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ABSTRACT

A study of the free vibrational characteristics and of the response to horizontal ground

shaking of a rigid cylindrical tank containing an inviscid liquid with a continuous

vertical variation in density is presented. The response quantities examined include

the vertical sloshing motions of the liquid at its free-surface, and the impulsive and

convective components of the hydrodynamic wall pressures and associated tank forces.

The equations of motion for the system are formulated for an arbitrary variation in

liquid density but the solutions presented are for a density that increases exponentially

from top to bottom. Comprehensive numerical data are included which elucidate the

underlying response mechanisms and the effects and relative importance of the various

parameters involved. The solution for the continuous density variation considered

herein is also compared with a previously reported solution in which the liquid was

modeled as a multi-layered, discrete system.
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EXECUTIVE SUMMARY

" The study reported herein is motivated by tim need for improved understanding of the

response to earthquakes of tanks in nuclear facilities that store high-level radioactive

wastes. It deals with the response to horizontal ground shaking of rigid vertical

circular cylindrical tanks containing incompressible and inviscid liquids the densities

of which increase continuously from top to bottom. The study complements those

of layered liquids reported previously in Brookhaven National Laboratory Reports

52378 and 52417. Both the impulsive and convective effects are examined.

The equations of motion for the system are first formulated for liquids with an ar-

bitrary vertical variation in density, but tile solutions presented are for liquids the

densities of which increase exponentially from top to bottom. In addition to the

free vibrational characteristics of the contained liquid, the response quantities exam-

ined include its sloshing motion at the free-surface, and the impulsive and convective

components of the hydrodynamic wall pressures and associated tank forces. Com-

prehensive numerical solutions are presented which elucidate the effects and relative

importance of the numerous paranaeters involved and the relationship of these so-

lutions to those obtained for an equivalent homogeneous system. Some attention is

also given to the interrelationship of the solutions for the continuous density variation

considered herein and those for its discretized, multi-layered representation reported

previously.

The principal conclusions of the study are as follows :

1. Unlike a homogeneous liquid, which for a given horizontal natural mode of vi-

bration has a single vertical nlode, the inhomogeneous liquid examined has an

infinite number of such modes, eacll associated with a distinct frequency. The

latter frequencies are smaller than the corresponding frequency of the homoge-

neous liquid.

2. For any horizontal mode of vibration, the n th vertical mode of the inhomoge-

neous liquid has n- 1 zero crossings, and its frequency decreases with increasing
. values of n.

3. For a specified horizontal mode of vibration, any two vertical modes satisfy a

simple orthogonality relationship.
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4. When normalized with respect to the pressures computed on the assumption

that the entire liquid acts as a rigid mass, the coefficients in the expression for

the impulsive and all convective components of the hydrodynamic wall pressures

add up to unity. The same is also true of the corresponding coefficients for base

shear and base moments in the tank.

5. The impulsive component of response may be obtained either by evaluating

all the convective components and subtracting their sum from the response

computed on the assumption that the entire liquid acts as a rigid mass, or,

independently, without the prior evaluation of the convective effects.

6. When normalized with respect to the result computed on the assumption that

the entire liquid in the tank acts as a rigid mass, the total hydrodynamic wall

force or base shear for an inhomogeneous liquid with values of pl/po in the range

between 1 and 0.25 may be considered to be equal to that for a homogeneous

liquid. The same is also true of the moment induced above the tank base.

These two effects may, therefore, be evaluated from well-established procedures

for homogeneous liquids. This approximation, however, may not be adequate

for the foundation moment, particularly for broad tanks with high gradients in

liquid density.

7. The finite-difference representations of the equations for the response of the

continuous system examined here are the same as the response expressions for

the discrete, layered system presented in the above-referenced BNL reports.
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SECTION 1

" INTRODUCTION

A sequel to two recent contributions [1, 2], the study reported herein is motivated by

the need for improved understanding of the response to earthquakes of tanks in nuclear

facilities that store high-level radioactive wastes. In some cases, the contents of these

tanks cannot adequately be modeled as homogeneous liquids, and it is necessary to

consider more complex representations.

In a series of recent studies [1, 2, 3], the tank contents have been modeled as discrete,

layered systems of two or more homogeneous liquid layers of different thicknesses and

densities. The more general of the reported analyses [1, 2] permit consideration of

an arbitrary number of layers, and may also be used to approximate the response of

systems with continuous variations in density. For specific forms of density variations,

however, it is possible to obtain simpler analytical solutions, and it is the purpose of

this report to present such solutions for cylindrical tanks for which the density of the

contained liquid increases exponentially from top to bottom.

The governing equations of motion are first formulated for systems with an arbitrary

vertical variation in liquid density, but the solutions presented are limited to the ex-

ponential variation. Both the free-vibrational characteristics of the system and its

response to a horizontal ground shaking are studied. The response quantities exam-

ined include the vertical sloshing motions of the liquid at its free-surface, and the

impulsive and convective components of the hydrodynamic wall pressures and associ-

ated tank forces. The impulsive effects reflect the action of the part of the liquid that

may be considered to move in synchronism with the tank wall as a rigidly attached

mass, whereas the convective effects represent the action of the part of the liquid un-

dergoing sloshing motions. Comprehensive numerical solutions are presented which

elucidate the effects and relative importance of the numerous parameters involved and

the relationship of these solutions to those obtained for an equivalent homogeneous

system. The interrelationship of the solutions for the continuous density variation

considered herein and those for its discretized, multi-layered representation is also
identified.
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SECTION 2

SYSTEM CONSIDERED

The system investigated is shown in Figure 2.1. It is a rigid, vertical, circular cylin-

drical tank of radius R that is filled to a height H with an inhomogeneous liquid

the mass density of which increases continuously from top to bottom. The liquid is

presumed to be incompressible, irrotational and inviscid, and only linear actions are

examined. The tank is considered to be anchored to a rigid, horizontally moving base.

Points within the tank-liquid system are specified by the cylindrical coordinates, r, 0

and z, as shown in the figure. The heightwise variation of the liquid density, p(z), is

defined by

p(z) = poe -_(=I") (1)

where po represents the density value at the tank base, and /3 is a dimensionless,

positive decay factor. Figure 2.2 shows the variations of p(z) for different values of

pl/po, where pl repIesents the top value of the liquid density. The corresponding

values of/3 are shown in parentheses.

