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Abstract

The three nonlinear hydrodynamic equations for potential, parallel ion velocity

and ion pressure used in simulations of the toroidal ion temperature gradient driven

fluctuations and transport in a shear magnetic field are analyzed for coherent vortex

structures. Two types of vortex structures are found: one type for weak shear that

is a generalization of the usual modon vortex construction and the second type of

solution for strong magnetic shear where the convective nonlinearity in the parallel

velocity field generates a cubic trapping nonlinearity in the vorticity equation. These

vortex structures show the possibility of explaining the saturated states observed in the

numerical simulations as self-organized nonlinear states in contrast to wave turbulence.
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I. Introduction

The ion temperature gradient driven drift wave turbulence is an important mechanism for

the transport of ion thermal energy across a confining magnetic field. The linear instability

and the early nonlinear stages of the turbulent fluctuations have been extensively studied

both in early simulations and more recently in Refs. 1-.4. The simulations such as Hong and

Horton, 2 with both magnetic shear and the local unfavorable magnetic field curvature and

gradient, show that in the late stages of nonlinear evolution larger scale coherent structures

are formed. In this stage there is a partial alignment of the fluctuations of the hydrodynamic

fields due to the relatively fast E × B convection of the plasma around the local minima and

maxima of the electrostatic potential.

As a result of the coherent vortical structures induced by the local E x B rotations there

is a reduction of the radial transport (due to the trapping in the vortex corm) from the

cross-fie[d transport rate found in the early stage of saturation. Thus it is important to

understand the nature of these coherent structures in the presence of both magnetic shear

and E x B shear flows.

In the present work we investigate the conditions, forced on the fluctuation fields in hydro-

dynamic descriptions for the formation of coherent structures propagating in the magnetic

surfaces. The conditions lead to nonlinear elliptic equations with spatially varying coeffi-

cients describing the nonuniformity in the equilibrium induced by the magnetic shear and the

sheared flows. Earlier studies by Su et al.s for the sub-case of vanishing ion pressure shows

the possibility of long-lived coherent vortices in the presence of magnetic shear. Here, we look

for such solutions analytically and numerically in the more interesting case of a system which

contains the driving force for linear instability. With the addition of the third dynamical

equation describing the ion pressure fluctuations the linear dynamics is described by a third



order polynomial in the complex frequency w and one root is unstable for r/i > r/_rit_- F- 1

where,,// is the ratio of the ion temperature gradient to the density gradient and F is adia-

batic c:)nstant describing compressibility in the ion thermal balance equation. The details

of the linear stability conditions and the early stages of the nonlinear dynamics are given in

Refs. 1-4. Three-dimensional nonlinear simulations showing the saturated state of turbulent

vortical convection are found in Refs. 6 and 7. Two-dimensional toroidal r/i-mode simulations

in a periodic box without parallel mass flow (vii - 0) are shown by Ottaviani et aLs to give

rise to large scale (_ 10ps) vortices with radial transport reduced from the quasilinear value.

II. Model Equations
i

We study the nonlinear regime of the _oroidal rh-mode in a collisionless plasma, which has

the inhomogeneous density no(x), and ion temperature Ti(x):

°)

where rh = L,_/LT. The plasma is confined in a torus whose major radius is R, and immersed

in a sheared magnetic field Bo(x)ell. The toroidicity is defined by the parameter e,_ = LhR,

and the magnetic shear by the shear length L_ where in local z, y, z coordinates the magnetic

field may be written as

• Bo(Z)=:13'o1-
X -- 270 Z -- Z 0

ell=e_+ L'---_e_ R e_.

There also exists a macroscopic sheared flow, both in the parallel and perpendicular direction,
i

i whose fluid w_locity is Vo(x):

Vo(x) = cs e., + _ eu (2b)
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where c, = (T,/mi) 1/2 is the ion sound sp_d. For drift-wave-type perturbations, with the

characteristic phase velocity in the parallel direction being much smaller than the electron

thermal speedl electrons are Boltzman distributed,

and we can neglect the inhomogeneity of the electron temperature T,.

