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ABSTRACT

A broadband, full signal range, side-by-side (tandem) test method for estimating the

internal noise performance of high resolution digitizers is described and illustrated. The

technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a

change that not only makes this test applicable to higher resolution systems than was

previously practical, but also enhances its value and flexibility. Since coherence analysis is

the basis of this new definition, and since the application of coherence procedures to high

• resolution data poses several problems, this report discusses these problems and their

resolution.
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Introduction

Estimates of the coherence function have been used for several years in order to

• characterize the self-noise spectra of seismic sensors [Stearns, 1979, Durham, 1982 and

1987, and Holcomb, 1989, for example]. Although the input signal (ground motion) is

generally unknown, the comparison of the sampled output signals (usually measured in

volts or digital counts) of two side-by-side seismic sensors by means of the coherence

function has provided estimates of these self-noise spectra.

More recently, coherence has been used in the evaluation of the performance of high

resolution digitizers (HRD's). Here again the problem is that in most cases the input signal

is not adequately defined for more traditional system characterization methods to be used.

Since very few signal generators have noise floors below the measurement capabil!ty of

many of the high resolution digitizers, internal noise due to the digitizer itself is often

masked. Fortunately, side-by-side testing and coherence analysis provide a way to

estimate internal instrument noise as a function of input signal power for a given digitizer.

In addition, the :nput may be broadband, possibly application-driven signals that span the

entire dynamic range of the device. This means that inexpensive, readily obtainable signal

generators may be used to evaluate high resolution digitizers so long as at least two of the

digitizers are available and may be connected and programmed to convert the same input

signal simultaneously (over the same time interval) and at the same sample rate.



_Digitizersand System Models

For the purposes of this paper a digitizer is defined to be an instrument that regularly

samples a continuous function of time (such as a varying voltage) every T seconds in order

to produce a sequence of integers (the samples). An ideal n-bit digitizer is assumed to

have the following characteristics:

• The "quantizing step" q is defined as the full-scale input range of the digitizer divided

by the number of bit combinations available; e.g., for a 24-bit, + 20 volt digitizer the

quantizing step (or "bit weight") is

q = 40.0volts/224 _ 2.38 pvolts (1)

• The input signal at a given sample time is equal to q times the integer sample value to

an accuracy of + q / 2 ("quantizing error"), so long as the input signal is within the

range of the digitizer.

• Sample values for input signals beyond the input range of the digitizer are "clipped" to

the value for the maximum or minimum signal, as appropriate.

For convenience, samples are assumed to be signed two's-complement integers ("counts")

and the input voltage range symmetric with respect to polarity; i.e., the magnitudes of

positive and negative full-scale are the same.

The system model used for side-by-side digitizer testing is illustrated in Figure 1. The first

digitizer, the "reference" device, is represented by the top branch and the second, the '

"test" unit, by the bottom branch. Each instrument is modeled as a linear transfer function,



additive linearly-independent noise, and a sampler/digitizer producing integer samples at

times t=kT, multiples of the sampling interval T.

• nl(t)

I _'_-_ _" Y 1 ,k

Hl(ja) ) yl(t) ---

x (t)------_

YZ.k

nz(t)

Figure 1 - System Model for Side-by-Side Digitizer Testing

For some purposes it may be appropriate to simplify the Figure 1 model to that shown in

Figure 2. [Stearns, 1979, uses these models; Stearns and David, 1993, use slightly

different models in which the noise is referred to the input of the transfer functions rather

than to the output.]

y,(t)= x(6'/" ------'Y,.k

x(t)-----.

H(jco) " y_(t) _'Y2,k

n(t)

i

Figure 2 - "Lumped" Noise System Model



Here the two branch transfer functions have been consolidated into H(jco), which provides

the linear relationship between the reference and the test channels, and the independent

noise functions are "lumped" into the test channel as the single noise function n(t). This

model is particularly useful when the system transfer function is already adequately known

or is not of interest and the reference device is assumed to be significantly "better" (i.e.,

demonstrates much lower internal noise) than the instrument under test. Comparison

testing against some recognized or assumed standard may utilize this system model.

