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ABSTRACT: Classical gravitation on de Sitter space suffers from a linea_'iza-

tion instability. One consequence is that the response to a spatially localized dis-

tribution of positive eaergy cannot be globally regular. We use this fact to show

- that no causal Green's function can give the correct linearized response to certain

bilocalized distributions, even though these distributions obey the constraints of

linearization stability. We avoid the problem by working on the open submanifold

spanned by conformal coordinates. The retarded Green's function is first computed

in a simple gauge, then the rest of the propagator is inferred by analyticity -- up

to the usual ambiguity about real, analytic and homogeneous terms. We show

that the latter can be chosen so a_ to give a propagator which does not grow in

any direction. The ghost propagator is also given and the interaction vertices are

worked out.
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1. Introduction

The study of glaviton fluctuations on a de Sitter background is fascinating because

infrared effects in quantum gravity may provide a mechanism through which na initially

p_sitive cosmological constant relaxes to zero. It is therefore frustrating that we lack a

perturbative formalism which is even valid at tree order! Of course the vertices can be

- worked out with a bit of patience, and various solutions for the gauge fixed propagator

i have been reported [1-3]. The imaginary parts of these propagators ought to give Green'sfunctions which describe how the classical theory responds to external stress energy, The

i! trouble is that the linearized response inferred in this way is wrong, even for the trivialcase of a freely falling point mass [3].

We wish to emphasize tt_at the propagators obtained in refs. [1-3]really do obey the

differential equations they are claimed to satisfy. The problem is rather that solving the

dynamical equations of a gauge fixed theory is not quite the same thing as enforcing the

combination of constraints and dynamical equations which define the invariant theory. The

constrained fields of the invariant theory depend upon. the instantaneous matter sources

whereas the fields of the gauge fixed theory respond to the past history of these sources

through causal Green's functions. Usually this is a distinction without a difference because

conserved sources must be present, in some form, at sufficiently early times to have causally

affected the constrained field anywhere. This is not so in de Sitter space; owing to the

i exponential expansion of distances one ca.n find conserved sources which never causallyaffect certain points. An unfortunate synergy between this fact and the background's

"i linearization instability implies that there are sources for which no causal Green's function

i can give the correct linearized response over the full manifold. These facts are proved in
sections 2 and 3, the discussion of which we shall here anticipate in order to better motivate

our proposed solution.

We show in section 3 that the spatial sections of the D-dimensional de Sitter manifold
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can be taken to be (D - 1)-spheres. Consider a conserved source of positive energy density

which is localized on these (D - 1)-spheres. A consequence of the linearization instability

(discussed in section 2) is that the linearized response engendered by s_lch a source cannot

be regular throughout tile (D - 1)-sphere. This fact does not conflict with our perceptio n

that localized sources seem to be realizable -- and that they can induce perfectly regular

geometries -- because the constraints of linearization stability can be easily sati_fied by

adding sou.rees on .the far side of the (D - 1)-sphere. Owing to the causal structure of tile

background these compensating sources would not be observable in the vicinity of the first

source until very late times.*

Consider now a linearization stable distribution which consists of localized sources on

either side of the (D - 1)-sphere. Provided the sources are not too singular a globally

regular, linearized response can be found. Suppose that it is given by a causal Green's

function. Since a null ray requires the lifetime of the universe to move even halfway around

the (D- 1)-sphere the linearized response to the full distribution must consist at early times

of a nonzero region around each source, separated by an extensive region of zero response

between the two sources. Since the field equations are linear, and are solved locally by zero,

it follows that the response to each source must aeparateIy give a globally regular solution

to the linearized equations with just one source. But no such solution exists by virtue of

the linearization instability. We therefore conclude that no causal Green's function can

give the correct response to the full distribution, despite the fact that it is linearization

stable.

This is the great obstacle to any formulation of de Sitter perturbation theory which is

* It is also conceivable that the instability can be evaded without compensating sources if
the solution to a localized distribution exists but requires more than one coordinate patch
for its expression. In this case the problem in obtaining a globally regular response on a
single patch would come in attempting to extend the solution beyond the causal horizon
of the source. No causal Green's function can reproduce the necessary response _ regular
within the causal horizon with a coordinate singularity beyond _ because they vanish
outside the lightcone of the source points.
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simultaneously global, covariant and causal. Before describing our proposed solution it is

important to mention that the problem is one of efficiency rather than principle. There is

Ilo question that a global formulation of perturbation theory can be worked out canonically

*. by imposing tile appropriate linearization constraints. These are superficially acausa" but

introduce no physical violation of causality. The only impediment to this approach is the

finite duration of human interest in the result. It requires extraordinary efforts to apply

canonical methods even to simple scalar field theories in flat space; accomplishing anything

this way for quantum gravity on de Sitter space might require a very long time.

Since we are loath to forsake either covariance or manifest causality we shall instead

abandon globalism. The danger in this approach is that information might tend to flow

into or out of whatever subset of the full manifold we take as the physical arena. That

such an embarrassment can be avoided derives from the same peculiar causal structure

which has frustrated previous global formulations: distances in de Sitter space expand so

rapidly that the future lightcone of even a point in the infinite past encompasses only a

fraction of the (D - 1)-sphere at any instant. The future lightcone under discussion has the

topology of R D-1. It achieves openness, despite the compact spatial sections, by escaping

into the ever more inflated (D- 1)-spheres of the fut_lre. Of course a lightcone is null,

but we can obtain an open surface which is spacelike by simply evolving each point of the

lightcone for a fixed proper time along parallel timelike geodesics. We call the subset of

| de Sitter space which is swept out in this way, "an open submanifold." Our solution to

"i the previously described problem is to formulate gravitational perturbation theory on an
i

i open submanifold.
It is clearly convenient to consider the constant r foliations of the initial lightcone to be

iI surfaces of simultaneity. These spatial sections are also Cauchy surfaces; once initial value

data is given on such a surface it completely determines the course of future evolution.

This is why no information leaks into or out of open submanifolds at finite times. (We
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regard the initial lightcone as residing in the infinite past.) Though open submani:folds fail

t.o cover ali of de Sitter space they do have the property that observers at any finite time

are in causal contact with all sufficiently ancient sources. Open submanifolds also h_ppen

to be free of the linea.rization instability.

The last two features mean that a causal Green's function can give the correct linearized

response on an open submanifold. In section 4 we exploit this to solve for the retarded

' Green's function in a simple gauge. As a check we show in section 5 that our Green',,_

function gives the correct linearized response to a freely falling point mass. In section 6

we invoke analyticity to infer the rest of the propagator, up to the usual ambiguity about

terms which are real, analytic and which solve the homogeneous equation. What these

terms are depends upon the choice of vacuum _ which is not obvious in a time dependent

background such as this. However, we do show that a choice exists which gives the correct

flat space limit and remains finite as the separation approaches either spacelike or timelike

infinity.