The exciting motion is considered to be uniform over the tank base and to be directed

along the 8 = 0 coordinate axis. The acceleration of the base motion at any time t

is denoted by _g(t), and the corresponding velocity and displacement are denoted by

_g(t) and xg(t), respectively.
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SECTION 3

GOVERNING EQUATIONS

3.1 Background Information

The response of the liquid is governed by the system of differential equations,

Or-_+ - + - o (2)r-_r r2002 OzOt
and

0 (0_) 02d OPgd= 0 (3)c3"--_P -_ +Pot 2 Oz

in which d=d(r,z,O,t) is the vertical sloshing displacement of the liquid at an ar-

bitrary point and time, and _ = O(v,z, 0, t) is a velocity potential function which is

related to the hydrodynamic pressure, p = p(r, z, 0, t), by

0_
p= p--_ (4)

and to the radial and tangential components of i quid velocity, vr and vo, by

O@ 1 O@
vr = Or vo= -- _ (5)r O0

Equations (2) and (3) are deduced from more general expressions presented by Yih

[4] by expressing the latter in cylindrical coordinates and specializing them to the

incompressible liquid considered herein. For a homogeneous liquid with p = constant,

Od O_
0-7= - o_ (6)

and equation (2) reduces to the well-known Laplace's equation W2 _ = 0.

The solutions of equations (2) and (3) must satisfy the continuity of radial velocities

at the tank-wall, defined by

/_ __'r r-R

the condition of no vertical motion at the tank-base, defined by

(d)_=o = 0 (8)

and the linearized pressure condition at the free liquid surface, defined by

--_-gd =0 (9)z-H

where g is the acceleration of gravity.
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3.2 Equation of Motion in Terms of a Single Unknown

Following the approach used in the analysis of the layered system examined in Ref-

erences 1 and 2, the potential function _bis expressed in the form

_>(r,O,z,t) -- -_g(t)rcosO + _b(r,O,z,t) (10)

where the first term on the right side provides for the rigid body motion of the tank,

and the potential function _bprovides for the relative motion of the liquid and tank.

On substituting equation (10) into equations (2) and (3), one obtains

02_ 10_ 1 02_, 02d
Or2 ' + = o (11)r Or r2 002 OzOt

and

O(0_,) 02d Op Op r_,(t)cos 0 (12)c9"-_P -_ + pcgt2 Oz g d - -_z

The solutions of equations (11) and (12) may be obtained by the method of separation
of variables in the form

d(r,z,O,t)= D(z,t)X(r)cosO (13)

_p(r,z,O,t)= _(z,t)X(r)cosO (14)

That the function X(r) in these two expressions must be the same follows from

equation (12). On substituting equations (13) and (14) into equation (11), separating

the resulting functions of r from those of z and t, and equating each set to -(A/R) 2,

where A is a dimensionless constant, one obtains Bessel's differential equation for

X(r) and the following relation between _ and D :

R2 02D
• (_,t) = _20zOt (_)

Next, on using the antisymmetry condition at r = 0 and the continuity condition for

radial velocities at r = R, the solution for X(r) can be shown to be given by any one

of an infinity of Bessel functions of the first kind and first order. The m th of these

functions may be expressed as

(r) (16)x.(r) = B.J, _.-_

where Bm is a constant that remains to be determined, and Am is the m th root of

the first derivative of Jl(A), the first three values of which are

A1 = 1.841 A2 = 5.331 A3 = 8.536 (17)
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Equation (16) effectively defines the radial variation of the displacement d when the

liquid is oscillating in its ra th horizontal mode of vibration. The displacement d

at an arbitrary point and time is then determined from equation (13) as a linear

combination of its modal components to be

oo

• d(_,_,O,t)= _ Dm(_,t)J'(_) co,O (18)_=l J'(_)

where the constant B._ in equation (16) has been absorbed into the function D.,;

= r/R and _/ = z/H are dimensionless radial and vertical position coordinates;

and Dm(_/,t) represents the instantaneous value of the vertical displacement of a

liquid particle at the junction of the tank-wall and the 0 =0 plane when the liquid is

vibrating in its mth horizontal natural mode. The corresponding expression for ¢ is

determined from equations (14), (15) and (16) to be

oo R2 0b_ J,(_)
¢(_,_/,O,t) =- _ _ (19)

,,,=__ tt Orl J_(_,,,) cosO

where a dot superscript denotes differentiation with respect to time.

On substituting equations (18) and (19) into equation (12) and making use of the

orthogonality of the Bessel functions, the equation of motion for the system can be

expressed solely in terms of the function Dm(rl, t), as

P cgrf k Or/ Or/ p _ b_ + _ _-_Dm = --emAm Zo(t)
(20)

where
2

era- A_-I (21)

Furthermore, on making use of equations (10), (18) and (19), the boundary conditions

defined by equations (8) and (9) reduce to

(D.,).=0 = 0 (22)

A_ H 011 F gD,,, = -e.,Rfcg(t ) (23)z-'tt

After determining the functions Dm= DIn(T/,t) for different values of m, the displace-

ment d, the potential functions _ and ¢, and the hydrodynamic pressure p may be

computed from equations (18), (19), (10) and (4), respectively.
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For the system with the exponential vaz'tation in liquid density considered herein,

equation (20) reduces tc

R -- _D,, = e,_A, _:_e(t) (24)

3.3 Relationship with Layered Systems

It is instructive to compare equation (19) for the continuous system with the corre-

sponding expression for the discrete, layered system examined in Reference 1. The

potential function _j for the j th layer of the latter system is given by

(25)
m--'--|

where aj = Hj/R and T/j= zj/R. Note that unlike the distance coordinate r/employed

in the analysis of the continuous system, which is normalized with respect to the

liquid depth, H, the coordinate r/j i3 normalized with respect to the tank radius, R.

Note further that as the layer-height, Hj = Az, is decreased, crj = Az/R tends to

zero, the cosh functions in equation (25) tend to unity, the sinh function tends to

$,,,Az/R = _,,, (H/R)Ar/, and equation (25) bezomes the finite-difference counterpart

of equation (19). It can similarly be shown that the equations of motion for the layered

system (equation 28 of Reference 1) are merely the finite-difference counterparts of

equation (20). It follows that, contrary to the view expressed in Reference 5, the

representation of the continuous system as a multi-layered system is indeed a valid

approximation. For a discussion of the accuracy of this representation, the reader is

referred to References 2 and 6.
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• SECTION 4

FREE VIBRATION

On setting the right-hand side of equation (24) equal to zero and letting Dm(yl, t) =

/)=(r/)e iw't, where i = _ and ¢o,,, is the circular frequency of the mth horizontal

mode of vibration, one obtains

in which C., is a dimensionless factor related to w,_ by

w.=C_ g_ (27)

Similarly, the boundary conditions defined by equations (22) and (23) can be ex-

pressed as

(b._),=0 = 0 (28)

(ab,_ _ H B_ ) =o (29)

With appropriate reinterpretations of the symbols involved, equations (26), (28) and

(29) can be shown to be the same as those presented by Lamb [7] for the flow of

inhomogeneous liquids in rectangular channels.