When the reference and test devices are more or less identical instruments in that one

cannot be assumed to be much different from the other, the model illustrated in Figure 3

may be used to provide an estimate of internal noise. The two noise functions, n_(t) and

n2(t), are assumed to be uncorrelated but of equal power. This is the model used for

side-by-side testing of copies of the same device, such as two units of the same digitizer

design.

nl(t)

_) ..//

yl(L) --_Yl,k

x (t)-.----_

n_(t)

Figure 3 - Distributed Noise System Model
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Other system models are possible, of course, and may be appropriate in other special

situations [e.g., Holcomb, 1989 and Goldsmith, 1990].

The distributed noise model in Figure 3 is used throughout this study, except for one case

in which the lumped noise model in Figure 2 is applicable. The formulas for estimating

coherence and related functions for the lumped noise model are developed in a paper by

Stearns [1979] and are reproduced here for convenience (with minor changes in notation).

Let Py,y,,Py2y_'and Pyty2represent estimates of the power spectra of yl(t), y2(t), and their

cross power, respectively. The mean-squared coherence, which is defined as the ratio of

the squared magnitude of the cross power to the product of the individual power spectra,

is estimated by

The noise power estimate for the lumped noise model is

- (3)

and the estimate of the linear transfer function H(jco) is
f

i2I __ _,2 _y2y_/_yly2 , (4)

" where the star denotes the complex conjugate.
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For the distributed noise model the coherence is still estimated by Eq. (2), but the transfer

function and noise power estimates are somewhat different. Assume that the two noise

functions have equal power but are uncorrelated, i.e.,

Vn,n,= Pn,n,- P,_ (5)

and

P.,,,, = O. (6)

Letting capital letters represent the Fourier transforms (or z-transforms) of the

corresponding lower case time functions (or sample sets) and omitting the frequency (or z)

dependency for the sake of brevity, the top and bottom branches in Figure 3 yield

YI = X + N_ (7)

and

Y2 = X H + N2. (8)

The basic estimates of power spectra and cross power spectra require scaling and

averaging operations in order to provide meaningful coherence results. All the spectra

used for this study were obtained by periodogram averaging, a technique attributed to

Welch [1967], and are scaled to compensate for windowing (Hann window), five-eighths

overlapping [Carter, et. ai., 1973 and Steams, 1981], Fast Fourier Transform (FFT) size,

sampling interval, and power at negative frequencies. A bar over equation elements

represents this (or some other) averaging and scaling operation. The cross power estimate

for the distributed v,oise model is given by

a



= (X + N,)'(XH + N2) (9)

=(x'x.+x'_ +_,'x_+_,'N,)

t

The last line follows since the noise functions are assumed to be uncorrelated with each

other and with x(t). Similar analysis for the individual channel power estimates yields

- __p, =lYl

= (X + N,)'(X + N,) (10)

-(x'x+x'_,+N,'X+N,'N,)
= P_ + Pn.

and

=(XH + N2)'(XH + N2)
(If)

: (X'XH'H+X%H"+N;XH+N;N_)

: +

Solving Eqs. (9) through (11) for the noise power and transfer function estimates for the

distributed noise model produces

_:: +(_,,,,+_,,,,)- _/+(_,,,,-_,,,,)'+I_,,,,I'<,'->
and

• n: _,,,,/(g,,,-L). <_3>



Note that the transfer function is a complex function of frequency and that noise power is

real. The transfer function is otten presented as a pair of real functional estimates, power

gain and phase:

- (14)

and

o= t.,_-'[Im(fi)/Re(fl)]. (,5)

where ImO refers to the imaginary part of its complex function argument and Re() to the

real part.

