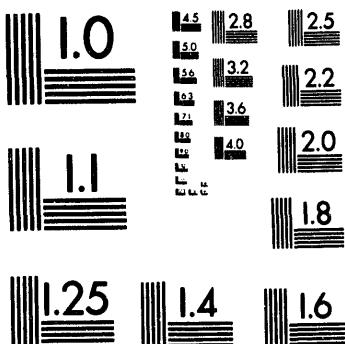
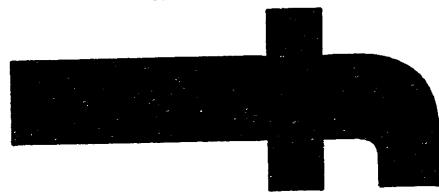
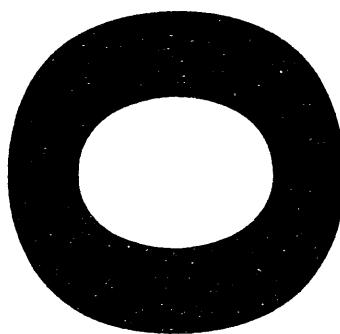


AIIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202




Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

DOCUMENT NO.

BNCC-91

SERIES AND COPY NO.

- - - 7

~~DECLASSIFIED~~**BATTELLE-NORTHWEST**

RICHLAND, WASHINGTON

PROJECT

DATE

May 20, 1965

ISSUING FILE

TITLE AND AUTHOR

Letter to Mr. Frank Rom, Lewis Research Center
 F. W. Albaugh

 RESTRICTED DATA

THIS DOCUMENT CONTAINS RESTRICTED DATA AS DEFINED
 IN THE ATOMIC ENERGY ACT OF 1954. IT IS A TRANSMITTAL
 OR THE DISCLOSURE OF ITS CONTENTS IN ANY MANNER TO
 AN UNAUTHORIZED PERSON IS PROHIBITED.

 OTHER OFFICIAL CLASSIFIED INFORMATION

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE
 NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE
 MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECS
 793 AND 794, THE TRANSMISSION OR REVELATION OF
 WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS
 PROHIBITED BY LAW.

THIS DOCUMENT MUST NOT BE LEFT UNATTENDED OR WHERE
 AN UNAUTHORIZED PERSON MAY HAVE ACCESS TO IT. WHEN NOT IN
 USE, IT MUST BE STORED IN AN APPROVED LOCKED REPOSITORY
 WITHIN AN APPROVED GUARDED AREA. WHILE IT IS IN YOUR
 SESSION AND UNTIL YOU HAVE RETURNED IT TO YOUR
 CLASSIFIED DOCUMENT RESPONSIBILITY STATION, IT IS YOUR
 RESPONSIBILITY TO KEEP IT AND ITS CONTENTS WITHIN THE
 LIMITS OF THIS PROJECT AND FROM AN UNAUTHORIZED PERSON.
 ITS TRANSMITTAL TO AND STORE AT YOUR PLACE OF
 REFERENCE IS PROHIBITED. IT WILL BE DUPLICATED ON
 REQUEST. IN EXISTING SECURITY REQUIREMENTS, ALL
 PERSONS HAVING THIS DOCUMENT ARE REQUESTED TO SIGN
 IN THE SPACE BELOW.

ROUTE TO:

PAYROLL NO.

LOCATION

FILES ROUTE
DATE

SIGNATURE AND DATE

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

~~DECLASSIFIED~~

Classification Cancelled and Changed To

DECLASSIFIED

PNCC-91

By Authority of CG-DAR-1

WA Snyder 2-7-94

By Jerry Mullen 3-4-94

Verified By J. E. Savely 3-4-94

May 20, 1965

National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland 35, Ohio 44135

Attention: Mr. Frank Rom

Gentlemen:

References: 1. Conversation between F. Rom, P. Finnegan, and K. Drumheller, May 10, 1965.

2. Notes provided on May 10, 1965 by P. Finnegan.

The following proposal and information are submitted as requested in the referenced conversation and notes.

It is proposed that development work be performed which is directed towards the provision of fuel elements in accordance with the following specifications, at costs estimated as shown. Cost estimates are based on full cost recovery principles, including general overhead, under our Contract AT (45-1)-1830 with the Atomic Energy Commission. They should not be considered as fixed-price quotations.

Fuel elements will be 1-1/2" long and made with round holes spaced on the pattern of 1/8" hexagonal hole with a .030" web. The outside holes will be .125" diameter. Hole size will decrease to .108", .092", and .075" in respective internal rings with a corresponding increase in web thickness. The element cross section will be hexagonal with a dimension of approximately 1-1/4" across the flats.