The nature of the solution of equation (26) depends on whether the roots of the

associated characteristic equation are real-valued or complex, and this depends, in

turn, on the value of C,,. For

i fl(A,,HIR) (30)c., >  2/4 +

the roots are real, and on satisfying the boundary condition defined by equation (28),
the solution can be written as

D,,,(rl) = E,,, e_"/2 sinh(%_tl) (31)

where

7 .+ -

4-I



and E,n is an arbitrary constant. Note that 7,, is a function of the still unknown

frequency coefficient C,n. On making use of the second boundary condition defined

by equation (29), it is found that 7,, and Cr_ are also interrelated by

i _H/RC,_ = _/2 + 7m/tanhT_ (33)

and on eliminating Cm from equations (32) and (33), one obtains the transcendental

equation

7_ + tanhT,_ +'4"- '_ = 0 (34)

It can be shown that equation (34) has a single positive root, 7ml, and that this root

exists only if

<0 (35)

With the value of 7,_1 established, the displacement configuration for the mth hori-

zontal and first vertical natural mode of vibration,/)m] 07), is determined from equa-

tion (31) by replacing the subscript m by ml, and the associated circular natural

frequency, w,nl, and frequency coemcient, C,_t, are determined similarly from equa-

tions (27) and (33), respectively. It should be recalled that equations (31) and (33)

are valid only as long as equation (35) is satisfied.

For values of C,n that are smaller than the right-hand member of equation (30), the

roots of the characteristic equation are complex, and the counterpart of equation (34)
becomes

tan_/m 4 F _m -0 (36)

The latter equation has an infinity of roots, 7ran, where n is an integer ranging from

2 to oo when equation (35) is satisfied and from 1 to oo when equation (35) is not

satisfied. It follows that, for each horizontal mode of vibration, there is an infinity of

vertical modes, each associated with a distinct frequency. Subject to the indicated

qualification on n, the mth horizontal and n th vertical mode of vibration, D,nn(r/),

is given by

D_,,(TI) = Era. e_'12 sin(_/_.17) (37)

where E_. is an arbitrary constant, and the associated frequency, w.,., may be ex-

pressed as
/'..'7---

w,.. = C,.. _/g-_ (38)
¥ /t
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in which the dimensionless coefficient, Cm., is determined from

" Am(H/R) (39), C,,,n = /3/2 + 7ran/tanTmn

For a homogeneous liquid for which/3 = 0, equation (34) yields

7- = X_ H- (40)R

which when substituted into equation (33), yields the well-established expression for

the frequency coemcient (see, for example, Reference 8)

The associated mode of vibration is determined from equation (31)to be

b,.(tl) = E,.sinh (A,.Hrl) (42)

The corresponding solutions from equations (36). (39) and (37) are trivial and are

not considered.

4.1 Orthogonality of Modes

The modal displacements defined by equations (31) and (37) satisfy the orthogonality
relation

[/3+ 8(rI - 1)]p(_)bm,(rl)D,_,(vl)dTl = 0 for r _ s (43)

in which the term involving the delta function, 6(r/- 1), accounts for the discontinuity

in the liquid density value at the free-surface. The derivation of this equation follows

well-established steps. Specifically, equation (26) for b_,(r/) is multiplied through

by p(r/)/)rn,(r/) and integrated from 0 to 1; the term involving the second derivative

of D,n,(r/) in the resulting expression is integrated by parts; and use is made of the

boundary condition defined by equation (29) to obtain

- p(rt) bin, (r/) D.,. (rt) dr/=
r

. . [' oh,.. oh,.,C_'---:p' D.,(1)Din,(1) + .. A,,,HIR Orl 011
d_ (44)

• These steps are repeated by starting with the/)_,07) mode and multiplying through

by p(_)b_,(r/). The resulting expression is then subtracted from equation (44) to

obtain equation (43).
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Equation (43) may also be deduced from the corresponding expression for the N-

layered, discrete system examined in Reference 1. The latter expression is

=o (4s) '

where {bm_} and {Dmo} are vectors of size N that define the amplitudes of the

interfacial displacements; and [/3] is a matrix of size N x N expressing the values of

the density discontinuities at the interfaces. To obtain equation (43), one must : (1)

replace the elements of the first (N - 1) rows of [8] by (-ap/a_?)dr], (2) replace the

elements of the N th row by the density discontinuity _t the top,/_(rl- 1) p(rl)&?, and

(3) express the inner products of the modal displacement vectors as an integral from

0 to 1 of the modal displacement functions.
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, SECTION 5

FORCED VIBRATION

With the natural frequencies and modes of vibration of the system established, its

response to an arbitrary lateral excitation may be determined by modal superposition.

In this approach, the modal displacements, D_(TI, t), are expressed in the form

oo

Dm(_7,t) = _ bm_(r/) qmn(t) (46)
n--I

where qmn(t) is a generalized time-dependent coordinate corresponding to the rn th

horizontal and n th vertical mode of vibration. Substituting equation (46) into equa-

tion (24), multiplying through by [/_ + 8(r/- 1)]p(T/)/gmn(r/), and making use of the

orthogonality of the natural modes defined by equation (43), one finds that qmn is

governed by the differential equation

2 z I',_R _(t) (47)
g

in which r_ is a dimensionless factor given by

r.. fd[a+ - (48)
= fg[/_ + if(r/- 1)] p(r/)b_,_(r/)dr/

The solution of equation (47) is given by

q..(t_= -e,_r..R A'"(t) (49)
g

where Amn(t) represents the instantaneous pseudoacceleration of an undamped single-

degree-of-freedom oscillator with a circular natural frequency w._,_ subjected to the

prescribed ground acceleration, and is given by

Z'A,_,_(t) = to,_. _o(r) sin [to._(t- r)] dr (50)

