ExM Progress Report

Daniel S. Katz

1 Project Information

DOE award number ER26012
Name of the recipient University of Chicago
Project title ExM: System support for extreme-scale,

many-task applications

Name of the project principal | Daniel S. Katz
investigator

Date of report May 31, 2011

Period covered by this report | September 1, 2010 — April 30, 2011

2 Introduction

The ever-increasing power of supercomputer systems is both driving and
enabling the emergence of new problem-solving methods that require the ef-
ficient execution of many concurrent and interacting tasks. Methodologies
such as rational design (e.g., in materials science), uncertainty quantification
(e.g., in engineering), parameter estimation (e.g., for chemical and nuclear
potential functions, and in economic energy systems modeling), massive dy-
namic graph pruning (e.g., in phylogenetic searches), Monte-Carlo- based
iterative fixing (e.g., in protein structure prediction), and inverse modeling
(e.g., in reservoir simulation) all have these requirements. These many-task
applications frequently have aggregate computing needs that demand the

fastest computers. For example, proposed next-generation climate model en-
semble studies will involve 1,000 or more runs, each requiring 10,000 cores for
a week, to characterize model sensitivity to initial condition and parameter
uncertainty.

The goal of the ExM project is to achieve the technical advances required
to execute such many-task applications efficiently, reliably, and easily on
petascale and exascale computers. In this way, we will open up extreme-
scale computing to new problem solving methods and application classes.

In this document, we report on combined technical progress of the collabo-
rative ExM project, and the institutional financial status of the portion of
the project at University of Chicago, over the first 8 months (through April
30, 2011)

3 Year 1 Accomplishments Summary and Sched-
ule Status

The objectives below are those listed as for Year 1 in Section 8 of the original
ExM proposal.

3.1 Aim 1: ExM data store development and component-
level testing

3.1.1 Objective 1.1

Detailed analysis of bottlenecks and potential performance optimization op-
portunities for target applications. Detailed analysis of capabilities of target
deployment platforms.

Fraction Complete: 70%
Notes: See §5.1.1

3.1.2 Objective 1.2

Design of virtual data store prototype including: ability to support special-
ized APIs (MPI-IO, HDF5) in addition to POSIX; ability to support cross

layer optimizations through custom metadata.
Fraction Complete: 50%
Notes: See §5.1. Currently our efforts are focused on the POSIX interface.

3.1.3 Objective 1.3

Implementation of data store prototype that: can be instantiated on-the-fly
at application launch time, integrates memory and disk based resources pro-
vided by the application, supports POSIX API, supports a limited number
custom tags for performance optimizations (data prefetching, custom repli-
cation levels, data lifetime directives, file intensity access directives).

Fraction Complete: 50%
Notes: See §5.1

3.1.4 Objective 1.4

Target scaling level: 1,000 nodes and clients demonstrated in application
driven scenarios.

Fraction Complete: 70%
Notes: See §5.1.3

3.1.5 Objective 1.5

Unit based testing and overhead evaluation using microbenchmarks.
Fraction Complete: 70%

Notes: We have increased the Unit Test coverage in MosaStore. See also:
§5.1.2

3.2 Aim 2: ExM Task Graph development and testing
3.2.1 Objective 2.1

Design and implement initial core fast unified task evaluator and queue man-
ager, and in-memory function call / data structure model, integrating Swift,

ADLB, and Falkon.
Fraction Complete: 50%

Notes: Developed infrastructure to deploy distributed many-task sched-
uler on IBM Blue Gene/P (BG/P) over ZeptoOS. Developed and reported
on rapid task launch infrastructure for MPI tasks (JETS). Performed per-
formance analysis using ADLB to launch Falkon/Swift-like tasks on the
BG/P. Developed sequential prototype of new task dependency graph man-
ager based on location-independent execution model.

3.2.2 Objective 2.2

Features will include static graph partitioning with program/APT hints, multi-
level graph partition executor, fast RAM-based task queue executor, initial
integration with ExM data manager, and scheduler integration and MPI ap-
plication handling.

Fraction Complete: 25%

Notes: Initial development of intermediate user code to be used by dis-
tributed task manager. Developed MPICH management hooks for MPI ap-
plication handling.

3.2.3 Objective 2.3

Develop synthetic benchmark suite; test on ALCF BG/P, OLCF XT5, Ter-
aGrid Constellation & XT5.

