when the surface pores are closed, the surface

mode becomes very similar to the slow compressional wave itself

although its velocity is slightly lower. This small difference

= further diminishes as the frame modulus increases. In the case of

a very rigid frame with closed pores at the surface the slow

compressional wave alone satisfies the free boundary conditions "

_ (like a horizontally polarized shear wave does in an ordinary

solid).

Figure 1 and 2 show the calculated velocity and attenuation--

coefficient of the "true" surface wave propagating on the surface

of a water-saturated porous material as a function of the surface

13
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stiffness. The dependence of the propagation parameters on the

surface stiffness is very similar to the frequency dependence

caused by a single relaxation process. The velocity drops from

1,295 m/& to 880 m/s as the surface stiffness increases. There is

a fairly sharp turning point around 107N/m 3 where the attenuation

exhibits a maximum. The attenuation coefficient is calculated

from the imaginary part of the complex root of the characteristic

equation. Since the characteristic equation is independent of

frequency, the solution is non-dispersive and the attenuation

coefficient turns out to be linearly proDortional to frequency.

Let v=vr+iv i denote the complex root of the characteristic

equation. Then

z

exp[i_(_-x/v) ] = exp[i_(t-x/vp) ] exp[-ux], (4.1)

where vp denotes the phase velocity

vp = (vr2+vi 2)/Vr, (4.2)

and _ is the attenuation coefficient

a = _vl/(vr2+vL2). (4.3)
_

In order to retain the generality of the relationship

between the attenuation coefficient and the surface stiffness, we

plotted the attenuation slope, i.e., attenuation coefficient

divided by frequency, in Figure 2. The maximum at approximately

10 7 N/m 3 corresponds to a rather high 7 dB/cm attenuation
=

coefficient at I00 kHz. Since the wavelength is close to 1 ,._m,

the normalized attenuation coefficient, i.e., the attenuation

over one wavelength, is 7 dB. This corresponds to a very strongly
a

attenuated but still propagating wave within the reach of

experimental observation. Of course, at both lower and higher

__ surface stiffness, the surface wave becomes much less attenuated.
--

In the case of finite surface stiffnesse_, the surface wave is

coupled to the slow compressional wave of lower velocity

14
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Figure 1 Surface wave velocity versus surface stiffness
on the free surface of a wet rock.
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Figure 2 Surface wave attenuation versus surface stiffness
on the free surface of a wet rock.
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therefore it is attenuated by leakage of energy into that mode.

If we were to assess the velocity and attenuation

coefficient of a Stoneley-type interface wave along a

fluid/fluid-saturated porous solid boundary, we would have to

calculate the surface resistivity from the formation permeability

and the fluid viscosity. Similarly, in order to assess the

propagational parameters of the Rayleigh-type surface wave along

the free surface of a fluid-saturated porous solid, we have to

calculate the surface stiffness from the formation permeability

and the surface tension of the fluid. For the sake of simplicity,

let us assume that the pores are cylindrical holes of radius a.

The radius of the surface membrane c_n be calculated from the

Laplace equation:

R = 2a/p , (5)

where G denotes the surface tension and pf is the fluid pressure:

. =Po-P, (6)

where Po and p denote the hydrostatic and acoustic pressure,

respectively. Capillary forces can pull the fluid column to a

maximum height h where the hydrostatic pressure reduces the

radius of the surface membrane to that of the pore, a:
.

h = 2G/pfga, (7)

where g is the gravitational acceleration. In natural rocks, the

capillary height can be as large as a few meters and, of course,, '

the hydrostatic pressure is much larger than the acoustic

component. The fluid volume in the pore can be written as

-

Vf = Vp- a4_/4R, (8)

where Vp denotes the total volume of t/%e pore. A small change of

.-



the membrane's radius dR causes

dVf = dR a4_y/4R2 (9)

change in the fluid volume. From Equations 5 and 6,

dR = pR2/2a (i0)

and the surface stiffness can be obtained by substituting

Equation I0 into Equation 9 and then into Equation i and using

the simple relationship between the average fluid displacement
m

and the volume velocity

(Uz-Uz) a2_ = dVf. (ll)

Finally,

: Ts = 8a/_a 2. (12)

For a network of cylindrical pores, the combination of the Darcy

and Poiseuille laws give the following well-known equation for
f

the static permeability

: _o = @a2/8, (13)

which can be used to establish a simple relationship between the

= surface stiffness and the formation permeability:

T s : O/K o. (14)
_

For water, G=2.3 10"2N/m, and even a relatively high static

permeability of Ko:l,000 mD = 10 -12 m 2 produces a surface

stiffness in excess of 1010 N/m 3. A quick comparison with Figures

. 1 and 2 verifies that, for all practical purposes, the pores are

_ sealed by such surface tension on the free surface of a water-

saturated rock. Since the true surface mode effectively becomes a

- 17



weakly perturbed slow wave, its attenuation is expected to be as

high as that of the slow wave. This phenomenon is analogous to

the relation between the Rayleigh-type true surface mode

propagating on the free surface of an ordinary solid and the

shear wave or that of the Stoneley-type true interface wave

propagating along a fluid/ordinary solid boundary and the

compressional wave in the fluid. Whenever the slow compressional

wave is killed by excessive attenuation, the true surface mode is

expected to suffer a similar fate. Therefore, in natural rocks of

low permeability (less than i00 mD) the dominant surface mode is

expected to switch over to the leaky Rayleigh mode.

Up to this point, viscous losses were completely neglected.

