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INTRODUCTION

The Defense Waste Processing Facility (DWPE) will be used to blend aqueous radwaste (PHA)
with solid radwaste (Sludge) in a waste re.eipt vessel (the SRAT). The resulting SRAT material
is transferred to the the SME and there blended with ground glass (Frit) to produce a batch of
melter feed slurry, The SME material is passed to a hold tank (the MFT) which is used to
continuously feed the DWPF melter. The melter produces a molten glass wasteform which is
poured into stainless steel canisters for cooling and, ultimately, shipmerit to and storage in a
geologic repository.,

The repository requires that the glass wasteform be resistant to leaching by underground water that
might contact it. In addition, there are processing constraints on Viscosity, Liquidus Temperature,
and Waste Solubility of the melt:

Acceptability Processibility
Leach Rate < 131 TDS EA Glass Liquidus Temperature < 1050°C
20 £ Melt Viscosity < 100 poise
TiO7, NaF, & NaCl < 1.0 wt% (in glass)
Crp03 & Cu < 0.3 wt% (in glass)
S04 £ 0.4 wt% (in glass)
PO4 < 3.0 wt% (in glass)

THE PCC$ STATISTICAL PROCESS CONTROL (SPC) ALGORITHM

What Is It? The Product Composition Control System (PCCS) is the system intended to ensurc
that the melt will be processible and that the glass wasteform will be acceptable. Within the
PCCS, the SPC Algorithm is the means which guides control of the DOWPF process.

Why Is It? The SPC Algorithm is needed to control the multivariate DWPF process in the face of
uncertainties (variances and covariances) which arise from the process, its feeds, sampling,
modeling, and measurement systems.

What Dogs It Do? The SPC Algorithm:

« derives target blends (mass fractions p of PHA, s of Sludge, and f of Frit) which will
combine with current SRAT (r) and SME (m) Heels to produce a SME batch with



Aoy

it

desirably high waste-loading,

= monitors a pending SME batch composition for melt processibility and product
acceptability prior to clearing it for transfer to the MFT,

e and derives a remediation blend of trim chemicals and frit to correct an unacceptable
SME batch

in such a way that the resulting melt will likely process into good product. The cssentials of the
DWPF Process and the PCCS are illustrated in Figure 1; however, for simplicity we limit the
discussion here to monitoring.
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Figure 1 The Product Composition Control System and DWPF

To monitor the SME batch composition, the PCCS SPC algorithm takes into account:

« uncertainties in slurry sampling, sample preparation and measurement,

« uncertainty in prediction of properties from siurry composition;

* simultaneous variation of the individual constituent concentrations;

+ mass balance information (o augment the measurement data,

» and the Waste Acceptance criteria (WAPS),
It will take into account process and input feed variations as they become known during operation.
CHARACTERIZING THE PROCESS PRIOR TO MAKING PRODUCT
The process is characterized prior to making product by relating glass and melt properties to feed
slurry composition. The composition is expressed through a hybrid combination of elements
denoted &. Each property has its own unique &. Both glass chemistry thcory and empirical least-
squares fitting show that straight-line regressions relate the glass property (Leach Rate) and the

process melt properties (Viscosity and Liquidus Temperature) to the &'s. Thus, to characterize the
process prior to making and inspecting either the melt or produci, these propertics arc predicted



from measured feed slurry composition using straight-line regressions in &, Back-solving any such
regression line to get the E-value corresponding to its property limit transforms the constraint on

- that property into an equivalent constraint on its &. This constraint on &, in turn, becomes a
constraint on the concentrations of the individual constituent oxides (the "x;'s"). For example,

the Liquidus regression is: TL = 803.8698 + 2276.8724&,

and its & is: B = 134[Feo03] _
156[SiO3] - 360[Al,03]

Its property limit is: T < 1050°C
which transforms to: < {Q‘LO_& = 1950—'&)—3—8@9—&] .
o 2276.8724
Graphically, this is illustrated in Figure 2.
A
Ty, Ty, = 803.8698 + 2276.8724 ¢,
1050°C

TL <1050°C

E¢* = 0.108

>
&¢

&= 134[Fe,03] +

T 156[Si03) - 360[A105]

Figure 2 Liquidus Correlation

Thus, Ty, < 1050°C becomes:  134[Fez03] < 0.108(156(SiO2] - 360[A1203])
or: (134[Fe03] - 16.848[Si02] + 38.88[A1203]) < 0
or: [x (o] '<0

where:  [x ) = ([Fe,031,[Si0,),[A1,03] ) and [o ] = [134, -16.848, 38.88].