Fraction Complete: 75%

Notes: Task rate measurement scripts and plot generation tools are in place.
Performance tests have been performed on the BG/P and Cray systems. On-
going work will apply these scripts to developing ExM methods and systems.

3.2.4 Objective 2.4

Scaling targets: 1M node graph on 100K cores, 60 second tasks with 85%
efficiency on Intrepid BG/P. Will apply for INCITE allocations and Blue Wa-
ters PRAC (or Blue Waters Director’s Discretionary allocation) and maintain
current TeraGrid/Ranger/Kraken and ALCF discretionary allocations.

Notes: Scaling target not yet accomplished. Allocations on appropriate
resources have been maintained and used by the the project. ExM is in
active communication with the Blue Waters leadership.

3.3 Aims 3 and 4: System integration and Application
integration and evaluation

We will plan to release code snapshots twice per year, with latest code con-
tinually available to user community via Subversion.

3.3.1 Objective 3.1

Integrate & harden software from Data Store and Task Graph teams.
Fraction Complete: 10%

Notes: We've started to do this, but the software development has had a
slower than expected start.

3.3.2 Objective 3.2

Demonstrate one full stack application workflow (e.g., Montage) integrating
Application /Swift /Falkon/MosaStore operating over thousands of compute
nodes on one large-scale system.

Fraction Complete: 50%

Notes: We plan to demonstrate ModFTDock, and have been working with
additional applications, as discussed in §5.3

3.3.3 Objective 3.3

At least one conference paper will be submitted.
Fraction Complete: 100%

Notes: See §10.1 - we have three accepted conference papers based at least
in part on this work, and one more that is currently under review.

4 Summary comparison of accomplishments
and goals/objectives

We have made good progress towards the objectives listed in Section 3, given
that we are working at 60% funding, and that this report covers just 75% of
the first year.

Regarding the funding, these objectives were written for a project with a
budget of $2.86 over 3 years, while the funding we have received is $1.8m
over 3 years.

5 Technical Details of Accomplishments

5.1 The ExM Data Store

We have explored two data store designs: the MosaStore (http://mosastore.
net/) and the AME (Any-scale Many-task computing Engine) intermediate
data store. While with both systems we aim to offer a high-performance,
reliable data-store, the crucial difference between these two systems is that
MosaStore aims to explore the bounds of obtainable performance when the
storage system design is constrained to offer a POSIX API, whereas the AME
intermediate data store accepts a complete departure from the constraints of
the POSIX API at the cost of application redesign to a new programming
interface.

The rest of this section briefly presents these two systems and our main
progress to date.

5.1.1 The AME Data Store Introduction

In the AME intermediate data store, metadata is fully distributed to a group
of servers by a consistent hash function. With a distributed memory coher-
ence protocol, job dependencies can be resolved in a distributed manner.
Rather than storing the data itself in the DHT, we only store the metadata
and location mapping in the DHT servers. The data can be transferred once
the worker determines which remote site actually holds the data.

In our AME work, the bottlenecks are categorized as Resource Provision-
ing, Job Dispatching, Load Balancing, Data Management, and System Re-
silience. Among those bottlenecks, Job Dispatching, Load Balancing, Data
Management and System Resilience are being addressed in ExM research, as
Resource Provisioning usually involves in policy issues of the institutions who
own the hardware. To solve those bottlenecks, we conducted a cross-platform
study of existing parallel and distributed computing tools.

Job Dispatching: MPI leaves this function to programmers. Commonly,
MPT compiles the list of tasks, which is loaded by all compute nodes, and each
compute node that does its part of the work as identified by the worker’s rank.
This scheme is the most scalable of the ones we covered, but it requires the
compute nodes to load redundant information. Every compute node needs to
load the compiled binary, and finds out its own task. Pegasus/Condor uses
a centralized job dispatcher, the submit host, which keeps a shadow of every
single job. It tracks lifetime state change of the jobs. Thus its scalability
is limited to the capacity of the submit host. Also, it consumes a lot more
memory than the MPI case. Falkon explores a 3-tier architecture: a first tier
submit host, a group of second tier dispatchers, and a group of third tier
workers. Nevertheless, Falkon’s job view is the same as Condor, and limits
the scalability of short jobs (O(1) s). AME’s dispatcher takes advantage of
Falkon’s 3-tier design, and changes the job view from a single job to a text
file at the first layer. AME’s dispatcher does not monitor job status, which
results in higher scalability than Falkon; it is a tradeoff between scalability
and the detailed job status monitoring.

