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ABSTRACT

A study of the free vibrational characteristics and of the response to horizontal ground
shaking of a rigid cylindrical tank containing an inviscid liquid with a continuous
vertical variation in density is presented. The response quantities examined include
the vertical sloshing motions of the liquid at its free-surface, and the impulsive and
convective components of the hydrodynamic wall pressures and associated tank forces.
The equations of motion for the system are formulated for an arbitrary variation in
liquid density but the solutions presented are for a density that increases exponentially
from top to bottom. Comprehensive numerical data are included which elucidate the
underlying response mechanisms and the effects and relative importance of the various
parameters involved. The solution for the continuous density variation considered
herein is also compared with a previously reported solution in which the liquid was
modeled as a multi-layered, discrete system.
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EXECUTIVE SUMMARY

The study reported herein is motivated by the need for improved understanding of the
response to earthquakes of tanks in nuclear facilities that store high-level radioactive
wastes. It deals with the response to horizontal ground shaking of rigid vertical
circular cylindrical tanks containing incompressible and inviscid liquids the densities
of which increase continuously from top to hottom. The study complements those
of layered liquids reported previously in Brookhaven National Laboratory Reports

52378 and 52417. Both the impulsive and convective effects are examined.

The equations of motion for the system are first formulated for liquids with an ar-
bitrary vertical variation in density, but the solutions presented are for liquids the
densities of which increase exponentially from top to bottom. In addition to the
free vibrational characteristics of the contained liquid, the response quantities exam-
ined include its sloshing motion at the free-surface, and the impulsive and convective
components of the hydrodynamic wall pressures and associated tank forces. Com-
prehensive numerical solutions are presented which elucidate the effects and relative
importance of the numerous parameters involved and the relationship of these so-
lutions to those obtained for an equivalent homogeneous system. Some attention is
also given to the interrelationship of the solutions for the continuous density variation
considered herein and those for its discretized, multi-layered representation reported
previously.

The principal conclusions of the study are as follows :

1. Unlike a homogeneous liquid, which for a given horizontal natural mode of vi-
bration has a single vertical mode, the inhomogeneous liquid examined has an
infinite number of such modes, each associated with a distinct frequency. The
latter frequencies are smaller than the corresponding frequency of the homoge-

neous liquid.

2. For any horizontal mode of vibration, the n th vertical mode of the inhomoge-

neous liquid has n — 1 zero crossings, and its frequency decreases with increasing
values of n.

3. For a specified horizontal mode of vibration, any two vertical modes satisfy a

simple orthogonality relationship.



. When normalized with respect to the pressures computed on the assumption
that the entire liquid acts as a rigid mass, the coefficients in the expression for
the impulsive and all convective components of the hydrodynamic wall pressures
add up to unity. The same is also true of the corresponding coefficients for base
shear and base moments in the tank.

. The impulsive component of response may be obtained either by evaluating
all the convective components and subtracting their sum from the response
computed on the assumption that the entire liquid acts as a rigid mass, or,

independently, without the prior evaluation of the convective effects.

. When normalized with respect to the result computed on the assumption that
the entire liquid in the tank acts as a rigid mass, the total hydrodynamic wall
force or base shear for an inhomogeneous liquid with values of p;/p, in the range
between 1 and 0.25 may be considered to be equal to that for a homogeneous
liquid. The same is also true of the moment induced above the tank base.
These two effects may, therefore, be evaluated from well-established procedures
for homogeneous liquids. This approximation, however, may not be adequate
for the foundation moment, particularly for broad tanks with high gradients in
liquid density.

. The finite-difference representations of the equations for the response of the
continuous system examined here are the same as the response expressions for
the discrete, layered system presented in the above-referenced BNL reports.
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SECTION 1
INTRODUCTION

A sequel to two recent contributions [1, 2], the study reported herein is motivated by
the need for improved understanding of the response to earthquakes of tanks in nuclear
facilities that store high-level radioactive wastes. In some cases, the contents of these
tanks cannot adequately be modeled as homogeneous liquids, and it is necessary to
consider more complex representations.

In a series of recent studies [1, 2, 3], the tank contents have been modeled as discrete,
layered systems of two or more homogeneous liquid layers of different thicknesses and
densities. The more general of the reported analyses [1, 2] permit consideration of
an arbitrary number of layers, and may also be used to approximate the response of
systems with continuous variations in density. For specific forms of density variations,
however, it is possible to obtain simpler analytical solutions, and it is the purpose of
this report to present such solutions for cylindrical tanks for which the density of the

contained liquid increases exponentially from top to bottom.

The governing equations of motion are first formulated for systems with an arbitrary
vertical variation in liquid density, but the solutions presented are limited to the ex-
ponential variation. Both the free-vibrational characteristics of the system and its
response to a horizontal ground shaking are studied. The response quantities exam-
ined include the vertical sloshing motions of the liquid at its free-surface, and the
impulsive and convective components of the hydrodynamic wall pressures and associ-
ated tank forces. The impulsive effects reflect the action of the part of the liquid that
may be considered to move in synchronism with the tank wall as a rigidly attached
mass, whereas the convective effects represent the action of the part of the liquid un-
dergoing sloshing motions. Comprehensive numerical solutions are presented which
elucidate the effects and relative importance of the numerous parameters involved and
the relationship of these solutions to those obtained for an equivalent homogeneous
system. The interrelationship of the solutions for the continuous density variation

considered herein and those for its discretized, multi-layered representation is also

identified.
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SECTION 2

SYSTEM CONSIDERED

The system investigated is shown in Figure 2.1. It is a rigid, vertical, circular cylin-
drical tank of radius R that is filled to a height H with an inhomogeneous liquid
the mass density of which increases continuously from top to bottom. The liquid is
presumed to be incompressible, irrotational and inviscid, and only linear actions are
examined. The tank is considered to be anchored to a rigid, horizontally moving base.
Points within the tank-liquid system are specified by the cylindrical coordinates, r, 6
and 2, as shown in the figure. The heightwise variation of the liquid density, p(z), is
defined by

p(z) = p, e PG/ (1)

where p, represents the density value at the tank base, and S is a dimensionless,
positive decay factor. Figure 2.2 shows the variations of p(z) for different values of
p1/po, where p; represents the top value of the liquid density. The corresponding
values of B are shown in parentheses.

The exciting motion is considered to be uniform over the tank base and to be directed
along the 8 = 0 coordinate axis. The acceleration of the base motion at any time ¢
is denoted by #,(t), and the corresponding velocity and displacement are denoted by
&g4(t) and z4(t), respectively.
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SECTION 3

GOVERNING EQUATIONS

3.1 Background Information

The response of the liquid is governed by the system of differential equations,

¢ 104 10% 0%

o Yo trioe T Baar @
and 9 ( a¢\ , 9d 8

0 ( 9¢\, 0d_ dp ,_

6z(p6t)+p6t2 5;94="0 3

in which d =d(r,2,0,t) is the vertical sloshing displacement of the liquid at an ar-
bitrary point and time, and ¢ = ¢(r, z,0,t) is a velocity potential function which is
related to the hydrodynamic pressure, p = p(r, z,0,1), by

a¢
P=p75 (4)
and to the radial and tangential components of i quid velocity, v, and vg, by
04 _ 10¢
Uy = “or Yy = ~r 90 (5)

Equations (2) and (3) are deduced from more general expressions presented by Yih
[4] by expressing the latter in cylindrical coordinates and specializing them to the
incompressible liquid considered herein. For a homogeneous liquid with p = constant,

od 94
T (6)

and equation (2) reduces to the well-known Laplace’s equation V2 ¢ = 0.