A closed system of equations, describing the plasma state in terms of the electrostatic

potential ¢, parallel ion velocity viii, and the ion pressure pi can be obtained from the

ion hydrodynamics. 1 The derivation of the reduced drift wave equation 1 assumes p,/L <<

p, _'± << 1 where p,= (mi T,o)l/2/e Bo is the ion inertial scale length and L is some typical

scale length. To the leading order in small parameters p,/L, making use of quasineutrality

and the electron Boltzmann distribution, Eq. (3) (i.e. assuming zero electron mass) the

equations of ion continuity, parallel momentum, and energy, can be written asi-r:

(o )g/+ v [It- - x]+ , ,
0

= (_.x v). {[(e.×vP). VlV_}+ 2e__(P +_) (4)

(o )gi + v_ ._, _ = -o_(P+ _) (5)

N + Vj.. V P + FOIlgl = 2r¢. _ t To 2¢.

Here the standard dimensionless drift wave variables are used:

x - Xo y z - zo tcs
X---* , y"'_ _ , z---* t---* _

p, p, L, ' Lm '

q_= e¢ Lm viii Lm p= pi L,, (7)
T_ p, ' VII= c, p, ' n0T_ p,

Besides that, the velocity V± in Eqs. (4)-(6) denotes the perpendicular component of the

ion guiding center velocity, which is the slim of the macroscopic shear flow, and the E × B

IJ m, [I II



drift

Vx = Sxz % + ez x V¢ = e_ x _ (_ + S± _) . (8)

It is convenient also to express the dimensionless parallel ion velocity VII, and pressure P as

the sum of the corresponding zero order and perturbed quantities

VII= S,iz + v
(9)

P = -Kz+ p.

Finally, o_1denotes derivative in the direction parallel to the magnetic field

0 0

o_,= 0-7+ s_ o--;j' (_0)

The following standard notation is used in the above equations (4)-(10):

S± = Ln LT, Sm Ln L,L_' s,,:L,-;': L-7' _ :-_
L,, T/o T{0

,,=_, A'=_(t+_,), r=_
where 7 = CpC, is the ratio of the plasma specific heats, which for a collisionless fluid may

i be taken as variable 1 < 7 < 3 in order to match the description from the Vlasov equation.Equations (4)-(6) account for ali the relevant finite ion Larmor radius, toroidicity, and

_ shear related effects. Thus, the first term on the right-hand side of the ion continuity

equation (4) represents the combination of the convection by the diamagnetic drift, and the

finite Larmor radius nonlinearities (note that a cancellation between the finite Larmor radius
T

(FLR) terms, and a part of the diamagnetic drift convective nonlinearities occurs), while the

. second term arises from the convection by the ion toroidal drift. The right-hand side of the

energy equation (6) describes the compressibility from cross-field transport.

i 'The linear dispersion relation which is obtained from Eqs. (4)-(6) reveals the existence

of an unstable mode wk + iTk driven by the ion temperature gradient. The mode has two
limiting forms depending on the ratio kllc, to WD = 2_:,,w,. One limit is existing in the slab

i geometry _'r'9 (kll c, >:>wO), where the coupling is achieved by the parallel ion motion along
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the sheared field line, and the unstable mode is essentially an ion acoustic wave in which

the restoring force kll(¢ + Pi) = kt!(1 -w,pi/w)¢ becomes negative due to the dominance

of the convection of the pressure for w,pi/w > 1. The other limit, which exists when the

toroidal effects dominate, s'l° is of the interchange nature, and for tokamak systems, this

branch typically has a larger growth rate than the ion acoustic branch.

III. Stationary Solution

Equations (4)-(6) belong to a class of nonlinear partial differential equations with vector

product (or Poisson bracket) type nonlinearities, and one may expect that they possess a

localized solution in the form of a travelling double vortex. In the shearless case, such a

vortex solution has been constructed in the simple cases of absence of toroidal effects 11and

parallel ion motion. 12The authors of Ref. 3 attempted to study the effects of shear on such

coherent structures, in the case of strictly two-dimensional ions, o = 0. They include the

curvature related terms in the ion continuity (4), but neglect similar terms in the thermal

: balance equation (6). Furthermore, they also neglect finite Larmor radius and diamagnetic

drift nonlinearities in Eq. (4)(the first term on the right-hand side).

