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Balance in Machine Architecture

bandwidth on board and off board, integer control speed, & flops versus memory

by Mark Fischler, Fermilab

Introduction -- Issues Addressed, Assumptions and Algorithms ETAmlned

The issues to be addressed here are those of 'balance' in machine architecture.
By this, we mean how much emphasis must be placed on various aspects of the
system to maximize its usefulness for physics. There are three components that
contribute to the utility of a system: How the machine can be used, how big a
problem can be attacked, and what the effective capabilities (power) of the
hardware are like.

The effective power issue is a matter-of evaluating the impact of design
decisions trading off architectural features such as memory bandwidth and
interprocessor communication capabilities. What is studied is the effect these
machine parameters have on how quickly the system can solve desired problems.
There is a reasonable method for studying this: One selects a few representative
algorithms and computes the impact of changing memory bandwidths, and so
forth. The only room for controversy here is in the selection of representative
problems.

The issue of how big a problem can be attacked boils down to a balance of
memory size versus power. Although this is a balance issue, it is very different
than tile effective power situation, because no firm answer can be given at this
time. The power to memory ratio is highly problem dependant, and optim.;,zing it
requires several pieces of physics input, including: how big a lattice is needed for
interesting results; what sort of algorithms are best to use; and how many sweeps
are needed to get valid results. We seem to be at the threshold of learning things
about these issues, but for now, the memory size issue will necessarily be
addressed in terms of best guesses, rules of thumb, and researchers' opinions.

The important issue of how the machine can be used (MIMD/SIMD; nature of
communications network, scalability, system sharing, ease of programming,
etc.) will not be covered in this presentation. These issues are as critical as
system size and power in determining how useful a machine is for doing physics.
Another topic which will be covered in a different talk is the issue of bandwidth to
mass storage devices.

In examining the machine parameter issues, we will concern ourselves with
what values are needed, rather than with how to achieve those values. So, we will
produre informat_,on like "if communication is slow in such-and-thus way, it will
cost x percent in effective power". Our concession to realistic values comes when
we fix all the parameters but one, to study the effect of the last value. The study is
defined by the choice of parameters varied, the variety of machine architectures
considered, the assumptions made about how coding will be done, and the
selection of representative problems.
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The parameters we will look at are:

• Bandwidth from local (or shared) memory to the processing unit.
• Interprocessor communications bandwidth and overhead.,_.

• The effect of multiple floating point units per processor.
• How important integer capability is.
• The effect of caches, external registers, and register set size.
• The effect of double precision speed.

Details of how these parameters are described appear in appendix A.

To pin down estimated timings, it is necessary to have in mind a model of how
the memory access and communication works (the machine "architecture"). We
consider several models: Shared Memory, Lockstep, Lockstep Cluster, and
MIMD (these are defined and illustrated in appendix B). Presenting all
combinations of architecture and parameters would be a daunting task.
Fortunately, with certain obvious exceptions, the effects of various parameter
values are largely insensitive to the architecture chosen.

The coding assumptions made are conservative. If operations can be
overlapped only at the cost of extreme custom programming efforts, and by
harming the modularity and re-usability of code, we assume these optimizations
will not be made. While we do not count on heroic efforts, we do assume that the
structured kernels of algorithms are optimized, to yield the best local performance
realistically possible. In the long run, for important programs this should be
true, since this sort of optimization can be done in a modular fashion, with
reasonable expectation of correctness.

Finally, the choice of problems. Benchmark (or, as in this case, gedanken
benchmark) problems must be representative of the actual use they are modeling.
Two ways to keep these models faithful are to avoid bias by using actual front-line
production algorithms, and to avoid the pitfall of simplification, which tends to
magnify any deviation from reality. Thus, one should study actual algorithms,
including all the messy nitty-gritty that is always overlooked in cursory
evaluations. This can be time-consuming; nonetheless, it is important to sample
more than one algorithm, if only to get an idea of the statistical spread of the
results.

Obviously, the algorithms used will evolve as physicists learn more about how
various methods behave. The analysis presented here provides guidance for
designing a system based on today's knowledge, and a quantitative framework
within which requirements for running new algorithms can be discussed.

