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INTRODUCTION

Nmdinear partial differential equations (PDEs) in one _t and two independem variables (call them c, z,

and t) occur in many technological applications. Typical PDEs and the contexts in which they arise are the following: (1) c t

= (d')=,which occurs in plasmaphysics,hydrology, gas flow in porous media, and applied _ndnctivit3r, (2) cct = c=,

which describes the expulsion of fluid from a long. slender, heated pipe; (3) c t = (Czl_) z, which describes heat tXamlX_ in

turbulent a_rfluid He-H; and (4) cn = (czz/2) _ otc2 dz, which describes the motion of a shock-loaded elastic membrane.

All of these equations are invariant to a one-parameter family of one-parameter stretching groups of the form

c' =_ac, r = X/_t, z' =Xz, 0 < X< oo (1)

where k is the group parameter that labels the individual transformations of a group and a and _ are the parameters that
label groups of the family. The parameters a and 0 are connected by a linear relation

Mu + N_= L (2)

where M, N, andL are numbers determined bythe smcan_ of the PDE.

Similarity solutions are solutions of the PDE that are invariant to one group of the family, say, that for which a =
o_ and /_= if*. Such solutions have the form

c = t°e/_'y(zit t/O_) (3)

whate y is a function of the single variable x = z/t lIlt. Whea substiUllgd into the laDE, (3) yields an ordinary differential

equation (ODE) for the functiony(x). I call this ODE the principal ODE.

THE ASSOCIATED GROUP

The form of the principal ODE depends, naturally, on the form of the PDE, but it can be proved [1] that the
principal ODE, whatever its form, is invariant to the streChing groep

y' = t_/My, x'= p.x, O< It < o_ (4)

I call tl_ groupthe asa_iated group.

Often the principal ODE is of secondorder, r.s is the casefor the illustrative PDEs given above. According to a
theorem of Lie_ [2], if we intmdm_ as new variables an invariant of the _x:iated group, e.g., u - yx 4-'_ or any function of

u, and a first differential invamnt, e.g., v = _x"U_t+t 0_ m dy/dx) or any fun_on of u a'M v, we reduce the second-order
principal ODE in y and x to a first.order ODE in v and u. I call such a first-order ODE an associated ODE. Tiros for
problems of this kind, the computational task is the solution of a first-order _ ODE.
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" ASYMPTOTICBEHAVIOR

Before we tnrn to a concrete example of how this pro(xdme works, certain additional generalities need to be
described. There is a solutionthat is invariantnot just to one group of the family, but to all groupsof the fan_, namely, c
=_r N_, whereA is ammlam thatis determinedby the _ ofthe PDE. Whenthe ratiosL/Mand N/Mare both
negative andA is positive (as is the case for illustrativePDEs (2) and (3) above), this totally invariantsolutionobe3_ the
partial Imundazyand _ renditions (BIC) c(_,t) = 0 and c(z,O)= O. Often, _logimlly interestingsolutionsof the
PDE obeythe same BIC. For those that do, the totally invariantsolution, under an additionalconditionsdescribedbelow,
gives th_ asymptoticbelmviorfor largez [3].

The additional conditions are these: The solutions of the PDE must be orderedatxxmting to their boundary
¢Ol_tionatz=0. This nleans that ff Cl(O,0 > c2(O,Ofor t > O,and ffboth cl alzdc2 obey the BICc(oe,t) = Oand c(z,O) =

0, thenct(z, 0 ;e c2(z,Oforallzandt. Furthermore,c(O,t) mustbe tmundedfrombelow by a nml.tipleofa power oft. The

orderingconditionis fulfilledfor the exanqde PDEs (1), (2) and (3) givenabove. For,these PDEshave the general formof
conservationequations,namely, 8(c)ct + qz = 0, where S > 0, and when _c z < 0, it canbe shown [3] that solutionsof
such comexvationequationsforwlfich c(o_,O = 0 andc(z,O)= 0 areorderedaccordingto their boundary¢xatt_on c(O,r).