In this section we construct a double vortex solution of the complete system of equations

(4)-(6), in the low ion temperature regime Tj << T,. We seek a solution which is stationary
and z-independent in the reference frame moving with the velocity:

Vph = u(% + c_-lez) , (12)

i.e. we assume ali perturbed quantities to be dependent only on x and y' = y + az - ut.

Then we can readily rewrite the convective and parallel derivatives as

! o

• o_1= e_xV ctx+Sm 7 .V (13)

6
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and

0

a_= (e,xw). v.

Here a determines the pitch of the structure that becomes a helical structure when y is

periodic with y = rO. If we also assume low ion temperature, and weak shear:

Fa-_Fe. << t
(14)

max(Sm,S_,SII) - S << I

we may treat the right-hand side of the energy equation (6) as a small perturbation. First,

we set F = O, and Eq. (6) readily obtains the simple form of a Poisson bracket, when it can

be integrated to yield
X 2

- ,,=+s_5 = F (15)

where F = F(p- Kx) is an arbitrary function of its _,rgument. Substituting solution (15)

into Eqs. (5) and (4), we can integrate them in the same way:

v+Sllm- 1+_-7 ax+Sn =G (16)

2

F' -_72F+(2¢,,-l+u)z-Sz + 2¢,,z + _ az + S,,,

-O' ax + S,,, - ViF + --_--[U(p- Kx)] 2 = H . (17)i
| Here G = G(p- Kx), H = H(p- Kt.) are also arbitrary functions, and FI"),GI"),H(")

i denote n-th derivatives of these functions. In the derivation of Eq. (17) we used the following

- identities:

-._ __t/o,__/_1_/_/_-/_.__/_?_/_/+_,,/_/_-/_/,]
(1-V2)q ,=F(p-Kx)-v2F(p-Kx)+uz-S±-_-+S±. (18)|

Note that Eqs. (15)-(17) are valid for arbitrary values of the shear coefficients S,.,,S±,SII,|
I
-- provided the effects of the compressibility are negligible, [' = 0.
I

i
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In the shearless case, 11'1_the standard double vortex is constructed by adopting linear

functions F, G, H, and allowing them to have different slopes inside and outside of the circular

vortex core. In the presence of weak shear, 3 however, a similar solution is possible if these

functions have small nonlinear parts:

F" G" H"

F---7 -_ G---7 ,_ H---7 ,,_max(Sm, Sj., SII) << 1 . (19)

As the first order correction to the "cold" solution (15)-(17), we include thermal terms

in the energy equation using the "cold" expressions for v, _, _7_

_jk_l--[ez xV (ax+,-q,nx"_)] ._ _SIiX_ b (1+-_) (ax'-kSm _) +G]

[( ) ] [( K ,, ]0Y0 1 T_OTe 2e_It"V2 ¢+2p =(ez xVx). 1- T_/F+2e, l+F' +2(p-Kx)
(20)

which permits us to rewrite the thermal balance equation in the form of a complete Poisson

bracket, and to solve it as:

x 2

- uz + S± _ = F[p -(K + 6K)x] . (21)

Here F is the same function as the one defined in Eq. (15), with a slightly perturbed argument

[ ,,0_K--2r_. 1-X+p; 2-- +_. _ 1¥ i_, ' (22)

where only leading order expressions for F', G', H' are used. Similarly, substituting Eq. (21)

into the ion parallel momentum, and continuity equations, and after a somewhat lengthy

but straightforward algebra, we completely recover Eqs. (16) and (17), but with a small

perturbation of the arguments of the functions G and H:

G = G_-(K + 61()z] (23)

[( )]H=H p- K+ I+F-----;6K z . (24)



Asymptotic expressions for the functions F, G, H, in the limit of large arguments (z ---,_z)

are obtained from the condition that the perturbations of the ion velocity v, pressure p, and

potential _ vanish for z --, c_. Substituting v = p = _ = 0 in Eqs. (15)-(17), (21), (22)-(24)

we obtain the following asymptotic expressions:

F(_) = til. _ + F2' _2 (25)

G(_) = G_. _ + G2(_)' _2 (26)

HOUr(() t4o,t .(2= .._ . ( + H_Ut(_) (27)

where the coefficients F,., G;, H °"t are given by:

U

K+hK

Si
F2= 2K 2

G1 = K+bK K+bK

G2(_) = 2h.2(F_ + 2F2_) Sm(1 + .Pl + 2F2_) + 2S±

-1
gou_ _ . [(1 + F,). 2_, - F,(1 - u)- G,a]1 K+hK

1
HOUr _ -/'1 Sz .-G_ Sr, -4KF2(2e,, - 1 + u)2 (_)= 2K 2

+ (F_ + 2F2_) 2 + 4Kc_ G2(_) (28)

and we dropped all small terms of the order SF, S 2, and higher.