Load Balancing: The MPI standard does not provide such functionality;
ADLB (and other higher level schemes) aims to solve this bottleneck in the
MPI scenario. In the parallel programming languages Cilk, and Parlog, re-
searchers have put effort in the work-stealing algorithm that tries to remedy
the starving situation that may occur. But none of the existing work-stealing
algorithms has ever been proved to scale up to 100,000 cores. AME wants to
address this problem via a local stealing scheme, where each compute node
cannot access every other compute node in the allocation. This is because
the Torus network is a hop-by-hop transmission network, so by limiting the
stealing scope, we can avoid high-latency round-trips. Also, this can balance
the stealing workload across all the compute nodes in the allocation.

Data Management: ROMIO is designed as the I/O support for MPI,
which can also be viewed as the Data Management Module. MPI also leaves

job 256 512 1024 2048 4096 8192 16384
length | cores | cores | cores | cores | cores | cores | cores
(sec)

1 66.39% | 65.79% | 65.84% | 66.12% | 65.60% | 65.23% | 64.88%
4 89.39% | 89.37% | 89.37% | 88.86% | 89.21% | 89.14% | 87.94%
16 97.03% | 97.12% | 97.11% | 97.08% | 97.06% | 97.01% | 96.82%
64 99.27% | 99.26% | 99.26% | 99.25% | 99.25% | 99.12% | 98.87%

Table 1: Linear Scalable Efficiency of 1,4,16,64,256 seconds job length with-
out data

this feature to programmers. In most MapReduce scenarios, the data to be
processed are assumed to reside on the compute nodes. HDFS (Hadoop Dis-
tributed File System) places 3 replicas of each data chunk over the compute
nodes. Other work tries to isolate the data storage and processing. HDFS’s
scalability is mainly limited by its single management node architecture. Re-
sults show it scales up to the level of 1,000 compute nodes, but not more.
There are two branches to build the data store. One is MosaStore, which is
a chunk based, storage and processing isolated data store. The other one is
the AME intermediate data store, which is file based. It employs a group
of dedicated metadata servers that are running on top of a consistent DHT
servers for scalability purpose. As it is file based, the file size limit will be
bounded by the ramdisk size of compute nodes. MosaStore does not have
this problem, as the file size limit is subject to the aggregated ramdisk size.

System Resilience: MPI does not provide any resilience features: when
an MPI program fails, the user needs to restart the run. Condor uses a
checkpointing scheme for resilience. MapReduce duplicates jobs as it takes
node failure as a normal situation rather than an exception in the commodity
clusters. We are still working on how AME should address this issue.

5.1.2 AME Unit Test

Table 1 shows AME job dispatching performance without data. In the test
setup, each core runs 16 jobs with an identical run time. The ideal time to
solution is 16 seconds, 64 seconds, 256 seconds, 1024 seconds, respectively,

job 256 512 1024 2048 4096 8192
length(sec) | cores cores cores cores cores cores
1 24.14% | 23.66% | 24.99% | 24.24% | 22.07% | 21.23%
4 70.86% | 70.64% | 70.53% | 70.84% | 67.38% | 63.57%
16 93.86% | 91.66% | 91.38% | 91.87% | 90.20% | 89.14%
64 97.61% | 98.08% | 98.00% | 97.66% | 98.22% | 97.10%
Table 2: Linear Scalable Efficiency of 1,4,16,64,256 seconds job length with
data
file 256 512 1024 2048 4096 8192
size(byte) | cores cores cores cores cores cores
1K 90.77% | 90.00% | 89.88% | 88.45% | 87.00% | 86.45%
1M 91.04% | 87.76% | 88.99% | 88.32% | 86.66% | 86.03%
10M 87.92% | 88.41% | 86.64% | 86.36% | 86.06% | 83.87%

Table 3: Linear Scalable Efficiency of 16 seconds job length with data size of
1 KB, 1 MB, and 10 MB

for job lengths of 1 second, 4 seconds, 16 seconds, and 64 seconds.