ILLUSTRATIVE EXAMPLE

To show how the _ oWdinedabove works let us consider illustrative PDE (3), forwhich M = 2, N = -3, L =
-4, and A -4/3v/3. The pri_pal ODE is

ad0v3)/dx+ - y=o (5)

Clmosingas an invariantanda first differentialinvariantp = u1/2= xyu2 andq = vzf3= x_/3, we find an associatedODE

dq/dp= 2p(-q3 + + (6)

Diffetem choices of a and a mrrespondto differentphysical problems, i.e., to differtm BIC. Three problemsof
technological imerest correspondto the following BIC: (i) c(O,O= 1, c(m,O = 0 and c(z,O) = 0 (a =0, _ = 4/3); (ii) c/O,O

=-l,c(oe,O=Oandc(z,O)=O (¢z= l,/_=2);(iii) J _e,=cd: = l,c(=e,O =Oandc(z,O) =0 (¢z=-l,/_= 7J3). Sincethe

PDE describesheattranspo_wecanusethelanguageof of thatmbjectto describetheseproblems:(i) is theproblemof an
initially tmifarmsemi4nfinite tube OfHo-H the temlmt'atmeofwtttme front face is raisedandclamped= t = 0; hen_ it is
called the clamped-temperature problem: (ii) is the clamped-flux problem for the same semi-infinite tube;and (iii) is the
problemof a tube infinim in both dizmiom subjectedto a redden heat pulse per traitareaat the piano z = 0 at time triO; it
iscalledthe pulsed-source problem.

Diffet_ valaes of a and a lead to different forms of the principal and assorted ODEs (5) and (6). For the
¢lang_.te_ problem(i) andthepuised-smn_problem(iii), theprincipalODE is analyticallysolvable:

(i) c(z,t)ri 1 - x/(x2 + a2)1'2, a2= 8/3V'3,x riz/#/4 (7a)

(ii) c(z,O= r3/2(4/3v/3)/(x4 + b4)t/2, b = 2[I'(114)]2/3(31r)t/2= 2.854535, x = z/t3f2 (To)

Both of the solutions (7a,b) areasymptotic to the totallyinvariantsolution c(z,O = (4/3V'3)z'2t3f2whenx >> 1, as
Solutions for _ values of c(O,Oor j _=,=c dz thanthosegivenabovecanbe obtainedfromthesolutions (7a,b) by
scaling c(z,Owith the gtmp (1) or y(x) with the _ group(4). Scaling does not affect the asymptoticlimit of the
sohaiom itisttsattyinvarianttothefamily(1).

For the clamped-flux problem (ii), there is no simple solution to the principal ODE, which must be soked
numerically subjectto the two.point tmundaty renditions _(0) = -I and y(=) = 0. To avoid the laborof the shooting
method,we turnforhelp to the associatedODE.



• Corresponding_, the solutiony(x) we seek, thereis a _arve in the (p,q)-planewhich we now must identify. Shown
_ in Fig. I is the fourthquadrantof the directionfield of (6) fora = I and/3= 2. Only the fourthquadrantinterestsus since

p > 0 and q < 0 (becausey > 0 and._ < 0). The curvesC1 and C2, the loci of zero and infinite slope dq/dp, respectively,
diode the direct/onfield into regions in which the slope dq/dp has one sign only. The intersectionsof these curves, the
points O: (0,0) andP: (2/33/4,-2/3t/2),are the singularpointsof (6).

The totally invariantsolution ¢ = Az_MrN/_ correspondsto the solutiony = _ of the principalODE, which is
invariantto the associatedgroup (5). For this solution, the invariantu = A and the first_ invanant v = _.
Thus the tota_y invariam_u_i_n maps into a _e p_nt in tbe (p_p_ane_ _mne_y_th_p_int _t_[ _ ]t_)_wtfi_ is
the singularpoint P. (Thatthe totally invariantsolution alwaysmaps into a singularpoint in the (u,v)-plane follows from
tl_ fact that for the solution y= AxL_ of the principalODE, du _dv=0asxchanges.) Thus the curve in the (p,q).plane
thatmrrespondsto tbe solutiony(x) thatwe seek must pess throughthe singular point P. Furthermore,since P oo_
to the asymptodcbehaviory ~ Ax_ of the solufiony(x) that we seek it correspo_ to the limitx = oo. Whenx =0, onthe
otherhand,p = q = O,and the curve in the (p,q)-planemustalso pass throughthe ori_ O. Only the soparatrixS dues so.
Itis the curve in the (p,q)-plane definedby the solutiony(x) th,t we seek.