The solutions of equations (2) and (3) must satisfy the continuity of radial velocities
at the tank-wall, defined by

3¢) .
— = —2,4(t) cosl (7
(%) =
the condition of no vertical motion at the tank-base, defined by

(d);20 =0 (8)
and the linearized pressure condition at the free liquid surface, defined by

where g is the acceleration of gravity.
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3.2 Equation of Motion in Terms of a Single Unknown

Following the approach used in the analysis of the layered system examined in Ref-

erences 1 and 2, the potential function ¢ is expressed in the form
#(r,0,z,t) = —z,4(t) r coshd + ¥(r,0,z,1) (10)

where the first term on the right side provides for the rigid body motion of the tank,
and the potential function ¢ provides for the relative motion of the liquid and tank.
On substituting equation (10) into equations (2) and (3), one obtains

0% 10y  10% U

3 7o Yoo "Bt O an
and o ( p\ 0 8 8
p ,_Op .
32 (f’ W) P50 ~ 5,947 5; ralt)eost (12)

The solutions of equations (11) and (12) may be obtained by the method of separation
of variables in the form

d(r,z,0,t) = D(z,t) X(r) cos@ (13)

P(r,2,0,t) = ¥(z,t) X(r) costd (14)

That the function X(r) in these two expressions must be the same follows from
equation (12). On substituting equations (13) and (14) into equation (11), separating
the resulting functions of r from those of z and ¢, and equating each set to —(A/R)?,
where A is a dimensionless constant, one obtains Bessel’s differential equation for
X (r) and the following relation between ¥ and D :
_R oD

A? 920t
Next, on using the antisymmetry condition at r = 0 and the continuity condition for
radial velocities at r = R, the solution for X(r) can be shown to be given by any one

of an infinity of Bessel functions of the first kind and first order. The mth of these
functions may be expressed as

U(z,t) = (15)

Xon(r) = Budy (,\m-"é) (16)

where B,, is a constant that remains to be determined, and ),, is the m th root of
the first derivative of Ji()), the first three values of which are

A = 1.841 A2 = 5.331 A3 = 8.536 (17)
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Equation (16) effectively defines the radial variation of the displacement d when the
liquid is oscillating in its mth horizontal mode of vibration. The displacement d
at an arbitrary point and time is then determined from equation (13) as a linear
combination of its modal components to be

— J1(Am€)
d(é,n,0,t) = Z D, (n,t) —J——cosO (18)
m=1 1(Am)
where the constant B,, in equation (16) has been absorbed into the function D;
§ = r/R and n = z/H are dimensionless radial and vertical position coordinates;
and Dy, (n,t) represents the instantaneous value of the vertical displacement of a
liquid particle at the junction of the tank-wall and the 6§ =0 plane when the liquid is
vibrating in its m th horizontal natural mode. The corresponding expression for 1 is
determined from equations (14), (15) and (16) to be

i R? 8D,, Jy(\ ,,.c)

!/’(5,7],9 t A?n_H ar] Jl( m)

(19)

m=1

where a dot superscript denotes differentiation with respect to time.

On substituting equations (18) and (19) into equation (12) and making use of the
orthogonality of the Bessel functions, the equation of motion for the system can be
expressed solely in terms of the function D,,(7n,t), as

8#D,, 8pdb, MmH\? = ghm (AnH\Op, AmH\ 8p.
P 6172 +3n 61] —p( R )Dm+ R (_R )‘a_an—_Cm)‘m R anzﬂ(t)

(20)

where 0

€m = /\3‘—-—_—1— (21)
Furthermore, on making use of equations (10), (18) and (19), the boundary conditions
defined by equations (8) and (9) reduce to

(Dm)z=o =0 (22)

A2 H “on
After determining the functions D,, = D, (n,t) for different values of m, the displace-

ment d, the potential functions ¥ and ¢, and the hydrodynamic pressure p may be
computed from equations (18), (19), (10) and (4), respectively.

( R _9Dn +gD ),=y= —enRE,(t) (23)

3-3



For the system with the exponential variation in liquid density considered herein,
equaticn (20) reduces tc

#?D,, . 0Dm [ IAH\':  gAm [(AmH _ AmHY\ .
K “( R )D""T(’Tz‘) "Dm—‘m*m(T) Ba,(t) (24)

3.3 Relationship with Layered Systems

It is instructive to compare equation (19) for the continuous system with the corre-
sponding expression for the discrete, layered system examined in Reference 1. The

potential function ; for the j th layer of the latter system is given by

o .

1

i = — i R [ DpjcoshAmnj — Dy j-1 coshAp(a; = n;) 1 Ji (Am€)
7T Am sinhAna; J Ji(Am)

cosh  (25)
m=1
where a; = H;/R and n; = z;/R. Note that unlike the distance coordinate 7 employed
in the analysis of the continuous system, which is normalized with respect to the
liquid depth, H, the coordinate n; i3 normalized with respect to the tank radius, R.
Note further that as the layer-height, H; = Az, is decreased, a; = Az/R tends to
zero, the cosh functions in equation (25) tend to unity, the sinh function tends to
AnlAz/R = A\, (H/R)An, and equation (25) becomes the finite-difference counterpart
of equation (19). It can similarly be shown that the equations of motion for the layered
system (equation 28 of Reference 1) are merely the finite-difference counterparts of
equation (20). It follows that, contrary to the view expressed in Reference 5, the
representation of the continuous system as a multi-layered system is indeed a valid
approximation. For a discussion of the accuracy of this representation, the reader is
referred to References 2 and 6.
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SECTION 4

FREE VIBRATION

On setting the right-hand side of equation (24) equal to zero and letting Dy (n,t) =
bm(n)e‘“’M‘, where i = \/—1 and wy, is the circular frequency of the m th horizontal
mode of vibration, one obtains

A A 2
8"Dn _ 40D [m,,. H_ (M) } D=0 (26)

on? on C2 R R
in which C,, is a dimensionless factor related to w,, by

wo = Ch, l’-\ﬁ'ﬁ (27)

Similarly, the boundary conditions defined by equations (22) and (23) can be ex-
pressed as

(Dm )n=0 =0 (28)
ODm  Am H ,
( 67’ - a—z-ﬁDm)nzl =0 (29)

With appropriate reinterpretations of the symbols involved, equations (26), (28) and
(29) can be shown to be the same as those presented by Lamb [7] for the flow of
inhomogeneous liquids in rectangular channels.