Fuel will be natural or depleted UO₂, spheroidized by agglomeration to provide an initial low density. Fuel particle size will be a nominal 60 to 100 microns. Fuel loading will be a nominal 20 volume percent. Fabrication will be by pneumatic impaction.

AUTHOR:	K. Drumheller	FOR SIGNATURE OF:	FW Albaugh
OPERATION:	Finance	R&MT Dept	CR&D Section
FOR APPROVAL OF:		DR de Halas	
APPROVED:		W. J. C. H.	5-20-65
DATE:			

DECLASSIFIED

DECLASSIFIED

BNCC-91

Frank Ross-NASA

-2-

May 20, 1965

<u>Item</u>	<u>Quantity</u>	<u>Description</u>	<u>Estimated Cost</u>
1	4	Niobium matrix, flat surfaces on outside edges of element, no clad	\$ 3250
2	4	Molybdenum matrix, flat surfaces on outside edges of element, no clad	3250
3	4	Niobium matrix, outside edges of element cut from continuous hexagonal pattern	3250
4	4	Molybdenum matrix, outside edges of element cut from continuous hexagonal pattern	3250
5	4	Niobium matrix, flat surfaces on outside edges of element, 4 mil clad on holes by vapor deposition on mandrels with subsequent transfer to grid	6855
6	4	Molybdenum matrix, balance same as Item 5	6855
7	4	Niobium matrix, 4 mil clad on grid by vapor deposition on completed grid	4520
8	4	Molybdenum matrix, balance same as Item 7	4520

One or all of the above items may be considered a part of this proposal, at your discretion.

The above cost estimates include only very limited development work towards optimizing the product. It should be understood that these pieces will be provided only as an indication of the potential of the pneumatic-impaction process for fabrication of these elements. Integrity or dimensional control may be good but should definitely not be expected at this point.

The sizeable difference in estimated cost for the clad mandrel technique does not reflect an inherently high cost for this process. It is the penalty for a small experimental lot of mandrels.

It is expected that delivery of 8 elements could be made six weeks from the time that authorization to proceed is received.

It is proposed that processing conditions for the grids be varied somewhat to provide information on the effects of pressure and temperature on matrix and fuel density.

DECLASSIFIED

DECLASSIFIED

Frank Rom -NASA

-3-

May 20, 1965

It is planned that steel mandrel materials be used for these initial grids.

As you know, steel mandrels have not generally been satisfactory for work with tungsten. It is believed that with proper can design and surface treatment they will be satisfactory for Mo and Nb grids. One sound Mo grid has been made here with steel mandrels.

The probable range of maximum operating temperature for this type of element in on the order of 2100°C for Mo and 2000°C for Nb. We will withhold an estimate of operating life, in terms of burnup, cycles, or time, until we have had an opportunity for further study.

Pneumatic impaction at 1200°C or higher generally yields high density fuel particles in tungsten- UO_2 fuels or UO_2 . However, some decrease in UO_2 density will be achieved by working at lower temperatures and pretreatment of the UO_2 .

The pneumatic-impaction process is not a proprietary process. Information on this process has been acquired almost solely on government-sponsored programs.

The process is basically a production process. The steps of mandrel assembly, can loading, impaction, and mandrel dissolution are all applicable to high speed production techniques.

On the basis of a production rate of 100,000 elements per year, it is optimistically estimated that elements could be produced for \$22 and \$28 per element, in Mo and Nb respectively, not including the cost of the UO_2 . A pessimistic estimate would be \$113 per element for Mo and \$130 per element for Nb. The pessimistic costs would result if a mandrel and can material such as titanium should be required. It is unlikely that this will be the case.

The principal cost factors in the \$22 estimate are:

Materials	
Mandrels, 37 @ \$0.03	\$ 1.00
Mandrel cladding	3.00
End Plates, 2 @ \$.50	1.00
Can, 1 @ \$1	1.00
Miscellaneous	1.00
Molybdenum, 1/2 lb. @ \$2	1.00
Total Material	<u>\$ 8.00</u>
Direct Labor, .8 hr @ \$5	\$ 4.00
Indirect Costs	<u>10.00</u>
TOTAL	\$22.00

Achievement of the above will require quite a bit of development work, but the production rates considered would make this very worthwhile.