2. Linearization Instability

Linearization instability is a potential pathology of both classical and quantum per-

turbation theory. It arises when gauge invariance _ or current conservation ---is not

enough to ensure that solutions to the linearized invariant field equations can be pertur-

batively corrected to give asymptotic series solutions to the full equations. The usual

paradigm is electrodynamics with nondynamicalgeometry on the constant curvature man-

ifold S D-1 x R. It is not generally possible to solve Maxwell's equations:

o" f.. = J. (2.i)

on this manifold, even for currents which obey 0v dv = 0. One also needs the total charge
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to vanish'

Q =--[ dD-lx Jo -- 0 (2.2)
.ts D-I

The mathematical reason for this is that integrating the derivative of' a nonsingular function

over a, compact manifold gives zero:

fS_D-, dD'-la'Ot'Ft'o=fSD-1 dD-la:oiFio=O (2.3)

The physical reason is that tile flux from any net charge would have nowhere to go on the

_:i (D - 1)-sphere.By the term, "modes," we mean solutions of the linearized field equations. A theory

I} which is l.inearization unstable possesses modes which cannot be corrected to give full

l
1 solutions and do not therefore represent true degrees of freedom. In the electrodynamical

._ example these bogus modes reside in the charged matter sector but they would appear
]{,

as well in the gauge sector of nonabelian gauge theories on this manifold. Whatever the
il

't model, the existence of unphysical modes means that naive perturbation theory is wrong.

The cure is to expunge the unwanted modes by imposing linearization constraints which

restore the integrability of perturbation theory. For our electrodynamical paradigm the

.li]!! necessary constraint is just that the total charge should vanish. Since Q is constant this

"i] need only be done on the initial value surface; naive perturbation theory can then be

Ji developed on the subset of linearized solutions which obey the constraint.

Linearization instabilities arise in gravity on any background which possesses at least
,l

l one Killing vector and a compact, spacelike Cauchy surface [4,5]. To understand why we
!

I
. must first elucidate the nature of gravitational perturbation theory. Consider the action

for Einstein's theory in D spacetime dimensions:

S[g]- _ I'D. [" - (D-')AI _-g (2.4)

Our conventions are that the metric has spacelike signature, x I = 16_rG, and /i_t_v =_
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I _(_ __ . ,'ufl,tL+ Fai_pFPufl (# _ u) Perturbation theory is based upon tile expansion:

gs, - _v + _ h,, (2.5)

, where gAp.uis an exact solution. Indices oi1 the graviton field, huu, are raised and lowered

using g_u. Following Deser and Abbott [6] we segregate the field equations into a linearized

part and a graviton stress tensor density'

0 = 6S[_ + nh,] = _Dpupzhp_, -- nTF'U[h] (2.6a)
6ht_u

_upa
\

'2.6b)
+ a h'" v/---_ !_,_, (p' _ h po",p_r

Note that the semicolin denotes covaxiant differentiation with respect to the background

metric.

The perturbative field equations are obtained, by substituting the expansion:
OO

* into (2.6a) and then segregating powers of a:

V,S (1)h,p(r = 0

=.._ h(1)

• (2.8)

Naive perturbation theory operates by systematically correcting any linearized solution,

¢_u, to give an asymptotic series solution in the sense of (2.7). Provided each of the

equations (2.8) is integrable the various terms in this expansion axe:

h(22=
,r.)- lpo m (2)

h("22[_]= """ "P"[_1 (zg)

_) _-lpo" [ h(2) 1)[¢]]h [_]= _.. TJ_)_, [_],...,h("-
7
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The fundamental degrees of freedom in both classical and quantum perturbation theory are

the initial value data which characterize all the linearized solutions for which this system

is integrable.

Of course the kinetic operator is not generally invertible on account of gauge invariance.

As a consequence of the vanishing of tile following divergence:

we see that 27-1P¢ Tocr cannot exist unless'p,u

;u = rPUu, + PPupT pu = 0 , (2.11)

This and the requirement, that the field equations contain no more than second derivatives

is what imposes such strong constraints upon the allowed interactions [7].

Conservation in the sense of (2.11) does follow, at least on shell, for the graviton stress

tensor. This is enough to ensure the integrability of (2.8) when the Cauchy surfaces are

noncompact or when the background is free of isometries. Suppose, however, that the

background possesses at least one Killing vector:

. + = 0 (2.12)

and that the Cauchy surfaces are compact and spacelike. Consider one such surface C with

' timelike normal vector cP(x). Because C is compact we can partially integrate derivatives
=

along it without producing surface terms. This and the fact that _p is a Killing vector

suffice, after considerable manipulation, to show that:

d D-lzcp _u hp_ = (2.13)
Z)_up_ 0

,mm C
I

for all fields h#u, whether or not they are linearized _olu_ions. An immediate consequence

is that the kinetic operator has another zero eigenvector in addition to those implied by
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gauge invariance. If even one of the source terms on the right hand side of (2.8) should

have support in this direction then the associated linearized solution cannot be corrected

to give a full solution.* Perturbative integrability obviously requires:

Qi _ i dD-lx Cp'_i TPu[h] = 0 (2.14)L/

C

for every Killing vector _/_. It is straightforward to show that these constraints are time

independent [6] so that once imposed on C they continue to be obeyed on foliations.

We conclude this section with a discussion of the relation between linearization insta-

bility and gauge fixing. When a linearization instabil)ty afflicts the invariant field equations

it must occur as well when the gauge is fixed by imposing conditions on the field. However,
-

1 if the gauge is fixed by adding terms to the action then one can obtain a set of field equa-

i
tions which are perturbatively integrable. This happens for our electrodynamical model

in Feynman gauge:

DAu = J, (2.15)

In addition to the two fictitious photons modes the solution set of the full gauge fixed

theory -- including the matter equations -- contains a completely gauge invariant but

nonneutral, and hence unphysical, sector. This sector must be suppressed by fiat before

the Feynman gauge solutions can obey the invariant field equations.

The nonneutral sector of Fe:ynman gauge electrodynamics can be eliminated by im-

posing (2.2) on any initial value surface- or upon the asymptotic states in quantum

field theory. This fact ought to seem more surprising than it does because the two sys-

tems -- (2.1) and (2.15) -- are solved in very different ways. One of the D Maxwell's

* What saves flat space for A = 0 is the noncompactness of the usual Cauchy surface. If we
effectively compactify the Cauchy surface by requiring that solutions fall off too rapidly

-- say hij _ r 1-D and hij ,,_ r -D -- then a similar linearization instability results. The
same effective compactification is what causes the linearization instability of pure higher
derivative gravity [8].
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equations is a cons' ;aint which need only be enforced on the initial va,lue surface; current

conservation and tie other (D - 1) equations conspire to preserve it under time evolution.

This constraint eqt ation is solved by adjusting the spatial variation of the gauge field at

a given instant so ,hat the gradient, of the electric field gives the charge (lensity at that

instant. There is n causal relation between the source and the longitudinal electric field

that it engenders; il;heinduced electric field depends upon the charge density throughout
/

the surface of simultaneity.
!
F

In <:ontradistin_tion to (2.1) all D of the equations in Feynman gauge electrodynamics

are dynamical. The general solution is given in terms of a retarded Green's function:

!

!

where 6_ is a homogeneous solution and the Green's function obeys:

r-i[#GrUet](x,x ,) : _pu _D(x _ x') (2.17,)

Of course the homogeneous term represents free electromagnetic radiation -- and to get

a solution of the invariant theory we want 0Pep = 0 .... but the feature which ought to

shock is how the field depends upon the current. In (2.16) we see that the field responds

causally to the source; the effect at any point in space and time is built up by propagating

forward the response to the source at each instant inside the past lightcone of that point,.

There is no contradiction between t/he two approaches bec,ause current conservation

relates the instantaneous charge density _ which produfies the longitudinal electric field

in the invariant formalism _ to the past current density _ which gives the same field in

the Feynman gauge formalism. Suppose, for example, that the source consists of stationary
i

i opposite point charges on either side of the (D- 1)-sphere. We would certainly obtain

different results from the two methods if these charges appeared out of nowhere at a

giv _n instant and then disappeared some time later. Maxwell's equations imply that the

10
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longitudinal electric field must be everywhere nonzero within this interval whereas the

Feynman gauge system would give zero field of any sort outside of the future lightcones of

the creation events. The disagreement is forbidden because the spontaneous apl)earance
,,

of two sep_rated charges wouhl violate current conservation. If the two charges are al:,_md

at some instant then they must have been around as well in the past for at least as long

as it wo'ald require both to have emerged from the same point. Truly stationary charges

must have been around forever and it is the accumulated, perfectly causal response to this

past current density which gives rise to the instantaneous longitudinal electric field.