Table 2 shows AME performance with intermediate data store. In the
test setup, each core runs 16 jobs. The 16 jobs are divided into 8 pairs,
where each pair of jobs has a file dependency. The file size in this test is
10 bytes. The ideal time to solution is 16 seconds, 64 seconds, 256 seconds,
1024 seconds, respectively, for job lengths of 1 second, 4 seconds, 16 seconds,
and 64 seconds.

Tables 1 and 2 show that the AME system features linear scalability for
both job dispatching and intermediate data management. Table 3 shows
that using 10 MB files has a ~2-3% overhead, and at the 8,192-core scale
have a ~3% overhead compared to the 256-core scale.

of jobs 1 core (s) 512 cores (s) | speedup
mProject 1319 21220.32 56.53 375.38
mDiffFit 3883 35960.12 95.32 377.27
mBackground | 1297 9815.92 64.44 152.33

Table 4: Performance Comparison of AME and Single-node execution

5.1.3 AME Scaling

We have scaled AME’s intermediate data store up to 8,192 cores on ANL’s
IBM Intrepid with linear scalability. From the 256-core scale to 8,192-core
scale test, there is 1% overhead for the 64-second job length with 8 rounds of
data shuffling. Then, from the data size test, transferring 10-MB files places
a overhead of 3.08% comparing to the 10-Byte file size at 8,192-core scale.
We ran a test of Montage that produces a 6 x 6 mosaic centered at galaxy
M101. It has 1,319 input files, each of which is 2 MB. Stage 1 outputs 1,319
4-MB files. We ran the 2nd and 5th stage with the AME built-in reduction
function. Stages 3 and 6 runs on the login node, as they analyze summarized
files, and generate new jobs. Stages 1, 4, 7 each run in a parallel manner;
they process the input/output data with the data management scheme we
described in previous sections. Each job in Stage 7 writes a file of 4-MB size.
We compare the performance of the 512-core approach with a single node
execution to show speedup, as in Table 4. The time is measured in seconds.

The 1-core data is estimated from the performance of the login node, which
is 4 times faster than a compute node. The mBackground stage has a lower
speedup because it moves the output from compute nodes to GPFS. If we
can run mAdd in an MTC style, then we could reduce this consumption by
transferring data among compute nodes, and only port the mAdd output to
GPFS. The mImgtbl and mBgModel stages are done with the AME built-
in reduction function. The processing times are short, 9.6 and 14 seconds
respectively. In this test, we reduce the data movement from compute nodes
to GPFS by 45.6 GB, as shown in Table 5.

10

GPFS (MB) | AME (MB) | Saving(%)

mProject-input 2800 2800 0%
mProject-output 5500 0.36 100%
mDiffFit-input 31000 0 100%
mDiffFit-output 3900 0.81 100%
mBackground-input 5200 0 100%
mBackground-output | 5200 5200 0%

total 53600 8001.17 85.72%

Table 5: Comparison of Data Transfer Amount between GPFS and AME
Approaches

5.1.4 The MosaStore Data Store

MosaStore (http://mosastore.net/) is an experimental data-storage sys-
tem. MosaStore is designed to harness unused storage space from network-
connected machines to build a high-performance, yet low-cost datastore that
can be easily configured for optimal performance in different environments
and for different application data access patterns while still maintaining a
POSIX API. MosaStore aggregates distributed storage resources: storage
space (based on spinning disks, SSDs, or memory) as well as the I/O through-
put and the reliability of the participating machines.

We have two strategic goals with MosaStore: First, MosaStore is meant to
support full fledged applications that are deployed in contexts where ag-
gregating resources into a specialized storage system is advantageous. For
example, MosaStore can be used to support many-task applications, to pro-
vide a specialized, high-performance scratch space, to support checkpointing,
or as a glide-in datastore. Second, we will use MosaStore as a platform to
explore and evaluate innovations in the storage-system architecture, design,
and implementation. For example, we plan to extend MosaStore to explore
the feasibility of cross-layer communication through custom file metadata,
explore solutions to automate storage-system configuration, to explore sup-
port for data deduplication, to explore the feasibility of a versatile storage
system. These are only a few of the advanced research projects that will ex-
ploit (and hopefully contribute) to the MosaStore codebase and, during the
past year, we have made considerable progress in this direction (accepted

11

paper 3 in §10.1).