The nature of the solution of equation (26) depends on whether the roots of the
associated characteristic equation are real-valued or complex, and this depends, in
turn, on the value of C,,. For

[ BOWH/R)
Cn > \lﬂ’/4 ¥ O H/ R

(30)

the roots are real, and on satisfying the boundary condition defined by equation (28),
the solution can be written as

A

Dim(n) = Em €72 sinh(ymn) (31)
where
|82, (AH\? BAH/R
7m_\l4+(--—R)- . (32)
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and E,, is an arbitrary constant. Note that 4, is a function of the still unknown
frequency coefficient C,,. On making use of the second boundary condition defined
by equation (29), it is found that 4,, and C,, are also interrelated by

B/2 + Ym/tanhyn

and on eliminating C,, from equations (32) and (33), one obtains the transcendental
equation

Bm | P ( H)’
tanhy, + 4 AmB

It can be shown that equation (34) has a single positive root, 41, and that this root
exists only if

Tm + =0 (34)

B 45— (aa) <o (35)

With the value of v, established, the displacement configuration for the m th hori-
zontal and first vertical natural mode of vibration, Dy, (%), is determined from equa-
tion (31) by replacing the subscript m by ml, and the associated circular natural
frequency, wm;, and frequency coefficient, Cy,;, are determined similarly from equa-
tions (27) and (33), respectively. It should be recalled that equations (31) and (33)
are valid only as long as equation (35) is satisfied.

For values of Cy, that are smaller than the right-hand member of equation (30), the

roots of the characteristic equation are complex, and the counterpart of equation (34)

becomes P e PR
2 _ PIm P ay _
Tm tanyn, 4 + (Am R) 0 (36)

The latter equation has an infinity of roots, 9mn, where n is an integer ranging from
2 to oo when equation (35) is satisfied and from 1 to oo when equation (35) is not
satisfied. It follows that, for each horizontal mode of vibration, there is an infinity of
vertical modes, each associated with a distinct frequency. Subject to the indicated
qualification on n, the m th horizontal and n th vertical mode of vibration, Dma(),
is given by

bmn(']) = Epn e’ $in(Yma7) (37)

where E.,, is an arbitrary constant, and the associated frequency, wmn, may be ex-

pressed as

gAm
R

Wmn = Cmn

(38)



in which the dimensionless coefficient, Cyyn, is determined from

[ /R
Con = \j T2 oo flany (39)

For a homogeneous liquid for which § = 0, equation (34) yields

H
Tm = /\m‘E (40)

which when substituted into equation (33), yields the well-established expression for
the frequency coefficient (see, for example, Reference 8)

Cm = Jtanh ()‘—';{E) (41)

The associated mode of vibration is determined from equation (31) to be

Do(n) = En sink (Am%n) (42)

The corresponding solutions from equations (36), (39) and (37) are trivial and are
not considered.

4.1 Orthogonality of Modes

The modal displacements defined by equations (31) and (37) satisfy the orthogonality
relation

['16+6(- D)o D) Da(mdr =0 forr s (43)

in which the term involving the delta function, §(n—1), accounts for the discontinuity
in the liquid density value at the free-surface. The derivation of this equation follows
well-established steps. Specifically, equation (26) for Dy, () is multiplied through
by p(7)Dm.(n) and integrated from 0 to 1; the term involving the second derivative
of Dmr(n) in the resulting expression is integrated by parts; and use is made of the
boundary condition defined by equation (29) to obtain

Z‘p?“ - 3‘—%’—{—] /c.1 p(1) Denr (1) Dna(m) d =

X . 1 Y abmr abm‘
b1 Do) Da(1) + [ 520 T Smt

These steps are repeated by starting with the D,,,(7) mode and multiplying through

by p(7)Dm.(n). The resulting expression is then subtracted from equation (44) to
obtain equation (43).

1
C

2
ms

(44)
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Equation (43) may also be deduced from the corresponding expression for the N-
layered, discrete system examined in Reference 1. The latter expression is

{Dmr}T [B] {bmo} =0 (45)

where {D,,} and {Dn,} are vectors of size N that define the amplitudes of the
interfacial displacements; and [B] is a matrix of size N x N expressing the values of
the density discontinuities at the interfaces. To obtain equation (43), one must : (1)
replace the elements of the first (N — 1) rows of [B] by (—8p/3d7)dn, (2) replace the
elements of the N th row by the density discontinuity at the top, é§(n— 1) p(17)dn, and
(3) express the inner products of the modal displacement vectors as an integral from
0 to 1 of the modal displacement functions.
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SECTION 5

FORCED VIBRATION

With the natural frequencies and modes of vibration of the system established, its
response to an arbitrary lateral excitation may be determined by modal superposition.
In this approach, the modal displacements, D,,(n,t), are expressed in the form

D(mt) = 3> Donn(n) qma(2) (46)

n=1
where gma(t) is a generalized time-dependent coordinate corresponding to the mth
horizontal and n th vertical mode of vibration. Substituting equation (46) into equa-
tion (24), multiplying through by [8 + (7 — 1)]p(17) Dmn(n), and making use of the

orthogonality of the natural modes defined by equation (43), one finds that gy, is
governed by the differential equation

gmn(t) + “":m gmn(t) = —€m wgmr""'R xﬂg(t) (47)
in which 'y, is a dimensionless factor given by
__ Jo[B+8(n = 1)] p(n) Dunn () (48)
Jo 1B + &(n — 1)) p(n) D?2,,,(n)dn
The solution of equation (47) is given by
gmn(t, = —€mlmn R Amn(t) (49)

where A,,(t) represents the instantaneous pseudoacceleration of an undamped single-
degree-of-freedom oscillator with a circular natural frequency wyp, subjected to the
prescribed ground acceleration, and is given by

Ana(t) = mn [ " 3,(7) sin [wm(t — 7)] dr (50)

The maximum value of Ap.(t) is the quantity displayed on a pseudoacceleration
response spectrum. Substitution of equation (49) into equation (46) leads to

Du(n,t) = =R 3 bpa(n) 2mlt)

n=1 9

(51)
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where 6,n(7), a dimensionless function corresponding to the m th horizontal and nth
vertical mode of vibration, is given by

6mn(7’) = €m rmn bmn(n) (52)

The latter function is the counterpart of the vector of displacement coefficients {dmn}
in the analysis of the layered system presented in Reference 1.