The machines we are interested in are targeted at problems in lattice gauge
theory. Much of the work being done today can be categorized as follows:

• Gauge Field
Environment calculation
Heatbath computations
Langevin or molecular dynamical stepping

• Quark Field
Propagator calculation (quenched)



D-slash inversion (dynamic) L',
[Either Wilson or Susskind]

• Operator Analysis
Local operators
Smeared operators

It is important to be able to do the analysis phase on the same powerful system
as the rest of the calculation. No existing computer is appropriate for handling
the physics analysis of configurations which would be produced by a hundred
Gigaflop machine. For these computations, the issues of memory size and how
the machine can be used are vita_, and the power needed is beyond that available
on ordinary computers. If the "primary" machine is not suitable for doing this
analysis, then another "analysis system" will need to be designed. This phase is,
however, not CPU time-critical, since it takes more than an order of magnitude
fewer cycles than even quenched field and propagator computatio,1. Thus the
effect of machine parameters on power is unimportant -- the operator analysis is
not a suitable problem for studying the appropriate balance in parameters
(although it may be appropriate for examining how much I/O bandwidth is
needed).

For physics without fermion loops, the time taken for generation of gauge
configurations is (after recent advances in propagator inversion technique)
comparable to the time required for finding propagators for a few mass values.
This gauge configuration time is divided into two roughly equal parts
environment calculation (staple sums) and heatbath computation.

For dynamic fermion physics, a propagator inversion must be done for each
step; this leads to those problems being dominated (at the 80 - 99% level) by Dslash
inversion. Here, there is much greater uncertainty in the ultimate choice of
algorithms, since techniques seem to be improving by an order of magnitude
every few years. However, except for issues of MIMD capability, the balance
between bandwidths and power required seems not to be changing radically any
more.

We choose as our "benchmarks" two algorithms. The first is a minimum-
o i 'residual method of inverting quark propagators, employing the 'Draper trick; in

terms of effects of various parameters, this is nearly identical to the minimum-
residual LU method which currently seems best. Quark inversion will dominate
dynamic calculations, and is more than half the time for pure gauge when many
physically interesting quantities are to be extracted. The second problem is pure
gauge environment and Cabibbo-Marinari heat-bath updating. This turns out to
be a bit less bandwidth dependant than the propagator algorithm. Where there
results for these problems differ significantly, that will be pointed out.

Descriptions of the Algorithms Studied

The two "benchmark" algorithms analyzed are described here. A more
detailed analysis, along with quantitative results on how long each step will take
for various values of machine parameters, is presented in appendix C.



The propagator inversion algorithm studied is a minimal residual method.
This is very similar, in terms of requirements on integer power and various
bandwidth requirements, to the entire broad class of conjugate gradient-like
methods. A slight variant on this method (incomplete LU decomposition.) seems
to be the current best choice for inversion in the physically interesting region; the
balance between power and bandwidths is nearly the same for this.

The algorithm can be separated into two parts -- computing the D operator on
the sites, and the doing the various dot-product and linear local field operations to
complete the minimum-residual step. The D part is 80% of the problem in terms
of raw flops, but ignoring the rest of the algorithm would introduce bias which
would not be insignificant.

The D calculation computes for each site x the quantity

t
(where k is the hopping parameter related to the bare quark mass). Thus for each

of eight directions, one must accumulate an expression of the form Uy_.

The bulk of the flops appear in the multiplication of the quark field by the link
U (but if only this step were analyzed, the results for power would be completely
skewed). The naive computational burden can be halved by combining two rows of
the quark field before multiplication _ this takes advantage of the nature of the
gamma matrices. So, the efficient computation of the D operator can be broken
into four phases: Locating the needed fields and getting any off-node data;
combining the quark field into two color vectors; mui_._plying by the link field U,
and accumulating the result.

The remainder of the minimum-residual algorithm consists of finding a pair

of dot products of the form _/. _/ and _/. ¢ where _ and _ are

quark fields, and doing a pair of linear accumulations of the forms _/ = _l/

+ {X O; O = O - _ CO, where _ is a complex scalar.

The dot products can be done together, as can the linear accumulations, but c_
depends on the results of the dot products. So these miscellaneous operations
must be broken into two phases.

