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ABSTRACT: Classical gravitation on de Sitter space suffers from a lineariza-
tion instability. One consequence is that the response to a spatially localized dis-
tribution of positive eaergy cannot be globally regular. We use this fact to show
i that no causal Green's function can give the correct linearized response to certain

bilocalized distributions, even though these distributions obey the constraints of
linearization stability. We avoid the p'roblem by working on the open submanifold
spanned by conformal coordinates. The retarded Green's function is first computed
in a simple gauge, then the rest of the propagator is inferred by analyticity — up
to the usual ambiguity about real, analytic and homogeneous terms. We show
that the latter can be chosen so as to give a propagator which does not grow in
any direction. The ghost propagator is also given and the interaction vertices are
worked out.
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1. Introduction

The study of graviton fluctuations on a de Sitter background is fascinating because
infrared effects in quantum gravity may provide a mechanism through which an initially
positive cosmological constant relaxes to zero. It is therefore frustrating that we lack 5
perturbative formalism which is even valid at tree order! Of course the vertices can be
worked out with a bit of patience, and various solutions for the gauge fixed propagator
have been reported [1-3]. The imaginary parts of these propagators ought to give Green’s
functions which describe how the classical theory responds to external stress energy. The
trouble is that the linearized response inferred in this way is wrong, even for the trivial

case of a freely falling point mass [3].

We wish to emphasize that the propagators obtained in refs. [1-3] really do obey the
differential equations they are claimed to satisfy. The problem is rather that solving the
dynamical equations of a gauge fixed theory is not quite the same thing as enforcing the
combination of constraints and dynamical equations which define the invariant theory. The
constrained fields of the invariant theory depend upon. the instantaneous matter sources
whereas the fields of the gauge fixed theory respond to the past history of these sources
through causal Green'’s functions. Usually this is a distinction without a difference because
conserved sources must be present, in some forra, at sufficiently early times to have causally
affected the constrained field anywhere. This is not so in de Sitter space; owing to the
exponential expansion of distances one can find conserved sources which never causally
affect certain points. An unfortunate synergy between this fact and the background’s
linearization instability implies that there are sources for which no causal Green’s function
can give the correct linearized response over the full manifold. These facts are proved in
sections 2 and 3, the discussion of which we shall here anticipate in order to better motivate

our proposed solution.

We show in section 3 that the spatial sections of the D-dimensional de Sitter manifold
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can be taken to be (D — 1)-spheres. Consider a conserved source of positive energy density
which is loca.ized on these (D — 1)-spheres. A consequence of the linearization instability
(discussed in section 2) is that the linearized response engendered by such a source cannot
be regular throughout the (D — 1)-sphere. This fact does not conflict with our perception
that localized sources seem to be realizable — and that they can induce perfectly regular
geometries — because the constraints of linearization stability can be easily satisfied by
adding sources on the far side of the (D — 1)-sphere. Owing to the causal structure of the
background these compensating sources would not be observable in the vicinity of the first

source until very late times.*

Consider now a linearization stable distribution which consists of localized sources on
either side of the (D — 1)-sphere. Provided the sources are not too singular a globally
regular, linearized response can be found. Suppose that it is given by a causal Green’s
function. Since a null ray requires the lifetime of the universe to move even halfway around
the (D —1)-sphere the linearized response to the full distribution must consist at early times
of a nonzero region around each source, separated by an extensive region of zero response
between the two sources. Since the field equations are linear, and are solved locally by zero,
it follows that the response to each source must separately give a globally regular solution
to the linearized equations with just one source. But no such solution exists by virtue of
the linearization instability. We therefore conclude that no causal Green’s function can
give the correct response to the full distribution, despite the fact that it is linearization

stable.

This is the great obstacle to any formulation of de Sitter perturbation theory which is

It is also conceivable that the instability can be evaded without compensating sources if
the solution to a localized distribution exists but requires more than one coordinate patch
for its expression. In this case the problem in obtaining a globally regular response on a
single patch would come in attempting to extend the solution beyond the causal horizon
of the source. No causal Green’s function can reproduce the necessary response — regular
within the causal horizon with a coordinate singularity beyond — because they vanish
outside the lightcone of the source points.
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simultaneously global, covariant and causal. Before describing our proposed solution it is
important to mention that the problem is one of efficiency rather than principle. There is
no question that a global formulation of perturbation theory can be worked out canonically
by imposing the appropriate linearization constraints. These are superficially acausa? but
introduce no physical violation of causality. The only impediment to this approach is the
finite duration of human interest in the result. It requires extraordinary efforts to apply
canonical methods even to simple scalar field theories in flat space; accomplishing anyvthing

this way for quantum gravity on de Sitter space might require a very long time.

Since we are loath to forsake either covariance or manifest causality we shall instead
abandon globalism. The danger in this approach is that information might tend to flow
into or out of whatever subset of the full manifold we take as the physical arena. That
such an embarrassment can be avoided derives from the same peculiar causal structure
which has frustrated previous global formulations: distances in de Sitter space expand so
rapidly that the future lightcone of even a point in the infinite past encompasses only a
fraction of the (D —1)-sphere at any instant. The future lightcone under discussion has the
topology of RP~1, It achieves openness, despite the compact spatial sections, by escaping
into the ever more inflated (D — 1)-spheres of the future. Of course a lightcone is null,
but we can obtain an open surface which is spacelike by simply evolving each point of the
lightcone for a fixed proper time along parallel timelike geodesics. We call the subset of
de Sitter space which is swept out in this way, “an open submanifold.” Our solution to
the previously described problem is to formulate gravitational perturbation theory on an

open submanifold.

It is clearly convenient to consider the constant 7 foliations of the initial lightcone to be
surfaces of simultaneity. These spatial sections are also Cauchy surfaces; once initial value
data is given on such a surface it completely determines the course of future evolution.

This is why no information leaks into or out of open submanifolds at finite times. (We
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regard the initial lightcone as residing in the infinite past.) Though open submanifolds fail
to cover all of de Sitter space they do have the property that observers at any finive time
are in cavsal contact with all sufficiently ancient sources. Open submanifolds also happen

to be free of the linearization instability.

The last two features mean that a causal Green's function can give the correct linearized
response on an open submanifold. In section 4 we exploit this to solve for the retarded
Green'’s function in a simple gauge. As a check we show in section & that our Green’s
function gives the correct linearized response to a freeiy falling point mass. In section 6

we invoke analyticity to infer the rest of the propagator, up to the usual ambiguity about

terms which are real, analytic and which solve the homogeneous equation. What these -

terms are depends upon the choice of vacuum — which is not obvious in a time dependent
background such as this. However, we do show that a choice exists which gives the correct
flat space limit and remains finite as the separation approaches either spacelike or timelike

infinity.

2. Linearization Instability

Linearization instability is a potential pathology of both classical and quantum per-
turbation theory. It arises when gauge invariance — or current conservation — is not
enough to ensure that solutions to the linearized invariant field equations can be pertur-
batively corrected to give asymptotic series solutions to the full equations. The usual
paradigm is electrodynamics with nondynamical geometry on the constant curvature man-

ifold SP~1 x R. It is not generally possible to solve Maxwell’s equations:
3‘“ F,JV=JU (21)

on this manifold, even for currents which obey 0¥ J, = 0. One also needs the total charge
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to vanish:

Q= dP= 1z 75 =0 (

§b-1

o
to

The mathematical reason for this is that integrating the derivative of a nonsingular function

over a compact manifold gives zero:
/ dP 12 ot Fyg = / dP=12 0 Fig =0 (2.3)
§D-1 §D-1

The physical reason is that the flux from any net charge would have nowhere to go on the

(D — 1)-sphere.

By the term, “modes,” we mean solutions of the linearized field equations. A theory
which is linearization unstable possesses modes which cannot be corrected to give full
solutions and do not therefore represent true degrees of freedom. In the electrodynamical
example these bogus modes reside in the charged matter sector but they would appear
as well in the gauge sector of nonabelian gauge theories on this manifold. Whatever the
model, the existence of unphysical modes means that naive perturbation theory is wrong.
The cure is to expunge the unwanted modes by imposing linearization constraints which
restore the integrability of perturbation theory. For our electrodynamical paradigm the
necessary constraint is just that the total charge should vanish. Since Q is constant this
need only be done on the initial value surface; naive perturbation theory can then be

developed on the subset of linearized solutions which obey the constraint.