Consistency between the two formalisms is so well known as to constitute almost a

i physical cliche. Little remarked is the fact that this consistency depends crucially upon

a property of the nondynamical geometry of the model, namely that any two points on

a surface of simultaneity lie within the future lightcone of some point far enough back in

the past. De Sitter space shares the S D-1 x/_ topology of our electrodynamical model,

but its geometry is far different. In particular, we are about to see that distances expand

so rapidly in de Sitter space that opposite and simultaneous points on the (D - 1)-sphere

never come into causal contact, while distant simultaneous points only reach causal contact

at very late times.

3. Geometry and Coordinates in De Sitter Space

i De Sitter space is the unique maximally symmetric solution to the vacuum Einstein
equation with a positive cosmological constant. These facts mean that the curvature is the

following simple function of the metric:

where the D-dimensional Hubble constant is H 2 - ._=TA. Note that although the de Sitter

metric is to be the background for the perturbative discussions of succeeding sections

11
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we shall spare ourselves the notational bother of placing a "hat" over the symbol g#v

throughout this section.

The most convenient way to describe D-dimensional de Sitter space is as the surface

of constant length H -1 from the origin of (D + 1)-dimensional Minkowski space. Note

that both our de Sitter metric and the Minkowski metric are assumed to have spacelike

signature. De Sitter coordinates are represented by lower case letters; the Minkowski

coordinates are denoted by upper case letters. General de Sitter indices are Greek and
I

general Minkowski indices are capital English letters from the first of the alphabet. Lower

case English indices from the middle of the alphabet (i, j, etc.) run from 1 to D - 1;

capital English indices from the middle of the alpha'bet (I, J, etc.) run from 1 to D. The

embedding is:

HX A -- EA(x) (3.2a)

where the mappings are assumed to obey 'TAB EA(x) EB(x) -- E(x).E(z) = 1. The inverse

can be defined on the embedded surface, and for general X A by considering the mapping

to be homogeneous of degree zero:

Hz tL= eP(X) = eP(,X.X) (3.2b)

A conscquence is that the associated Jacobians invert one another in the following sense'

H---ff \_] (0,----_) = 6pu (3.3a)

1 (OEB) RB
H 2 \OX AI k_xP] = 62 - EA (3.3b)

OE A Oe u _A
Note as well that _ E A = 0 = -O-Z-i_ .

All geometrically meaningful quantities in a de Sitter coordinate system can be ex-

pressed in terms of the functions EA(x) and eP(X). For example, the de Sitter metric

is"

10E A OE A 1 OeU Oe u

gpu- H20xt_ Ox u ' gpU H 2 OX A OXA (3.4)

12



The ½D(D + 1) isometrics of de Sitter space are obtained by subjecting the embedding

coordinates to O(1, D) transformations and then inverting:

rp , _ 1__ep(ft.4BXB ) (3 4)
L. -- H

This gives an immediate and explicit expression for the Killing w_ctors:

10eP'(X) EB(X) 10e4_(X) EA(X) (3.6)_B(Z)-- H2 oxA H '2 oxB

When a geodesic connec,:s two points xP and y_ it is found by inverting the trivial geodesic

between X A and yA.

I ep [ vY] (13.7)X.P(r)-- _ L(1- T)X +

(Another way is by inverting the "great circle" traced out by the SO(1,D) rotation which

carries X A onto yA.) The distance g(x, y) along such a geodesic obeys:

"_ De Sitter space has the curious property that certain points cannot be connected by a,

i geodesic. The "length" between such points is still defined by (:3.8); for these cases the

function z(x, y) lies between zero and negative infinity.

De Sitter vector and tensor fields can be mapped onto the tangent space of the

Minkowski embedding thusly:

10EA(x)
VA(x) =" H OxP t'P(x) (3.9a)

Vector and tensor fields from the Minkowski embedding are mapped into the de Sitter

tangent space using the inverse Jacobian:

1 0ei'(X) vA(x ) (3.95)vu(z) = "II OXA

Parallel transport from X A to yA on the Minkowski embedding is accomplished by the

SO(1, D) transformation which carries X A onto yA along the "great circle" connecting

13
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them'

vA(y) = vA(x) + 2HX. V(X)HY A - (HX + HY). V(X)(HxA + HyA) (3.10)
1 +HX.HY

By inversion we infer the following simple form for the de Sitter parallel transport m:?rix:

[ ] OEA(x) OeU(Y) 1 OeU(Y)
OEA(x)EA(y)EB(x)-- (3 II)

H 2 p ga (x,y) - OxU OY .4 1 + E(x). E(y) Oxa OY B "

Since ali Minkowski indices are contracted this object is invariant under the isometrics of

de Sitter space, as is the metric and the geodesic length.

Expression (3.11) is known as a biten_or. Indices on the left belong to the tangent

space of the first argument, indices on the right belong to the tangent space of the second

argument. Other commonly used bitensors are the geodesic normals at ,va and ya.

OEA(x)

Oe(x, y) -_esel [He(x, Y)]( OxaIan](a''y) - Oza -
)

-- ] EA(y ) (3.12a)

Og.(x,o) 1 [He(x y)] EA(x) k _y_ (3,12b)

These bitensors are also de Sitter invariants. A theorem of Allen and Jac._bson [9] asserts

that any de Sitter invariant bitensor can be expressed using the length, the metric, theg

parallel transport matrix and the geodesic normals.

Since de Sitter space has the topology of S D-1 x R it is natural to use a coordinate

o system in which the spatial sections are S D-1. These "closed coordinates" consist of a

time tl, -_ < tl < _, and (D - 1) angles obeying 0 < _i < _" for i = 1,... ,D - 2 and

0 < C_D_l < 27r. The embedding is:

E 0 = sinh( H t 1) (3.13a)

E I - cosh(Htl)sin(_l).., sin(o_D_i)cos(_D+l_i) (3.13b)

where we define c_D = 0. The unique inverse which is homogeneous of degree zero is:

( )e0 = ata_h v/(X1) 2 +_. + (xD) 2 (3.14a)

14
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m

(ei = atan X .... "

A triviM application of (3.4) gives the line element:

1

ds2 = -dr 2 + -_ cosh2(Htl) dfl2D_ 1 (3.15)

J Although this expression seems to indicate that de Sitter space contracts for t l < 0 this

is a fiction of tile coordinate system which is due to the fact that geodesics between

simultaneous points do not travel along the surface of simultaneity. The invariant distance

as opposed to the distance along the surface of constant tl -- between initially parallel

and freely falling observers expands exponentially at all points in de Sitter space.

Another misleading feature of these coordinates is tile fact that the spatial sections are

" closed. No local observer who is constrained by causality can verify this closure. Consider,

i for example, a null geodesic which passes through the origin. By setting t? = 0 in equation

f

(3.8) we see that any such curve must obey:

t 0 = ½ - ½ED(x) = ½ - ½ cosh(Htl) cos(al) (3.16)

Hence even the lifetime of the universe from t 1 = -c_ to t 1 = +oo suffices to carry a light

ray only halfway around the spatial section.