Currently we have a full prototype implementation of the system. So far we
have tested this prototype with two scientific-workflow applications (modFT-
Dock and Montage) on pure-Linux clusters and at a limited scale. Currently
we are focusing our effort on supporting larger-scale execution on a wider
class of platforms (e.g., Argonne’s IBM BlueGene/P, Cray), incorporating
key performance optimizations, and extending the number of applications
supported.

It is worth highlighting a number of key MosaStore features or utilities we
have already successfully incorporated: the ability to expose file location
(through file extended attributes); a profiler to better understand the struc-
ture of all FUSE calls MosaStore serves; preliminary experience with evalu-
ating the energy footprint of the MosaStore datastore; and experience with
automating the configuration of the datastore to determine performance-
optimal configurations.

An ongoing technical document describing MosaStore and providing details
about the design, current implementation status and short- and mid-term
plans is available here: http://www.ece.ubc.ca/~matei/ExM. Internal/

5.2 Task Graph

To support the development of the ExM dis- User script
tributed task manager, we have carried out the Swift, Python libraries
following investigations. The system is dia-

. . Progress manager:
grammed in Figure 1 for reference. Turbine tools

Messaging and distribution:
5.2.1 System infrastructure ADLB/MPI

. . . . Infrastructure and deployment:
The procedures involved in rapidly launching JETS. MPICH oszugport

multiple concurrent MPI tasks were not previ-
ously supported on HPC systems such as the
BG/P. To address this, we developed a light- Figure 1: ExM components
weight infrastructure to deploy MPI programs for workflow generation and
over a network of worker agents. This mecha- deployment.

nism, called JETS, enables very fast execution

of small tasks on a variety of resources. The mechanism is consists of in-

12

tegration with ExM-led changes to the MPICH implementation and tools
provided by the ZeptoOS project. In cooperation with application users of
the popular NAMD molecular dynamics simulator, we demonstrated that
the ExM application model is useful for scientific workloads (see Figure 2).
However, JETS relies on a centralized component; additional distribution of
the task management infrastructure is necessary.

5.2.2 Task distribution

1,000
ExM proposes to distribute 900 V \v

user tasks through the The fgz
Asynchronous Dynamic Load- 600

Balancing Library (ADLB) li- 500
brary, and MPI-based distributed 400

load

master-worker scheme. We jgg

investigated task distribution 100

rates through an ADLB-based 0 - . .
0.0 2.5 5.0 7.5 10.0 12.5

program called batcher, which
launches user commands across
the compute infrastructure. We

used JETS to deploy batcher Figure 2: Results from many parallel task
and measured ADLB perfor- NAMD run in JETS on the BG/P.

mance in multiple OS and com- peyits show high wutilization of the 1,02/
munication modes on the BG/P,

including a) native MPI on the
IBM-provided kernel, b) native
MPT on the ZeptoOS kernel, and
c) MPI over TCP on the ZeptoOS kernel. Only method c) currently allows
the use of fork(), which is required for our purposes. We found that a)
and b) both perform extremely well and c) results in significant latencies,
however, the imposed delays will not prevent us from reaching the scaling
target.

time (minutes)

|— 4-proc, 20 timesrcpjohs|

nodes divided into 256 concurrent 4-node
tasks. Dips in the load level are caused by task
stop/start in the replica exchange algorithm.

5.2.3 Language support and dependency management

The ExM team has begun the design of an intermediate code layer to support
the distribution of the dependency management required for our target user

13

languages: Swift, and a Python-based library. The language implementa-
tions will generate the intermediate code, called the ExM Prototype Pseudo
Instruction Code (EPPIC). Preliminary EPPIC instructions may be evalu-
ated in the ExM Turbine library. Turbine is a small library to evaluate the
dependencies generated the user script and drive the execution of the user
application. The Turbine calls will shortly be integrated in the batcher pro-
gram to enable data dependency-driven execution in and ADLB-like setting,
which will thus enable the development of complete applications.