Linearization instabilities arise in gravity on any background which possesses at least
one Killing vector and a compact, spacelike Cauchy surface [4,5]. To understand why we
must first elucidate the nature of gravitational perturbation theory. Consider the action

for Einstein’s theory in D spacetime dimensions:

Slg) = i?/dD.r [R-— (D-2) A} v—g (2.4)

Q
Buv

Our conventions are that the metric has spacelike signature, k2 = 167G, and R
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re Vi + %, l’pw,} — (u « v). Perturbation theory is based upon the expansion:
Juv = Guv + K huw (2.5)
where ?],“, is an exact solution. Indices on the graviton field, h,y, are raised and lowered

using Guv. Following Deser and Abbott [6] we segregate the field equations into a linearized

part and a graviton stress tensor density:

6S[g + ~h|
Shm

e Y R A A

+ AR TG - S (hf’p""a — W% + A hf’,,) V=3

Note that the semicolin denotes covariant differentiation with respect to the background

0= = D/lUpU hpg - I'CT;“/[h] (2.6&)

'2.6b)

metric.

The perturbative field equations are obtained by substituting the expansion:

o0
huw = > KNG (2.7)

n=1

into (2.6a) and then segregating powers of :
D, B =0

D7 o =T | 23)

po =1,

D, B ( [ A a2 p(n-1)
Naive perturbation theory operates by systematically correcting any linearized solution,
¢uv, to give an asymptotic series solution in the sense of (2.7). Provided each of the
equations (2.8) is integrable the various terms in this expansion are:

h( uy = Puv

hD6) = D™ T35 19 o)

(n)[qﬁ] —lpo ( 6, hD(g],..., A" Dg]
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The fundamental degrees of freedom in both classical and quantum perturbation theorv are
the initial value data which characterize all the linearized solutions for which this system
is integrable.

Of course the kinetic operator is not generally invertible on account of gauge invariance.

As a consequence of the vanishing of the following divergence:

(p/tupa hpa’) = %(h“p“f,p — RHPO, 4 Ah"p‘p) N

. ' ' ‘ (2.10)
+% (h”p"“’a — WG H Ah”pv“) V=7 + %(h”"’pa“ — BT, Ah“p‘p) V=7
we see that ’D;,,l po Tys cannot exist unless:
™, =T, +Th,T" =0 | (2.11)

This and the requirement that the field equations ¢ontain no more than second derivatives

is what imposes such strong constraints upon the allowed interactions [7].

Conservation in the sense of (2.11) does follow, at least on shell, for the graviton stress
tensor. This is enough to ensure the integrability of (2.8) when the Cauchy surfaces are
noncompact or when the background is free of isometries. Suppose, however, that the

background possesses at least one Killing vector:
fp;u +&u=0 (2.12)

and that the Cauchy surfaces are compact and spacelike. Consider one such surface C with
timelike normal vector c#(z). Because C is compact we can partially integrate derivatives
along it without producing surface terms. This and the fact that £, is a Killing vector

suffice, after considerable manipulation, to show that:

de—ll' Cu EV »D,uupo hpg' =0 (2.13)
C

for all fields hyy, whether or not they are linearized solutions. An immediate consequence

is that the kinetic operator has another zero eigenvector in addition to those implied by
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gauge invariance. If even one of the source terms on the right hand side of (2.8) should
have support in this direction then the associated lincarized solution cannot be corrected

to give a full splution.® Perturbative integrability obviously requires:

Q' = j{ dP=V e e, €L TH (] = 0 | (2.14)
C"

for every Killing vector €. It is straightforward to show that these constraints are time
y g m g

independent [6] so that once imposed on C' they continue to be obeyed on foliations.

We conclude this section with a discussion of the relation between linearization insta-
bility and gauge fixing. When a linearization instability afflicts the invariant field equations
it must occur as well when thfe gauge is fixed by imposing conditions on the field. However,
if the gauge is fixed by adding terms to the action then one can obtain a set of field equa-
tions which are perturbatively integrable. This happens for our electrodynamical‘model
in Feynman gauge:

D.«4y = J[/ (2.15)

In addition to the two fictitious photons modes the solution set of the full gauge fixed
theory — including the matter equations — contains a completely gauge invariant but
nonneutral, and hence unphysical, sector. This sector must be suppressed by fiat before

the Feynman gauge solutions can obey the invariant field equations.

The nonneutral sector of Feynman gauge electrodynamics can be eliminated by im-
posing (2.2) on any initial value surface — or upon the asymptotic states in quantum
field theory. This fact ought to seem more surprising than it does because the two sys-

tems — (2.1) and (2.15) — are solved in very different ways. One of the D Maxwell’s

What saves flat space for A = 0 is the noncompactness of the usual Cauchy surface. If we
effectively compactify the Cauchy surface by requiring that solutions fall off too rapidly
— say hj ~ r1=D and hij ~ r~D — then a similar linearization instability results. The
same effective compactification is what causes the linearization instability of pure higher
derivative gravity [8].



equations is a constraint which need only be enforced on the initial value surface; current
conservation and the other (D — 1) equations conspire to preserve it under time evolution.
This constraint equation is solved by adjusting the spatial variation of the gauge field at

a given instant so that the gradient of the electric field gives the charge density at that

instant. There is n.‘o causal relation between the source and the longitudinal electric field

that it engenders; "i;he induced electric field depends upon the charge density throughout

the surface of simu’fltaneity.

In f'ontradistin“ction to (2.1) all D of the equations in Feynman gauge electrodynamics

|
are dynamical. The general solution is given in terms of a retarded Green’s function:

|

| |
Aue) = du(e) + [ 404! 4Gl (2 ) ol (2.16)

where ¢, is a homogeneous solution and the Green’s function obeys:
O[,Gler(2.2") = 6,2 62(z — o) (2.17)

Of course the homogeneous term represents free electromagnetic radiation — and to get
a solution of the invariant theory we want 0#¢, = 0 -— but the feature which ought to
shock is how the field depends upon the current. In (2.16) we see that the field responds
causally to the source; the effect at any point in space and time is built up by propagating

forward the response to the source at each instant inside the past lightcone of that point.

There is no contradiction between the two approaches because current conservation
relates the instantaneous charge density — which produces the longitudinal electric field
in the invariant formalism — to the past current density — which gives the same field in
the Feynman gauge formalism. Suppose, for example, that the source consists of stationary
opposite point charges on either side of the (D — 1)-sphere. We would certainly obtain
different results from the two methods if these charges appeared out ¢f nowhere at a

given instant and then disappeared some time later. Maxwell’s equations imply that the

10
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longitudinal electric ﬁeld‘must be everywhere nonzero within this interval whereas the
Feynman gauge system would give zero field of any sort outside of the future lightcones of
the creation events. The disagreement is forbidden because the bpontanoous appearance
of two scparated charges would violate current conservation. If the two charges are around
at some instant then they must have been around as well in the past for at least as long
as it would require both to have emerged from the same point. Truly stationary charges
must have been around forever and it is the accumulated, perfectly causal response to this

past current density which gives rise to the instantaneous longitudinal electric field.

Consistency between the two formalisms is so well known as to constitute almost a
physical cliché. Little remarked is the fact that this consis‘tency depends crucially upon
a property of the nondynamical geornetry of the model, namely that any two points on
a surface of simultane.ity lie within the future lightcone of some point far enough back in
the past. De Sitter space shares the SP~! x R topology of our electrodynamical model,
but its geometry is far different. In particular, we are about to see that distances expand
so rapidly in de Sitter space that opposite and simultaneous points on the (D ~ 1)-sphere
never come into causal contact, while distant simultaneous points only reach causal contact

at very late times.

