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INTRODUCTION

Nonlinear partial differential equations (FDESs) in one dependent and two independent variables (call them ¢, z,
and 1) occur in many technological applications. Typical PDEs and the contexts in which they arise are the following: (1) c,

= ("), which occurs in plasma physics, hydrology, gas flow in porous media, and applied superconductivity; (2) cc, = c,,,
which describes the expulsion of fluid from a long, slender, heated pipe; (3) ¢, = (czm)z, which describes heat transport in
turbulent superfluid He-II; and (4) ¢, = (c/2) § ;' ¢, dz, which describes the motion of a shock-loaded elastic membrane.

All of these equations are invariant to a one-parameter family of one-parameter stretching groups of the form
c'=N¥¢, =Nt 2'=Az, 0<A<o )

where \ is the group parameter that labels the individual transformations of a group and « and 8 are the parameters that
label groups of the family. The parameters o and § are connected by a linear relation

Ma+NB=1L )
where M, N, and L are numbers determined by the structure of the PDE.

Similarity solutions are solutions of the PDE that are invariant to one group of the family, say, that for which a =
o*and @=g* Such solutions have the form

¢ = 10¥8° yzlB°) 3)

where y is a function of the single variable x = z#!/°, When substituted into the PDE, (3) yields an ordinary differential
equation (ODE) for the function y(x). I call this ODE the principal ODE.

THE ASSOCIATED GROUP

The form of the principal ODE depends, naturally, on the form of the PDE, but it can be proved [1] that the
principal ODE, whatever its form, is invariant to the stretching group

y’::.“Wy'x'-s“x' O<pu<o @
I call this group the associated group.

Often the principal ODE is of second order, cs is the case for the illustrative PDEs given above. According to a
theorem of Lie's [2], if we introduce as new variables an invariant of the associated group, ¢.8., ¥ = yx"LM or any function of
u, and a first differential invariant, e.g., v = yx2M+! (y m dy/dx) or any function of » 2.ad v, we reduce the second-order
principal ODE in y and x to a first-order ODE in v and w. I call such a first-order ODE an associated ODE. Thus for
problems of this kind, the computational task is the solution of a first-order associated ODE.
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ASYMPTOTIC BEHAVIOR

Before we turn to a concrete example of how this procedure works, certain additional generalities need to be
described. There is a solution that is invariant not just to one group of the family, but to a/l groups of the family, namely, ¢
= AzL/MNM where A is a constant that is determined by the structure of the PDE. When the ratios L/M and N/M are both
negative and A is positive (as is the case for illustrative PDEs (2) and (3) above), this totally invariant sojution obeys the
partial boundary and initial conditions (BIC) c(e,?) = 0 and ¢(z,0) = 0. Often, technologically interesting solutions of the
PDE obey the same BIC. For those that do, the totally invariant solution, under an additional conditions described below,
gives their asymptotic behavior for large 2 [3].

The additional conditions are these: The solutions of the PDE must be ordered according to their boundary
condition at z=0. This means that if ¢,(0,8) = c,(0,¢) for t > 0, and if both ¢, and c, obey the BIC c(o,t) = 0 and c(2,0) =
0, then ¢,(2,0) = cy(z¢) for all z and t. Furthermore, ¢(0,8) must be bounded from below by a multiple of a power of ¢. The

ordering condition is fulfilled for the example PDEs (1), (2) and (3) given above. For, these PDEs have the general form of
conservation equations, namely, S(c)c, + q, = 0, where S > 0, and when dg/dc, < 0, it can'be shown [3] that solutions of

such conservation equations for which c(e,t) = 0 and ¢(z,0) = 0 are ordered according to their boundary condition c(0,).
ILLUSTRATIVE EXAMPLE

To show how the procedure outlined above works let us consider illustrative PDE (3), for which M =2, N=.3, L =
4, and A = 4/3V’3. The principal ODE is

Bdo"3)/dx+xy -y =0 &)
Choosing as an invariant and a first differential invariant p = u}/2 = x)1/2 and g = v!3 = xy1/3, we find an associated ODE
de/dp = 2p(Bq - 4 + apY/BRP? + 4) ©®

Different choices of a and 8 correspond to different physical problems, i.e., to different BIC. Three problems of
technological interest correspond to the following BIC: (i) c(0,t) = 1, ¢(%,) = 0 and ¢(2,0) = 0 (a =0, B = 4/3); (ii) c(0,)
=.],c(00,t) =0andcz,0 =0 (x=1,8=2); (iii) | _o®cdz=1,c(m,¢ =0andc(,0) =0 (ax=-1, §=2/3). Since the
PDE describes heat transport, we can use the language of of that subject to describe these problems: (i) is the problem of an
initially uniform semi-infinite tube of He-II the temperature of whose front face is raised and clamped at ¢ = 0; hence, it is
called the clamped-temperature problem; (ii) is the clamped-flux problem for the same semi-infinite tube; and (iii) is the
problem of a tube infinite in both directions subjected to a sudden heat pulse per unit area at the plane z =0 at time ¢ = 0, it
is called the pulsed-source problem.