The maximum value of Am.(t) is the quantity displayed on a pseudoacceleration

response spectrum. Substitution of equation (49) into equation (46) leads to

oo

D,,,(t/, t) = -R _ _,n.(_7)A..(t) (51)
n=l g
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where 6re(r/), a dimensionless function corresponding to the mth horizontal and n th

vertical mode of vibration, is given by

_m.Cr/) = CmFro. Dm.(r/) (52) ,

The latter function is the counterpart of the vector of displacement coefficients {d,.. }

in the analysis of the layered system presented in Reference I,

5.1 Vertical Sloshing Displacements

On substituting equation (51) into equation (18), the vertical displacement of the

liquid at any point and time, d(_,ll, O,t), is found to be
oo Oo

d(_,_,,O,t)=-n _ _ _.(_) J'(_) A_.(t) _o.0 (53)_,=1.=1 Jl(_) g

As is true of the coefficients in the corresponding expressions for layered systems

presented in References 1 and 2, the coefficients 6.m can be shown to satisfy the

relations
oo

6m.Cr/) = _m (54)
n-----1

and
oo oo

mffil nml

For a homogeneous liquid with//= 0, for which there is only one vertical mode of

vibration for each horizontal mode, the quantities bm,,(_), F,,,,,,/5,_.(17) and Am(t)

are denoted by Din(r/), F,., 6m(_7)and A,_(t), respectively. The free-surface value of

6,,, is then evaluated from equations (48) and (52) to be/5,.(1) = e,_, and equation

(53) reduces, as it should, to (see, for example, Reference 8)

oo J,(X_) Am(t)_o,0 (_6)
d(_,l,8, t)=-R_cm Jl(Xm) gmffil

5.2 Hydrodynamic Pressures

On substituting equation (19) into equation (10) and making use of equation (4), the

hydrodynamic pressure may be expressed as

p(_,_,O,t) = {-_.(t)e -°n - R__H,,,=I_ ---e-_A_OD'(17't)orlJl(Am_) } p°Rc°soJl(A,,,) (57)

Furthermore, on substituting equation (51) into this expression, making use of the

relation

Am(t) = _o_.[_a(t) - Am.(t)] (58)
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which is obtained by substituting equation (49) into equation (47), and grouping

terms with similar temporal variations, the hydrodynamic pressure can be expressed

as the sum of two components : an impulsive component, pi given by

[ ,,,=1 ,_=_ J,(,X_) p°Rc°sO_o(t) (50)

and a convective component, pC, given by

pC({,rl, O,t) = _ _] c,_.(rl)d, (Am{) A,,,n(t) poncosO (60).=1 &(,am)

in which

R e-°" 0&..(y) (61)
cm.(y) = g )_., C_,, 0y

The impulsive component represents the effect of the portion of the liquid that may

be considered to move as a rigid body in synchronism with the tank wall, while the

convective component represents the effect of the liquid undergoing sloshing action.

It should be observed that the pressures in equations (59) and (60) are expressed in

terms of the base value of the liquid density, po, rather than the density value at the

height being considered.

5.2.1 Simplification for impulsive pressures. In the form presented in equa-

tion (59), the evaluation of the impulsive component of response requires the prior

evaluation of the convective components. The impulsive component can also be eval-

uated independently of the convective by letting

OO

= (62)
n----I

and rewriting equation (59) in the form of a single series as

[ R £ 10emJ'(AmE')]poRcosO_o(t) (63)Pi(_'Y'O't)=-e-_" _--'ff _,,, 077 g,(_.,)m--1

It can be shown that the function e,.(rl) may be determined without prior knowledge

of the 6_n(rl) functions from the differential equation

subject to the boundary conditions

(e_),,=o = 0 (65)
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and (0em'_ : e_A_ H (66)

Equation (64) is obtained by substituting equation (51) into equation (24), making

use of the relation defined by equation (58), grouping the terms involving _g(t), and

finally making use of equations (27) and (62). Equations (65) and (66) are derived

by proceeding similarly with equations (22) and (23).

The solution of equation (64) is given by

'- [ ]_1")= _.,H/R b'_°_'"+b2_°""+_ (671
where

._,,_= 7+ T+ (68)

b,= na_'_°"+ (_,,,,H/R)' (69)
arnl e am| -- am2e area

and

b2 = - _a""e'" + (A_H/R)2 (70)
Umleaml _ am2eami

5.2.2 Wall pressures. The impulsive and convective components of the hydro-

dynamic pressures induced against the tank-wall are determined from equations (63)

and (60) by letting _ = 1. T'_e total wall pressure at an arbitrary height may be

expressed in the form

m----I n=l

where the dimensionless function Co(rl) for the impulsive component of the pressure

is determined from equation (63) to be

[ 1_o(,7)= e-'_''1- _ ,,,_,_,,,o,7J
and the corresponding functions for the convective components are determined from

equation (61). From equations (61), (62) and (72), it now follows that
oo oo

_o(_)+ _ _ _.(_) = _-_. (73)
m=l n=l

For a homogeneous system (/7 = 0), equation (67) yields

sinh(A,,,z/R)

era(z) = emcosh(X._H/R) (74)
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and equation (72) reduces, as it should, to the well-established expression (see, for

example, Reference 8)

• oo cosh()_,_z/R)
o(z)= l- (75)

,,=, cosh(A,,,H/R)
t

in which the ruth term of the summation represents the coefficient c,,,(z) for the

convective component of the pressure.

5.3 Tank Forces

5.3.1 Base shear. The base shear or total hydrodynamic force exerted on the

tank wall is obtained by integrating equation (71) over the tank-height. The result

may be expressed in the form

Q,(t) = mo$g(t) + __, __, m,,,,A_,(t) (76)
m=l _--1

where too, the impulsive component of the liquid mass, is given by

and m,_,,, the convective component associated with the m th horizontal and n th

vertical sloshing mode of vibration, is given by

From equations (77) and (78), and with the aid of equation (73), it can finally be

shown that

mo+ _ __, mm, = e-_"&7 porn2H = m, (79)
m=l n---1

where mt is the total mass of the contained liquid.

The integrals in equations (77) and (78) and those in the expressions for base mo-

ments presented in the following two sections can be evaluated readily. The resulting

expressions are lengthy and are not presented, but comprehensive numerical solutions

for both the base shear and base moment are given in later sections.

5.3.2 Moment above base. The moment induced by the hydrodynamic wall

pressure at a section of the tank immediately above its base may conveniently be

• expressed in the form

oo oO

M(t) = moho_g(t) + __, Y_ m.p,h.,, Am,(t) (80)
m---I n---1
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where the coefficient moho for the impulsive component is given by

moho = (fol Co(r/)r/dr/) po,R2H 2 (81)

and the coefficient mmnhmn for the convective component associated with the mth

horizontal and n th vertical mode of vibration is evaluated from

From the latter two expressions and from equation (73), it follows that

moho + Y_ Y_ mm,_h_,, = e-O"r/dr/ po_rR_H _ = re,h, (83)
m=l n--I

where mtht represents the moment above the tank base induced by an unit horizontal

acceleration when the entire liquid is presumed to act as a rigid mass.