3. Geometry and Coordinates in De Sitter Space

De Sitter space is the unique maximally symmetric solution to the vacuum Einstein
equation with a positive cosmological constant. These facts mean that the curvature is the

following simple function of the metric:

oy =H ( % 986 — 6% gﬂ7) (3.1)

where the D-dimensional Hubble constant is H2 = D—A Note that although the de Sitter

metric is to be the background for the perturbative discussions of succeeding sections

11



we shall spare ourselves the notational bother of placing a “hat” over the symbol g,

throughout this section.

The most convenient way to describe D-dimensional de Sitter space is as the surface
of constant length H~! from the origin of (D + 1)-dimensional Minkowski space. Note
that both our de Sitter metric and the Minkowski metric are assumed to have spacelike
signature. De Sitter coordinates are represented by lower case letters; the Minkowski
coordinates are denoted by upper case letters. General de Sitter indices are Greek and
general Minkowski indices are capital En;glish letters from the first of the alphabet. Lower
case English indices from the middle of the alphabet (i, j, etc.) run from 1 to D — 1;
capital English indices from the middle of the alphabet; (I, J, etc.) run from 1 to D. The
embedding is:

HXA = E4(x) | (3.20)

where the mappings are assumed to obey n4p E4(z) EB(z) = E(z)-E(z) = 1. The inverse
can be defined on the embedded surface, and for general X4 by considering the mapping

to be homogeneous of degree zero:
Hzt = e*(X) = e/ (A\X) (3.2d)

A conscquence is that the associated Jacobians invert one another in the following sense:

i (550) () =52 039
B
= (55) (55

Note as well that %%?—EA =0= 66;.: EA,

) =68 - E,EP (3.3b)

All geometrically meaningful quantities in a de Sitter coordinate system can be ex-
pressed in terms of the functions E4(z) and e#(X). For example, the de Sitter metric

is:
_ 1 9E4 9E, po _ 1 Och eV
I =2 gl 9z 9 T H? 9XA 09X 4

(3.4)
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The %D(D + 1) isometries of de Sitter space are obtained by subjecting the embedding

coordinates to O(1, D) transformations and then inverting:

This gives an immediate and explicit expression for the Killing vectors:

_ 1 90X
~ H? pxA4

1 0e(X)
Ep(r) - o1 S5 Eo(a) (3.6)

fﬁg(f)

When a geodesic connec.s two points z# and y# it is found by inverting the trivial geodesic
between X“ and V4.

1 | o
H ) = H - T .{’ g .
() He [(1 )X + 1Y - (3.7)

(Another way is by inverting the “great circle” traced out by the SO(1, D) rotation which

carries X4 onto ¥4.) The distance {(z,y) along such a geodesic obeys:
sin? {%He(x,y)] =~ 1EB(2) E(y) =1 - #(z,y) (3.8)

De Sitter space has the curious property that certain points cannot be connected by a
geodesic. The “length” between such points is still defined by (3.8); for these cases the

function z(z,y) lies between zero and negative infinity.

De Sitter vector and tensor fields can be mapped onto the tangent space of the
Minkowski embedding thusly:

1 8EA(z)
7A = —
Vi) = H Oz#

vH(z) (3.9a)

Vector and tensor fields from the Minkowski embedding are mapped into the de Sitter

tangent space using the inverse Jacobian:

ek (.
oh(z) = % 953%(—) VAX) (3.96)

Parallel transport from X4 to Y4 on the Minkowski embedding is accomplished by the

SO(1, D) transformation which carries X4 onto Y4 along the “great circle” connecting

13



them:

(HX + HY) V(X)

A - e A
4 \ 2HX . V
VAT = 4+ 2HY  V(X)HY T

(HX4 + HY4)  (3.10)

By inversion we infer the following simple form for the de Sitter parallel transport m: frix:

OEA(2) 8e (V) 1 OE4(2)

| Oe”(Y")
of v, .. = - |
H [ug }(ar,y) ) 1+ E(z)- E(y) OxH

oy B

E4(y)EB(2) (3.11)

Since all Minkowski indices are contracted this object is invariant under the isometries of
J

de Sitter space, as is the metric and the geodesic length.

Expression (3.11) is known as a bitensor. Indices on the left belong to the tangent
space of the first argument, indices on the right belong to the tangent space of the second

argument. Other commonly used bitensors are the geodesic normals at z# and y#:

[#n](w,y) = aeéi;‘y) = —-I}{—CSC[He(x,y)] (aEdzir)) E4(y) (3.12a)
]y = 280 L ae[tta, )] B (Z2) ey

These bitensors are also de Sitter invariants. A theorem of Allen and Jacgbson [9] asserts
that any de Sitter invariant bitensor can be expressed using the length, the metric, the

parallel transport matrix and the geodesic normals.

Since de Sitter space has the topology of SP~1 x R it is natural to use a coordinate
system in which the spatial sections are SP~!, These “closed coordinates” consist of a
time t;, —0o0 < t] < oo, and (D — 1) angles obeying 0 < a; < wfori=1,...,D -2 and

0 € ap_j < 27. The embedding is:
E® = sinh(Hty) (3.13a)

E! = cosh(Ht{)sin(ay)...sin(ap_;)cos(appi—7) (3.13b)

where we define ap = 0. The unique inverse which is homogeneous of degree zero is:

x0
0 _
e’ = atamh(\/(Xl)2 — (XD)Q) (3.14a)

14
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. (X’l)?_.}__*_ X D~iy2 _
e = atan(\/ XD-H—i( ) (3.14b)
A trivial application of (3.4) gives the line element:
1
ds® = —dt? + 77 cosh?(Ht)d%_, (3.15)

Although this expression seems tn indicate that de Sitter space contracts for ¢} < 0 this
is a fiction of the coordinate system which is due to the fact that geodesics between
simultaneous points do not travel along the surface of simultaneity. The invariant distance
— as opposed to the distance along the surface of constant #; — between initially parallel

and freely falling observers expands exponentially at all points in de Sitter space.

Another misleading feature of these coordinates is the fact that the spatial sections are
closed. No local observer who is constrained by causality can verify this closure. Consider,
for example, a null geodesic which passes through the origin. By setting £ = 0 in equation

(3.8) we see that any such curve must obey:
0= % - %ED(:I:) = % - %cosh(Htl) cos(ay) (3.16)

Hence even the lifetime of the universe from ¢t; = —oo to t; = 400 suffices to carry a light

ray only halfway around the spatial section.

Since the locus of points with ¢; = constant is a compact, spacelike Cauchy surface
(the normal vector is just c# = §;') we see that de Sitter space suffers from a linearization
instability. However, the fact that no more than half the points on this Cauchy surface
will ever come into causal contact with one another means that the constraints (2.14) have
a peculiarly artificial form. This is most simply illustrated by introducing matter into the

theory. Consider the action of a point particle of bare mass M whose worldline is ¢#(7):

Smatter[q,g] — —M/dT \/"‘gaﬁ(‘I) §* ¢P | (3.17)

15

e 1" ' ' e v

[} m



If the particle is stationary at the spatial origin (a = 0) then its worldline obeys ¢/(r) =
T 60'“ and the associated stress tensor is:
§M 6P-1(7)
\/1 - Nhoo(tl,f)

Since this is nonzero even for x = 0 it contributes to the linearized solution, but the total

Titer(t), &) =

6,06, (3.18)

stress tensor must still obey (2.14). The f?J Killing vectors possess no zero component
and so vanish when contracted into (3.18). The remaining D vectors give:

__gMeP-v@) X;
V1= rhoo(ty, @) /14 (HX0)?
sMsP-1(z7) 1

= — = 6,2 cos(a
V1= rhoo(t1, %) H osle)

The nonvanishing contribution from ng does not integrate to zero and it can not be

cH(ty, T) €5 (1, F) TAMer(¢y, &) =
(3.19)

cancelled by the graviton stress tensor because the latter has no «0 term. It follows that

a single point mass is not allowed in de Sitter space!