8.1 Vertical Sloshing Displacements

On substituting equation (51) into equation (18), the vertical displacement of the
liquid at any point and time, d(¢, 79,0, ), is found to be

A 1,10, = R 3 3 bnalr) T1om) Eonll) cogg (59)

m=1 n=l ( )
As is true of the coefficients in the corresponding expressions for layered systems

presented in References 1 and 2, the coefficients 6,,, can be shown to satisfy the
relations

5: S () = €m (54)
and o oo
Z—l z—.:] 6mn(") =1 (55)

For a homogeneous liquid with 8 = 0, for which there is only one vertical mode of
vibration for each horizontal mode, the quantities ﬁm,,(n), Fimny 6ma(n) and Apa(t)
are denoted by D,.(1), T'm, 6m(n) and An(t), respectively. The free-surface value of
6m is then evaluated from equations (48) and (52) to be ém(1) = €m, and equation
(53) reduces, as it should, to (see, for example, Reference 8)

dE1,0,)= RS en )) g(t)c 030 (56)

5.2 Hydrodynamic Pressures

On substituting equation (19) into equation (10) and making use of equation (4), the
hydrodynamic pressure may be expressed as

0 e=Bn
p(E,n,o,t)={ —Eig(t) e P — z v 5Dann,t) J};((Af\",‘f))

m'-l
Furthermore, on substituting equation (51) into this expression, making use of the
relation

} poRcosd  (57)

fimn(t) = w?nn['%g(t) — Amn(t)] (58)
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which is obtained by substituting equation (49) into equation (47), and grouping
terms with similar temporal variations, the hydrodynamic pressure can be expressed
as the sum of two components : an impulsive component, p', given by

p(E,n,at)=~[e""’€ ZZcmn(n)J‘“'"“]poRcosWt) (59)

m=1 n=1 ( )

and a convective component, p°, given by

o0 [o <] Am
P o,t)=—[> > Cmn(n)‘{‘]'l"(‘(:\—é)l Amn(t)] po R cosf (60)
m=1n=1 i\
in which R 86,mn()
ema(n) = 5 -C—A: o ——"‘al,,—"— (61)

The impulsive component represents the effect of the portion of the liquid that may
be considered to move as a rigid body in synchronism with the tank wall, while the
convective component represents the effect of the liquid undergoing sloshing action.
It should be observed that the pressures in equations (59) and (60) are expressed in
terms of the base value of the liquid density, p,, rather than the density value at the
height being considered.

5.2.1 Simplification for impulsive pressures. In the form presented in equa-
tion (59), the evaluation of the impulsive component of response requires the prior
evaluation of the convective components. The impulsive component can also be eval-
uated independently of the convective by letting

em(n) = ij:lc:nsm,.(n) (62)

and rewriting equation (59) in the form of a single series as

o © 1 BemJi (Anf) .
plen) = - e~ £ 35 LI b lall peoz) (o)

It can be shown that the function e, () may be determined without prior knowledge
of the émn(7) functions from the differential equation

d%e, dem Am H 2 H

subject to the boundary conditions

(em )n=0 =0 (65)
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and

(?fﬂ) — et} (66)
n=1

Equation (64) is obtained by substituting equation (51) into equation (24), making
use of the relation defined by equation (58), grouping the terms involving %,(t), and
finally making use of equations (27) and (62). Equations (65) and (66) are derived
by proceeding similarly with equations (22) and (23).

The solution of equation (64) is given by

where '
o= ()
b, o Bamae®™ + O H/RY (69)
G €51 — @y ipeom
and b, = _ Bamie®™ + (AnmH/R)’ (70)

Am1e®m — apmoetm?

5.2.2 Wall pressures. The impulsive and convective components of the hydro-
dynamic pressures induced against the tank-wall are determined from equations (63)
and (60) by letting £ = 1. T'ie total wall pressure at an arbitrary height may be
expressed in the form

oo o0

p(1,n,0,t) = - [Co(n)ﬁg(t) + Z Z Cmn(’l)Amn(t)] poR cosd (71)

m=1n=1

where the dimensionless function ¢,(7) for the impulsive component of the pressure
is determined from equation (63) to be

R & 1 Oe
—p=Bn iy _ 2% 2 : . m
Co('?) =¢€ [1 H oy} /\m an ] (72)

and the corresponding functions for the convective components are determined from
equation (61). From equations (61), (62) and (72), it now follows that

oM+ 303 cnln) = &P (73)

m=1n=1

For a homogeneous system (8 = 0), equation (67) yields

sinh(Anz/R)
em cosh(AmH/R)

em(2) = (74)
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and equation (72) reduces, as it should, to the well-established expression (see, for
example, Reference 8)

od cosh(Anz/R)

W#)=1- 2 en O HTR)

(75)

in which the mth term of the summation represents the coefficient ¢, (2) for the
convective component of the pressure.

5.3 Tank Forces

5.3.1 Base shear. The base shear or total hydrodynamic force exerted on the
tank wall is obtained by integrating equation (71) over the tank-height. The result
may be expressed in the form

[> < BN o]

Qu(t) = moiy(t) + D Y MmnAma(t) (76)

m=1 n=1

where m,, the impulsive component of the liquid mass, is given by

m, = (/01 co(n)dn> pomrR*H (77)

and m,,,, the convective component associated with the m th horizontal and nth
vertical sloshing mode of vibration, is given by

Mpn = (/; Cmn(’?)dﬂ) po7l’R2H (78)
From equations (77) and (78), and with the aid of equation (73), it can finally be
shown that o o .
Mo+ I 3 My = ( / e""’dn) pomR*H = my (79)
m=1n=1 °

where m; is the total mass of the contained liquid.

The integrals in equations (77) and (78) and those in the expressions for base mo-
ments presented in the following two sections can be evaluated readily. The resulting
expressions are lengthy and are not presented, but comprehensive numerical solutions

for both the base shear and base moment are given in later sections.

5.3.2 Moment above base. The moment induced by the hydrodynamic wall
pressure at a section of the tank immediately above its base may conveniently be

expressed in the form

[>, < B e o]

M(t) = mohody(t) + Y. D Mumnhmn Amn(t) (80)

m=1n=1
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where the coefficient m,h, for the impulsive component is given by

1
moh, = (/0 co(n)ndr)) pomR*H? (81)

and the coefficient mynhy, for the convective component associated with the mth
horizontal and n th vertical mode of vibration is evaluated from

1
Mupmnhmn = (/0 Cmn(n) ndn) pom R*H? (82)

From the latter two expressions and from equation (73), it follows that
o0 o0 1
Moho + 3 3 Mumnhimn = [ /0 e-ﬂvndr,] pom RRH? = myh (83)
m=1n=1
where mh; represents the moment above the tank base induced by an unit horizontal

acceleration when the entire liquid is presumed to act as a rigid mass.

5.3.3 Foundation moment. In addition to the moment defined by equation
(80), the foundation moment, M’(t), includes the effect of the hydrodynamic pressure
exerted on the tank base. The latter effect is determined by appropriate integration
of the base values of the hydrodynamic pressures defined by equation (59) or (63)
and equation (60). The resulting expression may be written as

M'(t) = m,hlZ,(t) + Z Z Mumnhin Amn(t) (84)
m=1 n=1

where the coefficient m,h, for the impulsive component of the moment is given by

- 1 RS 1 Oem
moho - Tnoha + [4 H mz=:l A?n 817

] pom R (85)

n=0
and the coefficient mpu, k!, for the convective component associated with the m th
horizontal and nth vertical mode of vibration is given by

RC}, 0dmn

' — ——— a——
mmnhmn - mmnhmn + [H X,’,, 877

] pom R (86)

From equations (85) and (86), and with the aid of equations (62) and (83), it can
further be shown that

n=0

00 00 4
Mok, + 3 3 mpnhl, = muhy + ”°’;R = mh! (87)

m=1n=1

where mhj represents the foundation moment induced by a unit horizontal accelera-
tion when the entire liquid is considered to act as a rigid mass. It should be kept in
mind that the base pressure in this case increases linearly from zero at the center to
poRcosh at the junction of the base and wall.
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SECTION 6

NUMERICAL SOLUTIONS

The numerical solutions presented in this section are for the free vibrational char-
acteristics and for the response to horizontal base shaking of systems with different

slenderness ratios, H/R, and different liquid density ratios, p;/p,.