The details of how long each of these six phases will take are presented in
appendix C. Each is typically the maximum of two quantities, representing the
fact that two concurrent sorts of operations are happening, with the time
determined by the slower. For example, you may be doing memory operations to
supply data for floating point computation. Here we present values for typical
balances among the machine parameters and typical surface/volume ratio:

locating fields: 122 1 + 2 (1.5 Oc + 33C)
combining quark field: 192 M



multiplying by link U: 576 F
accumulating result: 384 M
dot products: 26 1 + 72 D
linear accumulations; 20 1 + 192 F
Total time: 168 1 + 576 M + 768 F + 72 D + 3 Oc + 66 C

The gauge configuration generation algorithm studied is the Cabibbo-
Marinari heat bath method. People have spent quite a bit of computer time
running this or similar methods to study quenched QCD. The algorithm can be
separated into two parts -- computing the "environment" in which the link is to
be updated, and doing the heat-bath updating (using the Kennedy-Pendleton or
Creutz technique on each of the SU(2) subspaces). The environment computation
is 70% of the problem in terms of raw flops, but ignoring the rest of the algorithm
would introduce bias which would not be insignificant.

The environment calculation computes for each link the "staple sum", that is,
the sum of six three-link products, with each three-link "staple" forming three
sides of a plaquette (square) which would be completed by the link being udpdated.

The bulk of the flops appear in the multiplications of the link fields. The naive
computational burden can be cut by 25% by calculating only two rows of some
SU(3) products, using the unitarity property to reconstruct a third row at the end
of an entire staple. The efficient computation of the environment consists of three
phases: Locating the needed fields and getting any off-node data; multiplying the
three link fields to form a staple, and accumulating the result.

The heat-bath part of the problem repeats a computation three times. The
calculation involves three phases: Using the Creutz (or another) algorithm to get
the diagonal part of an SU(2) matrix, with distribution based on some SU(2) subset
of the environment; constructing a full SU(2) element from that value; and
multiplying the link and environment by that SU(2) matrix.

The details of how long each of these six phases will take are presented in
appendix C. Here we present values for typical balances among the machine
parameters and typical surface/volume ratio. (In some instances, although we
show floating point speed as the determining factor, memory bandwidth might be
close, so this floating point to memory ratio may be deceptive. In particular,
although floating point seems 15 times as critical as memory bandwidth, a
memory bandwidth of one word every 15 cycles would emphatically NOT be
reasonable).

locating fields: 190 1 + 2 (2 Oc + 36C)
multiplying links to get staple: 1008 F
accumulating staples: 108 M
Creutz algorithm: 186 1 + 225 F
forming SU(2) matrix: 90 1 + 203 F
uDdatin_ link, _nvirQnm_n_; 240 F
Total time: 168 1 + 108 M + 1676 F + 40c + 72 C



Effects (on Power) of Clmaging Machine Parameters

Memory Bandwidth: Cache: Re_sters

The bandwidth between main local memory (or shared memory if there are no
local banks) is the most important machine parameter, after floating point cycle
time. This bandwidth is measured by how many cycles (M) it takes to load or store
one 32-bit word of data. (M is, in a sense, the inverse bandwidth). An
architecture which can deliver two words per floating point multiply/add cycle (M
= .5) loses very little time to memory access. However, a good deal of effort can go
into increasing memory bandwidth; high bandwidth may severely impact system
memory size or cost by requiring fast static RAM.

The effect of increased M (decreased bandwidth) is dependant on the problem
being done: The quark propagator computation is particularly memory intensive.
The results for fixed, reasonable values of other parameters (I=3, C=2) are shown:
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Three points are clear here: (1) Beyond M=I the performance on quark
inversion is quite sensitive to memory bandwidth, and in fact is memory
bandwidth dominated by the time M gets to 4. (2) The memory bandwidth
requirements are about half as severe for the pure gauge computation. (3) The
impact of memory bandwidth limitations is not very sensitive to architecture (the
two extremes in memory architecture are shown; the difference is slight).

We have ignored memory latency (the delay between requesting data and
getting it). This latency will impact integer performance (and can be reflected by
increased I values), but most of the other accesses will be in situations where
useful work can be done during the latency cycles.

The effect of cache on performance is limited by low cache hit rates inherent in
lattice algorithms. When sweeping through a grid and looking at data from
neighboring sites, at most half of your accesses can be from sites "in your wake"
(data recently accessed) -- assuming that the entire lattice cannot fit into cache.
The remainder of the data must be "fresh". The situation is worse for portions of
the algorithm that do not require data from neighbors. This effect means that



cache hit rates are limited to 15 -50%, depending on cache size. With realistic
cache sizes, hit rates will be around 30%.