This bears a suPerﬁcial analogy to electrodynamical model presented in section as
paradigm for a line}iarization instability. If the spatial sections are (D — 1)-spheres of
constant curvature then the net charge has to vanish. This must be so in order to prevent
the contradiction which would occur when the flux from a net charge meets itself on the
other side of the (D — 1)-sphere. The zero charge condition is of course accomplished by
having as many negative charges as there are positive ones. However, we have seen that de
Sitter space is expanding so rapidly that the flux from a point mass can never encounter
itself on the other side of the spatial section. Nor is the “zero energy” condition enforced
by having negative mass sources. Owing to the oddness of the cos(a) in (3.19) it emerges
that while a single mass is not allowed there is no problem for a pair of identical masses
on opposite sides of the (D — 1)-sphere. This is very strange because we have seen that
no observer can feel the effect of both masses before ¢t{ = 0, and the two masses never feel

one another.
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The rest of the argument was given in section 1. If the response to such a dual source
is regular beyond the source points at @y = 0 and a; = 7 then it cannot come from
a causal Green’s function. Since we believe that it makes sense to consider the theory's
response to an arbitrary (conserved) disturbance, and since we feel that this response must
be causal we are powerfully motivated to consider restricting physics to a portion of the

full manifold.

The minimal coordinate patch we might consider is the one which describcs the sub-
manifold within the causal horizon of an observer at the spatial origin. A convenient
coordinatization is the static system given by a time ¢, 0o < t < 00, and a (D — 1)-vector

7 of radius r = ||7]] < 1/H. The embedding is:
E® = sinh(Ht)V/1 — Hr2 (3.20a)
E'= Hr' (3.200)
EP = cosh(Ht)V/1 — H2r2 | (3.20c)

The homogeneous inverse is easily seen to be:

el = atanh( Eg) (3.21a)

«

. X

A now familiar application of (2.4) yields the following line element:
-1
ds? = = (1= H*?)dt? + (1 - H*?) " dr? 4 r2d0}_, (3.22)
That the apparent problem at Hr = 1 is only a coordinate singularity can be seen from
the fact that all curvature invariants are finite at this point.

That the horizon is no barrier to outward propagation is shown by consideration of a
null ray which intersects the origin. By setting ¢ = 0 in (3.8) we see that any such curve
must obey:

Hr = tanh(H?) (3.23)

17




| SRR (N i O 0 O o A M

Though it would seem that the null ray cannot pass the horizon this is a figment of the
coordinate system. In fact this geodesic agrees along its full extent with the geodesic
defined in closed coordinates by (3.16); (3.23) only stops at r = 1/H because the static
coordinate system runs out there. The time ¢ is that of an observer in free fall at the
spatial origin. Though it requires an infinite proper time for him to feel influences from
beyond the horizon freely falling observers at all other points reach the horizon in a finite
proper time. Since quantum field theory is dominated by the many rather than the few

we must reject the static coordinate patch as too small a physical arena.

A much larger venue is provided by the “open” coordinate system. This consists of a
time ty, —oo < tg < 00, and a (D — 1)-vector T whose norm, ||Z||, is unrestricted along the

nonnegative real line. The embedding is:

EY = sinh(Htg) + s H?||#||% exp(Hto) (3.24a)
E' = exp(Htg)Hz' (3.240)
EP = cosh(Hty) — §H?||#||2 exp(Htp) (3.24c)

The homogeneous inverse 1s:

-0 -D
0 4\ '+' .‘\ ]
=ln|——— 3.25
) n[ /X X (3.254)
. xi
t_ [ —
€ =30 XD (3.25b)
Another application of (3.4) gives the line element:
ds® = —dtd + exp(2Hty) [|d7||? (3.26)

Note that the geodesics which connect simultaneous points in this coordinate system lie
within the surface of simultaneity. A consequence is that the uniform exponential expansion

of distances is manifest in these coordinates.

18
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It is easy to see that in these coordinates the distance function obeys:
1—z(z,2') = —sinh?[$ H(tg — t§)] + TH2||E — 7|2 exp[H (to + t))] (3.27)

Setting &’ = 0 and ((r,z') = 0 gives the equation for a null ray which passes thrqugh the
spatial origin at t):

H||#|| = |exp(—Htj) — exp(—Htp) (3.28)
By taking t’o — —oo and ty — co we see tha§ such a light ray can just reach spatial infinity.

Since EY + EP = exp(Hty) > 0 these coordinates do not cover de Sitter space. They
do, however, have the property that the locus of points with ¢y = constant is a Cauchy
surface, so it is valid to restrict physics to this submanifold. It is the ¢y > 0 segment of this
space “';h'lch would be joined to an open Friedmann-Robertson-Walker universe to describe

the transivion to an inflationary phase.

It is a trivial consequence of (3.1) that the de Sitter Weyl tensor vanishes. Any metric
with this property is locally conformal to the Lorentz metric. In fact the entire open

coordinate patch is conformal to flat space. The conformal time is just:

1

u = — exp(—Htp) (3.29)
H ,

Note the curious inversion; the infinite past corresponds to u — oo while the infinite future

is at u = 0. The conformal embedding is:

_ 14 H(E)2 - w?)

E° S (3.30a)
, i
E' = % (3.300)
1 H2NIZN2 — w2
ED = %ﬂ u) (3.30¢)
Its unique homogeneous inverse is:
vX- X
60 = W (3.31(1)
19
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Applying (3.4) results in the claimed conformal line element:

ds? = 02 (—du2 43 ;s)

Applying (3.8) gives a relation which will be of importance in the next section:

sin? B—Hﬁ’(m,y)] = %Q(m) Q(y)H2 (z - y)z =1-z(z,y)

where by z% we mean the Lorentz inner product, z2 = —u? + ||Z||%.

4. The Retarded Green’s Function

(3.31b)

(3.33)

The great advantage of conformal coordinates is that the background metric, gy, is

co simply related to the Lorentz metric. To better exploit this simplicity we conformally

rescale the full metric (background plus perturbation) as follows:
l Iuv = Guv + khyy = o g,uu

and introduce the “pseudo-graviton field:”

1/
Yy = " (g/w - 77uu>
Indices on %, are raised and lowered with the Lorentz metric.

The conformal rescaling allows us to reexpress the invariant Lagrangian:

Lipy = KQ\/ [ (D-2)(D— 1)H2]
L —3 [R QP-2 _ap-nP-3a#,

3
K
— (D—4)(D-1)§* @, @, QP4 - (D—2)(D~1)H2§2D]

20
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where R is the Riemann tensor formed from guv and Q:”u = gHh¥ (Q,pu - fp/“/) is the co-
variant derivative with respect to the rescaled metric. After many tedious rearrangements

we extract a presumably irrelevant surface term:

1 — - _ — 9
5”,:/5—;-5{( —g) ﬂg’““QD 2+(\/—_gg’“’QD 2)“

: (4.3a)
N (D—4> Ty (QD—2) N TN (QD—Q) ]
D—Q ’lu’ \ﬂ ,V
and the followiﬁg volume term:
Liny — SU,V = —'%(D—Q) V-9 gre ghv Yoo, d)ua Qo QP-3 (4.30)

+ v “ng'gaﬂ g7 g [%wap,.u Yoo,g — %waﬂ,p You,v + %d’aﬂ,p Yuv,o — le'wozp,ll d)ﬁa,uJ QD-2

The quadratic part is:
‘C?nv = [%wpa,p buo,p — %d),uz‘/# by + ?lfl/)’# Yo (4.4)
= 40P oo = (B2 b6 | 0P
where ¢ = In(Q2).