Since the locus of points with t 1 = constant is a compact, spacelike Cauchy surface

(the normal vector is just ct' = 50t' ) we see that de Sitter space suffers from a linearization

instability. However, the fact that no more than half the points on this Cauchy surface

will ever come into causal contact with one another means that the constraints (2.14) have

a peculiarly artificial form. This is most simply illustrated by introducing matter into the

theory. Consider the action of a point particle of bare mass M whose worldline is qP(r):

smatter[q, g]- -M /dr _/-ga_(q) q" q¢] (3.17)

15
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If the particle is stationary at the spatial origin (a i = 0) then its worldline obeys ql'(r) =

r 60_ and the associated stress tensor is:

1 b.D-l(,_)

Since this is nonzero even for K. = 0 it contributes to the linearized solution, but the total

stress tensor must still obey (2.14). The _)'g Killing vectors possess no zero component

and so vanish when contracted into (3.18). The remaining D vectors give:

1 6D-
cP(t 1 _)_,i(tl ,_0) matter _ _,f 1(_) ,V I

, , T;u (tl,:_) = V/i - ah00(tl,£ ) v/i + (HX0) 2
(3.19)

1 6D-1 (:_)_ _ _,I I

- V 1 - -_hO---O(t---_l_Z) "H 6i D cos(o_l)

Tile nonvanishing contribution from _D does not integrate to zero and it can not be

cancelled by the graviton stress tensor because the latter has no a0 term. It follows that

a single point mass is not allowed in de Sitter space!

This bears a superficial analogy to electrodynamical model presented in section as
!

paradigm for a lineiarization instability. If the spatial sections are (D- 1)-spheres of

constant curvature then the net charge has to vanish. This must be so in order to prevent

the contradiction which would occur when the flux from a net charge meets itself on the

other side of the (D - 1)-sphere. The zero charge condition is of course accomplished by

having as manynegative charges as there are positive ones. However, we have seen that de

Sitter space is expanding so rapidly that the flux from a point mass can never encounter

itself on the other side of the spatial section. Nor is the "zero energy" condition enforced

by having negative mass sources. Owing to the oddness of the cos(c_l) in (3.19) it emerges

that while a single mass is not allowed there is no problem for a pair of identical massesi

on opposite sides of the (D - 1)-sphere. This is very strange because we have seen that

no observer can feel the effect of both masses before tl = 0, and the two masses never feel

one another.

16



The rest of the argument was given in section 1. If tile response to such a dual source

is regular beyond the source points at c_1 = 0 and al = _ then it cannot come from

a causal Green's function. Since we believe that it makes sense to consider the theory's

response to an arbitrary (conserved) disturbance, and since we feel that this response must

be causal we are powerfully motivated to consider restricting physics to a portion of the

full manifold.

The minimal coordinate patch we might consider is the one which describca the sub-.

manifold within the causal horizon of an observer at the spatial origin. A convenient

coordinatization is the static system given by a time t, -oc < t < oc, and a (D- 1)-vector

r-"of radius r = _1 -< 1/H. The embedding is:

E 0 = sinh(Ht)v/i - H2r 2 (3.20a)

El= Hr i (3.20b)

E D = cosh(Ht)v/1 - H2r 2 (3.20c)

The homogeneous inverse is easily seen to be:

(3.21a)e0 = atanh(xD]

ei _ X_ (3.21b)x/x. x
A now familiar application of (2.4) yields the following line element:

= - - dr 2 + r2dFt2_ 2 (3.22)

That the apparent problem at Hr = 1 is only a coordinate singularity can be seen from

the fact that all curvature invariants are finite at this point.

That the horizon is no barrier to outward propagation is shown by consideration of a

null ray which intersects the origin. By setting g = 0 in (3.8) we see that any such curve

must obey:

gr = tanh(gt) (3.23)
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Though it would seem teat the null ray cannot pass the horizon this is a figment of the

coordinate system. In fact this geodesic agrees along its full extent with the geodesic

defined in closed coordinates by (3.16); (3.23) only stops at r = 1/H because tile static

coordinate system runs out there. The time t is that of an observer in free fall at the

spatial origin. Though it requires an infinite proper time for him to fcel influences from

beyond the horizon freely falling observers at ali other points reach the horizon in a finite

proper time. Since quantum field theory is dominated by the many rather than the few

we must reject the static coordinate patch as too small a physical arena.

A much larger venue is provided by the "open" coordinate system. This consists of a

time t0, -oo < to < oo, and a (D- 1)-vector i whose norm, Ilill, is unrestricted along the

nonnegative real line. The embedding is:

= H 2 2E 0 sinh(Ht0) + ½ Ilil[ exp(Ht0) (3.Z4a)

E i = exp(Hto)Hx i (3.24b)

E D = cosh(Ht0)- ½H 2  112exp(Ht0) (3.24c)
T

j The homogeneous inverse is:

" e0= ln[ X0 + xD] (3.25a)

i ,/x 2-X i
i d= (325b)
-- X 0 +X D '
,!

Another application of (3.4) gives the line element:d
g
I

gs 2 = -dr 2 + exp(2Ht0) [diii 2 (3.26)

I
Note that the geodesics which connect simultaneous points in this coordinate system lie

lm

within the surface of simultaneity. A consequence is that the uniform exponential expansion

of distances is manifest in these coordinates.

18
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It is easy to see that in these coordinates the distance function obeys'

1 - z(x,x')- - sinh2[_H(eo _)] + _n211:_-,3112exp[H(t0+ t_))] (3.27)

Setting ,_,1= 0 and C(x,x t) = 0 gives the equation for a null ray which passes through the

spatial origin at tD:

By taking t_) _ -ce and tO --_ c_ we see that such a light ray can just reach spatial infinity.

Since E 0 + E D = exp(Ht0) > 0 these coordinates do not cover de Sitter space. They

do, however, have the property that tile locus of points with tO = constant is a Cauchy

surface, so it is valid to restrict physics to this subm_nifold. It is the to > 0 segment of this

space which would be joined {o a,n open Friedmann-Robertson-Walker universe to describe
i

the transition to an inflationary phase.

It is a trivial consequence of (3.1) that the de Sitter Weyl tensor vanishes. Any metric

with this property is locally conformal to the Lorentz metric. In fact the entire open

coordinate patch is conformal to flat space. The conformal time is just:

1

u- _ exp(-Hto) (3.29)

Note the curious inversion; the infinite past corresponds to u _ e_ while the infinite future

is at u = 0. The conformal embedding is:

E0 = 1 + H2(IlSll2- _2)
2Hu (3.30a)

Ei= xi (3.30b)I u
q

I ED = 1 -- H2(llxJl2-2Yu u2) (3.30c)

m_ Its unique homogeneous inverse is:
t

40

e0_ _/X. X (3.31a)
-xO+x D
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i

e i = XZ
x0 +

Apptying (3.4) results in the claimed conformal line element:

ds2_ f_2 (_du2 + ,_,. ,g,) (3.32a

_ 1 - E 0 + E D (3.32b)
H'tL

Applying (3.8) gives a relation which will be of importance in the next section:

where by x 2 we mean the Lorentz inner product, x 2 =__-u 2 + [_ 12.

m

g 4. The Retarded Green's Function

The great advantage of conformal coordinates is that the background metric, g'pu, is

so simply related to the Lorentz metric. To better exploit this simplicity we conforrnally

rescale the full metric (background plus perturbation) as follows:

gpu = gApu+ _hpu - a 2 g#u (4.1a)

and introduce the "pseudo-graviton field:"

tg
I

- Indices on ¢/,v are raised and lowered with the Lorentz metric.