The apparent cache hit rate is actually higher than this, for two reasons.
First, cache is typically filled several words at a time (lattice problems take good
advantage of this). This is moot for our calculations, however--you still need the
same number of words delivered from main memory. The second reason is re-
used data: the second time a word is needed for doing something at a site, it will
"always" hit cache• For the problems looked at, assuming there are enough
registers, time is rarely wasted re-loading data. (Data is indeed re-loaded, but
mostly during floating-point intensive parts of the problem.) This effect is not
negligible, because "enough registers" may be more than 50, but with at least 32
registers, it is small•
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The graph shown here explores the impact of cache for a system with main
memory bandwidth of one word every four cycles (M=4). Mc is the number of
cycles it takes to get a word from cache (thus if Mc were 4 or more, the cache
would be useless). We see that for this case, a fast cache can impact performance

at the 25% level for the important inversion problem. However, if M were
somewhat better (say, M=2) then the impact of cache would be much less.

Cache can cost in one subtle and two obvious ways' It increases the cost of the
board; it vastly increases complexity and debugging effort needed; and there is a
strong tendency for the presence of cache to cause the bandwidth to main memory
to be diminished. (For example, on two processor boards made at FNAL using
similar technology and engineering effort, the one with cache has about 2/3 the
bandwidth to main memory•) If putting in an extremely fast cache caus_s the
main memory bandwidth to drop from M=3 to M=4, then the net effect is to
down performance by 15%•

The number of registers has an effect on performance, especially if there are
fewer than about 32 registers. Izl the specific case of propagator inversion, about
24 or more additional registers would have substantial effect -- this comes from
the "accumulate D" step, which is can be done without much cost if the
accumulated D can be kept in registers.
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This shows the effect of the number of registers, using M=2 (the effect is half as
much if M=I). External registers do not have much impact here (unless memory
bandwidth is quite restricted or the number of registers is small); their primary
utility may be Jto provide a way to buffer data from memory going to multiple
floating point Units.

Communications B_n_lwidth: Overhead: Shared Channel_

Another potentially important parameter is how rapidly communications can
be done (how much time it takes to access data "belonging to" different
processors). The nature of the communication (nearest neighbor only; barrel
switch; reconfigurable switch; transparent global) will impact how the system
can be used, but has not much effect on performance for the problems looked at,
where most of the communication is between neighboring sites. The machine
architecture matters in an obvious way -- if there is shared memory, such that
the memory bandwidth M is pegged to the communications bandwidth C, then
communications requirements are much higher because M is very important.
Beyond that, however, these results are insensitive to architecture.

Datafrom "Comm bandwidth"
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This graph shows the effect of communications bandwidth limitations,
assuming a 4**4 grid chunk in each node (S/V = 2 -- appropriate for dynamic



fermions). The inversion problem is slightly more communications intensive
than link updating.

Communications overhead Oc (defined as the number of cycles required to
send or get one word of data from another processor, minus the time taken per
word transferred) tends to be small or zero for lockstep or shared memory
architectures, and can be quite large for systems which require operating system
assistance for communication. (For example, the current implementations of the
iPSC/2 and CM2 machines have adequate communications bandwidth, but very
large communications overhead.) Communications overhead can for certain
algorithms be mitigated by gathering together the fields that need to be transfered,
and doing one large transfer. This is a matter of how a machine can be used: the
need to bunch communication restricts the class of algorithms available and can
distort the way algorithms are coded.
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This shows how effective power depends on communications overhead. Oc is
influenced by hardware timings, but is typically dominated by the logic operations
needed to decide that data is indeed off node, and set up the communications.
Fortunately, for processors with reasonable integer power, with a bit of
forethought (e.g. not requiring system calls or interrupts) the communications
overhead can easily be kept small enough to have little impact on performance.

Clustering of communications is another parameter that can impact power.
This involves several processors sharing one communications resource. The
processors may be on one board with one communications channel, or in a crate
with only one channel to each neighboring crate -- there may be multiple levels of
clustering. The effect of clustering is not the same as dividing the
communications bandwJ.dths by the number of nodes sharing a resource, for
three reasons: Many communications are strictly intracluster; the chunk size for
a cluster is larger (S/V is smaller) than for a single node; and the issue of
queueing for the shared resource. The queueing issue is important, and is
complicated in the intermediate range where there is significant contention but
the problem is not completely intercluster communications dominated. The
issues of surface/volume ratio and contention are examined in appendix D.
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This graph shows how the number of nodes in a cluster affects performance.
Obviously, this is critically dependant _on the communications bandwidth (the
intercluster bandwidth is assumed to be the same as the intracluster bandwidths
here). We can see that for up to 4 clustered processors, this effect is small; for 8 or
16 processors, it becomes important to keep the intercluster bandwidth high.