Actually, they play a very important role in both attenuation and

velocity of the surface wave. The easiest way to model viscous

losses in the fluid-saturated porous solid is to assume a complex

tortuosity rather than a pure real one based simply on the

geometry of the pore channels. The complex tortuosity T(_) is

: related to the dynamic permeability _(_) of the specimen: 14

=

where _ is the kinematic viscosity of the saturating fluid, and

the complex wave number k can be expressed as

=

= (IS.2)
=

It has been shown that the complex tortuosity has a nearly

universal form determined by four basic parameters, namely the
_

high-frequency tortuosity r_, the static permeability Ko, the

porosity _, and a length parameter A determined by the average

pore size and shape: 14

_ (_) = _+i (_/_Ko) (I-4iT®2_o2_/_A2_ 2) i/2 (16.1)

Relatively small viscous effects can be accounted for by a

,,
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simplified version of this general form:

7(_) = Tm[l+(iL) i/2], (16.2)

where L denotes the loss factor

L = 4n/_oA2. (16.3)

..

Figures 3 and 4 show the calculated velocity and attenuation

coefficient of the "true" and leaky Rayleigh surface waves

propagating on the free surface of a water-saturated porous solid

in the case of closed-pore boundary conditions. The velocity of

the "true" surface mode increases significantly with increasing

viscous losses. The attenuation slope (attenuation coefficient

divided by frequency) also increases at first, then flattens off

as the loss factor reaches approximately 10%. The leaky Rayleigh

velocity is much less affected by the complex nature of the

tortuosity. Its velocity drops slightly as the fluid becomes

immobilized within the pores. This small drop in velocity is

primarily due to the added inertia effect of the fluid, which

affects the shear wave in a similar way (see Equations 2 and 3).

Its attenuation slope is basically constant since the loss is
-

mainly due to energy leakage into the slow compressional wave.
±

This loss is more or less the same whether the slow wave is

: strongly attenuated or not. Experimental results indicate that in

real water-saturated rocks the shear wave is much more attenuated

- than is predicted by the Biot theory. Similarly, we expect that
z

the Rayleigh-type surface wave is also much more attenuated than

one would assume from these simple calculations.

_

The most important conclusion we can draw from these results

is that not only the attenuation_ but also the velocity of the

"true _' surface wave is greatly affected by the loss factor, i.e.,

the dynamic permeability of the porous solid. According to our

calculations, in low-permeability rocks, the surface wave_

velocity drops but a meager 3-4% when the sample is saturated by

19
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water. On the other hand, in high-permeability samples, the
i

corresponding drop might be as much as 30-40%, i.e., one order of

magnitude larger. Our experimental efforts were focused on

verifying these predictions.

1. I. 3 EXPERIMENTAL TECHNIQUE AND REC3ULTS

Recently, we have introduced a new experimental technique

for surface and interface wave generation by direct excitation

using conventional contact transducers. 15,16 The schematic

diagram of the experimental arrangement is shown in Figure 5. Two

contact transducers are placed dizectly over the opposite edges

of the specimen so that they can generate a bulk mode in the

interior of the sample as well as guided modes along the surface.

In this particular case, we used shear transducers of vertical

polarization, i.e., normal to the surface. Figure 6 shows the

detected signals on a 90-mm-long aluminum sample. The first

arrival is a shear-type bulk wave which is followed by a slightly

slower Rayleigh-type surface wave. It is important to notice that

the bulk signal is much sharper, i.e., it has more high-frequency

components than the surface mode. This difference raises the

z question of energy partition between the tw_ principal modes of

propagation. The center part of the transducer, which is directly

over the interface region within approximately one wavelength,

generates mostly surface modes while the lower part, which is_

father away from the surface, generates mostly bulk waves.
_

According to this very simple model, the total energy will be

divided between the surface and bulk modes proportionally to the
=

ratio between the wavelength and the transducer radius. Since the

wavelength is inversely proportional to frequency, the low-_

frequency components contribute to the surface mode only while

the high-frequency components go mostly into the bulk mode. This

conclusion is confirmed by Figure 7 showing the complemental
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Figure 5 Geometrical arrangement for direct surface wave
= generation.
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frequency spectra of the two principal pulses of Figure 6. Since

the high-frequency components are usually much more attenuated in

both dry and wet porous materials than in aluminum, the surface

mode becomes the stronger of the two.
b

As opposed to bulk modes, surface modes are not polarized

strictly normal or parallel to the propagation direction.

Therefore, the vertically polarized _hear transducer might be

replaced by a longitudinal transducer. In the case of true or

leaky Rayleigh waves, the polarization is dominantly normal to

the surface therefore a shear transducer gives somewhat better

sensitivity. In the case of a Stoneley-type interface wave

propagating along a fluid/high-density solid boundary, the

polarization is dominantly parallel to the interface and a

longitudinal transducer should be used. In the case of a low-

density solid, like most natural rocks, the Stoneley-type

interface wave is strongly coupled to both media and the particle

displacement has significant components in both directions

therefore either shear or longitudinal transducers would work.

Actually, in the case of a longitudinal transducer, the operation

is rather similar to the widely-used borehole Stoneley wave

technique, although the axisymmetric arrangement is obviously

more sensitive.

-

Previously, we successfully used this technique to generate

and detect Stoneley-type interface modes propagating along

fluid/fluid-saturated porous solid interfaces. This time, we

concentrated on the apparently simpler case of Rayleigh-type

surface modes propagating on the free surface of both dry and wet

porous solids. Because of the excessive attenuation of the high-

frequency components in real rocks, the shear wave is usually too

weak to be detected in the presence of the much stronger low-

frequency surface wave. Therefore, we measured the shear wave

- velocity by simply moving the transducers from the surface to the

interior of the sample where the shear wave produced the only

detectable signal.