J



Sample Timing and Time-Invariance

It is well known that the estimates for signal po_,_ and cross power as described earlier

are biased. Carter and Nuttall [1976] discuss two sources of the biasing. The first stems

from the underlying assumption (which is never completely satisfied in the real world) that

each FFT segment used in the spectral estimation procedure is long enough to ensure

complete spectral resolution. However, when coherence is close to unity, as it must be for

our purposes, and when the input signal spectrum does not have sharp peaks or tonals,

this source of biasing has a negligible effect.

A second source may cause serious pr,-,blems if not properly handled: biasing of the cross

power estimate due to signal misalignment [see also Carter, 1980]. This may be thought

of as a constant time shift between the samples in one set relative to the other or as a

linear phase relationship in the transfer function; the views are equivalent. While most

users of digital coherence techniques are aware of this requirement, it has usually been

sufficient to align the two sample sets by shifting one set sample-by-sample to the point of

maximum cross-correlation with the other sample set. For the extremely high signal-to-

noise ratios (SNR's) involved in HRD evaluation, this technique is no longer adequate;

alignment must be accurate and consistent to a small fraction of the sampling interval.

Steams has shown in an unpublished study that the bias due to misalignment is dependent

on the size of the time shift and on the spectrum of the input signal, but that for highly

coherent signals this biasing is largely correctable by post-processing the results of the

coherence analysis. Another method of compensating for misalignment is to perform an

interpolation of one sample set in order to align it with the other set. Care must be taken

that the interpolation method preserves the spectral content of the data. This suggests a

• frequency domain scheme such as the one described in the next section.



However, it is important to keep in mind other assumptions and requirements concerning

this evaluation procedure. For HRD evaluation and other high SNR applications of

coherence analysis, signal timing becomes extremely important. The requirement that the

sample sets be obtained synchronously (at the same sample rate) and simultaneously (over

the same time interval) may be interpreted to allow for a constant time shift between
i

signals or other correctable sample time characteristics, but the emphasis must be on the

concept that the timing be correctable. For instance, the case in which the two digitizers

being tested have independent sampling clocks that, while very regular, have known but

slightly different frequencies may be a timing situation that (conceivably) can be corrected.

On the other hand, errors due to random timing jitter are not correctable.

Another underlying assumption is that the digitizers are not time-varying devices (or, fat

least, that their response characteristics do not change significantly during a data

acquisition period). Test procedures involving warm-up periods for electronic equipment

and/or a constant-temperature environment for the testing may be required so that this

assumption is not significantly violated. Inconsistency of results or an increasing internal

noise level with longer (time duration) tests could indicate a problem in this area.

10



Frequency Domain Interpolation

A common characteristic of multiple-channel digitizer systems is that a constant, usually

small timing difference exists between channels. In other words, analog-to-digital

conversions take place at slightly different times on the various data channels, although the

sample rate is the same for all channels and the difference between conversion times for

any pair of channels is essentially constant. This condition presents a problem for

coherence analysis, since the cross-power estimation is sensitive to timing differences

between sample sets.

This time difference (if it exists) can be removed by interpolating between the samples in

one of two sample sets to obtain new samples that are essentially simultaneous with the

those in the other set. However, the choice of interpolation scheme is important. Since

our analysis is based on frequency-domain techniques, it is vital that the interpolator

chosen preserve the frequency content of the original sample set. The common linear and

polynomial-based interpolation methods are generally no___3tadequate for these purposes.

Preservation of frequency-domain characteristics while performing time-domain linear

operations is an area that often requires special considerations [McDonald, 1977 and

Steams and Hush, 1990]. The scheme used herein is fairly straightforward and stems from

the relationship for non-aliased discrete Fourier transforms (DFT's) that, if F(j co) is the

DFT of the set [f(nT)], then the DFT of a synchronous but not simultaneous set

[f(nT + r)] is eJ_'_F(jco).