5.3._1 Foundation moment. In addition to the moment defined by equation

(80), the foundation moment, M'(t), includes the effect of the hydrodynamic pressure

exerted on the tank base. The latter effect is determined by appropriate integration

of the base values of the hydrodynamic pressures defined by equation (59) or (63)

and equation (60). The resulting expression may be written as
Co OO

M'(t) = moh'o_a(t ) + _ __, mm.h'. A_(t) (84)
m=l n=l

where the coefficient moh'o for the impulsive component of the moment is given by

moh'o = moho + H .Xsm 071m=l _=0

and the coefficient m_,_h',,,, for the convective component associated with the mth

horizontal and n th vertical mode of vibration is given by

RC_,,Od,,,n[ ]po_rtP (86)m,.,.h'. = m_nhm,., + H Asm Or/ .=o

From equations (85) and (86), a,nd with the aid of equations (62) and (83), it can
further be shown that

OO OO

mohto + E X m_.h'm, mtht + PdrR4= = (87)
m=l n=l 4

where mth_ represents the foundation moment induced by a unit horizontal accelera-

tion when the entire liquid is considered to act as a rigid mass. It should be kept in

mind that the base pressure in this case increases linearly from zero at the center to

poRcosO at the junction of the base and wall.
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• SECTION 6

NUMERICAL SOLUTIONS

The numerical solutions presented in this section are for the free vibrational char-

acteristics and for the response to horizontal base shaking of systems with different

slenderness ratios, H/R, and different liquid density ratios, pl/po.

6.1 Sloshing Frequencies and Modes

Mention has already been made of the fact that unlike a homogeneous liquid which

for a prescribed horizontal mode of vibration has a single vertical mode, an inhomoge-

neous liquid has an infinite number of vertical modes, each with a distinct frequency.

Figure 6.1 shows the variation with the density ratio pl/po of the frequency coefficients

Cln for the fundamental horizontal and first three vertical modes of vibration of

systems with H/R values in the range between 0.5 and 2. It is observed that the

highest frequency coefficient Cll for the fundamental horizontal and vertical mode

of vibration of the inhomogeneous system is smaller than that for the corresponding

homogeneous system. However, the difference is quite small, especially for larger

values of pl/po and H/R. By contrast, the coefficients Cln for n _>2 are significantly

smaller than those for n = 1 and quite sensitive to variations in pl/po. These trends

may be explained by examining the modal displacement amplitudes, Dln(rl).

Figure 6.2 shows the first three vertical modes of vibration corresponding to the

fundamental horizontal mode for systems with H/R = 1 and three values of pl/po

in the range between 0.1 and 1. Each mode is normalized such that its maximum

amplitude is unity. It is observed that the n th vertical mode of vibration is associated

with n - 1 zero crossings. Since the vertical motion of the liquid is zero at these

sections, the natural frequency of the system for this mode must equal that of a system

with the same density distribution and a depth equal to the distance from the free

surface to the uppermost level of zero amplitude. For n > 1, these effective depths

are but small fractions of the total depth, H, and decrease with increasing pl/po.

The associated natural frequencies, which, based on equation (41) for a homogeneous

liquid, are expected to be proportional to the effective liquid depth must, therefore,

also be small and decrease with increasing pl/po. For n = 1, on the other hand, the

more rapid decays in the displacement amplitudes with depth are obtained for the
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smaller values of pl/po. A decrease in pl/po in this case is associated with a reduced

effective depth for the system, and hence a reduced natural frequency. However, the

differences are quite small, and for values of pl/po in tile range between 0.25 and 1,

the fundamental natural frequencies of the inhomogeneous and homogeneous systems

may be considered to be the same. These trends are representative of those obtained

for the higher order horizontal modes of vibration (higher values of m) as well.

Table 6.1 lists the values of 7,n_ for the first two horizontal and first three vertical

modes of vibration of systems with several combinations of H/R and pl/po. For the

results marked with asterisks, the condition defined by equation (35) is not satis-

fied, and "r_ was evaluated from equation (36) rather than from equation (34). The

frequency coefficients, Cll, and modes of vibration, /)11(11), for these cases must,

therefore, be evaluated from equations (39) and (37) rather than from equations (33)

and (31).

6.2 Sloshing Displacement Coefficients

Of special interest in practice is the sloshing motion of the liquid at its free sur-

face, as the maximum surface displacement is needed to define the freeboard that

must be provided to prevent the liquid from overflowing or impacting the roof. This

displacement is obtained by letting q = 1 in equation (53).

The displacement coefficients 61_(1) for the fundamental horizontal and first three

vertical modes of vibration are presented in Figure 6.3. The results are plotted in a

manner analogous to that employed in Figure 6.1 as a function of the density ratio

pl/po for three values of H/R in the range from 0.5 to 2. These data along with

corresponding data for additional systems and for the second horizontal mode of

vibration are listed in Table 6.2. The following trends are worth noting :

1. The surface displacement coefficients are relatively insensitive to the value of

H/R but increase substantially with decreasing pl/po. The latter trend is con-

sistent with that reported in Reference 1 for layered systems, and is attributed

to the fact that, the larger the variation in liquid density, the greater is the

sloshing action induced.

2. The corresponding coefficients for the second horizontal mode of vibration, m =

2, are significantly smaller than those for the fundamental mode, m = 1, and

the sum of the coefficients over n for each horizontal mode satisfies equation

(54). Furthermore, when all the horizontal modes of vibration are considered,

the algebraic sum of the coefficients, in agreement with equation (55), is unity.
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It should be realized that the relative contributions of tile various modes of vibration

to the surface sloshing motion depend not only on the relative values of the dis-

placement factors 6,,,,,(1) but also on those of the corresponding pseudoaccelerations,

A,,,n(t). The latter quantities depend, in turn, on the characteristics of the ground

motion and the natural frequencies of the system itself.

6.3 Hydrodynamic Pressures

Shown in the left part of Figure 6.4 are the heightwise variations of the function co(rl)

in equation (72) for the impulsive component of the hydrodynamic wall pressure.

These plots are for a tank with H/R = 1 and liquids with density ratios pl/po in

the range between 0.1 and 1. Also shown are the corresponding functions c11(r/) and

c12(rl) for the fundamental horizontal and first two vertical sloshing modes. As would

be expected (recall that the pressures are expressed in terms of the base value of the

liquid density rather than that at the level being considered), the functions Co(r) and

c11(rl) decrease with decreasing pl/po. Furthermore, consistent with the distributions

of the modal displacement amplitudes displayed in Figure 6.2, the function q,,(rl) for

the n th vertical mode of vibration exhibits n - 1 changes in sign.