24
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Figure 8 shows the significant change in the time of arrival

of the shear component upon saturating a Sunset Blush Massillon

Sandstone sample with water. The detected signal was digitally

recorded at 5-second-intervals. The sample's thickness was 52 mm

and the shear velocity was found to be approximately 1,620 m/s in

the dry sample. In order to clearly demonstrate the effect of

water-saturation on the velocity of the transmitted shear wave,L

we kept the signal amplitude at its initial level by continuously

increasing the gain of the receiver. Actually, the signal

amplitude dropped by 23 dB during the experiment, which explains

the somewhat higher noise level observed after approximately

three minutes saturation time. lt is less apparent that the shape

changed !of the signal has a little, too, as the high-frequency _

components are much more attenuated than the low-frequency ones.

Figure 9 shows the additional attenuation caused by water-

saturation. The experimental data was obtained by subtracting the

modulus of the frequency spectrum of the first signal in Figure 8
z

(completely dry rock) from that of the last one (completely wet

rock). The solid line is the best fitting linear regression. The

induced attenuation seems to be proportional to frequency and the

above mentioned 23 dB gain adjustment needed to keep the peak-to-

peak amplitude constant during the experiment is approximately

the same as the actual attenuation at 160 khz, i.e., at the

center of the frequency band. The induced time delay is

approximately 2 _s corresponding to 5.6% drop in the shear wave

velocity. This change is in reasonably good agreement with our

expectations based on the added inertia effect. By assuming

p./pf=2.3, _=23% connected porosity, and T=3 tortuosity, Equation

3 gives 4.3%. As we have mentioned before, better quantitative

agreement cannot be expected because of the simplicity of the
z •

model used to derive the shear wave velocity in a fluid-saturated

i porous rock.
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Figure 8 The effect of gradual water-saturation on the
_ transmitted shear wave through a 52-mm-thick

Sunset Blush Massillon Sandstone specimen._

Vertical scale (saturation time) is 6 minutes,
horizontal scale (propagation time) is _0 Vs.
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Figure 9 Saturation induced attenuation of the shear wave
in a 52-mm-thick Sunset Blush Massillon Sandstone

= specimen as a function of frequency.
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In order to establish the feasibility of the suggested

experimental technique for surface wave velocity measurements in

natural rocks, we have measured the velocity of the dominant

surface mode in a number of both dry and wet rocks. The l"-

diameter, low-frequency (100-500 khz)shear transducers were

pressed against the samples by a constant weight of approximately

30 ibs. All samples were cut into rectangular blocks so that two

significantly different dimensions were accessible for

comparison. The "short" and "long" dimensions were typically 2

and 4 inches, respectively. As an example, Figure I0 shows the

detected surface wave signals on a Cavallo Buff Massillon

Sandstone specimen in dry and wet conditions. The surface wave

velocity was directly calculated from the differences ir

propagation length and time. Table 3 summarizes our experimental

results on 16 different rocks used in this study. The

experimental uncertainty is estimated to be approximately 5%. The

main source of this significant experimental error is the

distortion of the shape of the observed signals which renders the

overlapping, and therefore the time delay measurement, too,

somewhat uncertain. Also, because of the inherent inhomogeneity
f

and anisotropy of most natural rocks, the accuracy of such

measurements is inherently limited.

On the average, the Rayleigh velocity in the dry samples

(1,610 m/s) is 10% lower than the shear velocity (1,790 m/s),

while the surface wave velocity in the water-saturated samples

(1,400 m/s) is 13% lower than in the dry ones. The ratio between

the experimentally determined surface wave velocities is clearly

higher than the approximately 5% one would expect from the

inertia effect of water-saturation. The uneven distribution of

this ratio is even more interesting: it is in excess of 30% in

the five most permeable rocks but only a few percent for the

, least permeable ones.
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Table 3 Shear and surface wave velocities of different
natural rocks.

Type Origin Velocity [m/s]
shear surface
dry dry wet

Berea Sandstone (100 mD) Cleveland, Qhio 1530 1290. 1290

Berea Sandstone (200 roD) Cleveland, Ohio 1580 1410 1300

Berea Sandstone (300 mD) Cleveland, Ohio 1450 1220 950

Berea Sandstone (450 mD) Cleveland, Ohio 1470 1330 970

Massillon Sandstone
(600 mD) (LLNL) 1560 1460 1070

Cavallo Buff Massillon Coshocton County,
Ohio 1790 1490 1060

Sunset Blush Massillon Coshocton County,
Ohio 1620 1420 1010

Buff Limestone Indiana 2510 2230 2210

Ledge Rock Sandstone Tennessee 1960 1740 1740

McDermott Buff Sandstone McDermott, Ohio 1300 1260 1030

Seneca Valley Sandstone Brown County, Ohio 1510 1420 1250

Salt Creek Buff

Limestone Latham, Ohio 2810 2370 2130

McDermott Blue-Gray

Sandstone McDermott, Ohio 1570 1320 1060

Waverly Sandstone Waverly, Ohio 1690 1670 1560
i

_

Berea Sandstone Peninsula, Ohio 2360 2360 2000

Berea Sandstone Warrensburg,

M_ntana 1890 1800 1710

z
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Figure 11 shows the Rayleigh velocity-to-shear velocity

ratio for the first five samples of Table 3 (the permeabilities

of these samples were measured at the Lawrence Livermore National

Laboratory). There seems to be a weak trend of increasing ratio

at higher permeabilities, which corresponds to an increasing

Poisson's ratio. This would indicate weaker consolidation in the

high-permeability samples, but the effect is not really

significant since it is well below the experimental uncertainties

indicated by the error bars. It should be mentioned that these

error bars correspond to 7% combined uncertainty in the data,

which, as for the ratio of the two velocities, might be a little

too pessimistic. Some uncertainties present in the raw data

(caused by inhomogeneity and anisotropy) cancel out in the

comparison and the actual error might be well below 5%.

Figure 12 shows the ratio between the surface wave

velocities in dry and wet samples as a function of permeability.