It is convenient to scale away multiplicative conformal factors by making the substitu-

tion:

4D
Ypy = Q=7 Xuv (4.5)

in expression (4.4):

Cignv = %XW'“ Xuo,p — %X’“{# X,v+ ‘ZIIX'“ X,p =~ %XW’# Xpo,u

) M
+ (252 {""X'“p’(7 Xpo b — 5X* Xou b + EX X b + 714'<—X2 X XW) ¢’p}

i

+ (BEDR B b0+ Jd b+ b 6% 6= D xpr 0¥ 04} (49
The simplest gauge fixing functional seems to be -—%F,,Fyn‘“’ where:

Fu=x"%0—sxu+ 5 b0+ (Ef)x b (4.7)
21



With this and some partial integrations the gauge fixed, quadratic Lagrangian reduces to

the following simple form:

The gauge fixed kinetic operator is therefore:

N o _ [lelpgo) 1 2 (D=2yD\1]1_D-2. 05 (pgo) :
D7 = [2‘5;1 R T 77’”] [3 +(T)(‘2‘);§] 7 O 0y o (4.9)
where parenthesized indices are symmetrized.
There are three sorts of homogeneous solutions:
1 ' D-2
2 D=2\ D 1 1 0
Dul’ €po = [5 + <T)(7);§] (EGW - aenuy) - —1;.2—5(“ €0 =0 (4.10)

If the polarization is purely spatial then it is annihilated by the operator:
D, = [92 1 (D=2y Dy L | 411
4= 0"+ (T (4.11a)

If the polarization is mixed time and space — that is, only the €y; components are nonzero

— then it is annihilated by the operator:

Dp = [0 + (274)( B2 | (4.110)

And there is a single homogeneous solution of the form e,y = [6110‘5,,0 + Tl—i”/“’} €, where

€ is annihilated by the operator:

. _ 4.1
(o= |07+ (BE (Bt (4.11¢)
Note that the distinction between Dg and Do disappears for D = 4.

It might be expected that each of these operators to play a role in the graviton Green’s

function and this is the case. The retarded Green’s function is defined by the equation:

o
2

paggﬂ (z,2') = 6ﬂ(a 53) 5D(w —z) (4.12)

22




and the boundary condition that it should vanish for u’ < u. From general tensor analysis

we can assume a solution of the form:

{ C“ﬁ} (v,2') =a(z, ") 25p(a 5(,/3) + [)(::17,23,)46(/)0 5 1 4, P) + c(z, )77,00‘ 770"3

o)

| | (4.13)
+ d(z, ") Npa 60~ 50ﬁ + (SPO 600 77"/3 + e(z,2) 6/,0 500 6" 6Oﬁ

o . . ¢ L
One now acts D/“,P on this ansatz and segregates the terms proportional to each distinct

tensor factor. The result is five scalar differential equations:

56 Dyale, .z:’) = 60(z — o) (4.14q)
48,26, s —(25)= —a(e,2')+ §Dgb(z,a) =0 | (4.14b)
nuwn®™: —iDy [a(:v,:c )+ (252)c(z,2') - dd(e, :c’)] =0  (4.14¢)
5,06,97% : %;c(”H (6% + (253)(252) 2)]d(w,w')=0 (4.14d)
nuw 6% 68 . Dy [b(m,m') ~ (22)d(z,2') + Le(a,a )] =0 (4.14e)
6,068, 6, -2%‘23b(m,m') + %‘2—2 d(z, ')

+ %[52 + (25-8-)(%—2);13] e(z,2') =0 (4.14f)

To solve (4.14b) we make the substitution:

[ [ T

b(z,2') = —a(z,2") + b(z, z") (4.15a)

and make use of (4.14a) to conclude:

D b(z,2') = 6P(z - ') (4.15b)

Note that (4‘.140) and the retarded boundary condition imply:
d(z,2') = 2a(z,z') + (D-2) ¢(z, ') (4.16)

Now make the substitution: |

oz, z') = ——752_3 a(z,z') + (*1—3:_552{_13——2_) &(z, ') (4.17a)
23
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in (4.14d). Using (4.14a) and (4.16) we conclude:
Dot(z,a') = 60(x - 2') (4.17h)
It follows from (4.16) and (4.17) that:

d(-.n,:c') = —-D-?‘_—g a(m,w') + E—Q_—B—E(m,;v’) (4.18)

Relation (4.14e) and the retarded boundary condition give:

e(z,z') = -4 b(z,2') + (D-2) d(z,z') (4.19a)
= 2(B=) a(z,2') + 48(z, ') + 2(B=2) (e, o) (4.190)

Upon substitution of (4.15a), (4.18) and (4.19b) it can be seen that (4.14f) is obeyed
as well. Note that the apparent singularity of (4.17a) and (4.18) in three dimensions is

avoided because‘a(a:, a') = ¢(z,2') for D = 3.

The simplest way to solve (4.14a), (4.15b) and (4.17b) is to first nbtain ordinary dif-
ferential equatiéns in the temporal variable u by Fourier transforming on . The three
homogeneous equations are then reducible to Bessel’s equation of order v = Q{—l, %_-—3
and %’1‘[—’ respectively. The jump condition at u = u' gives solutions proportional to
~Ny(ku') Jy(ku) + Jy(ku') N,(ku), where k = ||I:|| and k is the fourier conjugate to .

The angular parts of the inverse Fourier transform give another Bessel function and so we

obtain the position space solution:

vVuu! 0 D-1
gu(z,z'; D) = b(Au) gfg / dk kT g D-3,(kAz)
(=5=) Jo (=)
aonAz) T (4.20)
x {eNy(ku') Tu(ku) + Jy(ku') N,,(ku)}
where Au =u' —u and Az = || - .

It is not simple to evaluate the integral when D is odd and v is integral but the result

for even D and half integral v is a series in derivatives of the lightcone theta function,
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B(Av— Az). f D=2dand v =d— % —n, then for 0 < n < d — 1 we obtain:

_ 0(Au) (2d - n—k—2)! w8 \*
ool G, Pt — A
1 ”(.L,.’L 1 2d) = 0[4 y Id i E (d p 1)!(k ) e A Q(Au Ar)

(4.21a)
Except for the initial factor of (uu')l“d these functions are de Sitter invariant. To see this
first note from (3.33) that 6(Au)6(Au — Az) = O(Au)G(:(m,w') - 1). Now use (3.33)

again to convert the Ax derivatives in (4.21) to z derivatives. The result is:

v 9(Au (2d —n —k-2) -
I, o —_— (’C 1) T.: Iy _ 9
gd-—%—n(m’m 1“d) 2[47[“11,71,’ d 1 Z d ]» _ 1)| k _ n) [Z('U, T ) 1:! (4 1b)

“where we define §(~1)(z — 1) = 6(z — 1). The function a(z,z') corresponds to the case of

n =0. For d > 2 the functions b(z,z') and &(z,z') are associated with n = 1 and n = 2
respectively; for d = 1 they"are both given by n = 1. Note that only a(z,z’) contains a

theta function.

Let us introduce the notation that a bar above a Lorentz metric or a Kronecker delta

symbol means that the zero (i.e., u) component is projected out:
Ty = 5,960 (4.22
Muy = Muv + 04" 0, (4.22)

The tensor structure of our Green’s function is most revealingly expressed by segregating

it into terms proportional to the three scalar functions:

[pagret](m,}c’) = a(2,2) [poT5?] + (2, 2') [po T3’ ] +(e,0") 0TS (4.230)

o] = 25,750 - gy ™| (4230)
[,,UTgﬂ] = by [n,,,, + (D-2) 80 52] [naﬂ + (D-2) 8;° 50ﬂ] (4.23d)

Now recall from (4.1) and (4.5) that the pseudo-graviton field and the graviton field relate
to yuv thusly:

() = 9%(z) () = 87 (2) 0 (0)  (a24a)
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W (z) = Q72 (z) pH*¥ (2) = Q1 7( () (4.24b)

It follows that the retarded Green’s function for the pseudo-graviton field is:

[/)g'c'?c[{j,(‘l' 2y = Ql—%(n)Ql_%(;v') [p(,gret]( ) (4.’25a)

where z = z(z,2') is the length function defined in relation (3.8). Note that the functions

G4, Gp and G are de Sitter invariants. For example, when the dimension is even

(D = 2d) we have:

H219-1 421 (g — k- 2y _
o= =4 [E]7 8 BB ]
=0 s

The functions G g and G¢ follow similarly from (4.21b).
From (4.24) we see that the retarded Green’s function for the graviton field is:
(o B (2,2") = 0%(2) 722" [0 G2f | (2,2 (4.27a)
= ZWG(AU){GA(z —-1) {paTX'B] (z,z)