A constant sampling time difference can be removed from one set of unaliased data

samples while preserving the frequency content by the following steps:

1. Determine the constant time difference r between two sets of data samples. It is

assumed that r< T, the sampling interval, so that the two sample sets cover the same

time interval to within a single sample time. If the input data is broadband, a close

11



approximation of the time difference can be obtained from the slope of the linear phase

shift in the transfer function from a preliminary coherence analysis, as shown in the

example below.

2. If the DFT size is N samples, center the N samples to be interpolated (say, y_ to

Yk+N-I)in an array of size 2N with the appropriate samples from the input sequence in

the preceding N/2 and following N/2 samples (i.e., the array would contain samples

Yk-N/2 to Yk+3N/2-1)" Windowing should not be necessary for this operation, but if it is

used, take care that the middle "N plus a few" samples are windowed with the same

constant value (usually 1).

3. Take the DFT of the 2N-sample array. (This discussion assumes a complex DFT

operation. Many commercial analysis packages realize the DFT by a Fast Fourier

Transform (FFT) subroutine which often assumes a real rather than complex time

sequence and yields only half as many complex transform values. The adaptation of

, this procedure to such software tools should be straightforward.)

4. Multiply the 2N complex DFT values by ej°'"_. Note that the nth (n=0, 1, 2, ...,

2N-l) DFT value is associated with a specific angular frequency; i.e., co, = nrn/NT

radians/second for 0<_ n < N and co, = Jr(2N- n)/NT for N < n <2N.

5. Perform an inverse-DFT on the result. The middle N values are the desired

interpolated samples.

The double-sized DFT's are used in order to avoid the troublesome edge effects on the

first and last few sample values due to DFT and inverse-DFT computation. Usually these

effects are reduced by data windowing, but in this case windowing and the subsequent

inverse-windowing would result in some "near-zero-over-near-zero" problems around the

12



ends of the sample set. By doubling the DFT size and moving the samples of interest to

the middle, the edge effects are shitted to samples that are not needed.

One point which should be emphasized here and whenever high-precision data is

processed by computer is that the analyst must be aware of the effects of internal

computer floating-point representation roundoff and truncation errors. The common

single precision (4 byte floating-point) representations provide only about 25 bits of

mantissa and thus are no_t adequate for data processing involving multiplications of high

resolution digitizer samples. Double precision (8 byte floating-point) is usually

implemented with a mantissa of over 50 bits, which is sufficient for our purposes.

Throughout this paper, N is required to be a power of 2 and a complex-valued Fast

Fourier Transform (FFT) algorithm is used to obtain the DFT values. The distributed

noise model (Figure 3) is used for calculating the coherence-related functions.

An example that illustrates the problems that arise from a fairly small time shitt and the

results of the above method uses actual data files from a 24-bit format digitizer. The

sample rate is 40 samples/sec0nd (sampling interval T=0.025 seconds) on each channel

and the time difference between channels 1 and 2 is approximately 70 microseconds, or

about 0.3% of the sampling interval. A total of 32,000 samples were acquired from each

digitizer channel. Spectra were estimated using a Hann window, an FFT size of 512

points, and 5/8 segment overlapping; this means each spectrum is the average of 165

transforms.

Both data channels are connected to a broadband signal source (Gaussian white noise

generator) with power spectral density shown in Figure 4. Coherence analysis yields the

graph in Figure 5 of the transfer function phase angle and that in Figure 6 of the internal

noise power. The slope of the line approximating the phase angle over the frequency

range of significant signal power and high coherence (0 to about 19 Hz) in Figure 5 is

13



0.252°/10 Hz = [0.252°/(360°/cycle)]/10cycles/second = 70 pseconds.

This value is used in interpolating the data set for channel 2 to match the sample times for

channel 1. The results are shown in Figure 7 which illustrates that the residual time

discrepancy is negligible (and may be further reduced by iterating the interpolation

procedure) and in Figure 8, which shows that the estimated internal noise is 20 dB lower

over most of the frequency range than that shown in Figure 6. It should be noted that the

results in Figure 8 match very closely those obtained by two other methods: (1) the use of

very large values of N for the FFT, which also reduces the bias in the cross-power

estimate, and (2) using another channel pair. (Two of the four channels in this system

were sampled essentially simultaneously, and all channels were expected to have similar

internal noise levels.)