The solid line is just an arbitrary fit to the experimental data

to emphasize the trend of increasing ratio at higher

permeabilities. The importance of these results lies in the

relationship between fluid mobility and sound velocity _. On the

other hand, Figures 3 and 4 clearly demonstrated a similar effect

between fluid mobility and surface wave attenuation, too. This
_

aspect of the surface wave propagation along the free surface of

a fluid-saturated rock needs to be further investigated. As an

example Figure 13 shows the saturation induced attenuation

increase in a Cavallo Buff Massillon Sandstone specimen. This is

the difference between the attenuation spectra calculated from

the time-domain signals shown in Figure I0 and it corresponds to

added attenuation over a propagation length of 1.9". The induced_

attenuation is approximately one order of magnitude higher than

in low-permeability rocks where the relative motion between the-

fluid and solid is negligible. It is also interesting to notice

that the attenuation of this kind of surface wave seems to be

proportional to the square of frequency while it is more like a
-

linear relationship for the shear or ordinary Rayleigh waves°
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1.1.4 DISCUSSION AND cONCLUSIONS _

our research effort was based on the realization that, due

to surface tension, practically closed-pore boundary conditions

can prevail on the free surface of a water-saturated natural

rock. We showed through the example of the true surface mode that

approximately Ts=lO 7 N/m 3 surface stiffness is sufficient to

produce such conditions. This is significantly less than the

T.=I011N/m 3 value used by Feng and Johnson in their original

calculations to model an ideally closed pore. 9 Our results are

also in good agreement with the predictions of Wu at al. 17 They

showed that the reflection coefficient from a water/water-

saturated porous solid interface approaches its closedupore

asymptotic value above Ts=f0 7 N/m 3, i.e., well before the four

orders of magnitude higher value assumed by Feng and Johnson to

make their numerical calculations more accurate.

Our calculations showed that capillary forces can easily

produce closed-pore boundary conditions atthe interface between

a non-wetting fluid (air) and a porous solid saturated by a

wetting fluid (water). The stiffness of the membrane extended

over the surface pores depends on the surface tension of the

wetting fluid and the pore size and shape. We derived a simple

approximation relating the boundary stiffness to the formation

permeability. We found that the boundary stiffness is around

1010 N/m 3 in most natural rocks, i.e., well above the threshold

value required to achieve closed-pore boundary conditions. Under

these conditions, the Rayleigh-type surface wav e becomes strongly

attenuated by energy leakage into the slow compressional wave and

the velocity of the true surface mode drops below the slow wave

velocity. Of course, the mobility of the water is badly limited

by viscous drag between the fluid and the solid frame. This

J effect is particularly strong in natural rocks where the drag is

! greatly increased by inherent impurities such as submicron clay

particles sticking to the pore walls and clogging the narrow

throats of the pore channels. We modeled this effect in the usual

34
Z

..



way by introducing a complex tortuosity which then describes both

added inertia and viscous drag effects. We found that viscous

loss increases both the velocity and the attenuation of the

surface wave.

We used the direct excitation *technique to measure surface

wave velocity and attenuation on both wet and dry rocks. The

Rayleigh velocity of dry rocks is approximately 10% lower than

their shear velocity. The surface wave velocity of water-

saturated rocks of low permeability (below 100-200 mD) is 5-10%

lower than the Rayleigh velocity of the dry specimen. This drop

in velocity is primarily due to the added inertia of the

saturating fluid, which is also apparent in the similar decrease

in the shear wave velocity. The sur:_ace wave velocity of water-

saturated rocks of high permeability is much lower, approximately

60-70% of the Rayleigh velocity of the dry specimen. This strong

correlation between the observed su_face wave velocity change

caused by water-saturation and the formation permeability can be

used for ultrasonic assessment of tl_e dynamic permeability.

Further investigation is needed to establish a reliable

theoretical model for the observed phenomenon and to develop

inversion techniques for the quantitative evaluation of material

properties from the velocity and attenuation of the surface wave

propagating on the free surface of a fluid-saturated rock.

-

_

z

_
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1.2 AIR-SATURATION TECHNIQUE

!

The most interesting feature of acoustic wave propagation in

fluid-saturated porous media is the appearance of a second

compressional wave, the so-called slow wave. The existence of a

slow compressional wave in an isotropic and macroscopically

homogeneous fluid-saturated porous m_dium was predicted by Biot

in 1956. 18,19 The main characteristic of this mode is that its

velocity is always lower than both compressional wave velocities

in the fluid and solid frame. Below a critical frequency, which
q

depends on the pore size in the frame and the kinematic viscosity

Of the fluid, the slow cempressional wave is highly dispersive

and strongly _ ° _attenuate_Over a single wavelength Above this

critical frequency, it becomes a dispersion-free propagating wave

with increasin_ but fairly low attenuation. The slow
L

compressional_wave represents a relative motion between the fluid

and the solid frame. This motion is very sensitive to the

kinematic viscosity of the fluid and the dynamic permeability of

the porous formation. Naturally, low-viscosity liquids such as

wate_ are the fluids most often used in such experiments. In our

current research effort, we have been studying the feasibility of

using gaseous fluids such as air to saturate the porous

specimens.

i. 2 •1 INTRODUCTION AND BACKGROUND
=

_ ,_

Since 1980, when Plona was able to observe slow wave

propagation in artificial rocks made of sintered glass beads, 20

the question of why slow waves cannot be detected in real rocks

has been one of the major issues in the acoustics of fluid-

saturated materials. Recently, Klimenatos and McCann showed that

this lack of perceivable slow wave propagation is probably due to

inherent internal impurities, such as submicron clay particles,

found in all types of natural rocks. 3 These clay particles,
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deposited both within the pore throats and on the surfaces of the

rock grains, greatly increase Viscous drag between the fluid and

solid frame, which results in excessive attenuation and usually

complete disappearance of the slow wave. One way to reduce the

excessive attenuation of slowwaves in porous materials is to use

special fluids of very low viscosity to saturate the specimen.