+Gp(z-1) [,,(,.Tgf’] (z,2') + Golz = 1) [,,argﬁ] (w,w')} (4.275)

The bitensor functions [parzﬂ (z,2') = Q%) Q~%(a) [po-TXﬂ], etc., are not de Sitter

invariants. Of course Q%(z) Npo = Gpo(z) and Q~2(z')n®P = §2P(z'), the problem comes

with Q(z) Q~1(2) 6,". Using expressions (3.11) and (3.12) one can show that:
Q(I) v _ | ~v ! ~ N vyl
Q(:g’)él‘ —[ ]:vx)+2 2(1—2) wp( r)[ ](m,m)»{- [”nJ(m,w)w (z')

+2(1 - 2) { [ (,2") [ (@,2") = w#(m)wu(a?’)}

(4.284)

where:
wu(w) = Q(z) 6,0 (4.28b)

Note that wyu(z) is not a vector in the same sense that [ﬁ#] (z,y) is. The latter is defined
invariantly by (3.12b) in any coordinate system whereas wy(z) is defined by (4.28b) in
26
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conformal coordinates, and in other systems by transforming it like a vector. Recall that

anything is covariant if it is defined in a particular coordinate system.

This breaking of de Sitter invariance derives from the gauge fixing functional (4.7). Had
we used a de Sitter invariant gauge we would have obtained an invariant graviton retarded

Green’s function. An example of such a gauge fixing functional is ——%\/:? gt Fy Fy where:
Fy=Wup — 5hp t (4.29)
We will not trouble to work out the associated Green’s function.

Although a de Sitter invariant Green’s function could be obtained we do not choose
to do so for three reasons. First, full de Sitter invariance is not observable on the open
submanifold because some de Sitter transformations carry points on this coordinate patch
off of it. Second, we will see in section 6 that the propagator cannot be de Sitter invariant.
Although unexpected there is precedent for this result in the previous work of Allen and
Folacci [10] for the massless minimally coupled scalar field on a de Sitter background.
A similar result for gravity becomes well nigh inevitable when one notes that the scalar
kinetic operator of Allen and Folacci is the same as the kinetic operator for purely spatial

polarizations of the pseudo-graviton fieid.

The final reason we prefer a noninvariant gauge is that it permits a simple expression
for the Green'’s function. Since the coordinate patch and the propagator must in any case
break de Sitter invariance it seems worthwhile to introduce a bit more noninvariance in
order to simplify the tensor algebra. Of course to those not familiar with quantum gravity
our relation (4.27), with its ancillary definitions in previous expressions, probably seems
formidably complex. However, it is actually quite simple for a graviton Green’s function,
and orders of magnitude less complex than the invariant (and incorrect) expressions which
have been obtained previously. The reason for this seems to be that the conformal flatness

of de Sitter space is a more powerful organizing principle than de Sitter invariance.
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This point is forcefully illustrated by consideration of the Maxwell Green’s function
on four dimensional de Sitter space. Since free electromagnetism is conformally invariant
for D = 4 we can find the Green's function very simply by first conformally rescaling the

metric and then adding the Feynman gauge fixing functional:

2
= (7" A (4.30)
~The result is:
[HGV} (z,2') = 4 Nuv 6 [(CC - ) ] (431(1)
H* / o |
= Ia;ﬂ(.r)ﬂ(.r )nuyé[z(m,m ) — 1} (4.31b)

Because this is the flat space Green' function it is as simple to study D = 4 electrodynam-
ics on de Sitter space as it is in flat space. But from (4.28) we see that Q(z) Q(z') nuy is not
de Sitter invariant. To obtain an invariant Green’s function we would need an invariant

gauge fixing functional such as:

2
_%, /_'g\?jﬁ“/ ’g‘PO’ _4#;1/ Ap‘g = —% [77/“’ (‘4/1'1/ + 2‘4# QB’V)] (432)

where ¢ = In(2). The resulting Green'’s function is invariant but it is not simple. It con-
tains a term proportional to [uﬁp} and another proportional to [,ﬁ] [ﬁ.,] The invariant
scalar proportionality functions are in each case more complicated that 6(z - 1); what is
worse, they are different. From (4.28) we see that iv cannot be otherwise. It would be silly
to use the second gauge for most calculations. The more efficient course is to use the first

gauge condition and cheerfully accept the implied commitment to conformal coordinates.

Gravitation is not as straightforward as electrodynamics because Einstein’s theory is
not conformally invariant in four dimensions, yet the simplification effected in conformal
coordinates with (4.7) is even greater. The invariant treatment requires five fundamental

tensors — as opposed to our three — and the scalar proportionality functions are so
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complicated that their specification in a general gauge requires several pages of definitions
[2]. By far the most condensed invariant expression is the one obtained by Antoniadis
and Mottola [3] in four dimensions with a choice of gauge where only the spin two and
spiﬁ zero parts of the graviton are nonzero. The divergent response that they report for
a freely falling poi1‘1t‘n‘1a‘ss is due to the infinite integration over «’ of the theta function
term in their spin zero Green’s function. Our function G4 possesses a theta function but
the reader can see from the tensor structure of expression (4.23b) that this term fails to
couple with the stress tensor (3.18) of a freely failing point mass. Of course jﬁst achieving
finiteness does not guarantee that this response is correct. We turn now to proving that

it 1s.

5. Response to a Freely Falling Point Mass

The de Sitter-Schwarzchild metric is an exact solution for a freely falling point mass.

In static coordinates and for D = 4 the invariant line element is:

ds? = ~B(r)dt? + A(r)dr? + rd6® + r? sin?(0)d¢? (5.1a)
1 B o 9 2GM
i B(r) =1~ H? - (5.1b)

The correct linearized response to a freely falling point mass comes from expanding this
metric in powers of the dimensionless parameter, Q,M—; the term of order one in this expan-
sion is the linearized response. In principle we could just compare this with what one gets
by using our Green’s function on the stress tensor (3.18). Unfortunately the two results will
generally disagree because the two coordinate systems may differ by terms of order -Q%i
This is precisely what occurs in flat space if one compares the de Donder gauge response

with the deviation field in Schwarzchild coordinates. To compare the two geometries one

must check curvature invariants.

Normally there would be a complicated problem of determining which curvature in-
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variants suffice to prove the identity of the two geometries but in this case it is simple:

we need check only the uncontracted Weyl tensors. Since de Sitter space is conformally

flat we know that the Weyl tensor vanishes for A/ = 0, hence the change in it due to an

unknown coordinate mismatch of order Gﬁ,M must be quadratic in the small parameter.

Further, the field equations determine all components of the Riemann tensor except for

the Weyl tensor. If, therefore, we get agreement between the two Wevl tensors to lowest

GM

r

order in then we must have agreement between all curvature invariants, and the two

geometries must be identical.

Of course the de Sitter-Schwarzchild Weyl tensor can be computed to all orders. In

four dimensions the six independent, nonzero components are:

Clyr = ;2—‘% GTM (5.2a)

Clog = “G,:M = C'gg (5.2b)
Clyp = —sin®(6) 9;}1 ="y (5.2¢)
C%ps = 2sin’(8) 9—;‘% (5.2d)

Note that all of these except C! . are free of horizon singularities. Also note that all

rir

except C!,,. agree with flat space results obtained by taking the limit H? — 0! That

the singularity in Ct,_t,. is purely a coordinate effect can be seen by computing the scalar

quantity:

o pu W_._EE (G]\/I)Q

Bpo Cﬁaul/g 9 =77 (5.3)

r

The fact that this is also completely independent of H to all orders is an indication that

long range fields behave in classical de Sitter space the same way as they do in flat space.