6.1 Sloshing Frequencies and Modes

Mention has already been made of the fact that unlike a homogeneous liquid which
for a prescribed horizontal mode of vibration has a single vertical mode, an inhomoge-

neous liquid has an infinite number of vertical modes, each with a distinct frequency.

Figure 6.1 shows the variation with the density ratio p,/p, of the frequency coefficients
Cin for the fundamental horizontal and first three vertical modes of vibration of
systems with H/R values in the range between 0.5 and 2. It is observed that the
highest frequency coefficient Cy; for the fundamental horizontal and vertical mode
of vibration of the inhomogeneous system is smaller than that for the corresponding
homogeneous system. However, the difference is quite small, especially for larger
values of p1/p, and H/R. By contrast, the coefficients C), for n > 2 are significantly
smaller than those for n = 1 and quite sensitive to variations in p;/p,. These trends

may be explained by examining the modal displacement amplitudes, D;.(7).

Figure 6.2 shows the first three vertical modes of vibration corresponding to the
fundamental horizontal mode for systems with H/R = 1 and three values of p,/p,
in the range between 0.1 and 1. Each mode is normalized such that its maximum
amplitude is unity. It is observed that the n th vertical mode of vibration is associated
with n — 1 zero crossings. Since the vertical motion of the liquid is zero at these
sections, the natural frequency of the system for this mode must equal that of a system
with the same density distribution and a depth equal to the distance from the free
surface to the uppermost level of zero amplitude. For n > 1, these effective depths
are but small fractions of the total depth, H, and decrease with increasing p/p,.
The associated natural frequencies, which, based on equation (41) for a homogeneous
liquid, are expected to be proportional to the effective liquid depth must, therefore,
also be small and decrease with increasing p,/p,. For n = 1, on the other hand, the

more rapid decays in the displacement amplitudes with depth are obtained for the
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smaller values of p,/p,. A decrease in p,/p, in this case is associated with a reduced
effective depth for the system, and hence a reduced natural frequency. However, the
differences are quite small, and for values of p1/p, in the range between 0.25 and 1,
the fundamental natural frequencies of the inhomogeneous and homogeneous systems
may be considered to be the same. These trends are representative of those obtained
for the higher order horizontal modes of vibration (higher values of m) as well.

Table 6.1 lists the values of +,,, for the first two horizontal and first three vertical
modes of vibration of systems with several combinations of H/R and p;/p,. For the
results marked with asterisks, the condition defined by equation (35) is not satis-
fied, and v,; was evaluated from equation (36) rather than from equation (34). The
frequency coefficients, C);, and modes of vibration, Dn(n), for these cases must,

therefore, be evaluated from equations (39) and (37) rather than from equations (33)

and (31).
6.2 Sloshing Displacement Coefficients

Of special interest in practice is the sloshing motion of the liquid at its free sur-
face, as the maximum surface displacement is needed to define the freeboard that
must be provided to prevent the liquid from overflowing or impacting the roof. This
displacement is obtained by letting » = 1 in equation (53).

The displacement coefficients 8,,(1) for the fundamental horizontal and first three
vertical modes of vibration are presented in Figure 6.3. The results are plotted in a
manner analogous to that employed in Figure 6.1 as a function of the density ratio
p1/p. for three values of H/R in the range from 0.5 to 2. These data along with
corresponding data for additional systems and for the second horizontal mode of
vibration are listed in Table 6.2. The following trends are worth noting :

1. The surface displacement coefficients are relatively insensitive to the value of
H/R but increase substantially with decreasing p,/p,. The latter trend is con-
sistent with that reported in Reference 1 for layered systems, and is attributed
to the fact that, the larger the variation in liquid density, the greater is the
sloshing action induced.

2. The corresponding coefficients for the second horizontal mode of vibration, m =
2, are significantly smaller than those for the fundamental mode, m = 1, and
the sum of the coefficients over n for each horizontal mode satisfies equation
(54). Furthermore, when all the horizontal modes of vibration are considered,

the algebraic sum of the coefficients, in agreement with equation (55), is unity.
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It should be realized that the relative contributions of the various modes of vibration
to the surface sloshing motion depend not only on the relative values of the dis-
placement factors §mn(1) but also on those of the corresponding pseudoaccelerations,
Amn(t). The latter quantities depend, in turn, on the characteristics of the ground
motion and the natural frequencies of the system itself.

6.3 Hydrodynamic Pressures

Shown in the left part of Figure 6.4 are the heightwise variations of the function ¢,(n)
in equation (72) for the impulsive component of the hydrodynamic wall pressure.
These plots are for a tank with H/R = 1 and liquids with density ratios p,/p, in
the range between 0.1 and 1. Also shown are the corresponding functions ¢;1() and
c12(n) for the fundamental horizontal and first two vertical sloshing modes. As would
be expected (recall that the pressures are expressed in terms of the base value of the
liquid density rather than that at the level being considered), the functions c,(n) and
c11(n) decrease with decreasing p;/p,. Furthermore, consistent with the distributions
of the modal displacement amplitudes displayed in Figure 6.2, the function c;n(n) for
the n th vertical mode of vibration exhibits n — 1 changes in sign.

The interrelationship of the hydrodynamic response for the inhomogeneous and ho-
mogeneous systems can be better appreciated by rewriting equation (71) for the wall
pressure in the form

[ <]

p(1,0,0,8) = — | B30 + 3= 3 Enn(M) Amn(t) | pavReosd  (88)
=1

m=ln
where p,, represents the average value of the liquid density, given by
Pav = Po [1 - e_ﬁ]
av ﬂ

and the functions €,(n) and &nn(n) are related to the functions ¢,(n) and cmn(n) in
equation (71) by

(89)

eo(n)=;”°—co(n) and  Gma(n) = 22 cpa(n) (90)

av Pav
The variations of ¢,(n) and &(n) are displayed in Figure 6.5 for the values of p,/p,
and H/R considered previously in Figure 6.4. It is observed that these functions
are still sensitive to variations in liquid density, but that for values of p;/p, in the
range between 0.25 to 1, the areas under the individual curves are close to each other.
It follows that, despite the indicated differences in the pressures themselves, the

total hydrodynamic wall force or base shear for the inhomogeneous and homogeneous
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liquids can be interrelated simply. This matter is considered further in the following
section.

6.4 Hydrodynamic Tank Forces

Figure 6.6 shows the variations with p, /p, and H/R of the impulsive and fundamental
convective masses, m, and my;, in the expression for the hydrodynamic base shear.
These masses are normalized with respect to the total liquid mass, m;. Normalized
values of the corresponding base moment coefficients, m,h, and m; hyy, and of the
foundation moment coefficients, m,h! and m,h},, are plotted in Figures 6.7 and 6.8,
respectively. It should be reemphasized that these three sets of normalized quantities
express the hydrodynamic base shear and base moments as fractions of those com-
puted on the assumption that the entire liquid acts as a rigid mass. The normalizing
quantities are naturally different for tanks of different proportions and contents. The
normalized values of m, and m,, for additional systems, along with the corresponding
values of my3, my; and mg;, are presented in Table 6.3, and the normalized values of
the base and foundation moment coefficients are presented in Tables 6.4 and 6.5.