il The conformal rescaling allows us to reexpress the invariant Lagrangian:
. /_inv - '_X/z'_ R- (D-2)(D-1)H 2

! = -_X/_ _ f/D-2 _ 2(D_l) aD-3 _:p

ii --(D-4)(O-I)"_#u _,# _l,u _D-4 __ (D_2)(D__i)H2_D]

20
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w

where _ isthe Riemann tensorformed from g#v and _:#tt=-_#v (_t,#v- FP,u) isthe co-

variantderivativewith respectto the rescaledmetric.Afterninny tcdiousrearrangements

we extracta presumably irrelevantsurfaceterm:

,v - _2 ,/1 (4.3a)

I and the following volume term:

/Jinr - Sw ½(D_2) __--_-pa _/_v ,g,pa,# _/,_ a,a a D-3 (4.3b)

The quadratic part is:

2w "_/_'0- _ '# (4.4)

where ¢ == In(a).

lt is convenient to scale away multiplicative conformal factors by making the substitu-

tion:

ai-}= X+,v (4.5)

in expression (4.4):

_ .v ¼X'+' ¼Xp_'_

+(-_)2{½X/_PxVp¢,#¢,v+½X,Y#_'¢,/_¢,_,+¼X2¢'/_¢,/_-¼XP'Xp_¢'#¢,#} (4.6)

The simplest gauge fixing functional seems to be -½F/_F_,rI#v where:

= X #,v )XE ¢,v + (P-_)X ¢,# (4.7)
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With this arid some partial integrations the gauge fixed, quadratic Lagrangian reduces to

the following simple form:

- - TJ_ \'0p (4,8)

The gauge fixed kinetic operator is therefore:

, p_ _ 1 0-2 )(p

where parenthesized indices are symmetrized.

There are three Sorts of homogeneous solutions'

Z)_up_ = _ u 20 ev)06(.. = 0 (4.10)

If the polarization is purely spatia,1 then it is annihilated by the operator:

D 1

If the polarization is mixed time and space m that is, only,the e0i components are nonzero

-- then it is annihilated by the operator:

-- And there is a single homogeneous solution of the form etLv = [606 ° + _2--#77#u] g, where

- g is annihilated by the operator:

- [m ¢* ,

i . ? = 02 + (-_)(-_ (4.11c) _
!

i Note that the distinction between _B and 7:)C disappears for D - 4.

i It might be expected that each of these operators to play a role in the graviton Green'sfunction and this is the case. The retarded Green's function is defined by the equation:
411

_/_vp°" [pO-Or_e_](x,x') = 6(_ 6_) 6D(x --m,') (4.12)
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and the boundary condition that it should vanish for u' < u. From general tensor analysis

we can assume a solution of the form:

[p_,_.,'gl ,'_"/ x"/ 6y/ t,(,,,,x' 609/ :,,'_retj (:v, =a(x, 26p (c_ + ) 46(p° 6ct)(_ + c(x, )Tlp_ '_l
C3'_

(4.13)

One now acts 7?pupcr on this ansatz and segregates the terms proportional to each distinct

tensor factor. The result is five scalar differential equations'

_(__//. z_.4a(_,x')=_(._.- x') (4,_4.)

4_(°_.)(__0_)' -(-_)L a(_,_')+ _Z'Bb(_,_')=0 (4_4b), u 2 .

_o6o_: __ _(_,_,)+_ 02 (o-s)(_ _ 4x _'u2 + ---g-- )_--_ , ) = 0 (4.14d)

°4 _-o
. 9 D-2 b(x,x') + -D-j2 d(x x t)60_o6o__o_ -_ u---r

° + ½ 02 + (P-_)(-_)_-ff e(x,x') = 0 (4.14f)

i To solve (4.14b) we make the substitution:

b(x, x t ) - -a(x, x t) + -b(x, x t) (4.15a)

and make use of (4.14a) to conclude:

V B -b(x,x') = 6D(x - x') (4.15b)

Note that (4.14c) and the retarded boundary condition imply:

d(x, xr) = 2a(x,x t) + (D-2)c(x.,x') (4.16)

Now make the substitution:

2 a(x,x, 2 _(x, (4. 7a)c(x'xt) -- --'D':_ )+ (DL3)(D_2) x t) 1
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in (4.14d). Using (4,14a) and (4,16) we conclude:

_cZ(a,x ') = 6D(a - x') (4.17b)

It follows from (4.16) and (4.17) that'

d(x, xl)=_ 2 a(a. x t , ) (4.18)

Relation (4.14e) and the retarded boundary condition give:

e(x, x') -- --4 b(x,x') zr-(D-2) d(x, xr) (4.19a)

_ = 2(_7_)a(x, x t ) + 4 b(x, x') + 2(_--_) _(x, x') (4.19b)

i Upon substitution of (4.15a), (4.18) and (4.19b) it can be seen that (4.14f) is obeyed
li

m as weil. Note that the apparent singularity of (4.17a) and (4.18) in three dimensions is

avoided because a(x, x') = "d(x, z') for D = 3.

:! The simplest way to solve (4.14a), (4.15b) and (4.17b) is to first obtain ordinary dif-

ferential equations in the temporal variable u by Fourier transforming on £. The three
D-1 D-3

homogeneous equations are then reducible to Bessel's equation of order v = -'--2--, W

and P@ respectively. The jump condition at u = u t gives solutions proportional to

-Nu(ku t) Ju(ku)+ Jv(k'ut)Nu(ku), where k = I111and ; is the fourier conjugate to £.

The angular parts of the inverse Fourier transform give another Bessel function and so we

obtain the position space solution:

4[27tAxi(-- tT) (4.20)

× {,Nv(ku')Ju(ku)+ Ju(ku')Nu(ku)}

where/, - - _ -  11.

It is not simple to evaluate the integral when D is odd and v is integral but the result

for even D and half integral u is a series in derivatives of the lightcone theta function,
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0(Au-_x), IfD-2dandv=d-½-n, then for 0 <__n <_ d- l we obtain:

d-1 (2d .....n- k- 2)' (_2u'ut O _ ko(/.,,) _ (d- k- _),(_- _},..zXx 0_Xx 0(zx_- ax.,,)g__½_,,(x,_';2d)=214_u_'1_-_k=. ' '
(4.213)

Except for the initial fa,ctor of (uut) 1-d these functions axe de Sitter invariant. To see this

( )first note from (3.33) tha, t O(_u) O(Au- Ax) = O(Au)O z(x,x')- 1 . Now use (3.33)

_gain to convert the Ax derivatives in (4.21) to z derivatives. The result is:

O(Au) d-1 (2d- n- k- 2)! [ ]
gd_½_n (x'x';2d) =--2147ruuqd-1 E (d-k-1)t(k-n)! 6(k-1)LZ(X'Xt)- lJ (4.21b)

k'-'n '

where we define 6(- 1)(z - 1) =_ 0(z - 1). The flmction a(x, x') corresponds to the case of

n -- 0. For d > 2 the functions -b(x,x t) and -d(x,x _) are associated with n = 1 and n = 2

i respectively; for d = 1 they are both given by n = 1. Note that only a(x,x l) contains a

theta function.

i Let us introduce the notation that a bar above a Lorentz metric or a Kronecker delta

symbol means that the zero (i,e., u) component is projected out'

_t_' -- r/pr + 69 6O (4.22)

The tensor structure of our Green's function is most revealingly expressed by segregating

it into terms proportional to the three scalar functions:

[po.GarJt](x,x t) =a(x,x t) [po.T_.t_ ] +-b(x,x') [po.T; _] + "d(x,x') [po.T_ _] (4.233)

2 - D_ %z _aa (4.23b)

i = (D-3)(D'2)' Now recall from (4.1) and (4.5) that the pseudo-graviton field and the graviton field relate

to ,'/_v thusly:
D

htlv(x) = fl2(x)Ct_u(x) = ft3--ff(x) Xtw(x) (4.24a)
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D
hIL_(x) = _-2(x)'¢P_'(x) = 12-1--2(x)k'Iw(x) (4.24b)

It follows that the retarded Green's function for the pseudo-graviton field is:

[ r'o_'J ,'c'--_t 1-D [ ]

where z = zCx, x I) is the length function defined in relation (3.8). Note that the functions

GA, GB and GC are de Sitter invariants. For example, when the dimensio_l is even

(D = 2d) we have'

C-;A(Z- 1) = -_ _ _ (d- k- 1)! k' )- 1 (4.26), k=0 '

The functions GB and GC follow similarly from (4.21b).