Since our graviton Green’s function was worked out in conformal coordinates we must
transform (5.2) to this system in order to make the comparison. The transformation is

simplest if we write the conformal space vector Z in Euclidean spherical coordinates. The
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angles then suffer no transformation and one has only to convert from ¢ and r to u and

v = ||Z]|. The special form of (5.2) also helps, as witness the following exact result:
Ou Ot ou or _, .
/u()ug = E —az C ot T BT —a—l; Crgrg (5.4a)
ou 0t Ou Or G M 5
~{Fa+rat 5 (5.49)
= -Hu GM (5.4c)

v

Similar manipulations give:

GM ,
Chup = Clpyg = Cyyg = Clgg = —Hu - (5.5q)
. . G M
C’u¢1[¢ = C'U¢v¢ = Ct¢t¢ = C’¢T¢ = - Sinz(f)) Hu " I (5_5b)
C%9s = 2sin’(6) Hu GM (5.5¢c)

v

The actual transformation can be discerned by comparing the embeddings (3.20) and

(3.30). The only component which depends upon this is:

Ou Or 9 Ou Ot ot or  Or Ot\
u —_ e — e o
Couy = <8t 5 T % 8v> (Ou dv  Ou 80) Crtr (5.6a)
2 GM G M2
= S Hu +O([—;—] ) (5.65)

It remains to compute the Weyl tensor directly using our retarded Green'’s function.
By linearizing (3.18) in four dimensions and using the gauge fixed graviton action (4.8) we

obtain the linearized field equation:

Dyl xpol(z) = —4rM 8 85" 63(%) (5.7)
(Note that in four dimensions the rescaling to go from hyy to X pv cancels the factors of §2
which occur in the matter stress tensor on account of the fact that §yg = ~02 in conformal

coordinates.) Making use of the four dimensional version of our Green’s function (4.23)

we find the linearized following response:

Xpo(2) = / diz’ [pag;‘;{’](m,z’) {—%~M6a06ﬁ063(5)} (5.8a)
KM 1.
= 2= (28,8 — oo ™| (5.85)
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Note that only the C part of the retarded Green's function contributes, Had the A term
not decoupled there would have been a logarithmic divergence from the infinite integration
over u'. This is essentially what happens with the spin zero part of the Green’s tunction

of Antoniadis and Mottola [3].

By specializing relation (4.24) to four dimensions we see that the only nonzero com-

ponents of the pseudo-graviton field are:

"y
koo = 2Hu GM (5.9a)
: M
Kby = 2Hu C’j\ 6;j (5.9¢)

“Since the conformally rescaled background metric is just 7y, we see that to order x the

conformally rescaled Riemann tensor is generally:

Raﬁvé = ‘%N(lpav,ﬁé - ¢6a,7ﬂ + ¢ﬂ6,a'y - ¢7ﬁ,6a) (5.10)

Substituting (5.9) gives:

~ 1 GM o
Roioj = 5 Hu—~ [51']{ - 3&; xj] (5.11a)
~ HGM . )
Roije = — —— [—5ij Tp + bik wj] (5.11b)

~ 1 GM
Rijhe = 1—)—2—Hu

» [2(5ik 60 — i 5jlc>

(5.11¢)

+ 3("6ik ij Lo+ bp &f T — 5]-;3 TiTp + 5kj Ty :E,)]
where #; = Zt. Simple algebra suffices to show that at this order, 50,'()]' = ROin, 60ijk =0
and éijkf = Ez’jke- Since the Weyl tensor is unaffected by a conformal rescaling these
results should agree to this order with (5.5) and (5.6). Converting to spherical coordinates

— and remembering to include a minus sign when raising a u index — we see that they

do:
i 2 GM
—z' 37 Coipj = 3 Hu = C%uv (5.12a)
v
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GM

~' §J v? émoj = —Hu——=C"y (5.12b)

— @t ¢l v? 50;‘0]‘ = —sin%(6) Hu GM _ Moud (5.12¢)
2069 38 8% w2 G — _Hu Glf” =CY%,p (5.12d)

7 @) 2% 3002 Cyjpe = —sin(9) Hu G _ Cus (5.12¢)
gt 47 G 3t v! Cijpe = 25in*(6) Hu Gqf” = %4 (5.12f)

5t

where 6 = -11; %% and ¢ = % %{—5 It is not significantly more difficult to show this as well

in higher dimensions.

6. Perturbative Quantum Gravity in De Sitter Conformal Coordinates

The purpose of this section is to specify, as completely as it can currently be done,
the Feynman rules for quantum gravity in de Sitter conformal coordinates using the gauge
(4.7). We first infer the propagators and then discuss the interaction vertices. The notation
is in all cases that of section 4. To make the final answer accessible we shall repeat the

necessary definitions as they occur.

It turns out that the propagators and vertices assume their simplest forms if we use the

‘pseudo-graviton field, Yup(T) = Q~2(z) hyy(z). (We remind the reader that Q = (Hu)™!

and that indices on ¢,y are raised and lowered with the Lorentz metric.) The v propagator

is defined as the expectation value in the free theory of the time-ordered product of two

fields:
i[p,,aaﬂ] (z,2)) = <in‘T[¢pg(m) ¢aﬂ(x')] ‘out>0 (6.1)
It must give i67 (z —z') 6‘;‘(& 6Vﬂ ) when acted upon by the pseudo-graviton kinetic operator:
D, = Q7! DS a%-! (6.2a)
= 6,05, 8 D+ 68,5 & Do
+ 1308 Ym 4 4OBPO 806787 Da (020)
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"Here 'Dluﬁw is the operator defined in (4.10). The scalar kinetic operators in this expression

are:

D 11D
Dy=0Q7"! {02 +(252)(2)=| T ! (6.3a)
U . :

D_, D_,
= Q_Q— DA Q? (6.31)) ‘

etc. for B and C, where D _ are defined in (4.11a-c). Finally, we remind the reader
that a bar over a known tensor such as 6/f or 7”7 indicates the suppression of its zero

‘components.

Under the assumption that the “in” and “out” vacua are identical it follows from the
canonical quantization of (4.8) thiat the imaginary part of expression (6.1) must be half the
sum of the advanced and retarded Green’s functions. We have already given in (4.25) a
relation for the retarded Green’s function [ng?eﬂ (z,z'); to obtain the advanced Green’s
function one merely interchanges « and z/, From (3.8) we see that the de Sitter length

function is symmetric, z(z,z') = z(z', z), so the sum serves only to absorb the factor of

26(Au) in (4.25b):

Im{i[paAaﬁ](a:,wl)} = W{GA(Z - 1) [MTzﬂ]

4
+Gp(z-1) [paTgﬂ] +Ge(z2-1) [paTgﬁ]} oY

The three constant matrices are:
[poT5?] = [2?5‘,,(" 57 ~ D5 oo ﬁ“ﬁ} (6.50)
oo T?] = 45,05, & (6.5b)
[,,aTgﬂ] = D=5 [npa +(D-2) 8 62] [n“ﬁ + (D-2) §° 5Oﬂ] (6.5¢)

The three scalar functions which multiply them are defined by the integral:

[ Az [ Heuu \FH .
u327r ( 2rAzT ) /(; dk k41 Jﬂ(kAw) {—N,,(kul) Jy(ku) + Ju(k“’) Nu(ku)}
(6.6)
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D=3
2

where the index p = Q'z"—-i and v takes the values —D—Q‘—l-, and p—iﬁ for G4, Gp and G

respectively.

We cannot determine the real part of the pseudo-graviton propagator without knowing
the “in” and “out” vacua. There seems to be no obvious prescription fér these owing
to the virulent time dependence of the background, which dependence extends even to
asymptotically early and late times. At any given instant there is a state of lowest energy
but it does not remain the lowest energy state; in fact its energy fails even to stay near
the instantaneous minimum. The usual approach to this problem is to assume that thé
vacuum is de Sitter invariant and that the high momentum modes tend to behave like thése
of flat space. If the gauge is de Sitter invariant as well then so too will be the graviton

propagator.