Examination of the data presented in these figures and tables reveals the following
trends :

1. For values of p,/p, in the range between 1 and about 0.25, the normalized values
of m, and m,,; may, for all practical purposes, be considered to be the same.
This result, which is consistent with the prediction made from the pressure
profiles displayed in Figure 6.5, is generally valid over the entire range of H/R
examined. Incidentally, the seismic response of systems normally encountered
in practice is dominated by m, and, to a lesser degree, by m;; and m3;. On
recalling that within the range of pi/p, considered, the sloshing frequencies,
wmi, and the spectral values of the associated pseudoaccelerations, Am;(t), also
are insensitive to variations in the density ratio, it is concluded that, when
normalized with respect to the value computed on the assumption that the entire
liquid in the tank acts as a rigid mass, the total hydrodynamic wall force or base
shear for an inhomogeneous liquid is practically equal to that for a homogeneous
liquid. The same is also true of the moment induced above the tank base.
These two effects may, therefore, be evaluated from well-established procedures
for homogeneous liquids. This approximation, however, is not adequate for the
foundation moment, particularly for tanks with low values of H/R and p,/p,.
The latter moment is dominated by the hydrodynamic pressures exerted on the
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tank base, and, as already demonstrated, these pressures may be substantially
different for inhomogeneous and homogeneous systems.

. For values of p;/p, less than about 0.25, the fraction of the liquid that acts
impulsively is generally smaller for the inhomogeneous system than the homo-
geneous system. The large density gradients in this case increase the proportions
of the liquid participating in the convective or sloshing actions. This increase,
however, does not necessarily increase the convective force coefficients associ-
ated with the fundamental sloshing mode of vibration. For a given horizontal
mode of vibration and a prescribed response, it is the sum of the coefficients for
all the vertical modes that generally increases.
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Figure 6.1 Frequency coefficients C,, for the fundamental horizontal mode
of vibration of systems with different values of H/R and p/p,
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Figure 6.2 Vertical modes of vibration associated with fundamental
horizontal mode of systems with HR = 1
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Figure 6.3 Surface displacement coefficients for fundamental horizontal mode
of vibration of systems with different values of H/R and p,/p,
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Figure 6.4 Effect of liquid density ratio py/p, on coefficients for impulsive and convective components of wall
pressure for systems with H/R = 1.0
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Figure 6.5 Coefficients c,(n) and c;,(1) in expressions for impulsive and fundamental convective
components of wall pressure for systems with HR = 1.0
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Figure 6.6 Normalized values of impulsive and fundamental convective
masses for systems with different H/R and p,/p,
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convective components of base moment for systems with different
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Figure 6.8 Normalized values of coefficients for impulsive and fundamental
convective components of foundation moment for systems with
different H/R and p,/p,
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Table 6.1: Values of 4y, for systems with different H/R and p;/p,

Values of ymn

p1/po m =1 m =2
n=1 n=2|n=3| n=1 n=2 | n=3
H/R =0.5
1 0.9206 2.6657
0.75 0.7025 | 3.2241 | 6.3277 | 2.5200 | 3.1947 | 6.3218
0.5 0.1668 | 3.3343 | 6.3894 | 2.3132 | 3.2691 | 6.3757
0.25 | 0.8285* | 3.5080 | 6.4918 | 1.9514 | 3.3953 | 6.4662
0.1 1.2237* | 3.7127 | 6.6212 | 1.4393 | 3.5596 | 6.5825
H/R = 0.75
1 1.3809 3.9986
0.75 1.2123 | 3.2171 | 6.3266 | 3.8547 | 3.1766 | 6.3157
0.5 0.9475 | 3.3194 | 6.3868 | 3.6520 | 3.2265 | 6.3613
0.25 0.1657 | 3.4837 | 6.4870 | 3.3038 | 3.3133 | 6.4386
0.1 0.9723* | 3.6818 | 6.6141 | 2.8423 | 3.4320 | 6.5396
H/R =1
1 1.8412 5.3314
0.75 1.6880 | 3.2090 | 6.3251 | 5.1876 | 3.1653 | 6.3098
0.5 1.4631 | 3.3017 | 6.3834 | 4.9849 | 3.1991 | 6.3472
0.25 1.0314 | 3.4537 | 6.4806 | 4.6383 | 3.2582 | 6.4112
0.1 0.3663* | 3.6422 | 6.6045 | 4.1802 | 3.3400 | 6.4958
H/R =1.5
1 2.7618 7.9972
0.75 | 2.6164 | 3.1931 | 6.3214 | 7.8533 | 3.1539 | 6.3007
0.5 2.4105 | 3.2655 | 6.3747 | 7.6506 | 3.1713 | 6.3254
0.25 | 2.0512 | 3.3886 | 6.4643 | 7.3040 | 3.2017 | 6.3678
0.1 1.5484 | 3.5497 | 6.5796 | 6.8459 | 3.2433 | 6.4246
H/R =2
1 3.6824 10.6629
0.75 3.5385 | 3.1803 { 6.3172 | 10.5190 | 3.1489 | 6.2950
0.5 3.3358 1 3.2351 | 6.3648 | 10.3163 | 3.1593 | 6.3117
0.25 2.9861 | 3.3303 | 6.4453 | 9.9697 | 3.1773 | 6.3404
0.1 2.5208 | 3.4595 | 6.5502 | 9.5116 | 3.2016 | 6.3789
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Table 6.2: Surface displacement coefficients for systems with different H/R and

p1/po
Values of é,,,(1)
p1/po m=1 m =2
n=1 n=2 [n=3|n=1] n=2|n=3
H/R = 0.5
1 0.8368 0.0729

0.75 | 0.8790 | -0.0514 | 0.0132 | 0.0762 | -0.0038 | 0.0009
0.5 |0.9451 | -0.1345 | 0.0380 | 0.0814 | -0.0101 | 0.0026
0.25 |1.0787 | -0.3113 | 0.1014 | 0.0925 | -0.0242 | 0.0074
0.1 |1.3039 | -0.6319 | 0.2440 | 0.1121 | -0.0509 | 0.0186

1 0.8368 0.0729
0.75 | 0.8788 | -0.0505 | 0.0126 | 0.0755 | -0.0028 | 0.0007
0.5 |0.9449 | -0.1327 | 0.0365 | 0.0797 | -0.0077 | 0.0020
0.25 | 1.0791 | -0.3085 | 0.0982 | 0.0887 | -0.0189 | 0.0059
0.1 |1.3065 | -0.6289 | 0.2383 | 0.1053 | -0.0413 | 0.0156

1 0.8368 0.0729
0.75 | 0.8778 | -0.0487 | 0.0119 | 0.0750 | -0.0021 | 0.0005
0.5 |[0.9429 | -0.1286 | 0.0345 | 0.0782 | -0.0056 | 0.0015
0.25 | 1.0766 | -0.3017 | 0.0940 | 0.0850 | -0.0138 | 0.0046
0.1 | 1.3055 | -0.6205 | 0.2306 | 0.0974 | -0.0307 | 0.0126