For instance, superfluid 4He below I.IK has been shown to work

very well in fused glass bead samples, 21 superleak materials

consisting of compacted powders, 22"24 ands in sandstones, 25 but

the technique is obviously very cumbersome.

The question of whether or not excessive attenuation in

viscous fluid-saturated natural rocks renders the detection of

slow waves impossible arises. Not necessarily! Even a very weak _

slow wave attenuated by as much as 50-60 dB could easily be

detected but for the presence of much stronger background "noise"

caused by the direct arrivals and scattered components of the=

fast compressional and/or shear waves. If we could generate a

slow wave only and nothing else, it would be much easier to

detect in spite of the substantial attenuation. Compared to the

solid frame, liquids like water usually have a lower, but still

comparable density pf and bulk modulus Bf. Although their_

viscosity _ is also relatively high, which makes saturation of

the porous sample somewhat troublesome, their kinematic viscosity

- _=_/pf is fairly low. On the other hand, gaseous fluids like air

have very low density, bulk modulus, and viscosity as well, while

z their kinematic viscosity is usually rather high. Therefore, it

is very simple to saturate a porous sample by air, but the slow

wave is expected to be highly dispersive and strongly attenuated.

In spite of these adverse effects, slow waves can be readily

observed when an air-filled porous sample is insonified by

airborne ultrasonic waves. Because of the tremendous acoustical

mismatch between the incident compressional wave and the porous

solid, all the energy is either reflected or transmitted via the

: slow wave without generating appreciable fast compressional or

shear transmitted waves.
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In order to demonstrate this crucial effect, Fig. 14 shows

the slow, fast, and shear wave transmission coefficients through

• water and air-saturated glass bead specimens. The physical

parameters of the glass bead specimen and details of the

calculation are given in _ef. 17. In the case of water

saturation, the slow co_=ssional,___ wave is usually 5-10 dB weaker

than the fast compressional or shear modes and it is much more

attenuated. Also, because of its slawer velocity, it arrives

later than the other modes and it is often overshadowed by

multiple reflections and scattered components of these stronger

signals. Maybe the only exception is when the shear velocity is

sufficiently high so that we can work above the second critical

angle where the slow compressional wave becomes the only

propagating mode in the fluid-saturated sample° Unfortunately,

this does not happen in most natural rocks where the shear

velocity is rather low. On the other hand, in the case of air

saturation, the slow compressional wave is at least 70 dB

stronger than all other modes and, due to the very low sound

velocity in air, the shear critical angle drops to below 15 °,

above which only the slow wave is transmitted through the sample.

- This means that a highly attenuated slow wave will besubmerged_

in electrical noise rather than spurious signals so it can be

- easily recovered by simple time-averaging.

In spite of the excellent coupling between the incident

compressional wave and the transmitted slow wave and the obvious

advantage of saturating the specimen with low-viscosity air

rather than high-viscosity water, slowwave propagation in air-

filled porous samples has never been extensively studied in

natural rocks. It should be mentioned that considerable work has '

been done on other air-filled porous materials at relatively low

frequencies between'50 Hz and 4 khz. 26"30 The apparent lack of

interest is probably due to unusual technical difficulties

associated with the generation and detection of airborne

- ultrasound and to the fact that slow waves are not expected to

propagate in air-saturated porous samples as easily as in water-
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glass bead plates. *
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t

saturated ones I. Since the kinematic viscosity of air is so

large and the velocity of sound in air is so small, there is but

a very narrow frequency window where the attenuation coefficient

is sufficiently low to observe a dispersion-free, scattering-free

slow wave. This "window" is set by the conditions that the

viscous skin depth 6=(2q/w) 1/2 be less than the pore size ap and,

simultaneously, the wavelength I be larger than the grain size

ag. Table 4 summarizes the relevant physical parameters of water

a_d air as well as fmin and fmax, i.e., the limits of the

frequency window where slow wave propagation is expected.

ag=200_m grain diameter and _=30% porosity were assumed in the

calculations. The slow wave velocity at high frequencies can be

easily calculated by assuming a perfectly stiff frame as

V=Vf/T I/2, while the tortuosity T can be estimated from the

porosity _ as T=l/2 (_'I+I).31 To det_._mine fmin and fmax, we

assumed that the pore size is approximately 15% of the grain size

and at least four times larger than the viscous skin depth to

account for the smaller cross sections at the crucial pore

throats:

fmin = D/_(0" 04ag) 2 (17.a)

and

=

fmax = v/2_ag. (17.b)

Table 4 clearly demonstrates the greatly reduced frequency

window where dispersion-free and (more or less) attenuation-free

= slow wave propagation can be expected in air-filled samples of

approximately 200_m grain size. On the other hand, these results
_

do not exclude slow wave propagation over a much larger frequency

-, range. They simply mean that the slow wave becomes increasingly

-, dispersive below I00 khz and very strong attenuation can be

e_pected above 200 kHz.
_
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Table 4 Physical parameters of water and air at 20"C.

pf vf _ fmin fmax

(kg/m 3) (m/s) (mm2/s) (kHz) (kHz)

Water I000 1480 1 5 810

Air 1.3 332 15 75 180

1.2 .2 ANALYTICAL RESULTS

For the special case of air-saturated permeable solids of

random formation, Attenborough's theoretical model 29 can be used

to determine both the complex wave number k and the complex

acoustic impedance Z:

k(_) = _[p(_)/K(_)]I/2, (iS.a)

and

z(_) [p(_)K(_)]I/2= , (18.b)

where p and K denote the complex density and the complex modulus,

respectively, of the air-saturated material. The complex density

includes the effect of viscosity

p(_) = pfT=/¢[I-T(_) ] , (19.a)

while the complex modulus includes the somewhat weaker effect of

heat conduction in air
z

2

K(_) = Kf/¢[I+(y-I)T(prlI2_) 1. (19.b)

o

7 denotes the specific heat ratio (=1.4 for air) and Pr is

the Prandtl number (=0.74 for air). T is a simple function of the

normalized pore radius F.:

2 T(_) = 2Jl([-i]1/2_)/([-i]i/2_)Jo([-i]I/2_) , (20.a)
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where Jo and Jl are the zero- and first-order Bessel functions

and i is the imaginary unit• For cylindrical tubes, the

normalized pore radius is exactly known:

= a (w/n)i/2, (20.b)

where a denotes the actual pore radius• For real porous materials

of random pore geometry, there is no corresponding exact

solution• Attenborough 29 suggested that the normalized pore

radius should be calculated as

= (2T_Ko_/_nSp2) 1/2, (20. C)

where Ko is the static permeability, T® is the high-frequency

tortuosity, and sp is the so-called pore shape factor ratio which

is usually between 0.1 and 0•5.

This analytical technique provides a unified model for both

low-frequency (diffuse) and high-frequency (propagating) regimes

of the slow compressional wave in air-saturated porous solids. It

uses four basic parameters, namely porosity (_), high-frequency

tortuosity (Tm), static permeability (mo), and pore shape factor

ratio (Sp), to describe the porous formation. We chose it instead

of the previously mentioned dynamic permeability model of Johnson

et al. 14 because the later one is limited to fluids of negligible

thermal expansion coefficient• Comparison of the two models

reveals that the actual difference between them is rather small.

The best agreement can be achieved by asymptotic matching of

Equations 15, 16 and 19-21. From the low- and high-frequency

asymptotes_ we get identical results if Sp = 71/2 = 0•423 and

A = (5.6 r_Ko/_) 1/2. As an examples Figure 15 shows the

calculated attenuation coefficient of the slow compressional wave

in a porous solid of _ = 0 3, T_ = 1 79, m o = 2 2 lO'12m -2 and= • • •

: Sp = 0•423. The largest discrepancy between the two models occurs

at the transition between the diffuse and propagating regimes,

= but it never exceeds 12%.
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Since the static permeability _o and the pore shape factor

ratio sp always occur in the same combination through the

normalized pore radius _, they cannot be separated by acoustical

measurements. According to the dynamic permeability theory of

Johnson et al., 14 at low frequencies, the complex wave number of

the slow compressional wave can be approximated as

k (l°w) = kf(i_/Ko_) I/2. (21a)

Attenborough's model yields a similar form of

k (l°w) = kf(i_/Ka_) 1/2, (21b)

where _a denotes the acoustic permeability:

2
Ka = Ko/47S p . (21C)

Only three independent parameters can be determined from

acoustic measurements on air-filled porous solids: porosity _,

high-frequency tortuosity r_, and the low-frequency acoustic

permeability Ka, which is a combination of the static

: permeability K o and the pore shape factor ratio Sp. sp is always

less than 0.5 while 7 is higher than one for gases. As we

mentioned above, the acoustic permeability equals the static one

for sp=0.423. For cylindrical pores, the pore shape factor ratio

reaches its maximum of sp=0.5 and the acoustic pez_eability is

slightly lower than the static permeability. This is because the

specific heat ratio is higher than one in air and the slow wave

velocity depends on the isothermal sound velocity VT=Vf/y I/2

rather than on the adiabatic velocity which is measured in an

infinite medium. For pores with non-circular cross-sections, the

pore shape factor ratio sp can be much lower than 0.5. For

example, in the case of equilateral triangle cross-section, Sp is

as low as 0.158. 29 We shall show that, in the case of natural

- rocks, the pore shape factor ratio is usually between 0.2 and

0.4, therefore the acoustic permeability is somewhat higher than
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!

the static one.

In order to demonstrate the main features of slow wave

propagation in air-filled porous solids, we used Attenborough's

technique to calculate the sound velocity and attenuation as well

as the complex acoustic impedance in sintered glass bead

specimens of different grades. Table 5 lists the material

parameters used in these calculations. The porosity and static

permeability were obtained from the manufacturer's (Eaton

Products International, Inc.) specifications. The high-frequency

tortuosity was taken from Ref.l as the parameter giving the best

agreement between experimental measurements and theoretical

predictions for the slow wave velocity in water-saturated

sintered glass bead samples. This value is very close to other

published data on similar materials. 21,32'33 Finally, the pore

shape factor ratios were chosen by matching the analytical

results to our experimental data to be presented in the next

chapter.

Table 5 Material parameters of sintered glass bead specimens.

Grade _ Ko[10-12m "2 ] T_ Sp

15 0.3 2.2 1.79 0.460

40 0.3 6.5 1.79 0.460

55 0.3 ii.0 1.79 0.475

90 0.3 27.0 1.79 0.475

175 0.3 67.0 1.79 0.475
=

Figure 16 shows the normalized velocity v/vf and the

attenuation coefficient of the slow compressional wave in the

air-filled porous samples listed in Table 5 as functions of

frequency. In the diffuse regime, i oe. _ at low frequencies, both

the velocity and the attenuation coefficient are proportional to

the squareeroot of frequency:

i
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° coefficient (b) of the slow compressional wave in

air-filled sintered glass bead specimens as a
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V (t°w)/vf = (_Xo/2_@ySp 2)1/2 (22.a)
and

allow) = (2_07Sp2/_oVf2)i/2, (22.b)

therefore the normalized attenuation coefficient _n, i.e., the

total attenuation over one wavelength, is constant

,.