The shear induced vortex equations of Su et al.5 are recovered when c_ = Sh. = SII = 0 and

K is sufficiently small. In this limit Eqs. (15), (16) and (25)-(27) give the v(x,y) in Eq. (17)



of Su et al.5 in Sec. IV we will derive the corresponding shear induced vortex structure that

follows in this strong shear limit.

In the standard vortex scenario, spatially localized solutions of Eqs. (15)-(17) are con-

structed by adopting different analytic expressions for the functions F, G, H in two different

regions of the x-y-plane, outside and inside the vortex core. Obviously, in such a case the

functions F, G, H must be constant along the core edge. However, the argumen_.s of F and

G differ from the argument of H, see Eqs. (22)-(24), and there can not exist any common

closed equiline for all three functions. Consequently, if we allow for only one closed line of

discontinuity, some of the functions F, G, H must have the same analytic form on the whole

x-y plane, both inside and outside the vortex core.

We adopt functions F, G in the form (25), (26) on the whole ziy plane, while the asymp-

totic form of H, Eq. (27) is taken to be va:id only in the exterior region. If the vortex radial

scale ro is much smaller than the shear length, Sro << K, with the same accuracy as above,

we may adopt within the core a weakly nonlinear function H:

H_(_) = Ho_' + H_"_¢ + H_n_2 (29)

where the constants H'_n,H[ n, Hi2n satisfy HI n _, Hion, Hi2n.

The approximative solution of Eqs. (15)-(17), which is valid only at distances which are

much shorter than tlm shear length, is obtained after linearization around p- Kx = O. The

first order problem and its solution, as one may have expected from the Hasegawa-Mima

equation, is given by

(v_- p_)p,=0, _=(_ + v_),/_> _0
(30)

(v_+ _)(p, - _z) =0, _< _o

where, in the usual adopted the vortex to be circle with the radius and"way_ we core a r0,

I

i -- H_ut u - i 2_ _St) _p2
Ft(l+Ft)-u+K+SK + _ + - --u u(u+ K) u_

I0

!
!
!
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_2= S__
&(_+&)

w (K+SK u ) '_2+p2= . • (31)u+ K ,d "

Linear solution has the usual dipole vortex (or modon) form:

I / r / Jt(xr)

u + K Kx(pr) (32)

'

Where J1, K1 are ordinary, and modified Bessel functions of the first order, and 0 = nrctg _.

Wavenumber x (or, equivalently, the slope H_n) is found from the continuity of _ p,(ro),

yielding the following nonlinear dispersion relation:

= (33)

The firstordercorrection6p isfoundafterlinearizationaroundpa- Kx, yieldinga driven

Hasegawa-Mima ,equation:
(v_-/)6p _, _ > _0

(34)
(VI.+ _2)5p= 7:', r< ro

where the driving term 7:' is built by the first order modon px:

{

+ H2(p,- Kz) =- g,z(p,- Kz)- g2x2+ H_h(r - ro)}

g,= 2 IF2.(2¢.- I+u)- aG2(0)]

•92=7) F, Sj.+GISj.+ 2F2a 2 (35).. F_ '

Here h(r- ro) is the Heaviside unit step function, and Ha denotes H_"'(0), H_", respectively.