From (4.24) we see that the retarded Green's function for the graviton field is:

[pzHr_ei] (x, x') : _2(x)_t-2(x ') [paGr_t] (x, x') (4.27a)

%

The bitensor functions [p_r; _] (x,x') - _2(x)_t-2(x ') [p(rT_], etc., are not de Sitter

invuriants. Of course a2(x)rlp(r = g"pz(X) and a-2(z ') 7/az = _'_Z(z'), the problem comes

with _(x)a-l(z ') 6pa. Using expressions (3.11) and (3.12) one can show that:

(4.28a)

+2(1-2) { [t_] (x,x')[_u](x,x')-wp(x)w"(x')}

where:

-- ° (4.2sh)

Note that wt_(x ) is not a vector in the same sense that [Rp] (x, y)is. The latter is defined

invariantly by (3.12b) in any coordinate system whereas wtr(x) is defined by (4.28b) in
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conformM coordinates, and in other systems by transforming it like a vector. Recall that

anything is covariant if it is defined in a particular coordinate system.

This breaking of (tc Sitter invariance derives from the gauge fixing functional (4.7). ttad

we used a de Sitter invariant gauge we would have obtained a,n invariant graviton retarded

Green's function. An example of such a,gauge fixing functional is -½ v/--_ _lw Fa. Fu where:

F_ = h,_;. - ½hPp;p (4.29)
i •

We will not trouble to work out the associated Green's function.

Although a de Sitter invariant Green's function could be obtained we do not choose

to do so for three re_tsons. First, full de Sitter invariance is not observa.ble on the open

submanifold because some de Sitter transformations carry points on this coordinate patch

off of it. Second, we will see in section 6 that the propagator cannot be de Sitter invariant.

Although unexpected there is precedent for this result in the previous work of Allen and

Folacci [10] for the massless minimally coupled scalar field on a de Sitter background.

li A similar result for gravity becomes well nigh inevitable when one notes that the scalarkinetic operator of Allen and Folacci is the same as the kinetic operator for purely spatial

polarizations of the pseudo-graviton field.

The final reason we prefer a noninvariant gauge is that it permits a simple expression

for the Green's function, Since the coordinate patch and the propagator must in any case

break de Sitter invariance it seems worthwhile to introduce a bit more noninvariance in

order to simplify the tensor algebra. Of course to those no't familiar with quantum gravity

our relation (4.27), with its ancillary definitions in previous expressions, probably seems

i formidably complex. However, it is actually quite simple for a graviton Green's function,and orders of magnitude less complex than the invariant (and incorrect) expressions which

i for this to be that the conformal flatness
have been obtained previously. The reason seems

i of de Sitter is a more powerful organizing principle than de Sitter invariance.

space
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: This point is forcefully illustrated by consideration of the Maxwell Green's function

on four dimensional de Sitter space. Since free electromagnetism is conformally invariant

for D = 4 we can find the Green's function very simply by first conformally rescaling the

metric and then adding the Feynman gauge fixing functional:

_1 (4.30)

The result is:
, ',')

4rr _'7_w6[(x - x I a

H 2

- x.')- 1]

Because this is the flat space Green':. function it is as simple to study D = 4 electrodynam-

ics on de Sitter space as it is in flat space. But from (4.28) we see that 12(x) f_(x t) r/_u is not

de Sitter invariant. To obtain an invariant Green's function we would need an invariant

gauge fixing functional such as:

ii 2

where ¢ =_ ln(_2). The resulting Green's function is invariant but it is not simple. It con-

scalar proportionality functions are in each case more complicated _,hat _(z .- 1); what is
• worse, they are different. From (4.28) we see that iu cannot be otherwise. It would be silly
i

! to use the second gauge for most calculations. The more efficient course is to use the first
i
J gauge condition and cheerfully accept the implied commitment to conformal coordinates.]
!

]! Gravitation is not as straightforward as electrodynamics because Einstein's theory is
I not conformally invariant in four dimensions, yet the simplification effected in conformal!
I

; coordinates with (4.7) is even greater. The invariant treatment requires five fu,ndamental
:1

tensors -- as opposed to our three -- and the scalar proportionality functions are so
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complicated that their specification in a general gauge requires several pages of definitions

[2]. By far the most condensed invariant expression is the one obtained by Antoniadis

and Mottola [3] in four dimensions with a choice of gauge where only tlle spin two and

spin zero parts of the graviton are nonzero. The divergent response that they report for

a freely falling point mass is due to the infinite integration over J of the theta function

term in their spin zero Green's function. Our function GA possesses a theta function but

the reader can see from the tensor structure of expression (4.23b) that this term fails to

couple with the stress tensor (3.18) of a freely failing point mass. Of course just achieving

finiteness does not guarantee that this response is correct. We turn now to proving that

it is.

5. Response to a Freely Falling Point Mass

The de Sitter-Schwarzchild metric is an exact solution for a freely falling point mass.

In static coordinates and for D = 4 the invariant line element is:

d_2 = -B(r)dt 2 + A(r)dr 2 + 'r2dO2 + r2 sin2(0)d¢ 2 (5.la)

1 _ B(r)= 1- H2r 2 2aM (5.1b)
A(r) r

The correct linearized response to a freely falling point mass comes from expanding this

metric in powers of the dimensionless parameter, G_.._;the term of order one in this expan-

sion is the linearized response. In principle we could just compare this with what one gets

by using our Green's function on the stress tensor (3.18). Unfortunately the two results will

generally disagree because the two coordinate systems may differ by terms of order G____ir '

This is precisely what occurs in flat space if one compares the de Donder gauge response

with the deviation field in Schwarzchild coordinates. To compare the two geometries one

must check curvature invariants.

Normally there would be a complicated problem of determining which curvature in-
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variants suffice to prove the identity of the two geometries but in this case it is simple:

we need check only the uncontracted Weyl tensors. Since de Sitter space is conformally

flat we know that the \Veyl tensor vanishes for li = 0, hence the change in it due to an

unknown coordinate mismatch of order _ must be quadratic in tlle small paranleter.

o Further, the field equations determine all components of the Riemann tensor except for

the Weyl tensor. If, therefore, we get agreement between the two We>,l tensors to lowest

order in @ then we must have agreement between all curvature invariants, and the two

geometries must be identical.