1 0.8368 0.0729
0.75 | 0.8737 | -0.0426 | 0.0100 | 0.0743 | -0.0011 | 0.0002
0.5 |0.9332 | -0.1140 | 0.0298 | 0.0764 | -0.0031 | 0.0008
0.25 | 1.0589 | -0.2734 | 0.0835 | 0.0805 | -0.0076 | 0.0027
0.1 |[1.2825|-0.5784 | 0.2107 | 0.0875 | -0.0167 | 0.0080

1 0.8368 0.0729
0.75 | 0.8684 | -0.0351 | 0.0081 | 0.0739 | -0.0007 | 0.0001
0.5 [0.9195 | -0.0949 | 0.0247 | 0.0755 { -0.0019 | 0.0004
0.25 | 1.0290 | -0.2316 | 0.0718 | 0.0784 | -0.0046 | 0.0016
0.1 |1.2301 | -0.5035 | 0.1872 | 0.0830 | -0.0101 | 0.0052
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Table 6.3: Normalized values of effective masses in expression for base shear of
systems with different H/R and p,/p,

2 my my my2 ma2; ma2

Po my mg mye my my
H/R =05

1 0.2999 | 0.6601 0.0271

0.75 | 0.2926 | 0.6665 | 0.0015 | 0.0268 | 0.0001
0.5 | 0.2804 | 0.6713 | 0.0085 | 0.0265 | 0.0008
0.25 | 0.2559 | 0.6672 | 0.0320 | 0.0261 | 0.0030
0.1 10.2211 | 0.6396 | 0.0785 | 0.0256 | 0.0072

H/R =0.75

1 |0.4391 | 0.5340 0.0182
0.75 | 0.4320 | 0.5407 | 0.0016 | 0.0175 | 0.0001
0.5 | 0.4181 | 0.5476 | 0.0089 | 0.0165 | 0.0007
0.25 | 0.3866 | 0.5516 | 0.0331 | 0.0150 | 0.0027
0.1 | 0.3374 | 0.5405 | 0.0801 | 0.0135 | 0.0066

H/R =1

1 }0.5475 | 0.4322 0.0137
0.75 | 0.5435 | 0.4358 | 0.0016 | 0.0128 { 0.0001
0.5 | 0.5323 | 0.4401 | 0.0092 | 0.0117 | 0.0006
0.25 | 0.5009 | 0.4442 | 0.0341 | 0.0099 | 0.0021
0.1 | 0.4453 | 0.4408 | 0.0817 | 0.0080 | 0.0054

H/R =15

1 10.6858 | 0.3006 0.0091
0.75 | 0.6887 | 0.2972 | 0.0016 | 0.0083 | 0.0001
0.5 | 0.6862 | 0.2927 | 0.0092 | 0.0072 | 0.0003
0.25 | 0.6656 | 0.2866 | 0.0344 | 0.0056 | 0.0013
0.1 {0.6145 | 0.2802 | 0.0826 | 0.0039 | 0.0033

H/R =2

1 10.7627 | 0.2270 0.0068
0.75 | 0.7698 | 0.2193 | 0.0015 | 0.0062 | 0.0000
0.5 | 0.7736 | 0.2092 | 0.0085 | 0.0052 | 0.0002
0.25 | 0.7640 | 0.1940 { 0.0320 | 0.0039 | 0.0008
0.1 |0.7249 | 0.1789 | 0.0782 | 0.0025 | 0.0021
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Table 6.4: Normalized values of coefficients in expression for overturning moment
at a section immediately above tank base of systems with different H/R
and py/po

Jan moh myh myzhiz | maihzy | mgaghgs
m¢h, m¢h, m¢h, m¢h, m¢he

H/R = 0.5

1 10.2394 | 0.7031 0.0365
0.75 | 0.2398 | 0.7244 | -0.0190 | 0.0369 | -0.0014
0.5 | 0.2388 | 0.7534 | -0.0431 | 0.0376 | -0.0030
0.25 | 0.2332 | 0.7980 | -0.0753 | 0.0389 | -0.0050
0.1 | 0.2200 { 0.8417 | -0.0958 | 0.0410 | -0.0057

H/R = 0.75

1 10.3520 | 0.6053 0.0277
0.75 | 0.3550 | 0.6236 | -0.0185 | 0.0274 | -0.0010
0.5 | 0.3566 | 0.6495 | -0.0418 | 0.0270 | -0.0022
0.25 | 0.3524 | 0.6919 | -0.0722 | 0.0264 | -0.0034
0.1 | 0.3357 | 0.7384 | -0.0902 | 0.0258 | -0.0032

H/R =1

1 | 0.4425 | 0.5235 0.0223
0.75 | 0.4495 | 0.5368 | -0.0177 | 0.0217 | -0.0007
0.5 | 0.4559 | 0.5565 | -0.0397 | 0.0208 | -0.0015
0.25 | 0.4574 | 0.5908 | -0.0677 | 0.0193 | -0.0022
0.1 | 0.4429 | 0.6326 | -0.0826 | 0.0175 | -0.0016

H/R =15

1 |10.5664 | 0.4094 0.0160
0.75 | 0.5800 | 0.4134 | -0.0152 | 0.0152 | -0.0004
0.5 | 0.5954 | 0.4199 | -0.0337 | 0.0141 | -0.0008
0.25 [ 0.6111 | 0.4333 | -0.0556 | 0.0123 | -0.0011
0.1 | 0.6101 { 0.4540 | -0.0632 | 0.0100 | -0.0004

H/R =

1 | 0.6445 | 0.3367 0.0124
0.75 | 0.6609 | 0.3346 | -0.0124 | 0.0117 | -0.0002
0.5 | 0.6811 | 0.3321 | -0.0270 | 0.0107 | -0.0005
0.25 | 0.7061 | 0.3294 | -0.0428 | 0.0090 | -0.0006
0.1 {0.7181 | 0.3291 | -0.0432 | 0.0069 | -0.0001
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Table 6.5: Normalized values of coefficients in expression for foundation moment
of systems with different H/R and p,/p,

[

21 moh'? m“h;' muh;z m:m%l m'nh?z

Po m¢h, meh, mgh, mlh¢ mgh,
H/R =05
1 0.2927 | 0.6869 0.0131

0.75 { 0.2632 | 0.6616 | 0.0316 | 0.0118 | -0.0001
0.5 | 0.2241 | 0.6212 | 0.0745 | 0.0101 | 0.0000
0.25 | 0.1668 | 0.5454 | 0.1381 | 0.0079 | 0.0005
0.1 |0.1113 | 0.4470 | 0.1967 | 0.0058 | 0.0013

H/R =0.75

1 10.4369 | 0.5402 0.0148
0.75 | 0.4120 | 0.5319 | 0.0178 | 0.0134 | -0.0003
0.5 | 0.3729 | 0.5150 | 0.0468 | 0.0115 | -0.0005
0.25 | 0.3028 | 0.4748 | 0.0994 | 0.0087 | -0.0002
0.1 | 0.2195 { 0.4096 | 0.1595 | 0.0060 | 0.0006