-70

]
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Figure 4 - Common Input Signal Spectrum
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Noise Power Ratio

The measurement of Noise Power Ratio (NPR) has been used fairly extensively as a

metric for the transmission characteristics of Frequency Division Multiplexed (FDM)

. communications systems [see Freeman, 1981, and Kester, 1989]. Its purpose is to

measure internal noise as broadband input signal levels vary. The concept is fairly simple
t

and is depicted graphically in Figure 9. A broadband Gaussian signal source (such as the

one whose spectrum is shown in Figure 4) is connected to a narrow band-stop or "notch"

filter, which may be switched in or out. This combination is used as the system input, and

measurements of system output signal power at the notch filter center frequency are made

both with and without the notch filter being used. The ratio of these two power levels is

the NPR and is usually expressed in dB. (Many readers will recognize this as the signal-

to-noise ratio; the "Noise Power Ratio" terminology stems from the fact that the "signal"

is traditionally supplied by a "noise" generator.)

\Power

- -l---- s_u_Lcwl

t
dB NPR

i
\_/ - Noi_ Lcwl

NotchFilter

Frcqucncy :_-

Figure 9 - Noise Power Ratio Measurement (Traditional)

This technique has been used to evaluate the performance of digitizers by comparing NPR

values at several signal levels to the NPR curves for ideal n-bit systems [Gray and Zeoli,

17



1971], but such testing is limited to fairly low resolution systems due to the relatively poor

rejection levels of most notch filters. (For high resolution digitizers, the internal noise

may be significantly below the "bottom" of the notch and thus not measurable by this
l
i

procedure.) i

Coherence analysis provides a way around the use of a notch filter, thereby providing a

new approach for estimating the NPR. Since two of the spectra that may be computed

during coherence estimation are signal and noise power densities, these may be integrated

over an appropriate frequency interval to provide the signal and noise power values for the

NPR, which is signal power divided by noise power, This redefined test can be an

important tool for measuring the broadband (and possibly application driven) performance

of high resolution digitizers. While traditional NPR methods measure performance at a

single frequency (the middle of the notch) at a time, the coherence approach is by its very

nature broadband. In addition, the frequency content of the input signal and the

integration interval for the power density spectra may be designed or chosen to match

some application parameters or specialized test criteria.

Application of NPR to digitizers involves a "loading factor," usually denoted by the letter

K, which represents the ratio of the full-scale voltage range for the digitizer to the RMS

signal voltage. The curves for the ideal n-bit systems [Gray and Zeoli, 1971] are derived

from the assumption that the noise sources are limited to quantization noise (dominant at

low to moderate signal levels),

quantization noise power / signal power = 2. 121i2_ -1) _ (16)

and saturation noise (the clipping of overrange signals, dominant at high signal levels),

saturation noise power / signal power = 2. K_ +l). F(K).- -2_ ' (17)

18



where n is the number of bits and F(K) is the partial area under the normalized Craussian

curve (recall that the signal source is Gaussian),

F(K)= _ e"*' dx. (18)

. The NPR itselfistheinverseofthesum ofthepowerratiosinEqs.(I6)and(17),andis

historicallyplottedversusthevaluesof-201og(K).Theidealcurvesfor16-bitto24-bit

digitizersareshowninFigure10.

Noise Power Ratios for Ideal A/D Converters
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Figure 10 - NPR Curves for Ideal 16 to 24-Bit Digitizers

• For the examples presented below the "digitizers" are simulated ideal n-bit systems (n=l 6,

20, and 24) with full-scale range of +20 volts and 20 Hz sampling (T=0.05 second). Two

data channels are produced; the second has a 0.1 volt DC offset, a 1 dB gain, and a

19



constant time shift, all relative to the first channel. The interpolation algorithm described

in the previous section makes the procedure fairly insensitive to the magnitude of the time

shift, but it should be noted that the values used ranged from 1%to 50% of the sampling

time interval, T.