11



Noting that the first order solution pl contains only the first cylindrical harmonic, the

driving term 7:' and consequently also the second order solution 6p, will have only cylindrically

symmetric (monopole), and quadrupole parts:

" "P= Po(,')+ _(r) cos20
6p = 6po(r)+ 6p2(r)cos 20, (36)

Equation (34) can be easily integrated using the Cauchy method of variation of constants,

yielding:

{ Jn(xr). [an + .,_(r)] + ,.(t_r).,,(r) , r<ro
, (37) '

_p.(i')._-K.(p_)lb.+Z.(_)]+ l.(p_)_:.(_)_> _o, n= 0,2

where Jn, Yn and In, Kn are ordinary, an_t modified Bessel functions of the n-th order, an, bn

are constants of integration, and:

yn(r) = _5 L r drtr I yrl(/_T/)'_n(r ') (38)2 0

fZn(r) = - dr'r' In(pr')Pn(r') (40)
0

LK:n(r) = dr'r'h'.(pr')TPn(r' ) , n = 0,2. (41)

Solution (37) is finite at r = 0, oo, and the continuity of 6p at r = ro yields:

1
an = [6ph(ro)- Yn(,_ro)J.(ro)]

Jn(xro) (42)
1

bn = [6ph(r0) - l.(pro)K:n(ro)] , n = 0,2.
Kn(pro)

As we have adopted the circular vortex core with the radius ro, to be centered at z = 0, y = 0,

continuity of the function H yields:

._ 6po(ro) = H_, - HI"
(43)

6ro(ro)= 0.

.. 12
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Finally, from the continuity of V6p at r = ro, which for our choice of the vortev core

corresponds to the continuity of o0--Tg6p,(ro), n = 0,2, we obtain the following equations from

Which the remaining constants of integration Hi0", H_n can be determined:

pfft(pr0) aJ,(xro)]
)Co(ro) 7r Jo(ro) = _5po(ro). - (44)Ko(p o) 2 Jo(  o) Jo(  o)

K2(pro) 2 J2(xr0) = 0. (45)

Far from the modon core the shear-related terms can not be considered any longer as
!

being small. In this "far away" region, behavior of the vortex is described essentially by
,,

linear equations. Linearizing Eqs. (1_)-(17) around p = 0, we obtain for the first order

solution pr'

x),] -(i + Ft - 2F2Kz) . (Ft - 2F2Kx)V2p_ + + Ft - 2F2K .4F2K Op--2-t
OT,

i -(-o°'-2K-"oo')x,n2 (-Kx) pt = 0 (46)
i aa l •

One may observe the existence of a turning iayer x = xt in Eq. (46), defined by H{'u_ =

2KxtH_t(-Kxt), where the coupling of vortices with linear drift waves takes place. Further-

more, there are two resonant layers x = zt,z2 given by F1 = 2F2Kxl, and 1 + Ft = 2F2Kx2,

i u = Sd.zt (47)

equivalently:or

u = K + 6K + Sd.z2 .

i| In these resonant layers we have (I) = O, and (I)+ p -= O, respectively, and the resonance
,i

occurs due to the perpendicular shear flow.

i Due to the existence of the singular layers introduced by S± _ 0 the vortex formation is
9

_= expected to proceed in the manner shown in Horton et al. la and Tajima et al.14 where the

drift wave-Kelvin Helmholtz vortices are investigated analytically and numerically. On thei

_. other hand the turning point layer x = zt introduces the physics of oscillatory "_ails on one

" side of the vortex structure. Thus, a thorough solution of the vortex structure problem with

___--
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both the K and S j. effects of order unity awaits further numerical analysis. The contours of

in such a regime will be complicated. An indication of the structure is given by the results

of the 3D simulation in Ref. 15 with K = 3, F = 2, S,_ = 0.3 and L, v'E/cs = 1.5 showing

vortices that arc stretched in the y direction.

IV. Strong Magnetic Shear Induced Dipoles

Now we consider the regime where the magnetic shear S,,, is sufficiently strong to produce

nonlinear binding into a vortex structure through the E x B ::onvection in the ion-acoustic

waves. The E × B convection of the parallel ion velocity produces the nonlinearity G(_) =

G_+ G2_2 in Eq. (16) and this quadratic nonlinearity couples into the vorticity Eq. (17)

Sm_. In this strm, g shear limitto produce a cubic trapping potential proportional to 2 3

we generalize the results of Su et al. 5 to the case of the ion temperature gradient driven

fluctuations.