Different values of o and 3 lead to different forms of the principal and associated ODEs (5) and (6). For the
clamped-temperature problem (i) and the pulsed-source problem (iii), the principal ODE is analytically solvable:

(i) czt) =1-x/(2 + a2, ol =8/3V3, x=zpP4 (Ta)
(i) czt) = 32413V + BY12, b = 2T(1/4)RBRGB T2 = 2854538, x =232 (To)

Bath of the solutions (7a,b) are asymptotic to the totally invariant solution c(z.8) = (4/3V/3)z2%2 when x >> 1, as expected.
Solutions for different values of c(0,0) or | _,, *c dz than those given above can be obtained from the solutions (7a,b) by

scaling c(z,#) with the group (1) or y(x) with the associated group (4). Scaling does not affect the asymptotic limit of the
solutions since it is totally invariant to the family (1).

For the clamped-flux problem (ii), there is no simple solution to the principal ODE, which must be solved
numerically subject to the two-point boundary conditions y(0) = -1 and y(e) = 0. To avoid the labor of the shooting
method, we turn for help to the associated ODE.



Corresponding - the solution y(x) we seek, there is a curve in the (p,g)-plane which we now must identify. Shown
in Fig. 1 is the fourth quadrant of the direction field of (6) fora=1and 8=2. Only the fourth quadrant interests us since
p>0and g <0 (because y > 0 and y < 0). The curves C, and C,, the loci of zero and infinite slope dg/dp, respectively,
divide the direction field into regions in which the slope dg/dp has one sign only. The intersections of these curves, the
points O: (0,0) and P: (2/3%/4, -2/3112), are the singular points of (6).

The totally invariant solution ¢ = Az/MrNM corresponds to the solution y = AxIM of the principal ODE, which is
invariant to the associated group (5). For this solution, the invariant 4 = 4 and the first differential invariant v = (LA)A.
Thus the totally invariant solution maps into a single point in the (p,2)-plane, namety, the point (4172,{(Z/A)A]!3), which is
the singular point P. (That the totally invariant solution always maps into a singular point in the (i,v)-plane follows from
the fact that for the solution y = AxM of the principal ODE, du = dv =0 as x changes.) Thus the curve in the (p,g)-plane
that corresponds to the solution y(x) that we scek must pass through the singular point P. Furthermore, since P corresponds
to the asymptotic behavior y ~ Ax2M of the solution y(x) that we scek, it corresponds to the limit x = co. When x = 0, on the
other hand, p = ¢ =0, and the curve in the (p,g)-plane must also pass through the origin O. Only the separatrix S does so.
It is the curve in the (p,g)-plane defined by the solution y(x) that we seck.

Near the origin in the (p,g)-plane, the integral curves behave linearly, i.c., p = - Bg. Substituting the definitions of
p and g, we find that [y(0)]!2 = -By}3(0), which means that y(0) = B2 since y(0) = -1. To find the value of B, we proceed as
follows: Since the point P is a saddle point, two separatrices cross it. We can find their slopes by applying L'Hospital's rule
to (6). The negative slope m = - 31/4(3 +V/17) = -1.562422. Using this slope to get starting values p = p, - ¢, g = gp - me
near P, we can integrate (6) numerically from P to O and find B = 0.912582.

Now we have values of both y(0) (= B2) and y(0) (= -1), so we can integrate (5) in the forward direction. Here a
slight problem arises because integrating (5) in the forward direction carries us along the separatrix S from O towards P.
Because the integral curves in the (p,¢)-plane diverge away from O, integration in the direction from O to P is unstable: a
small error (roundoff or truncation) throws us off the separatrix S and we eventually diverge to one side or the other. This
instability is reflected in a corresponding instability as we attempt to integrate (5) in the forward direction. Nevertheless, as
a practical matter, it is possible to advance to about x ~ 1 without undue errors; the computed behavior can then be joined to
the known asymptotic behavior to achicve a reasonable estimate of y(x).

Fortunately, a way exists to integrate (5) in the backward, stable direction. We proceed as follows: (i) we choose a
point (p,g) on S close to P; (ii) guess a (large) value of x, say x,; (iii) calculate y,and y, from the chosen values of p and g;
and (iv) use these values of as starting valucs for a backward integration from x, to 0. This procedure works for the
following reason, Any image point of x,, ¥y, ¥y, 83y ux), w2y, u>y,, has the same values of p and g as the point x,, y,,
¥, itself because p and q are functions of the group invariants ¥ and v. Thus any value of x can be made to correspond to
any p and q on the separatrix. In general, the backward integration will not give the curve for which y(0) has some

specified value. But once the curve y(x) has been calculated, it can be scaled with the associated group to a curve with any
desired y(0).

SCALING WITH THE ASSOCIATED GROUP

Since all the curves y(x) corresponding to different values of y(0) are images of one another under the associated
group (4), all have the same value B of [1(@)]V24'3(0) because this quantity is invariant to transformations of the
associated group. (Note that the point x = 0 transforms into the point ' = 0). From this it immediately follows that c(0,) =
Bzyz’:’(())r”'2 This formula gives the dependence of the temperaturc on the front face c(0,¢) on the time ¢ and the clamped

flux -y13(0), which are the only two parameters in the problem on which it can depend. We could have obtained this
formula directly from knowledge of the associated group so that by group analysis alone we can obtain a formula for c(0,¢)
correct up to a single undetermined constant. To find the value of the constant, however, we must integrate the associated
ODE.



CONCLUDING REMARKS

The method outlined here does rot depend on the PDE being linear. On the other hand, it does depend on the PDE
being invariant to a one-parameter family of one-parameter stretching groups. This is a high degree of algebraic symmetry
that is only found in the simplest equations. But many equations of technological interest have the high symmetry required
and so can be dealt with by the method of this paper.
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Fig. 1. The fourth quadrant of the direction
field of (6) forx=1 and 8= 2.
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