The simulated input signal was chosen to be Gaussian noise with approximately fiat

spectral content in the 0 to 5 Hz range, and sharply low-pass filtered with cutoff' at 5 Hz.

The power level in the passband was varied in 10 dB steps in order to get points

approximating samples along the ideal NPR curves. Power values for the NPR were

obtained by integrating the signal (either channel) and noise power spectral density

estimates from 0 to 5 Hz.

In the first example, sample sets of simulated ideal digitizer data are compared to the non-

digitized signal values. Since the signal is known, the appropriate noise model for this test

configuration is the "lumped" noise model (Figure 2), and noise power estimates were

obtained using Eq. (3). The results are shown in Figure 11 and illustrate the procedure for

this special case.

20



Noise Power Ratios for Ideal A/D Converters

with Simulated Ideal 24-bit, 20-bit and 16-bit Digitizer NPR Results

140 [I i 'l '

120

tO0

8O
° C13

"O
._.

e_

z 6O
bits

/_'/.

4O

2O

0 I ,_,
- I 50 - I O0 - 50 0

-20 log K

Figure 11 - NPR Estimation for Known Input (Lumped Noise Model)

The more useful application of NPR estimation would be to situations in which the input

signal is known only generally, such as to frequency content and approximate amplitude

range. The distributed noise model applies to this instance, and noise power estimation is

via Eq. (12). Since signal power is also estimated from the digitized data, exact

replication of ideal NPR's should not be expected, particularly in the region of clipped

sampling (the "knee" in the ideal NPR curves around -20log(K) values of-15 to -20).

This should not be much of a problem, since the points to the left of the knee and the

location of the knee itself determine the broadband performance of the digitizer in terms of

"NPR equivalent bits." In addition, clipped data is seldom considered to be of any value; a

digitizer's performance to input beyond the full-scale values is generally unimportant so

long as such overranges are identifiable.
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The results of a simulation of the NPR procedure for ideal 16, 20, and 24-bit systems

where the input signal power (as well as the noise power) is derived from the sampled data

is presented in Figure 12. As expected, the results are not quite as good as in the first

simulation; however, the errors in the unclipped data region (to the let_ of the knee) are

always only a fraction of a bit. Repeated simulations of this test configuration utilizing

different channel-to-channel gain and time shift values, as well as different DC offset

values and number of digitized bits has shown that "NPR equivalent bits" can be

consistently estimated to within _ bit, even when the input signal power must be inferred

from the sampled data, and the error is always towards slightly underestimating the

digitizer performance.

Noise Power Ratios for Ideal A/D Converters

with Simulated Ideal 24-bit. 20-bit and 16-bit A/D Coherence Results

140 I i ' ' ' -- ---_
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Examples Using Actual High Resolution Digitizers

The coherence-based NPR measurement techniques have been applied to data acquired

from three HRD system types, each with multi-channel, synchronous-sampling capability.

• The results are presented below and illustrate the usefulness of this method in evaluating

broadband digitizer performance.

The first type, digitizer "A", has a full-scale voltage range of +20 volts and samples at a

rate of 40 samples per second. Data samples are 24-bit integers (bit weight or scale factor

is approximately 2.38 micro volts), and the manufacturer claims 22 bits oflinearity, which,

if correct, should match the NPR test results.

This system demonstrated a constant channel-to-channel sampling time offset of a few tens

of microseconds (different for each pair). The interpolation scheme described earlier was

used to align the data samples for the coherence analysis. In fact, the data sets used to

illustrate the interpolation scheme were acquired for this test. Note from Figure 4 that the

input signal was broadband and had _at power from 0 to about 16 Hz. Power values were

obtained by integrating the signal and noise power spectral density estimates that result

from the coherence analysis over the range of 0 to 18 Hz, the approximate range of high

coherence values. The upper lim;* of integration of 18 Hz is not critical; however, the

noise power near the Nyquist frequency of 20 Hz (see Figure 8) should not be included in

the total noise power, since this power is largely computationally induced, due to the low

input signal power in this range leading to low coherence estimates.