The interrelationship of the hydrodynamic response for the inhomogeneous and ho-

mogeneous systems can be better appreciated by rewriting equation (71) for the wall

pressure in the form

= - o. noO (88)
rrt--I n=l

where p,_ represents the average value of the liquid density, given by

po[1-e -_] (89)P'_= fl

and the functions _:o(r/) and _m_(r/) are related to the functions Co(r) and c_(r/) in

equation (71) by

_.o(r/)= p'-2-°Co(r) and i-:m_(r/)= p__£_oc,,,(r/) (90)

The variations of _'o(r/) and _(r/) are displayed in Figure 6.5 for the values of px/po

and H/R considered previously in Figure 6.4. It is observed that these functions

are still sensitive to variations in liquid density, but that for values of pl/po in the

" range between 0.25 to 1, the areas under the individual curves are close to each other.

It follows that, despite the indicated differences in the pressures themselves, the

total hydrodynamic wall force or base shear for the inhomogeneous and homogeneous
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liquids can be interrelated simply. This matter is considered further in the following
section.

6.4 Hydrodynamic Tank Forces

Figure 6.6 shows the variations with pl/po and H/R of the impulsive and fundamental

convective masses, rao and rail, in the expression for the hydrodynamic base shear.

These masses are normalized with respect to the total liquid mass, ma. Normalized

values of the corresponding base moment coemcients, moho and mllhll, and of the

foundation moment coefficients, raoh_oand mllh_l, are plotted in Figures 6.7 and 6.8,

respectively. It should be reemphasized that these three sets of normalized quantities

express the hydrodynamic base shear and base moments as fractions of those com-

puted on the assumption that the entire liquid acts as a rigid mass. The normalizing

quantities are naturally different for tanks of different proportions and contents. The

normalized values of mo and rrtll for additional systems, along with the corresponding

values of m12, m21 and m22, are presented in Table 6.3, and the normalized values of

the base and foundation moment coe$cients are presented in Tables 6.4 and 6.5.

Examination of the data presented in these figures and tables reveals the following
trends:

1. For values of pl/po in the range between i and about 0.25, the normalized values

of mo and mini may, for all practical purposes, be considered to be the same.

This result, which is consistent with the prediction made from the pressure

profiles displayed in Figure 6.5, is generally valid over the entire range of H/R

examined. Incidentally, the seismic response of systems normally encountered

in practice is dominated by mo and, to a lesser degree, by roll and rn21. On

recalling that within the range of pl/po considered, the sloshing frequencies,

tam1, and the spectral values of the associated pseudoaccelerations, Aml(t), also

are insensitive to variations in the density ratio, it is concluded that, when

normalized with respect to the value computed on the assumption that the entire

liquid in the tank acts as a rigid mass, the total hydrodynamic wall force or base

shear for an inhomogeneous liquid is practically equal to that for a homogeneous

liquid. The same is also true of the moment induced above the tank base.

These two effects may, therefore, be evaluated from well-established procedures

for homogeneous liquids. This approximation, however, is not adequate for the

foundation moment, particularly for tanks with low values of H/R and Pl/Po.

The latter moment is dominated by the hydrodynamic pressures exerted on the
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tank base, and, as already demonstrated, these pressures may be substantially

different for inhomogeneous and homogeneous systems.

2. For values of pl/po less than about 0.25, the fraction of the liquid that acts

impulsively is generally smaller for the inhomogeneous system than the homo-

. geneous system. The large density gradients in this case increase the proportions

of the liquid participating in the convective or sloshing actions. This increase,

however, does not necessarily increase the convective force coefficients associ-

ated with the fundamental sloshing mode of vibration. For a given horizontal

mode of vibration and a prescribed response, it is the sum of the coefficients for

all the vertical modes that generally increases.
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Figure6.1 FrequencycoefficientsCln for the fundamentalhorizontalmode
of vibrationof systems with differentvalues of H/R and Pl/Po
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Table 6.1: Values of 7,,, for systems with different H/R and pl/po

Values of 7m,
pl/po m = 1 m = 2

n= 1 n=2 n=3 n= i n=2 n=3

H/n =0.5
1 0.9206 i 2.6657

J

0.75 0.7025 3.2241 6.3277i 2.5200 3.1947 6.3218
0._ 0._668 3.3343 6.3894!2.3132 z.269_ 6.3757

0.25 0.8285" 3.5080 6.4918 1.9514 3.3953 6.4662
0.1 1.2237" 3.7127 6.6212 1.4393 3.5596 6.5825

H/R=0.75
1 1.3809 3.9986

0.75 1.2123 3.2171 6.3266 3.8547 3.1766 6.3157
0.5 0.9475 3.3194 6.3868 3.6520 3.2265 6.3613
0.25 0.1657 3.4837 6.4870 3.3038 3.3133 6.4386
0.1 0.9723" 3.6818 6.6141 2.8423 3.4320 6.5396

g/n = 1
1

1 1.8412 ,5.3314
i

0.75 1.6880 3.2090 6.3251 5.1876 3.1653 6.3098
0.5 1.4631 3.3017 6.3834 4.9849 3.1991 6.3472

0.25 1.0314 3.4537 6.4806 4.6383 3.2582 6.4112
0.1 0.3663 ° 3.6422 6.6045 4.1802 3.3400 6.4958

H/R = 1.5

1 2.7618 7.9972
0.75 2.6164 3.1931 6.3214 7.8533 3.1539 6.3007
0.5 2.4105 3.2655 6.3747 7.6506 3.1713 6.3254

0.25 2.0512 3.3886 6.4643 7.3040 3.2017 6.3678
0.1 1.5484 3.5497 6.5796 6.8459 3.2433 6.4246

H/R = 2

1 3.6824 10.6629
0.75 3.5385 3.1803 6.3172 10.5190 3.1489 6.2950
0.5 3.3358 3.2351 6.3648 10.3163 3.1593 6.3117

0.25 2.9861 3.3303 6.4453 9.9697 3.1773 6.3404
0.1 2.5208 3.4595 6.5502 9.5116 3.2016 6.3789
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Table 6.2: Surface displacement coefficients for systems with different H/R and
pl/po

Values of/im,_q1
Pl/Po m = 1 m = 2

n=l n=2 n=3 n=l n=2 n=3
,,_,

H/R = 0.5

1 0.8368 0.0729
0.75 0.8790 -0.0514 0.0132 0.0762-0.0038 0.0009
0.5 0.9451 -0.1345 0.0380 0.0814 -0.0101 0.0026

0.25 1.0787 -0.3113 0.1014 0.0925-0.0242 0.0074
0.1 1.3039 -0.6319 0.2440 0.1121 -0.0509 0.0186

H/R=0.75

1 0.8368 0.0729
0.75 0.8788 -0.0505 0.0126 0.0755-0.0028 0.0007
0.5 0.9449-0.1327 0.0365 0.0797-0.0077 0.0020