H/R =1

1 10.5263 | 0.4508 0.0149
0.75 | 0.5129 | 0.4465 | 0.0077 | 0.0135 | -0.0004
0.5 | 0.4858 | 0.4373 | 0.0247 | 0.0117 | -0.0006
0.25 | 0.4241 | 0.4133 | 0.0646 | 0.0089 | -0.0005
0.1 {0.3324 | 0.3695 | 0.1218 | 0.0060 | 0.0003

H/R =15

1 ]0.6226 | 0.3575 0.0131
0.75 | 0.6266 | 0.3519 | -0.0028 | 0.0120 | -0.0003
0.5 | 0.6237 | 0.3428 | -0.0006 | 0.0105 | -0.0005
0.25 | 0.5960 | 0.3246 | 0.0184 | 0.0081 | -0.0005
0.1 |0.5246 | 0.2958 | 0.0629 | 0.0053 | 0.0001

H/R =2
1 |0.6785 | 0.3048 0.0110
0.75 | 0.6902 | 0.2972 | -0.0061 | 0.0101 | -0.0002
0.5 | 0.7003 | 0.2858 | -0.0097 | 0.0089 | -0.0004

0.25 | 0.6979 | 0.2652 | -0.0023 | 0.0069 | -0.0004
0.1 | 0.6571 | 0.2369 | 0.0301 | 0.0046 | 0.0001
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SECTION 7

CONCLUSIONS

With the information presented herein, the free vibrational characteristics and the
response to horizontal base shaking of rigid cylindrical tanks containing liquids of a
density that decays exponentially with depth may be evaluated readily. The compre-
hensive numerical solutions that have been presented provide valuable insights into

the underlying response mechanisms and into the effects and relative importance of

the numerous parameters involved. The principal conclusions may be summarized as
follows :

1.

Unlike a homogeneous liquid, which for a given horizontal natural mode of vi-
bration has a single vertical mode, the inhomogeneous liquid examined has an
infinite number of such modes, each associated with a distinct frequency. The

latter frequencies are smaller than the corresponding frequency of the homoge-
neous liquid.

For any horizontal mode of vibration, the nth vertical mode of the inhomoge-

neous liquid has n — 1 zero crossings and its frequency decreases with increasing
values of n.

For a specified horizontal mode of vibration, any two vertical modes satisfy the
orthogonality relation defined by equation (43).

. When normalized with respect to the pressures computed on the assumption

that the entire liquid acts as a rigid mass, the coefficients in the expression for
the impulsive and all convective components of the hydrodynamic wall pressures
add up to unity. The same is also true of the corresponding coefficients for base
shear and base moments in the tank.

The impulsive component of response may be obtained either by evaluating
all the convective components and subtracting their sum from the response
computed on the assumption that the entire liquid acts as a rigid mass, or,
independently, without the prior evaluation of the convective effects.

When normalized with respect to the result computed on the assumption that
the entire liquid in the tank acts as a rigid mass, the total hydrodynamic wall

force or base shear for an inhomogeneous liquid with values of p; /p, in the range

7-1



between 1 and 0.25 may be considered to be equal to that for a homogeneous
liquid. The same is also true of the moment induced above the tank base.
These two effects may, therefore, be evaluated from well-established procedures
for homogeneous liquids. This approximation, however, may not be adequate
for the foundation moment, particularly for broad tanks with high gradients in
liquid density.

. The finite-difference representations of the equations for the response of the con-
tinuous system examined here are the same as the expressions for the response
of the layered, discrete system studied in References 1 and 2.
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Gmi1,m3

Am(t)
Amn(t)
by, by
co(n)
&(n)

cmn(7)

Emn(n)

Cm
Crmn
d

Dm(n,t)
Dmn(ﬂ)

em(n)

SECTION 9

NOTATION

factors in expression for e,,(7), defined by equation (68)

instantaneous pseudoacceleration for m th horizontal mode of vibration of
homogeneous system

instantaneous pseudoacceleration for m th horizontal and n th vertical mode
of vibration of inhomogeneous system

factors in expression for e,,(n), defined by equations (69) and (70) respec-
tively

dimensionless coefficient in expression for impulsive component of pressure,
given by equation (72)

dimensionless coefficient in equation (88) for the impulsive component of
wall pressure, defined by equation (90)

dimensionless coefficient in expression for convective component of pressure
associated with mth horizontal and nth vertical mode of vibration, given
by equation (61)

dimensionless coefficient in equation (88) for the convective component of
wall pressure, defined by equation (90)

dimensionless coefficient in expression for wp,

dimensionless coefficient in expression for wmy

vertical sloshing displacement of liquid at any point and time, defined by
equation (53)

vertical displacements of liquid along the tank wall for its m th horizontal
mode of vibration, given by equation (51)

amplitudes of vertical displacements of liquid for its m th horizontal and
nth vertical natural mode of vibration

dimensionless function in expressions for impulsive effects, defined by equa-
tion (62) and evaluated from equation (67)

acceleration due to gravity

height of center of gravity of liquid mass from tank-base

height of impulsive mass m, from tank-base

height of convective mass my,, from tank-base
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J

my
Mmn
M(t)

M'(t)

gmn(t)

Qs(t)

r

R

-

2,(t)
4

B
Tmn

Fmn

total depth of liquid in tank

Bessel function of first kind and first order

total liquid mass in tank

impulsive component of liquid mass, given by equation (77)

convective component of liquid mass associated with m th horizontal and
nth vertical mode of vibration, given by equation (78)

instantaneous value of overturning moment at a section just above the
tank-base, given by equation (80)

instantaneous value of foundation moment, given by equation (84)
hydrodynamic pressure, given by equation (57)

impulsive component of hydrodynamic pressure, given by equation (39) or
equation (63)

convective component of hydrodynamic pressure, given by equation (60)
time-dependent generalized coordinate corresponding to the m th horizon-
tal and n th vertical mode of vibration

instantaneous value of base shear, given by equation (76)

radial distance from tank-axis

radius of cylindrical tank

time

instantaneous value of frce-field ground acceleration

vertical distance measured from tank-base

positive decay factor defining exponential variation in liquid density
dimensionless factor in expressions for Crma and Dpa(n)

dimensionless factor defined by equation (48)

6(n — 1) delta function, used to define density discontinuity at free-liquid surface

bmn(n)

€m

displacement coefficients in expression for D, (,t), given by equation (52)
dimensionless factor defined by equation (69)

= z/H = normalized vertical distance measured from tank-base
circumferential angle

mth root of J;(1A) = 0

= r/R = dimensionless radial distance coordinate

mass density of liquid, defined by equation (1)

average value of mass density of liquid, defined by equation (89)

mass density of liquid at free liquid surface

mass density of liquid at tank-base
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©

W

Wmn

velocity potential function, given by equation (10)

velocity potential function associated with relative motion of liquid and
tank wall, given by equation (19)

circular natural frequency of homogeneous system for m th horizontal slosh-
ing mode of vibration

circular natural frequency of inhomogeneous system for mth horizontal
and n th vertical mode of vibration