Intezer Power

The roles of integer operations in lattice algorithms include:
1- Supplying addresses for data access. This functionality could in principle be

accomplished by DMA devices, but they would have to be fairly sophisticated
since many algorithms require non-trivial patters of data access to run
efficiently.

2- Calculation of locations of desired data elements. When done properly, this is
largely a matter of tracking down pointers.

3- "Bookkeeping" operations such as looping over sites.
4- Integer arithmetic in support of such activities as random number generation,

table lookups and interpolation, and computation of transcendental functions.
5- Decision logic required by the algorithms.
6-Support of communication protocol m establishing channels and perhaps

moving the data.

Because the kernels of' many algorithms, when run on conventional
computers, are overwhelmingly dominated by floating point activities, there is a
tendency to underestimate the importance of integer power. There are some
techniques which compensate for lack of integer capability. One can vectorize the
problem, ordering operations and placing data so as to allow special addressing
hardware to handle the addressing calculation. One can avoid algorithms that
require significant decision logic or integer support. For SIMD machines, a
centralized fast integer unit can handle the requirements for some algorithms.
In general, the price fbr inadequate integer capability is paid in restrictions on
how the machine can be used.

There is some ambiguity about what is meant by an "integer operation". The
useful work done per instruction varies greatly with machine architecture,
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compiler efficiency, and other hard-to-quantify features. (Tb_i_! is why naive
comparisons between two computers are often fuzzy at the ortier of magnitude
level.) The yardstick we use to measure integer power is the Vax (780) equivalent:
I = 5 would mean the equivalent of a Vax instruction executed every 5 cycles.

Aside from the power of the integer unit used, one parameter that can be
controlled which influence integer power is memory bandwidt:h and latency.
Another way to help the integer unit is to provide special hardware! support for the
common sequential address generation n in fact, we assume throughout that in
simple cases addres_ generation can keep up with the memory ibandwidth. (If
that is not so, then the effective value of M used must be increased.)
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Integer power impacts the gauge configuration computation; more heavily
than propagator inversion. A value of I=4, which doe5 not excessively degrade
performance, corresponds to a 10-Vax integer unit on a 40 MHz p_._ocessor, not at
all a difficult achievement.

Double Precision Speedw

The issue of which portions of which algorithms require extended accuracy is
still being explored. Because the newer floating point units tend to have 64-bit
capabilities, at speeds such that the increased memory bandwidth limitations are
more important than the double precision floating point speed restrictions, the
issue of speed here may be moot. Gf the two algorithms being studied, it seems
that extended precision may be useful in one phase (the dot products) of the
inversion problem.
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What we see is that virtually any hardware double precision speed will be fine,
but that doing things in so_w+'re (or in a slower extended precision coprocessor)
can degrade performance badly.

Multiple Flo_Ung Point Units

It is possible to connect more than one floating point unit in tandem, controlled
by a single instruction stream and sharing memory end communications
capabilities. The design complexi_y may increase, and one might require
external registers so that both FPU's can share data fetched from memory; the
software effort to utilize both processors may be large; but if the power boost is
sufficient, all that might be worthwhile. We have examined the impact of
multiple FPU's, keeping the bandwidth to memory fixed (adding an extra FPU
will certainly not make it easier to have quicker memory access).
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The qualitative features here are easy to comprehend: Extra floating point
multiply/accumulate capabi]ity has a greater impact if memory bandwidth is
high (M=I); the second FPU has a greater impact than subsequent units.
Quantitatively, we see that a second FPU can improve performance by 26% in
high-bandwidth systems. We also see that any floating point units beyond the level
where each unit can access a word every four cycles, is completely wasted.

t
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Summary of Effects of Machine Parameters

This section is a synopsis of the effects of various values of the parameters
examined, on the performance of the system for a particular problem. The
propagator inversion problem was chosen m computations of that sort are likely
to occupy the bulk of machine time.