,. an(I°w) = a v/f = 2/I"[Neper] =55 dB. (22.c)

In the propagating regime, i.e., at high frequencies, the

velocity approaches a constant value while the attenuation

coefficient remains proportional to the square-root of frequency,

although the proportionality coefficient is slightly different

from the low-frequency value (see Figure 15),

-z12V (hlgh)/vf = T= (22.d)

=

and

a (high) = (_T=sp2/4vf2Ko)l/2[l+(y-1)/Prl/2)], (22.e)

=
_

where the second term of Equation 22.e is approximately 1.46 for

air. It is interesting to note that the ratio between the high-
z

and low-frequency asymptotic values of the attenuation

coefficients is
z

- a(high)/a(l°w) _ 0.43 f=I/2, (22.f)

-

i.e., fairly close to one for most porous solids of interest to

USo Of course, in the propagating regime, the normalized

attenuation coefficient decreases with frequency, at least to a

point where other attenuation mechanisms such as scattering are

still negligible.

! Figure 17 shows the real and imaginary components of the
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acoustic impedance in air-filled sintered glass bead specimens as

functions of frequency for five different grades. Both components *

were normalized to the acoustic impedance of the saturating air,

Zf = vfpf. At low frequencies, the modull of both components are

very large and decreasing with frequency. At high frequencies,

the real part approaches a finite asymptotic value

z<high)/z_= T_I/2/_, (23)

while the imaginary part diminishes.

In the diffuse regime, where transmission-type measurements

are not feasible because of the very high normalized attenuation
z

coefficient, we have to rely on determining the complex acoustic

impedance from reflection-type measurements. In the propagating

regime we can use transmission measurements to determine the

velocity and attenuation coefficient of the slow compressional

wave. Even then, but especially in the transition region between

the diffuse and propagating regimes, we have to take into account

the total transmission loss T O caused by the significant

acoustical impedance mismatch between the air and the air-filled

specimen:
-

To = 4/(2+Z/Zf+Zf/Z). (24)

= The easiest thing to do is to approximate the actual

acoustic impedance by its real-valued high-frequency asymptote.

For example, To(high) = -4.5 dB for @ = 0.3 and Tm = 1.79. In this

way, we inevitably underestimate the total transmission loss and,

consequently, overestimate the attenuation coefficient. Also,

because of the phase-shift caused by the complex nature of To, we
=

slightly underestimate the slow wave velocity in samples of small

= thickness. In order to get better agreement between experimental

measurements and theoretical calculations, we can easily correct

our analytical results for the difference between the actual

transmission loss TO and its real valued asymptote To(high).
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The measured transmission coefficient frequency

Tm(e ) = To(u ) exp(ied/v) exp(-ad) (25.a)
'i

can be expressed as

Tm(e ) = To(high)(e) exp(ied/va) exp(-uad), (25.b)

where d is the thick,less of the specimen and va and Ua are the

apparent velocity and attenuation coefficient, which are

corrected according to d. Figure 18 shows the apparent velocity

• and attenuation coefficient of the slow compressional wave in

air-filled sintered glass bead specimen Grade 55 as functions of

frequency for different sample thicknesses. Because of the larger

impedance mismatch and the additional phase-shift at lower

frequencies, the apparent velocity drops while the apparent

attenuation increases in thin samples. In the propagating regime

: (above _ 60 khz), the corrections are negligible. In the next

chapter, we are going to compare our experimental data to such

corrected analytical results.
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1.2.3 EXPERIMENTAL TECHNIQUE AND RESULTS

Figure 19 shows the block diagram of the experimental system

used in this study. It is based on our recently developed method

using the transmission of airborne ultrasonic waves through thin

plates of air-filled porous specimens to investigate the

propagation parameters of the slow compressional wave. 34 Standard

ultrasonic NDE equipment was used without any particular effort

to obtain high generation or detection sensitivity. The rather

poor coupling between the applied contact transducers and air

resulted in a rather low, but fairly constant, sensitivity over a

wide frequency range of 50-500 khz. In the case of necessity, we

replaced the ultrasonic transmitter and receiver by a commercial

tweeter and electret microphone so that measurements could be

done between I0 kHz and 50 kHz, too. In order to assure an

acceptable signal-to-noise ratio, extensive signal averaging Was

used, up to 105 samples. The transmitter was driven by a tone-

burst of five cycles. The received signalswith and without the

specimen placed between the transducers were digitally stored.

Then the computer selected the first five cycles of the signal,

from which the computer determined the insertion loss L i and

insertion delay T i. The insertion loss was calculated by Fourier

transforming the gated signals and calculating the ratio between

the maximum amplitudes in the two spectra. The insertion delay=

was determined by finding the maximum of the cross-correlation

function of the two signals. Finally, the apparent attenuation

coefficient and normalized velocity were calculated as

ua = (Li-To)/d (26.a)

and
_

Va/V f = i/(l+Tivf/d ), (26.b)
_

respectively. The thicknesses of the specimens were varied

between i and 5 mm to accommodate different permeabilities over

the widest possible frequency range.
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Measurements were made on different ceramic, metallic, and

polymer filter materials as well as natural rocks. First, let us

show some typical results on synthetic materials of well-defined

porous structure to demonstrate the accuracy of the measurement.

Seconds we shall present similar results on different natural

rocks of much more complicated pore structure to demonstrate the

feasibility of the developed technique for ultrasonic evaluation

of such less-permeable formations.