0.25 1.0791 -0.3085 0.0982 0.0887-0.0189 0.0059
0.1 1.3065 -0.6289 0.2383 0.1053 -0.0413 0.0156

H/R= 1

1 0.8368 0.0729
0.75 0.8778-0.0487 0.0119 0.0750-0.0021 0.0005
0.5 0.9429 -0.1286 0.0345 0.0782 -0.0056 0.0015

0.25 1.0766 -0.3017 0.0940 0.0850 -0.0138 0.0046
0.1 1.3055 -0.6205 0.2306 0.0974 -0.0307 0.0126

H/R = 1.5

1 0.8368 0.0729
0.75 0.8737 -0.0426 0.0100!0.0743 -0.0011 0.0002
0.5 0.9332 -0.1140 0.0298 0.0764 -0.0031 0.0008
0.25 1.0589 -0.2734 0.0835 0.0805 -0.0076 0.0027

0.I 1.2825-0.5784 0.2107 0.0875-0.0167 0.0080

H/R= 2

1 0.8368 0.0729
0.75 0.8684-0.0351 0.0081 0.0739-0.0007 O.O001
0.5 0.9195 -0.0949 0.0247 0.0755 -0.0019 0.0004

0.25 1.0290 -0.2316 0.0718 0.0784 -0.0046 0.0016
0.1 1.2301 -0.5035 0.1872 0.0830 -0.0101 0.0052
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Table 6.3: Normalized values of effective masses in expression for base shear of
systems with different H/R and pl/p,

El. mo m_.tt m_.xa _ m__za
po mt mt mt mt mt

H/R = 0.5

1 0.2999 0.6601 0.0271
0.75 0.2926 0.6665 0.0015 0.0268 0.0001
0.5 0.2804 0.6713 0.0085 0.0265 0.0008

0.25 0.2559 0.6672 0.0320 0.0261 0.0030
0.1 0.2211 0.6396 0.0785 0.0256 0.0072

H/R = 0.75

1 0.4391 0.5340 0.0182
0.75 0.4320 0.5407 0.0016 0.0175 0.0001
0.5 0.4181 0.5476 0.0089 0.0165 0.0007

0.25 0.3866 0.5516 0.0331 0.0150 0.0027
0.1 0.3374 0.5405 0.0801 0.0135 0.0066

H/R= 1

1 0.5475 0.4322 0.0137
0.75 0.5435 0.4358!0.0016 0.0128 0.0001
0.5 0.5323 0.4401'0.0092 0.0117 0.0006

0.25 0.5009 0.4442 0.0341 0.0099 0.0021
0.1 0.4453 0.4408 0.0817 0.0080 0.0054

H/R = 1.5

1 0.6858 0.3006 i 0.0091
0.75 0.6887 0.2972 0.0016 0.0083 0.0001
0.5 0.6862 0.2927 0.0092 0.0072 0.0003

0.25 0.6656 0.2866 0.0344 0.0056 0.0013
0.1 0.6145 0.2802 0.0826 0.0039 0.0033

H/R = 2

1 0.7627 0.2270 0.0068
0.75 0.7698 0.2193 0.0015 0.0062 0.0000
0.5 0.7736 0.2092 0.0085 0.0052 0.0002

0.25 0.7640 0.1940 0.0320 0.0039 0.0008
0.1 0.7249 0.1789 0.0782 0.0025 0.0021
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. Table 6.4: Normalized values of coefficients in expression for overturning moment
at a section immediately above tank base of systems with different H/R
and pl / po

P.l. m h mllhll m12h12 m21h21 m22h22
po _ mthl mtht mtht mtht

H/n = 0.5
1 0.2394 0.7031 0.0365

0.75 0.2398 0.7244 -0.0190 0.0369 -0.0014
0.5 0.2388 0.7534-0.0431 0.0376-0.0030

0.25 0.2332 0.7980-0.0753 0.0389-0.0050
O.l 0.2200 0.8417-0.0958 0.0410-0.0057

H/R = 0.75

1 0.3520 0.6053 0.0277
0.75 0.3550 0.6236-0.0185 0.0274-0.0010
0.5 0.3566 0.6495-0.0418 0.0270-0.0022
0.25 0.3524 0.6919-0.0722 0.0264-0.0034
0.1 0.3357 0.7384-0.0902 0.0258-0.0032

H/R= 1

1 0.4425 0.5235 i 0.0223
0.75 0.4495 0.5368 i -0.0177 0.0217 -0.0007
0.5 0.4559 0.5565-0.0397 0.0208-0.0015

0.25 0.4574 0.5908 -0.0677 0.0193 -0.0022
0.1 0.4429 0.6326-0.0826 0.0175-0.0016

H/R = 1.5

1 0.5664 0.4094 0.0160
0.75 0.5800 0.4134 -0.0152 0.0152-0.0004
0.50.59540.4199-0.03370.0141-0.0008

0025 0.6111 0.4333 -0.0556 0.0123 -0.0011• 0.6101 0.4540-0.0632 0.0100-0.0004

H/R = 2

1 0.6445 0.3367 0.0124
0.75 0.6609 0.3346 -0.0124 0.0117 -0.0002
0.5 0.6811 0.3321-0.0270 0.0107-0.0005

" 0.25 0.7061 0.3294 -0.0428 0.0090 -0.0006
O.l 0.7181 0.3291 -0.0432 0.0069-O.O001
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Table 6.5: Normalized values of coefficients in expression for foundation moment
of systems with different H/R and pl/po

I e I lt I

EL _h m__!_j.t ml,hl, rn,lh2I m,,h,2Po rutht mth't mth't mth't

H/R =
1 0.2927 0.6869 0.0131

0.75 0.2632 0.6616 0.0316 0.0118-O.O001
0.5 0.2241 0.6212 0.0745 0.0101 0.0000

0.25 0.1668 0.54541 0.1381 0.0079 0.0005
0.1 0.1113 0.4470 0.1967 0.0058 0.0013

H/R = o.7
1 0.4369 0.5402 0.0148

0.75 0.4120 0.5319 0.0178 0.0134-0.0003
0.5 0.3729 0.5150 0.0468 0.0115-0.0005
0.25 0.3028 0.4748 0.0994 0.0087-0.0002

0.1 0.2195 0.4096 0.1595 0.0060 0.0006

H/R= 1

1 0.5263 0.4508 i 0.0149
0.75 0.5129 0.4465 0.0077 0.0135 -0.0004
0.5 0.4858 0.4373 0.0247 0.0117-0.0006