Percentages quoted here are comparisons to what power could be achieved for
the best possible value of the parameter being varied, fixing other parameters at
reasonable values. The boldfaced values are the "minimum c table"a cep level of
parameters, before the effects become overly large. Specific values in parentheses
are examples pegged to a 40 MHz processor.

]3andwidth to Memory (M) M = 1- 87%;
M = 2- 68%; (8_ Mb_sec)
M = 3 -- 55%;
M = 4 -- 45%;
These results are not very architecture dependant;
but are highly problem dependant. Pure gauge is
less memory intensive: M=2 gives 94%, M=4 gives
70%. Because memory bandwidth is costly, systems
will likely accept M=2; the perfect M=.5 is probably
not feasible at all.

Communications B_ndwidth (C) C = 2 -- 100%;
C = _: -- 94%;
C = 8 -- 85%; (20 Mbytegsec)
C = 12-- 77%;

i These results are of course architecture dependant;
for example, if memory access is pegged to
communication speed (as in shared memory
machines) M moves with C. The inversion problem
is about twice as communications intensive as the
pure gauge problem.

Comm_ni¢0tigns Clustering Nc = 2 m93%;
Nc = 4 --- 85%; (4 processors per board)
Nc = 8 _ 73%;
Nc = 16 _ 54%;
This makes several assumptions: The chunks
handled by the clustered CPU's are formed ,hto a
brick (rather than a hyperplane), and the processors
share communications resources in a reasonable
way. The intercluster communications bandwidth
is assumed to be slow (C=8); if C were 4, then even a
16 processor cluster can share communications with
82% efficiency.



Communications Overhead (Oc) Oc -- 100---91% (2.5 _sec)
Oc = 200 -- 83%
Oc = 300 -- 77%
This is the time to send or read "zero words" of data

from a neighbor; in some architectures, it is zero. In
other case s, Oc may be heavily dependant on integer
speed.

Multiple Floatin_ Point Units Nf-- 1-- 100%;
Nf = 2 -- 126%;
Nf = 3 -- 136%;
Nf = 4 -- 140%;
This assumes high memory bandwidth (1 word per
cycle). If M = 2 instead, the potential improvement
for multiple FPU's is halved. These numbers also
assumes the software effort to take full advantage of
the extra unit, without being affected by overheads.

Integer Power (I) I = 2- 92%;

I = 4 -- 85%; (10 Vax power)
I = 6- 79%;
Integer power (decision logic and addressing
capabilities) is more than twice as important for the

, pure gauge case. Substantially less reliance on
integer power can be achieved at a high cost in
program flexibility and coding effort.

Data Cache Access Bandwidth (Mc) Mc = .5 -- 94%;
Mc = 1 --89%; (160 Mbytes/sec)
Mc = 2 -- 74%;
These numbers assume a low memory bandwidth
(M=4). The savings due to cache go away as main
memory bandwidth becomes reasonable. Also, the
cache effect is much smaller for pure gauge. The
cache size needed to achieve savings is roughly
enough, to hold a few "lines" of data.

Number of Re_sters (Nr) Nr = 56 -- 100%;
Nr = 32 -- 83%;
Nr=24 _78%;

Nr = 16 -- 73%;
The pure gauge problem is about 2.5 times less
sensitive to the number of floating point registers
available.



Doubio Precision Speed (D) D = 2 -- 97%;
D = 4 -- 92%; (20 Mflops/see 64-bit)
D = 8 --82%;
D = 20- 63%;
There is one part of the inversion for which it seems
that double precision is advantageous. Note that
almost any hardware double-precision will be fine
(it can be 4 times as slow as 32-bit) but that software
extended precision quickly becomes painful.

These impacts are not additive -- when one factor forces a performance
degradation, the requirements on other factors ease up a bit. We find that using
these reaiistic minimal acceptable "¢alues for all the machine parameters only
degrades speed by 35%, relative to the performance with high memory bandwidth,
integer power, etc.

As an example, consider a board with a cluster of four 80 Mflop (peak)
processors. If the memory bandwidth, communications speeds, integer power,
etc. were all very high, each processor would achieve, on actual physics problems
and without Herculean coding efforts, about 24 Mflops per processor. Choosing
instead the "minimal acceptable" values (in boldface above)- 80 Mbytes/sec
bandwidth to memory, 20 Mbytes/sec communications bandwidth, with 2.5 _sec
overhead; 10 Vax equivalents of nteger power, etc. -- the effective power would
decrease to 16 Mflops per processor.