To proceed analytically we take the limit Sn. = 0 and neglect the effect of compressibility,

F = 0. With these simplifications we obtain for G1 and G2

- T," + (4s)

with the associated parallel velocity given by

v = 2 2K 2 (p - I('x)2 1 + . (49)

Using these results for G(_) in the equation for H(_),

g(_) = gl_ + H2_2 + g_ 3 (50)

.m

we derive that

u 2e. _G,H_ = ii---_- (u- 1- 2e.) K _" K

i
,, H_ = Sm G, 2a
• 2K 2 t" _ G2

|

IH

i
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Sm G2

//3 = K2 • (51)

Thus, we see that the cubic nonlinearity in the vorticity equation arises from the G2 which

in turn arises from the convective nonlinearity in the parallel velocity equation. Substituting

these results for H(_) into Eq. (17) we obtain the cubic vortex equation for p(x,y'), where

y' = y + az - ut, given by

• u- 1 2e, _Sll - _'7 PV2P- u+K +--+u, u(u + K)
i

-2uK u u + K u u u + K ] p

s_m
?

Equation (52) has the symmetry property that if p(x,y) is a solution then -p(-z,y) is also

] a solution. Thus, we may take the natural modes as having dipole symmetry. Secondly we

! see that for such an odd (in x) solution the nonlinearity dominates the core region when
i
] p(x,O) =z(dp/dx)o > Kx which is equivalent to the statement that pressure fluctuation in
!
i the core exceeds the equilibrium (ambient) pressure gradient. In terms of the potential

the corresponding relation is that the vy-flow in the core of the vortex rest frame is reversed

, so that d_/dx > u. Solving Eq. (52) with IPl _ 0 as Ixl _ oo leads the nonlinear eigenvalue
I

i problem.

Let us consider a reduced form of Eq. (52) where the ion temperature gradient parameter
I

K and the toroidicity 2s, are retained and look for the solutions centered on the rational

surface at z = 0 with c_ = SII = 0. Introducing the function g, = p/K = _/u we can rewrite

the equation in the form

ovo_(_,z) (53)V2¢ = 0_
with

2 2 S_z 2_4
Smx e_ _3 S,,,1 k2(u) + 4vo_(¢,_)= -_ _ _ 8_

15



" u- I 2s.

k_(_') = u +/_ + ----_, (54)

and k2(u) equals the characteristic e-folding number p2, Eq. (31), irl the limit F = a = Si =

SII --. 0. Equation (53) clearly shows the trapping nature of the nonlinear potential due to

the positive definite term S_24/u 2.
4

To study the trapping of the fluctuation in x we consider the variation in x along y = 0

with the approximation that 02¢/0y 2 - -¢(x, O)/b _ which shifts k2(u) .--, k2(u) + lib _. (In

the future full 2D solutions should be available.) Without the x-dependence the soliton-like

solution occurs along the homoclinic orbits of 02g,/i)x 2 = -0V_/0¢ which are defined by

Sm ¢4 (55)- Su--z •

In the presence of the x-dependence the nonlinear eigenfunction starts outside the separatrix
|

and comes into the small amplitude (¢2 __ 0) external region alnng the stable manifolds given

by dC/dx = :t:k¢.

In Fig. 1 we show the "trajectory" of the solution in the phase space (¢,d¢/dx) and

in Fig. 2a the localized vortex (nonlinear) eigenfunction. The three components of the

energy density are shown in Fig. 2b. The energy densities are the electrostatic energy in the

adiabatic electron distribution _2, the kinetic energy in the E x B circulation of the ions

| (V(I))2, and the kinetic energy in the parallel oscillations of the ions given by v2 from Eq. (49)
:m

(reduced to a = SII= 0). The figure shows that very little fluctuation energy escapes beyond

x = Ax/p, _ 5. In the figures the dimensionless s = Sm/ku 2 = 1/4. For stronger magnetic

shear_ Sm, although the binding is stronger, the coupling to the exterior ion acoustic waves

increases raising the tail energy density visible in Fig. 2b.

The maximum of the vortex potential occurs near the separatrix as seen from Fig. 1, for

the example, which from Eq. (55) gives

'-)ft-lk(u)l (56)= u¢.,== IS l

16
|
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where k(u) -" [(u- 1)/(u + k) + 2z,/u + 1/b2] '/2. The condition kS(u) > 0 is the general-

ization of the usual condition that the velocity u of the vortex must Lieoutside (but may

be very close to the boundary) of the region of linear wave propagation which is defined

by k2(u = w/ky, b = k_) <_O. Thus, for vortices with velocities u just outside the linearly

unstable domain of the ion temperature gradient instability there exists nonlinear vortex

fluctuation states. We believe that the coherent vortex states computed here are idealized

models for the vortices seen in the simulations of Refs. 2 and 7.