The inequality thus formed determines a region in measured composition space (x-Space), all

points of which give predicted values of Ty that are Acceptable (i.e., < 1050°C). Denote this
region the Expected Property Acceptable Region (EPAR). Figure 3 illustrates the EPAR for

Liquidus (using only 2-dimensions for clarity).
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Figure 3 Liquidus EPAR in 2 Dimensions
ACCOUNTING FOR PREDICTION UNCERTAINTY

To monitor an already blended SME batch, the algorithm first accounts for the (random)

uicertainty of prediction through use of Scheffé simultaneous confidence bands! around the
straight-line regressions:

Scheffe-type Bands:  Model Value + s;Yq Fgn-g)V & (X'X)! o'

These bands utilize the, estimate of the random error standard deviation (s;), the design of the parent
data (X'X)"1, and the E-statistic to provide at any § = &g confidence limits on the model value
which hold simultaneously for all &, They arc appropriate for repeated usc of the line.

Back-solving the appropriate (upper and/or lower) confidence band for a new E-limit, &¥,
corresponding to the acceptable property limit produces other inequalitics like those which
generated the EPAR. These new inequalitics are constraint hyperplanes in x-Space which
accommodate the random uncertainty in the predictions. Call them Constraint Uncertainty Plancs
and denote them as x-CUP's. These new incqualities generate the Property Acceptable Region
(PAR), the locus of all compositions which give acceptable property predictions even allowing for
the random uncertainty of prediction. The PAR is interior to (and thus everywhere more
conservative than) the EPAR. See Figure 4 for illustration for Liquidus. (There are corresponding
but different cases for the other constraints.)

There is a separate PAR for each property. The confluence of all such PAR's forms the overall
PAR. (Actually, only a subset will determine the overall PAR since only one of the Low
Viscosity and High Viscosity constraint pair will apply to a particular case.) Any point located
within the overall PAR represents a measured SME batch composition which will give predicted
properties that meet all the stated limits, even allowing for predictive uncertainty. The PAR is
illustrated in Figure 5.
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Figure 5 The DWPF Property Acceptable Region (PAR)

ACCOUNTING FOR SAMPLING & ME

ASUREMENT UNCERTAINTY

The PAR accommodates the random uncertainty inherent in property prediction arising from
uncertainty only in the propertics themsclves. But, in operation, the composition of the feed
slurry will not be measured to the same accuracy and precision as that of the standard glasses on

which the predicting relations are based. Thus, the

re will be appreciable errors in €. It remains to

deal with this component of uncertainty from the sampling and measurement systems which

produce the composition measurement.



A current SME batch composition measurement x™ is a 1xq row-vector of measurcments on
several constituent oxides simultaneously : X™ = ([Fe;03], [SiO;] ,..., [MgO] ) = [x1,x9,...,
Xq 1

q

To describe its uncertainty thus necessitates use of multivariate statistical techniques. If
concentrations of the individual constituents can be assumed multivariatc Gaussian, then traditional
methods of multivariate normal theory apply.

SM is the covariance matrix based on an historic sample of several such measurements (but not

including x™). Sy consists of the variances within and covariances between the "q" individual
constituents:
$11  S12 ... SIq

512 8§22 ... qu
Slq SZq e S(n

where the s;; are the sample variances (i=j) and covariances (i#j):

SM =

Sij =;1‘1-2(Xik - Xi XXjk - Xj)
X_j=;l|-zxjk k=12,...,n

Suppose the measurement x™ is distributed in probability as multivariatc Gaussian around its true
mean L with covariance Y. This implies that the linear combination x™a' is distributed as
univariate Gaussian with mean pa' and variance aSMa'.2 A further result is that the quantity
(xMg' - ua)V(aSpa) is distributed as a Student's t with m-1 degrees of freedom, where Sy is the
previous sample estimate of T based on "m" historic observations.3

The requisite nulls which must be satisficd for measurement acceptability arc of the form: pa' 2 &
or pa' < -¢, depending on the type of test. For Liquidus, this implies that the composition must
satisfy: x™Ma' < - tg.95(m-1)V(aSpa"). There are corresponding tests for the other constraints. If
the composition satisfies all these tests, the SME batch is adjudged measurement acceptable.