0.25 0.4241 0.4133 0.0646 0.0089-0.0005
0.1 0.3324 0.3695 0.1218 0.0060 0.0003

H/R =
1 0.6226 0.3575 0.0131

0.75 0.6266 0.3519 -0.0028 0.0120 -0.0003
0.5 0.6237 0.3428 -0.0006 0.0105-0.0005

0.25 0.5960 0.3246 0.0184 0.0081-0.0005
0.1 0.5246 0.2958 0.0629 0.0053 0.0001

H/R = 2
1 0.6785 0.3048 0.0110

0.75 0.6902 0.2972 -0.0061 0.0101 -0.0002

0.5 0.7003 0.2858-0.0097 0.0089-0.0004

0.25 0.6979 0.2652 i -0.0023 0.0069-0.0004
....0.I 0.6,571 0.23691 0.0301 0.0046 0.0001
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• SECTION 7

CONCLUSIONS

With the information presented herein, the free vibrational characteristics and the

response to horizontal base shaking of rigid cylindrical tanks containing liquids of a

density that decays exponentially with depth may be evaluated readily. The compre-

hensive numerical solutions that have been presented provide valuable insights into

the underlying response mechanisms and into the effects and relative importance of

the numerous parameters involved. The principal conclusions may be summarized as
follows:

1. Unlike a homogeneous liquid, which for a given horizontal natural mode of vi-

bration has a single vertical mode, the inhomogeneous liquid examined has an

infinite number of such modes, each associated with a distinct frequency. The

latter frequencies are smaller than the corresponding frequency of the homoge-

neous liquid.

2. For any horizontal mode of vibration, the n th vertical mode of the inhomoge-

neous liquid has n- 1 zero crossings and its frequency decreases with increasing
values of n.

3. For a specified horizontal mode of vibration, any two vertical modes satisfy the

orthogonality relation defined by equation (43).

4. When normalized with respect to the pressures computed on the assumption

that the entire liquid acts as a rigid mass, the coefficients in the expression for

the impulsive and all convective components of the hydrodynamic wall pressures

add up to unity. The same is also true of the corresponding coefficients for base
shear and base moments in the tank.

5. The impulsive component of response may be obtained either by evaluating

all the convective components and subtracting their sum from the response

computed on the assumption that the entire liquid acts as a rigid mass, or,

independently, without the prior evaluation of the convective effects.

• 6. When normalized with respect to the result computed on the assumption that

the entire liquid in the tank acts as a rigid mass, the total hydrodynamic wall

force or base shear for an inhomogeneous liquid with values of pl/Po in the range
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between 1 and 0.25 may be considered to be equal to that for a homogeneous
liquid. The same is also true of the moment induced above the tank base.

These two effects may, therefore, be evaluated from well-established procedures

for homogeneous liquids. This approximation, however, may not be adequate

for the foundation moment, particularly for broad tanks with high gradients in
liquid density.

7. The finite-differencerepresentationsof the equations for the response of the con-

tinuous system examined here are the same as the expressions for the response
of the layered, discrete system studied in References i and 2.
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SECTION 9

NOTATION
J

aml,m2 factors in expression for e,.(_), defined by equation (68)

Am(t) instantaneous pseudoacceleration for m th horizontal mode of vibration of

homogeneous system

Am_(t) instantaneous pseudoacceleration for rnth horizontal and n th vertical mode

of vibration of inhomogeneous system

bl, bz factors in expression for e,n(r/), defined by equations (69) and (70) respec.

tively

co(rl) dimensionless coefficient in expression for impulsive component of pressure,

given by equation (72)

_o(_) dimensionless coefficient in equation (88) for the impulsive component of

wall pressure, defined by equation (90)

c_n(_) dimensionless coefficient in expression for convective component of pressure

associated with mth horizontal and n th vertical mode of vibration, given

by equation (61 )

_n(r/) dimensionless coefficient in equation (88) for the convective component of

wall pressure, defined by equation (90)

C,,, dimensionless coefficient in expression for _am

C,,., dimensionless coefficient in expression for _a,_,,

d vertical sloshing displacement of liquid at any point and time, defined by

equation (53)

D,n(r/,t) vertical displacements of liquid along the tank wall for its m th horizontal

mode of vibration, given by equation (51)

bm.(r/) amplitudes of vertical displacements of liquid for its rn th horizontal and
n th vertical natural mode of vibration

e,n(r/) dimensionless function in expressions for impulsive effects, defined by equa-

tion (62) and evaluated from equation (67)

g acceleration due to gravity

hi height of center of gravity of liquid mass from tank-base

ho height of impulsive mass mo from tank-base

hmn height of convective mass m_n from tank-base
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H total depth of liquid in tank

Ji Bessel function of first kind and first order

mt total liquid mass in tank@

mo impulsive component of liquid mass, given by equation (77)

, m,.n convective component of liquid mass associated with mth horizontal and

n th vertical mode of vibration, given by equation (78)

M(t) instantaneous value of overturning moment at a section just above the

tank-base, given by equation (80)

M'(t) instantaneous value of foundation moment, given by equation (84)

p hydrodynamic pressure, given by equation (57)

p/ impulsive component of hydrodynamic pressure, given by equation (59) or

equation (63)

f convective component of hydrodynamic pressure, given by equation (60)

qm(t) time-dependent generalized coordinate corresponding to the m th horizon-

tal and n th vertical mode of vibration

Qb(t) instantaneous value of base shear, given by equation (76)

r radial distance from tank-axis

R radius of cylindrical tank

t time

_s(t) instantaneous value of free-field ground acceleration

z vertical distance measured from tank-base

$ positive decay factor defining exponential variation in liquid density

"_,_,_ dimensionless factor in expressions for C,.. and bm,_(r/)

l'm,_ dimensionless factor defined by equation (48)

6(7 - I) delta function, used to define density discontinuity at free-liquid surface

6m,_(I/) displacement coefficients in expression for D,_(r/, t), given by equation (52)

e,,, dimensionless factor defined by equation (69)

17 ffi z/H ffi normalized vertical distance measured from tank.base

0 circumferential angle

A,_ m throotof J_(A)= 0

, _ - r/R ffi dimensionless radial distance coordinate

p(z) mass density of liquid, defined by equation (1)

• ps_ average value of mass density of liquid, defined by equation (89)

pl mass density of liquid at free liquid surface

po mass density of liquid at tank-base
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@ velocity potential function, given by equation (i0)

tb velocity potential function associated with relative motion of liquid and

tank wall, given by equation (19)

wm circular natural frequencyof homogeneous system for mth horizontal slosh-

ing mode of vibration
$

win. circular natural frequency of inhomogeneous system for mth horizontal
and n th vertical mode of vibration
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