5.3 Integration and Applications

We have made a good start at working with various applications, specifically:

e ModFTDock — Protein Docking — Docking can identify molecules hav-
ing high affinity towards a particular protein. This property can be
used for selection processes in drug design. ModFTDock capabilities
include docking RNA to protein molecules. This is done by providing
a database of protein molecule’s 3D spatial properties (including sepa-
ration parameters) represented in the form of a multicolumnar layout
through a ‘.pdb’ file format.

e Montage — Astronomical Image Mosaicking — complex multi-stage work-
flow, medium data movement requirements, large amounts of interme-
diate data

e SCEC Cybershake — Seismic Hazard Assessment — very complex data
movement, O(1m) tasks per run

e CIM-EARTH - climate and energy policy — a collaborative, multi-
institutional project to design a large-scale integrated modeling frame-
work as a tool for decision makers in climate and energy policy. CIM-
EARTH is intended to enhance economic detail and computational ca-
pabilities in climate change policy models, and to nucleate and support
a broad interdisciplinary and international community of researchers
and policymakers. A complete run involves O(100k) tasks.

e Hybrid Multiscale Subsurface Simulations — simulations of hybrid cou-
pling of pore- and continuum-scale flow and reactive transport models.

14

This application generates many MPI tasks, and is a good laboratory
for hybrid MPI/many-task computing models.

e Parallel high-resolution climate data analysis. With an order of magni-
tude increase in the volume of output data produced by the Community
Earth System Model (CESM), post-processing model output data has
become a bottleneck in the analysis process. We are working, in col-
laboration with the ASCR project “ParVis” on a parallel many-task
version of the CESM atmosphere model data analysis workflow using
Swift.

e Projecting impacts on hydrology and energy development by improv-
ing regionally coupled hydrology and climate models. This application
uses the SWAT hydrology simulation program in a multi-round genetic
algorithm pattern, and has many challenging data-intensive character-
istics. We have started working on expressing this application as a
many-task Swift script and will continue working on it with an ExM
summer student June-Aug 2011.

5.3.1 Application Analysis

We have made significant inroads towards analyzing the performance bot-
tlenecks and optimization opportunities for the target application. We have
gained insights into the low level operations and data exchange patterns
through system-level profilers such as the Darshan framework developed at
Argonne’s MCS department. As an illustration of the above mentioned anal-
ysis, Figure 3 contains a series of plots showing the various application 1/0O
patterns and associated costs for the ModFTDock application. Note that
the MPI related operations are not the application specific in that they have
been artificially injected in the application in order to trigger the Darshan
profiler.

The analysis plots in Figure 3 give a view of low-level activities going on
during a unit run of the modFTDock application. More specifically, we gain
the following insights for each run of the application:

1. It takes 15 seconds to complete, of which about 1.9 seconds (13.2%)
are spent in the reading of metadata operation (shown by the blue part

15

Average /O cost per process IfQ Operation Counts

100 180
160 -
80 |
g Z140 |
B 4
2 60 [120 |
5 g
@ & 100 F
=3 b
fal z
g 3 80
Lyt £ 60 -
&l
0 20 -
0 L . L om L . L
Read Write Open Stat Seek Mmap Fsync
M POSIX mmmmm MPHO Coll. m—
Other (including application computs) == MPL-IO Indep. E===
IO Sizes IO Pattern
a9r Tr
8l
6F
g
£6r 35 r
<5 a
! ¥
= A
3 i
&l Al
1k
1k
0 I P I P Lo
P P
a;% %, %, %} % 4@4:’1,0 ‘?tz) "q,z G, o .
* % %Y. %, % Read Wiite
Total mmssm Consecutive s
Read mmmmm \Vrite Emm Sequential mmmm

Figure 3: Darshan Plots for the ModFTDock Application

16

of top-left plot).

2. It involves about 180 I/O operations dominated by the POSIX open
calls followed by the stat calls (shown by the top right plot).

3. It has 9 write operations, each writing data less than 100 Bytes (shown
by the bottom left plot).

4. Tt has 7 sequential and consecutive write operations each (shown by
the bottom right plot).

This basic information is useful to us as we plan how to create and run
ensembles of the application, as it tells how the total I/O load would occur if
all I/O simply used the shared file system, and it points us to where collective
I/O and intermediate data storage will be needed.