Of course the de Sitter-Schwarzchild Weyl tensor can be computed to all orders. In

four dimensions the six independent, nonzero components are:

2 G AI (5.2a)ctrtr - r 2 B r

G M
C_oto = = Croro (5.25)

r

, ct G M_ _ ,-_r (5.2c)Ct¢--sin2(0) r _ ¢r¢

C%0¢ = 2sin2(0) G 2tl (5.2d)r

Note that all of these except Ctrtr are free of horizon singularities. Also note that ali

except c'trtr agree with flat space results obtained by taking the limit H 2 _ 0! That

the singularity in ctrtr is purely a coordinate effect can be seen by computing the scalar

ali quantity:
:m

i 16(a:i c%. c{,. - (5.a)_ r 4 k r z

The fact that this is also completely independent of H to all orders is an indication that

long range fields behave in classical de Sitter space the same way as they do in flat space.

-| Since our' graviton Green's function was worked out in conformal coordinates we must
|
-' transform (5.2) to this system in order to make the comparison. The transformation is

i simplest if we write the conformal space vector _7in Euclidean spherical coordinates. The3O
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angles then suffer no transformation and one has only to convert from t and r to u and

v -I1:_11. The special form of (5.2) also helps, as witness the following exact result:

Ou Ot Ou Or ,_

CUouo - Ot cgu CtOtO + egr Ou C 0,.0 (5.4a)

{ }E JOu Ot Ou Or G iri (5.4b)= O--TOt--_L+ 07"O_L - _---2-
GM

= -Hu _ (5.4c)
V

Similar manipulations give:

C"o,,o= C_ovo= Cto_o=C'o,.o= -m, cs___Z (5.5a)
13

c%,,_ '_ - c t = -- (_.sb)= 6 ¢v¢ - ¢t¢= C'¢r¢ -sin2(0) Hu G _,IV

V

The actual transformation can be discerned by comparing the embeddings (3.20) and
a

! (3.30). The only component which depends upon this is:

l ['Ou Or _20u Or\ i/Or Or Or Ot)c t (5.6a)

I - v* v \L v J (5.6_,)

It remains to compute the Weyl tensor directly using our retarded Green's function.

By linearizing (3.18) in four dimensions and using the gauge fixed graviton action (4.8) we

obtain the linearized field equation:

_.p_ _p_(_)= -½_M_0"_0__3(_) (5.7)

_i (Note that in four dimensions the rescaling to go from hl_u to Xl_v cancels the factors of f2
i

i which occur in the matter stress tensor on account of the fact that g"00= -122 in conformal

i coordinates.) Making use of the four dimensional version of our Green's function (4.23)
, we find the linearized following response:

•1 Xp_r(x)=/d4x , [po'gr:_t](x,x t) {-½_,MSOs_53(:F)} (5.8a)
|

_ [2505o_ 77OO] (5.8b)87rv
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Note that only the C part of tile retarded Green's function contributes. Had the A term

not decoupled there would have been a logarithmic divergence from the infinite integration

over u I. This is essentially what happens with the spin zero part of the Green's function

of Antoniadis and Mottola [3].

By specializing relation (4.24) to four dimensions we see that the only nonzero com-

ponents of the pseudo-graviton field are:

G M
_,='t/,O0= 2Hu _ (5.9a)

V

GM
_'ij -- 2Htr _ 5ij (5.9c)

'0

Since the conformally rescaled background metric is just r/uu we see that to order a the

conformally rescaled Riemann tensor is generally:

Substituting (5.9) gives:

Roioj = v-"_ Htr _.- 5ij - 32i 2j (5.11a)v ,_

Rijke = -_ Hu _ 2 5ik 5je - 5le 5jk
v (5.11c)

where Yzi= _ Simple algebra suffices to show that at this order, Coioj = Roioj, Coijk -- 0

i and Cijkg "- Rijkg" Since the Weyl tensor is unaffected by a conformal rescaling these
results should agree to this order with (5.5) and (5.6). Converting to spherical coordinates

and remembering to include a minus sign when raising a u index- we see that they

_. do:
. .... 2 GM

_ C I)ItI)
_'_' "_.7Coio j _ v 2 Hu --v = u (5.12a)
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"_i"_j v2 Coioj -" -Hu Gv_! - C,"Uouo (5.12b)

__i _j v 2 Coioj = -sin2(o) Hu G M ,uv -C¢_L¢ (5.12c)

,_i "_j ._k _ v 2 C ijkg -Hu G AI _ CV= 000 (5,i2d)
V

zi¢o ge.2 = - sin2(0) Hu G M _ CV (5 12e)--y-- _ ¢,¢

" Cijkg = 2sin2(0)Hu - C0¢0¢ (5.12f)V

"' 1 Oxi
where 0_ - 1 0_ and _i _ _ -8-8-' It is not significantly more dim_it to _howthis as well

in higher dimensions.

I
i 6. Perturbative Quantum Gravity in De Sitter Conformal Coordinates

i The purpose of this section is to specify, as completely as it ' can currently be done,

the Feynman rules for quantum gravity in de Sitter conformal coordinates using the gauge

(4.7). We first infer the propagators and then discuss the interaction vertices. The notation

is in all cases that of section 4. To make the final answer accessible we shall repeat the

necessary definitions as they occur.

It turns out that the propagators and vertices assume their simplest forms if we use the

pseudo-gcaviton field, ¢_u(x) = _2-2(x)hpu(x). (We remind the reader that _2 - (Hu) -1

and that indices on ¢#u are raised and lowered with the Lorentz metric.) The ¢ propagator

is defined as the expectation value in the free theory of the time-ordered product of two

fields:

It must give z_,' ix - x t) when acted upon by the pseudo-graviton kinetic operator:

-1

[1_ (PXf) ¼r/pu r/pcr -t- ½(_)e2 e2 N0Pe0°'] DA (6.2b), + gv_ -
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Here T_itupcris the operator defined in. (4.10). The scalar kinetic operators in this expression

are:

• ftT- (6.3a)DA= aT -_ 02+ _T_(_)_
D D

= f_E -1 _,_ f_T -1 (6.3b)

etc. for B and C, where DA_. C are defined in (4.11a-c). Finally, we remind the reader

' that a bar over a known tensor such as 6_p or 7IPcrindicates the suppression of its zero

components.

Under the assumption that the "ifr' and "out" vacua are identical it follows from the

canonical quantization of (4.8) th,at the imaginary part of expression (6.1) must be half the

sum of the advanced and retarded[ Green's functions. We have already given in (4.25) a,

relation for the retarded Green's fi,mction [p_G_](x,z'); to obtain the advanced Green's

function one merely interchanges s_ and a t. From (3.8) we see that the de Sitter length

function is symmetric, z(x,z _) = z,(zt,x), so thesum serves only to absorb the factor of

2e(zx_)in(4.25b):

Im{i[p_AC_#](x,x')} :Tr{GA(z -1) [mrT: #] (6.4)

The three constant matrices are:

-

q

The three scalar functions which multiply them are defined by the integral:

v _ 2--4-2;] ekk_+_J.(kZx_){-;V.(k_')J.tk_)+J.tk_')X.(k_)}
(6.6)
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D-3 and-Q_ forGA CB andG CD-3 and v takes the values _D_g-1where the index p - --7- , ,

respectively.

We cannot determine the real part of the pseudo-graviton propagator without knowing

the "in" and "out" vacua. There seems to be no obvious prescription for these owing

eto the virulent time dependence of the background, which dependent, extends even to

asymptotically early and late times. At any given instant there is a state of lowest energy
III

i but it does not remain the lowest in fact its fails even to stay nearenergy
state; energy

,,

I the instantaneous minimum. The usual approach to this problem is to assume that the

vacuum is de Sitter invariant and that the high momentum modes tend to behave like those

| of flat space. If the gauge is de Sitter invariant as well then so too will be the graviton

propagator.
The approach to fiat space on small scales is a consequence of the equivalence principle.