For the parameters used in Fig. 1 Sm/ku 2 = 1/4 formula (56) gives the amplitude 8v/2 =

11.3 in reasonable agreement with the quasi-one-dimensional solution. The two-dimensional

solution appears to have a more tightly bound nonlinear core than shown here.

The condition k2(u) > 0 allows a wide range of vortex speeds u. The ".<,Li,_cesconsidered

most likely to be the nonlin_ear states evolved from the final stages of the fluid turbulence

simulations are those with small u given by u_n = 4"(2_,K) x/2. These velocities scale with

K and e, similar to the effective phase velocities [wk/ku[ of the fastest growing toroidal

qi-mode. From Eq. (56) the associated amplitude of the vortex structure is

2enK

= ISml (57)

where c# is a numerical constant. The scaling (57) is related to that of the mixing length

estimate for wave turbulence 7k/Ik_,[ with [k=[ replaced by magnetic shear and 7k/k¢ "

(2e_K) 1/2 replaced by 2¢,_K. Equation (57) should only be taken as an estimate of the

scaling of the toroidal r/j-vortex structure amplitude. In fact, the simulations 6,z suggest that

the scaling with S,_ is considerably weaker than [S,_[-1.

V. Conclusions

Coherent vortex solutions associated with the nonlinear ion temperature-gradient pertur-
t
,al

=: bat.ions are presented in detail including the effect of toroidicity and magnetic shear. We
i
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show that the standard drift-wave vortex solutions can be generalized to the equations that

include the ion temperature inhomogeneity, magnetic shear, shear flow, finite ion Larmor

radius effects, and toroidicity effects. /

Effects of shear introduce new scalar nonlinear terms in the equations for the electrostatic

potential _. The case of relatively weak shear is studied in Sec. III. In the regime when the
, ,,

quadratic nonlinear terms given by Eq. (35) canbe regarded as small, and higher nonlinear

terms neglected, i.e. when the following inequality holds:

I >>¢max , au2p2] >> _ (58)

we obtain a perturbed modon-type solution, Eqs. (32) and (37).

Although more general than the results of Ref. 3, our solution has a simpler structure,

with a small amplitude monopole and quadrupole superimposed on the modon. Such dipole-

like vortex structures are expected to be long-lived, and to develop as a result of a high level

of fluctuations in the rh turbulence. Similar coherent vortex solutions are found in the long

time steady turbulent states produced in the numerical solutions of the fluid ion temperature-

gradient driven turbulence.

A different type of solution is presented in Sac. IV for the case of relatively strong magnetic

shear

(sm/,,o)~ . (59)
_

An equation similar to a (real) cubic Schr6dinger equation is obtained, with the main nonlin-

i earity arising from the strong magnetic shear. A dipole vortex type solution of this equation
is possible, if the fluctuation amplitude is large enough to produce wave trapping. Some

_1 features of this new type of vortex are studied numerically.
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Figure Captions :

1. The phase space (¢,d¢/dz) trajectory of the solution of the cubic $chrSdinger-like

equation (53). The insert shows the small amplitude oscillations that occur in the

exterior region. The dashed figure-eight curve is the separatrix from Eq. (55). The

same solutions apply qualitatively for IS,_l _ 12_,_+ u(u- 1)/(u + g)l/4.

, 2. The nonlinear eigenfunction and the associated energy densities: corresponding to Fig, 1

i (a) The vortex eigenfunction with an enlargement of the tail region showing the small
!

amplitude oscillations. (b) The energy densities of _2, (V_)2 and _'v 2 computed from

the solutions in (a).

li

|



I I I I I

/

-- - 2

- I _ _-)

0
II

- × -o-_.

/ \
/ \
/ \

_ / \ ___
l j ,
\ /\

- _ 0
I

I

I l, I I I_
0 _ 0 _ 0

I

×



12I (a)

6



! • j,

s
A_



i