6 Cost Status

As of 4/30/11, we have spent $33,900. If we continued at the current rate, at
the end of year 1, we will have spent $103,512 and will have unspent funds
of $119,497. We are underspent for two reasons:

1. We started spending late, due to staff transitioning from other projects.

2. Due to the reduced award, we decided to change the spending profile,
and push some of the integration and applications work to start late
in the first year rather at the start of the project, so we would be able
to have a larger fraction of a staff member for the remainder of the
project. (e.g., had we originally planned 0.75 FTE of a staff person on
these activities over the full 3 years, with the reduced budget, rather
than having 0.5 FTE staff over 3 years, we would have 0.65 FTE staff
over 2.25 years)

We plan to increase our spending by increasing adding a large fraction of
a staff member to work on Aims 3 and 4 starting June 1, 2011, for the
remainder of the project.

17

7 Changes

There have been no changes in approach or aims. The only significant changes
to the objectives and scope are those due to the reduced budget.

8 Problems

There have been no significant problems or delays, and none are currently
anticipated.

9 Key personnel & consortium/teaming ar-
rangement

There have been no absences or changes of key personnel or changes in the
consortium/teaming arrangement.

10 Products & technology transfer activities

10.1 Publications

Accepted /Published:

1. Swift: A language for distributed parallel scripting. Michael Wilde,
Mihael Hategan, Justin M. Wozniak, Ben Clifford, Daniel S. Katz, lan
Foster. Parallel Computing Journal, in press.

PDF: http://www.mcs.anl.gov/uploads/cels/papers/P1818.pdf

2. Towards Automating the Configuration of a Distributed Storage Sys-
tem. Lauro B. Costa, Matei Ripeanu, 11th ACM/IEEE International
Conference on Grid Computing (Grid 2010), Brussels, Belgium. Octo-
ber 2010.

PDF: http://goo.gl/BdVOt

18

3. Assessing Data Deduplication Trade-offs from an Energy Perspective.
Lauro Beltro Costa, Samer Al-Kiswany, Raquel Vigolvino Lopes, Matei
Ripeanu, Workshop on Energy Consumption and Reliability of Storage
Systems (ERSS), Orlando, Florida, July 2011.

PDF: http://goo.gl/VYUJ7

4. JETS: Language and System Support for Many Parallel Task Com-
puting. Justin M. Wozniak and Michael Wilde, Workshop on Paral-
lel Programming Models and Systems Software for High-End Comput-
ing (P2S2) at International Conference on Parallel Processing (ICPP),
Taipei, Taiwan, September 2011.

PDF: http://www.mcs.anl.gov/uploads/cels/papers/P1885.pdf

Submitted:

1. AME: An Any-scale Many-task Computing Engine, Zhao Zhang, Tan
Foster, Daniel Katz, Michael Wilde, Ioan Raicu, submitted to SC11,
Seattle, Washington, November 2011.

Student work towards degrees:

1. Lauro Costa, Ph.D. proposal, for Ph.D. qualifying exam in June 2011:
Automating the Configuration of Distributed Storage Systems

2. Zhao Zhang, Master’s paper, for presentation in June 2011: Bridging
the Gaps between MTC and Supercomputers.

10.2 Web site

Public web site: https://sites.google.com/site/exmcomputing/ (Cur-
rently under construction)

Internal web site: https://sites.google.com/site/exmproject/ (Cre-
dentials can be provided for DOE program managers on request)

10.3 Collaborations

We have collaborated with the following projects/personnel:

19

The current and anticipated results of the ExM project play a leading role in
a proposed SciDAC Institute for intelligent dynamic ensemble applications
(IDEA) that involves: Tim Germann (LANL, PI of the Extreme Materials
Exascale Co-design Center), Jeff Hammond (Argonne, co-PI of the Chem-
istry Exascale Co-design Center), Rob Jacob (Argonne, PI of the DOE-BER
climate data analysis and visualization project ParVis), Karen Schuchardt
(PNNL, working on bound uncertainty in subsurface models under SciDAC),
and Vinod Tipperaju (ORNL, a leader in the development and application
of Global Arrays and other PGAS programming models).

We have begun active prototyping on the ParVis data analysis project and
the subsurface modeling project.

We collaborate with the NSF-sponsored CIM-EARTH project on energy-
economics models.

10.4 Technologies/Techniques

We have developed the “JETS” middleware technology to enable many-task
execution of MPI applications on the BG/P architecture. (See §5.2.1.)

10.5 Inventions/Patent Applications

None.

10.6 Other products

None.

20