The approach to flat space on small scales is a consequence of the equivalence principle.
The supposition that the vacuum state shares the symmetry of the background would
seem similarly impervious but for the counterexample provided by the massless minimally
coupled scalar, Allen and Folacci have shown that there is no normalizable stat‘é‘ in this
model which is de Sitter invariant and also has the correct short distance limit [10]. This |

fact has great importance for gravity because partially integrating the scalar Lagrangian:

Loy =‘—%9,p N V] (6.7a)

= 16D 46 - $0# (06,002 (6.75)

reveals the same kinetic operator as for the spatial polarizations of the pseudo-graviton
field. It follows that the gravitational vacuum must break de Sitter invariance in precisely

the same way that the massless minimally coupled scalar does.

Since it is not possible to assume a de Sitter invariant propagator we shall instead
attempt to pass from the imaginary part (6.4) to the full propagator by analytic continua-

tion. This process is necessarily ambiguous up to terms which are real, analytic and which
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are annihilated by the kinetic operator (6.2). The ambiguity reflects our lack of knowledge
about the vacuum. Of course the thing being continued is the functional dependence upon

z and /. The constant matrices play a passive role:

g[,)(,ALfﬂ}(;r,;c") = A (2,2 [,,,,Tjﬂ +iAp(e, ') [,,(,Tg’-’} +iAp(z,a) [pUT"ﬁ] (6.8)
but they do diagonalize D/,“f'a, That is, we must have D['i/_\.l(:lr,:z:’) = z'é‘D(.v,a:’) for
I=AB,C.

The integrals (6.6) are 'very difficult to evaluate for D odd but for even D = 2d and
n=d- % — v < d they have the following simple and suggestive form:

Gn(z —1;d) = [f:] 2—: °_dk‘_”1‘ k‘r’)')‘ (d—i)kﬁ[z(:c,:v/)——l] (6.9)

where we remind the reader of expression (4.33), 1 — z(z,2') = ;IIHQQ(:B) Q(z') (z — z')2.

For k >> 0 we can use the Dirac identity to write:

d Nk 1y (k=1
() o 1) = b =B o
Hence we expect:
g2 (& @d-k-3)1 1
. AN 1._ il
iap(e )= ?fr[zm} { @Ak -z idf (R‘A'H'>B} (6.11a)

and, for D > 6:

H2]d 1{d L 2d—k -4 (k—1) 1

mc(a;,m/)zzl.i[% T [1~b+ze]k+<RAH) }(6.116)

k=2

where (R.A.H.) ; stands for terms which are real, analytic and annihilated by the operator
D;. It is straightforward to check that acting Dg on (6.11a) and D on (6.11b) indeed

gives i60(z — 2!). For D = 4 we have iApg = iAc:

Ap_o(e.a) = 2 ! +(RAR) (6.12)
PEB-CA T = 16a2 1— 2(x,z') + i€ ) B-c '
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up to possibly different R.A.H. terms, which are harmonic functions for D = 4,

One might think that G 4 could be continued as well by using the identity:
f(z —1) = %Im{ln[l -z + z‘e]} (6.13)

This is not so. Although (6.13) is true the operator D4 does not give 16P(x — a') when
acted upon the implied continuation of G'4. The physical reason is the previously men-
tioned breaking of de Sitter invariance, The mathematical reason is that 1 — z(z,2') =
%HQ Q) Q") (2 — z')? and the always-positive conformal factors do not belong in the

continuation. The correct analytic continuation necessarily breaks de Sitter invariance:

521 el d ko2l 1
. Wy A
ZAA(IU,JJ )‘— ﬁ[47‘-] {A-;i <,’__1)!k [1_z+ie]k
5@d~ 2)! 2 — N2 14
— H? 1 2 ne o
D—4167r2 {1 S Py} — ln[H (x —2')* + ze} (R A, H) }(6 14b)

It is again straightforward to check that D4 acts upon this function to give 162(z — /).

As stated, the R.A H. terms are fixéd by the as yet unknown vacuum. Perhaps the
nicest choice for D = 4 is given by (R.A.H.)B = (RA.H.)C = 0 and the one parameter
family:

1 1 n 1
1+E?2 141 E? 42

. © 1 E
2 2-2) - *7) -
+ Sa [acos ([1 + E ] ) 1T EQ] [acos([.l + E'] > 1+ E’2]

where E = E(z) = $Q(z) [1+ H%(||#||2—u?)] is the conformal embedding function (3.30a)

(RAH) =fwmfo2@? 1+ B+ EY) -
‘ (6.15)

and o is a positive real number. These are the O(4) vacua discovered for the massless
minimally coupled scalar by Allen and Folacci [10]. With this choice the pseudo-graviton
propagator does not grow for either large timelike or spacelike separations. In addition to

giving the wrong linearized response for certain distributions of stress energy, the reported
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invariant propagators actually diverge as the separation goes to either timelike or spacelike

infinity (1-3].
The ghost Lagrangian is obtained by varying the gauge functional Fj:

Fy = l\'p;t,p—%xpp,u+(gfz)\ /t¢,P+( ) X P‘/”N (6.16)

D_ ,
where we remind the reader that y,, = Q2 lz/)'uy and ¢ = In(Q2). Let us consider an

infinitesimal coordinate change:

y* =yt + ket (y) | (6.17)
Since the full metric transforms to:
' oyP y? 1
/ 1=
g W( aJ//i( 3yru(1) PU( (5”)) (6.18a),

it follows that the variation of the graviton field is:

St = =508 (26100 + 2 bp] = (267 B+ €] (6.180)

It is convenient to decompose the variation of X,y up into a term of order Y and one of

order x:
D_y
boXuy = —2 [QG(W,) + 20y €f qﬁ‘p} (6.19a)
F-1 [pep p p
Ol Xpy = -Q7 [26 (u Yuyp + Yuv,p €’ + 2y € ¢,p] (6.19b)
Note that it is the pseudo-graviton field which appears on the right of (6.19b), even though

this is the variation of the rescaled field x,u.

We now let €4 become an anticommuting ghost field and take the ghost Lagrangian to
be:
Dy,
Lgh = —-Q27 AR 6F, (6.20)
D—l T .
where v is the antighost field. The curious factor of 22" is inserted for convenience;

it could always be absorbed into the antighost by a multiplicative field redefinition. The
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quadratic part of the ghost action is:

D
LY =-QT ' 4§ F, (6.21a)

= yH [Eﬁf’ Dy+606) DB} e ' (6.210)

It follows that the ghost propagator is:
i[pAa] (@,0)) = ida(w,a) 8, +ilp(e,a') 8,0 8" (6.22)

Note that the same choices must be made for the R.A.H. terms in the functions :A 4(z, 2')

and 1A g(a, ') as for the pseudo-graviton.

Up to a surface term the ghost interaction Lagrangian is:

o D D
—1 _1 ’
| Lgh Sk <Qv 7“) v 02 <”¢’”P PV — P epu — PP ‘SP)

3

+ m(nﬂlz)“l 7") Q7! (W" epo + 3P eo) (6.23)

~ Sryt et e (QP72) o + hayt 9Py e (P 72)

Self interactions of the pseudo-graviton field are obtained by expanding expression (4.3b):

Liny — 5%, = =3V/=G7° 7 Ypou b, (AP72) o (6.24)

+ V=G §* g g {%%m Yuog — §¥appYouy + §¥ap,p Yuro — $Papu ¢,80',1/] oP-?

where we remind the reader that §uy = nuy + k%¥uy. Note that almost all of the interaction

vertices are just those of flat space times a factor of QP2

It ought to be possible to at least estimate infrared graviton effects by using the re-
sulting perturbative apparatus. Of course the mathematical acsthete will insist upon a
formulation which extends to the full manifold. We welcome such critics to indulge their
prejudice in the resulting canonical quagmire. In the meantime we shall go on to learn
what the open formulation can tell us. If the resulting infrared effects are sufficiently inter-

esting then more resources will no doubt be directed towards developing an efficient global
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formalism. Finally, it should be noted that there are interesting and relevant situations
“for which restricting quantization to an open submanifold is the rigorously correct thing
to do. An example would be the case of an open Friedmann universe which enters an
inflationary phase. We are therefore cognizant of the partial nature of our solution but

thoroughly impenitent.
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