Near the orion in the (p,q)-plane,the integralcurvesbehave linearly,i.e., p = - Bq. Substitutingthe definiu'onsof

p a_d q, we find that[y(O)]t/2= .B_/3(0), which meansthaty(0) ffiB2since._0) = -1. To findthe valueof B, we proceedas
follows: Since the pointP is a saddlepoint, two se_ cross it. We can find tJufirslopes by applyingLTlospital'sruiz
to (6). The negative slopem-- 31/4(3+V'I7) _-1.562422. Using this slope to get startingvalues p _pp- _, qffiqp-mf,
nearP, we can integrate(6) numericallyfromP to O andfind B ffi0.912582.

Now we havevalues of tx_thy(0) (= B2) and,0(0) (ffi-1), so we can integrate(5) in the forwarddirection. Herea
slight problem arises be_m_ integrating(5) in the forwarddirectioncarries us along the sepmmrixS fromO towardsP.

the integral curves in the _q)-plane diverge away fromO, integrationin the direction fn_n O to P is unstabte:a
small error (reendeff or truncation)thnnvs ns off the _ S and we evemeally diverge to one side or the ether. This
instabilityis reflectedin a correspondinginstabilityas we attemptto integrate(5) in the fcnwarddirection. Nevertheless,as
a practicalmatter,it is possible to advanceto atmutx ~ 1witlmutundue effort, the computedbelmviorcan thenbe joined to
the knownasymptoticbehaviorto achieve a reasonableestimate ofy(x).

Fortunately,a way exists to integrate(5) in the backward,stabledirection. We proceedas follows: (i) wechoose a
point (p,q) on S close to P; (ii) guess a (large)value of x, sayxt; (iii) calculateytand _t from the chosen values ofp and q;

and (iv)use these valuta of as man_ugvalues for a tmckwant imesration from xz mo. This procedureworks fer tbe

following reason. Anyimagepoimofxl, yz,_z, say pxl, #'2yl,#'3_t, has the same values of p andq as the poim xl, yl,
)_titself becausep and q are functionsof the group invariantsu and v. Thus any value of x can be made to correspondto
any p and q on the _ In g_meral,the hackward integration will net give the cmve for which _(0) has some
specified value. But once the curvey(x) has been calculated, it can be scaled with the associated group to a curvewith any
dmkedy_(O).

SCALINGWITHTHE ASSOCIATEDGROUP

Since all the curvesy(x) umespondJng to differentvalues of _(O)are images of eve _ underthe associated
group (4), all have the same value B of [y(O)]t/2/_tr3(O)because this quantity is invariant to transformationsof the
_group. (NetethatthepointxffiOtmnsformsintothepoint_ffiO). Fromtlfmitimmeffmtelyfoilowsthatc(O,t)=
B2_(O) t I/2. This formulagives the dependenceof the _ture on the fmet face c(O,t)on the timet and the ctunped

-fl/3(0), which are the only two pantmmm in the problemon which it can depend. We could have obtainedthis
formula directlyemm knowledge of the associatedgroup so thatby groupanalysts alone we can obtaina formula for ¢(0,t)
correctup to a single _ consmm. To find the value of tbe musmm, however, we must integratethe asmcimed
ODE.



v CONCLUDINGREMARKS

The n_tmd outlinedhemdoes not d_lmndon the PDE being linear. On the oth_ hand,it does_ on the PDE
being invariantto a one-parmneterfamtly of one-parameter stretching groups. This is a high degreeof alg_o_aic
thatis onlyfoundin thesimplestequations.Butmanyequationsoftechnologicalinteresthavethehighsymng_
and socan bedealt withby the method of this paper.
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Fig. 1. Th©fourthq_lr_t of_e direction

field of(6) for or" I and/1= 2.
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