The first series of experiments were conducted on sintered

glass bead specimens listed above in Table 5. Generally, we found

very good agreement between the theoretically predicted and

experimentally measured slow wave velocities. As an example,

Figure 20 shows the comparison between the theoretical and

experimental results for Grades 55 and 90° For the attenuation

coefficient, the agreement is less perfect. Figure 21 shows the

comparison between the theoretical and experimental results for

Grades 15 through 175. For the smallest pore size (Grade 15) the

agreement is still acceptable indicating that the total

attenuation is dominated by viscous losses throughout the whole

frequency range. As the pora size is gradually increased, at

first only at higher frequencies (Grades 40 and 55) then

throughout the whole frequency range (Grades 90 and 175), viscous

losses drop below scattering losses and the attenuation

coefficient approaches a linear asymptote (dashed-lines in Figure

20.b-e). The same behavior was also observed in other synthetic

materials such as sintered steel and bronze specimens.

o
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The primary purpose of our experiments on synthetic porous

materials was to improve the accuracy of the measuring system and

to verify the feasibility of Attenborough's simple model for

random but statistically relatively well-defined permeable

formations. Naturally, our next step was the adaptation of this

technique to natural rocks of rela£1vely high permeability

between i00 and 1000 mD. Basically, the results were fairly

similar to those obtained for synthetic materials, although the

scatter of the data became somewhat larger due to inherent

macroscopic inhomogeneities found in most natural porous

materials. Table 6 lists the materials used in this part of the

study as well as their relevant properties. With the exception of

the permeability of the Berea Sandstone specimen, which was

measured at the Lawrence Livermore National Laboratory, all

parameters were adjusted to obtain the best agreement between the

analytical results and the experimental data. Later we plan to

determine the three basic material parameters, namely the

porosity , the permeability, and the tortuosity, by separate

measurements and adjust only the pore shape factor ratio, which

is the only truly independent acoustic parameter. -

Table 6 Material parameters of natural rocks.
-

Type _ _o T_ Sp d
[I0-12m"2] [mm]

Cavallo Buff

Massillon 0.15 0.7 2.6 0.3 2.4

Sunset Blush

Massillon 0.15 0.6 2.8 0.3 2.1

Z Cu Variegated
Sandstone O. 13 0.6 2.3 0.3 i. 7

Berea

Sandstone O. 12 0.2 3.2 0.2 I. 5

c

_
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Figures 22-25 show the normalized slow wave velocity and

total insertion loss in different natural rock specimens. Again,

the experimentally measured velocity agrees very well with the

analytical results while the attenuation exhibits higher-than-

predicted attenuation and more or less linear frequency

dependence. The samples were approximately 4" in diameter and

showed significant inhomogeneity of the attenuation distribution

within this area. Because of the very high attenuation in these

samples, resonance peaks in the transmission are generally very

weak but sometimes, especially at lower frequencies, faintly

visible.
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: Figure 24 Normalized slow wave velocity and total insertion
- loss in a 1.7-mm-thick Copper Variegated Sandstone

specimen.
--

z 63

=



V

a)

I

0.9 -_

o,8d

*G o.7
o
o
>

u 0.6

=
0,5 "

01 0.4

e 0._I

_e

z o,2

o,, _/
I/

0 20 40 60 80 1O0 120 140 160 180 200

_"equen©y [kHzJ
=

b)
60

, so I o_o

-
o 30

=,,

zo
o
I-,

0 _- T _ I I "'1 I I m__'- 1 'I _ l I I

0 20 ,tO 60 aO tO0 120 t4o t60 180 :o0

Prequen©y [KHzl

_ Figure 25 Normalized slow wave velocity and total insertion
_ loss in a 1.5-n_-thick Berea Sandstone specimen.
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1.2.4 DISCUSSION AND CONCLUSIONS

Transmission of airborne ultrasonic waves through thin air-

filled porous plates was used to study slow wave propagation in

permeable solids. We used Attenborough's theoretical model 29 to

fit the experimental data and found good agreement except at high

frequencies where scattering losses dominated the attenuation of

the slow wave. This discrepancy has been expected since, for air

saturation, there is no frequency "window" where both viscous and

scattering losses are weak simultaneously. Due to the excellent

sensitivity of the suggested experimental technique, low-

permeability materials including natural rocks can be inspected,

too. Currently, the threshold sensitivity of our system is

approximately I00 mD. Further improvements can be expected from

reflection-type measurements to be discussed later in more detail

in the following proposal.

In the diffuse regime, i. e., at low frequencies, the

velocity and the attenuation coefficient contain the same

information on the permeable formation. The attenuation is

• linearly while the velocity is inversely proportional to the

square-root of _Sp2/Ko . Since the static permeabi._ity Ko and the

pore shape factor ratio sp always occur in the same combination

through the normalized pore radius _, they cannot be separated by

acoustical measurements. Instead, _o/sp 2 was used to define a new

material parameter, the so-called acoustic permeability Ka, which

can be determined from the low-frequency propagation parameters

of the slow compressional wave. Comparison of the acoustic_

permeability Ka and the static permeability Ko yields valuable

information on the geometry of the pore space. "

_ Although the porosity _ is most easily determined by simple

weight measurements on the dry and wet sample, it should be

mentioned that it can be assessed by purely acoustical means,

too. This is possible because both real and imaginary parts of

- the acoustical impedance are proportional to the square-root of
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sp2/Ko_, i. e., a different combination of the same parameters

affecting the velocity and the attenuation coefficient of the

slow wave. In the diffuse regime, the acoustic impedance is

usually determined by reflection measurements. 27'30

In the propagating regime, i. e., at high frequencies, only

the velocity seems to be in good agreement with the theoretical

predictions. Anyway, the velocity by itself is sufficient to

determine the high-frequency tortuosity T_ of the material while

the attenuation coefficient would provide only redundant

information on _Sp2/Ko which is better determined from the low-

frequency behavior. The high-frequency attenuation contains

valuable additional information on the geometry of the pore

space, which is related to the inhomogeneity of the pore

channels. Random changes in the cross-sections of these channels

cause excess attenuation by increasing the viscous drag as well

as by elastic scattering. Further analytical efforts are needed

to develop appropriate models for these attenuation mechanisms so

that the measured data can be evaluated in terms of geometrical

properties of the permeable formation. In the following proposal,

we shall suggest specific techniques/to develop such models.
i
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