The NPR samples resulting from different input signal levels are plotted in Figure 13 along

• with the curves for ideal 16-bit to 24-bit systems for comparison. Digitizer "A"

consistently demonstrates better than 22 bits of linearity. Since the NPR technique tends
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to underestimate (slightly) the performance of digitizers, the manufacturer's claim of 22

bits oflinearity is verified, and may be a "bit" conservative.

Noise Power Ratios for Ideal A/D Converters

and NPR Samples for Digitizer "A"
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Figure 13 - Noise Power Ratio Samples for a 22-to-23-bit Digitizer

A second digitizer system "B" underwent a similar test and analysis, except that the

interpolation scheme was not used, since channels appeared to be sampled virtually

simultaneously. Again, a sample rate of 40 samples per second was used. Samples were

32 bit integers with a bit weight of approximately 1.90 micro volts, but the full-scale range

of this system was +10 volts, implying that only 23 bits were required.
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Noise Power Ratios for Ideal A/D Converter's

and NPR Samples for DiRitizer "B"
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Figure 14 - Noise Power Ratio Samples for a 19-to-2 l-bit Digitizer

This manufacturer's claim of 20 bits of linearity is largely supported by the NPR samples

shown in Figure 14. The degradation of the digitizer from 20-to-21-bit linearity for low-

level signals (leftmost points) to a 19-to-20-bit system for higher input signals is fairly

common for digitizers and often much worse than that demonstrated here. It is simply due

to noise power rising with signal power. The cause can be very difficult to determine, but

coherence-derived noise estimation is a tool which can make isolating a troublesome

component possible, by substituting a questionable part and repeating the test at an input

signal power level known to have previously produced unsatisfactory results.

• An extreme case of degradation of performance with rising signal power involves a third

digitizer, system "C", which has the same range, sample rate, and bit weight as digitizer

"A". Figure 15 shows that this system has about 22 bits oflinearity for low-level signals,
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but suddenly degrades to an erratic 18-to-20-bit performance level for large signals. The

break occurs when the RMS input signal value is approximately 2% of positive full scale.

This severe characteristic is typical of gain-ranged systems, which achieve a large dynamic

range with limited linearity.

Noise Power Ratios for Ideal A/D Converters

and NPR Samples for Digitizer "C"
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Figure 15 - Noise Power Ratio Samples for an Amplitude-Sensitive Digitizer
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Conclusions

When the signal driving a given device is inadequately known in order for traditional

system identification methods to be used, the determination of the self-noise spectrum of

, that device can be made possible through side-by-side testing and coherence analysis. This

situation is o_en encountered with high resolution digitizers, since these instruments are

more precise than the signal sources commonly available.

Some precautions are necessary when applying coherence analysis techniques to high

resolution data. The first is to use a significantly precise computer floating point data type

for the analyses; usually double precision is adequate. Another is less obvious: the cross-

power spectral estimation involved in the coherence analysis is sensitive to misalignment

of the data samples caused by different HRD data channels sampling at different times,

even when this misalignment is only a few percent of the sampling interval. This problem

can be overcome in one of several ways. In particular, an interpolation scheme that aligns

the data samples while preserving frequency content was described and was shown to

identify and compensate such misalignment.

The Noise Power Ratio is a useful technique for measuring system performance at a given

frequency for low-resolution digitizers, but its application to the evaluation of high

resolution systems is hampered by the lack of sufficiently quiet analog notch filters.

However, a slight re-definition of the NPR using the signal and noise spectral estimates

that result from coherence analysis eliminates the necessity of a high quality notch filter

and has the added benefit of providing a broadband and possibly application-specific

performance measurement. The equipment required for such analysis is commonly

. available, and the computational procedures are fairly straightforward.
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