MONITORING A SME BATCH

The comparison (x™Ma") : 10.95(m-1)V(aSpa’) determines whether a blended SME batch x is
Measurement Acceptable (MA) for a given property. Using Liquidus as an example,

If xMa' < - 19.95(m-1)V(aSpa"), then x™ is statistically distinguishable
(at the 95% confidence level) from the Liquidus x-CUP, and the SME
batch is MA for Liquidus Temperature.

T A more simplistic alternative, that of applying several sets of univariate control limits independently,
is theoretically and pragmatically counterproductive since it causes the false-reject rate to sky-rocket. If
there are q=10 constituents to be controlled, and if 95% control limits are applied independently on
each, from probability considerations alone some 40% of the candidate feed batches will be rejected even
though they are good feed material,



If x™Mg'> - m,gs(m-l)\/(aSMa'), then x™ is not statistically
distinguishable (at the 95% confidence level) from the Liquidus x-CUP,
and the SME batch is not MA for Liquidus Temperature.

Define the composition-space Measurement Acceptable Region (or x-MAR) to be that region
containing all compositions which are MA. To bound potential target blends, determine the edges
of the x-MAR by using the t-test in a slightly different way. Marginal Liquidus MA occurs at the
equality: x™a' = - to.95(m-1)N(aSpa"). Since V(aSpa') is the propagated standard crror of x™a', the
RHS of this equality represents the minimal distance (expressed as the number of standard errors)
X™ must be away from the x-CUP, xa' + € =0, to be MA.

The vector-matrix products in the t-tests above (x™Ma’ and aSpa’) are all scalars, so the test
collapses the g-dimensional geometry of x-space into one dimension for decision making. Since
the standard error, \l(aSMa’), does not change with composition for a SME batch, the MAR edge is
a constant distance, ((m-1) standard errors, away from the x-CUP for all SME blends in x-space.
The MAR edge will thus be a hyperplane parallel to the x-CUP. That plane is the closest a
measurement can get to the x-CUP and yet still be MA. Figure 6 illustrates the geometry of the
Liquidus x-MAR for extant SME batches.

Figure 6 Geometry of the Liquidus MAR

INCORPORATING OTHER PROCESS INFORMATION

In order to improve the precision of the measurements, the algorithm augments the measurement
information available for process control by incorporating other relevant process information into
the measurement system through use of a Maximum A Posteriori (MAP)4 estimator. The MAP
estimator uses the state model projection for the SME composition after receipt of the SRAT
transfer but prior to the control laboratory measurement:

[State Projection] = {Mass out of SRAT+Mass into SME]/2 + {SME Heel]

The MAP composition estimate is the following combination of this state model projection and



the relevant laboratory measurement:
[SME State Estimate] = [State Projection] + K[Lab Measurement - State Projection]

where the "MAP Gain" K results from balancing the uncertainty in the state model projection =
against. that of the measurement. In scalar applications, K ranges over the unit interval (0,1).

ADVANTAGES OF THE ALGORITHM

By correctly accommodating the multivariate uncertainty of the composition measurement system,
and by incorporating the uncertainty of property prediction, it correctly maintains the false-alarm
rate (proportion of good SME batches wrongly judged to need remediation) at a reasonable level.

By incorporating mass transfer measurements into the composition measurement system, it
increases the useful information and thus relieves some of the stress on the composition
measurements. The built-in redundancy of the mass transfer measurements with the composition
measurements also provides a means of detecting aberrations {"outliers") in either.

By devising a target blend to give acceptable properties, it smooths out batchwise differences in
feed composition to give an "on-aim" type of control scheme on propertics rather than a "within-
limits" type of control on composition. In so doing, it has the effect of constructing a Property
"Macro-Batch" out of possibly variable input feed material.

Its quantification of process control enables DWPF (o take quantitative credit for the control efforts
upstream of the MFT ; thereby relegating the MFT sample measurements to a "confirmatory"
rather than a "determining” role. This translates into fewer MFT samples and less MFT
measurements for equal confidence.

Expressed another way: without such an algorithm, the pre-MFT prior model is a "total ignorance”
prior; namely, that the feed slurry arrives at the MFT at random . In that case, all the load of
Waste Qualification falls on the MFT samples and measurements,
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