DECLASSIFIED

DECLASSIFIED

BNCC-91

Frank Rom-NASA

-4-

May 20, 1965

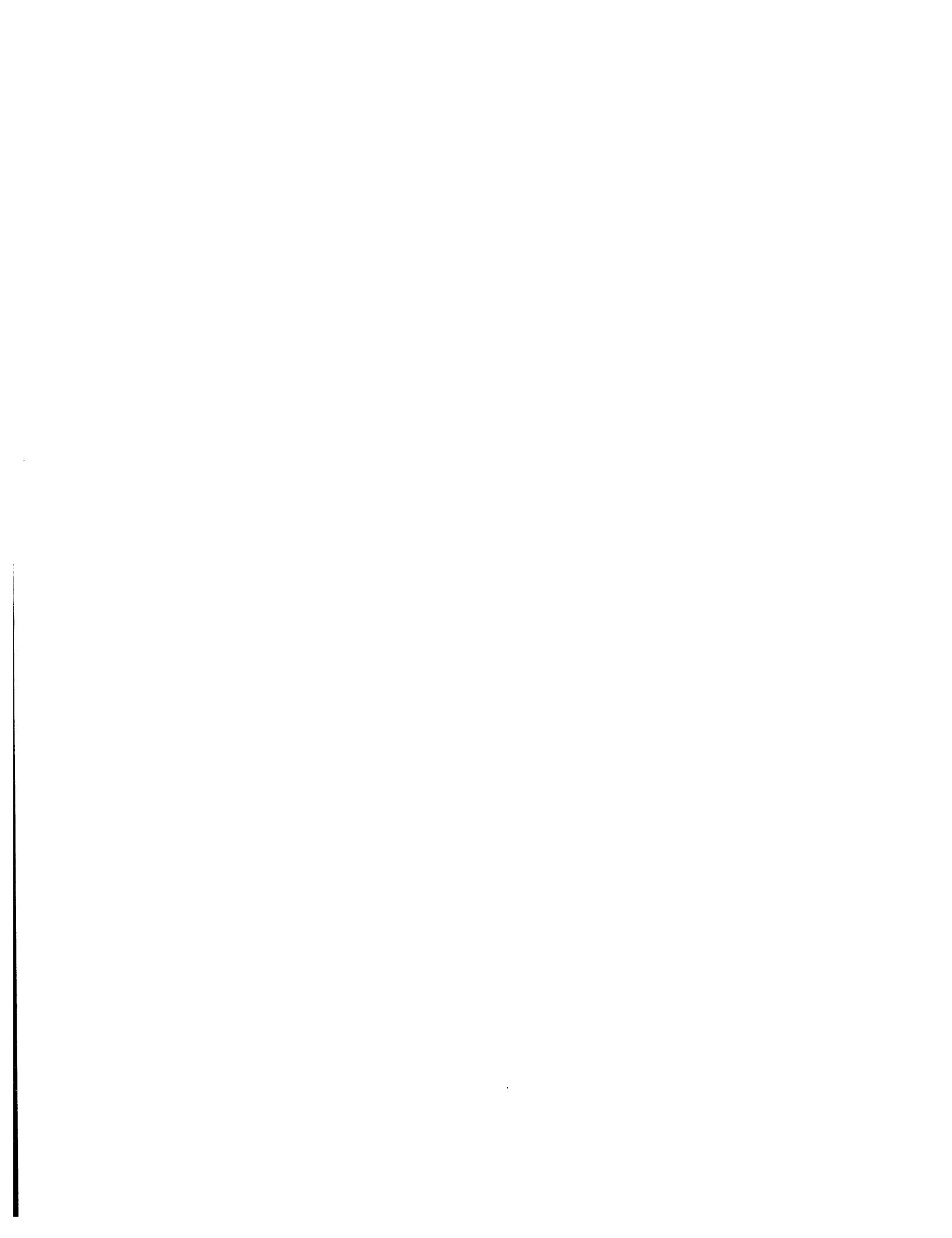
As you know, Battelle-Northwest has been active in research and development in connection with tungsten-UO₂ elements of this general configuration for many months. A very limited amount of irradiation testing of Mo-UO₂ and Nb-UO₂ cermets fabricated by pneumatic impaction has been conducted by Battelle-Northwest. No unusual problems were indicated.

Very truly yours,

F. W. Albaugh, Manager
Reactor and Materials Technology

FWA:KD:nb

cc: JM Musser, Chief
Reactor and Fuels Branch
USAEC
Richland Operations Office


bcc: RF Dickerson
DR de Halas
K Drumheller
WE Roake
→ Central Files/7500
FWA (2)

DECLASSIFIED

**DATE
FILMED**

7/26/94

END