The supposition that the vacuum state shares the symmetry of the background would

seem similarly impervious but for the counterexample provided by the massless minimally

coupled scalar. Allen and Folacci have shown that there is no normalizable state in this

model which is de Sitter invariant and also has the correct short distance limit [10]. This

fact has great importance for gravity because partially integrating the scalar Lagrangian:

Z:0 = ½0,p O,u_'t_u_ (6.7a)

_I reveals the same kinetic operator as for the spatial polarizations of the pseudo-graviton

i follows that the must break de Sitter invariance in precisely
field. It gravitational vacuum

the same way that the massless minimally coupled scalar does.

Since it is not possible to assume a de Sitter invariant propagator we shall instead

attempt to pass from the imaginary part (6.4) to the full propagator by analytic continua-

tion. This process is necessarily ambiguous up to terms which are real, analytic and which
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are annihilated by the kinetic operator (6.2). The aInbiguity reflects our lack of knowledge

about the va.cuum. Of course the thing being continued is the functional dependence upon

'z and 'xI, The constant matrices play a passive role:

[ z' (6,S)

but they do diagonalize Dtt_ _, That is, we must have DiiAl(x,x./) = isD(x,a/) for

I=A,B,C.

The integrals (6.6) are very difficult to evaluate for D odd but for even D = 2d and

1
'n = d- _ - v _< d they have the following simple and suggestive form:

0 z(x,x')-i (6.o)/c--'rt

,] where we remind the reader of expression (4.33), ]- z(x,x') = ¼H2a(x)ft(xt)(x - zt) 2,

For k "> 0 we can use the Dirac identity to write:

(d)k llm{ (k-l)' }_z O(z - 1)= -_ [1 - z + le] k (6.10)

Hence we expect'

[H2]d-I {_ (2d-tc-3)' ' l ( ) }iz'kB(X'"r") = _ -_ (d- k- 1) I [1 z + ie] k + R.A.H. (6.11a)k=l ' B

and, for D >_ 6:

i [H2]d-l{_ (2d-k-4),(tc-1) 1 ( ) }iAc(x'x') = _ -_ k=2 (d- k - 1)! [1 - z + ie]/c + R.A.H. C (6.11b)i
where (R.A.H._ stands for terms which are real, analytic and annihilated by the operator

\ / I

D I. It, is straightforward to check that acting D B on (6.11a) and D C on (6.11b) indeed

gives i6D(x - xr). For D = 4 we have iA B = iAc:

H2 { 1 +(R.A.H.) } (6.12)iAB-C(X"rc') - 16,_'_ 1 - z(x,x') + ie B-C
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i

up to possibly different R,A,H, terms, which are harmonic functions for D = 4,

One might think that GA couldbe continued t_s well by using the identity:

L

i

This is not so, Altliough (6,13) is true the operator DA does not give ib'D(x- x t) when

acted upon the implied continuation of GA, The physical rea,son is the previously men-

tioned breaking of de Sitter invariance, The mathematical reason is that 1 - z(x,x I) =

i ¼H 2 Ft(x)f_(x _)(x - xr) 2 and the always-positive conformal factors do not belong in the

continuation. The correct analytic contlila}iation necessarily breaks de Sitter invariance:

H 2 d-l' d'l..,(2(i. .

iAA(x,x') = 5 W _.:---_ :,k - 2)I 1
k=l _::::'E---'liik (1- z +ici k ,,,,

). -..7177.d_,_ In H2(x- x' (6.14a)

: '._...-_H2 { 1 -ln[H2(x -xt)2+ie] + (R.A.H.))6.14b)i - x')+ A

It is again straightforward to check that DA acts upon this function to give isD(x - xi).

As stated, the R,A,H. terms are fixed by the as yet unknown vacuum. Perhaps the

nicest choice for D =4is given by (R.A.H._ = (R,A.H._ =0and the one parameter\ / B \ ] C

family:

(R.A.H.) ,4 = ½1n[f_-2 f_,-2 (1 + E2) (1 + E,2)] 1 +lE 2 1 +lE '2"+ 4o_--_1

+Scr2[ac°s([l+E2]-½) I+E ][E2 acos([,l+E'2]-½) lz_Et ](6"15)E,2

where E =- EO(x) = ½Ft(x)[1+ H2(llel12- 2)]is the conformal embedding function (a,30_)

and a is a positive real number. These are the 0(4) vacua discovered for the massless

minimally coupled scalar by Allen and Folaeci [10]. With this choice the pseudo-graviton

propagator does not grow for either large timelike or spacelike separations. In addition to

giving tim wrong linearized response for certain distributions of stress energy, the reported
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invariant propagators actually diverge as the separation goes to either timelike or spacelike

infinity [1-3],

The ghost Lagrangian is obtained by varying the gauge functional F/I:

D
where we remind the reader that X'_Lv- f_g-1 _/.'_Luand _b =_ In(t2), Let us consider an

infinitesimal coordinate change:

= +  P(y) (6.17)

Since the full metric transforms to:

_ 0y" J (6.1Sa)

it follows that the variation of the graviton field is:

It is convenient to decompose the variation of X#u up into a term of order _0 and one of

order/_:

50X_,u = -t2S-1 2e(_,v) + 2'7.v eP ¢,0 (6,19a)

D 1
51:g.v = -t2-2-- [2eP'(/_ Cu)p + ¢/_u,. _¢ + 2¢.u ep ¢,0] (6.19b)

11_i- Note that it is the pseudo-graviton field which appears on the right of (6.19b), even though

i this is the variation of the rescaled field _/_v.

We now let e_ become an anticommuting ghost field and take the ghost Lagrangian to

be:

D

/_gh = --f_-2"-i 7 # 5FI_ (6,20)

D
where 7/_ is the antighost field. The curious factor of f/-2--1 is inserted for convenience;

it could always be absorbed into the antighost by a multiplicative field redefinition. The
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quadratic part of the ghost action is:

•2 _ D
/Jgh -- __y-1 7# 50F# (6,21a)

It follows that the ghost propagator is:

_[_A_](x,_').- ,_AA(x,x')-__'+,iA_(x,_')&_o_' (o,2_)

i Note that the same choices must be made for the R.A.H. terms in the functions iAA(X,X t)
and iAB(X,X l) as for the pseudo-graviton.

J

i "
Up to a surface term the ghost interaction Lagrangian is:

( ) )
, lM

)+ _ _tT-1 71, gr-F-1 _pcr (6.23)

_ 1 _O-2 ' _ ft,D-2)

Self interactions of the pseudo-graviton field are obtained by expanding expression (4.3b):

- - z[_b_p,_ '_&,is,p_,_ + _ '_,_,p_,_ _,_

where we remind the reader that g't*u =- r//_u + _bt, u. Note that almost all of the interaction

vertices are just those of flat space times a factor of _D72.

It ought to be possible to at least estimate infrared graviton effects by using the re-

sulting perturbative apparatus. Of course the mathematical aesthete will insist upon a

formulation which extends to the full manifold. We welcome such critics to indulge their

prejudice in the resulting canonieM quagmire. In the meantime we shall go on to learn

what the open formulation can tell us. If the resulting infrared effects are sufficiently inter-

esting then more resources will no doubt be directed towards developing an efficient glbbal
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formalism, Finally, it should be noted that there are interesting and relevant situations

ifor which restricting quantization to an open submanifold is the rigorously correct thing

to do. An example would be the case of an open Friedmann universe which enters an

inflationary phase. We are therefore cognizant of the partia.1 nature of our solution ])ttf,

thoroughly impenitent.
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