These numbers may be disappointing, but it is a fact of life that the actual
performance of a system is not the "machoflop rate" (the speed if the problem
could be selected to maximally use the processor). It is not "God's megaflops (the
speed arrived at if you count all the necessary operations in the actual problem,
and assume that miraculously everything overlaps perfectly); nor is it
"superman's megaflops" (the best possible speed, assuming infinite
programming effort is available). Herculean efforts involving customizing every
routine and interface will also be rare. The best one can expect is careful,
modular optimization of all routines which run for significant times on the
system.



Memory Size Requireme.nts
It is harder to pin down quantitative requirements on the size of main memory

in a system. Nonetheless, it is important to know what we can about this, because
a large fraction of the cost of a system is the cost of memory. In cases where the
users are completely unsure of how much memory and power will be needed ("the
more the better"), the "cost rule" is reasonable _ spend half your money on
memory. We must try to do better than this, because memory requirements may
influence design decisions such as the choice of SRAM vs DRAM. If the wrong
selection is made here, and the cost rule is followed, then the system utility can be
diminished by a large factor.

The first hope would be to set a natural physics scale for the memory. For
example, if we could honestly say that 64**4 will be fine, and going to larger
lattices going past 64**4 doesn't help any more, then the total memory size needed
could be fixed as being no greater than 36 Gigaflops. Today's estimates for this
"natural" physics scale range from 64**4 to 128"4 (and up to NEVER).
Unfortunately, the feeling for this number always seems to be just one or two
orders of magnitude beyond what we can study at the time 128"4 might really
be as big as you would ever want, but we won't know till we can get past there.

It is likely that for systems to be designed in the near future, neither CPU
power nor memory will be totally adequate for all the physics one would like to do.
Since, for a fixed system cost, speed and size can be traded off (to some ,extent), a
study of memory needs is dominated by trying to determine the proper memory to
power ratio. This can be expressed in Mbytes/Mflops, where a Mflops is one
million peak floating point operations per second, although strictly speaking, the
important power measure is effective Mflops.

The memory to power ratio is highly problem dependant, and optimizing it
requires physics input. We must have an idea of what sort of algorithms are best
to use (to see how much memory is needed per sit_). It would be nice to know how
big a lattice is needed for interesting and correct physics results. Since we won't
know this very well until the physics has been done on large lattices, we must

._ make do with estimates of how many sweeps are needed to get valid results
then for a fixed amount of CPU power, one can see how large a lattice could be
done in a reasonable time, and determine memory needs accordingly.

Based on experience with current computers, we have learned (with some
degree of confidence) certain things about these requirements. Other numbers
are much less firm, either because they depend critically on the choice of
algorithm and progress is being made in that direction, or because they are
sensitive to issues which can only be learned by doing the physics on larger
lattices. We will first discuss what we know, then present best estimates for other
quantities that are necessary to get a feel for memory to power ratios.

The number of bytes of data memory needed per site is easily calculated for ally
given algorithm; moreover, we have some idea of what this number is for
algorithms which will likely be used, and the uncertainty in this number is fairly
small. Almost independent of algorithm choice, there will either be some



pointers defining the connectivity of the lattice, or lists used to avoid excessive
integer computation in computing locations of neighboring fields -- this amounts
to under 100 bytes per site. For the pure gauge field, there are four links per site

•-- 288 bytes (onI_ could save only two rows, but this would have a severe impact on
the performance/of many algorithms). The quark field is more subtle. At a
minimum, one ne_.ds to be able to find one component of the propagator, while the
gauge fields are Still present (this result can then be sent to a distributed disk
system for futuie use). Inversion methods like conjugate-gradient and
minimum-residual typically require 3 - 5 copies of quark fields present- roughly
up to 500 bytes. Thus: we need at about 900 bytes per site.

A class of methods which will require somewhat more storage is the set of
molecular dynamics related algorithms. What these algorithms, which include
the promising Hybrid Monte Carlo method, have in common is the need to
remember values of "field momenta" or fields from previous steps. Typical first
or second order methods require one or two extra copies of each field, amounting
to up to 700 additional bytes per site. Another circumstance in which additional
memory would be needed is if all the components of propagators were needed at
one time. That would be the case if there was no usable disk system. The
additional memory per site is roughly 1100 bytes (the "momentum fields" for
molecular dynamics methods can share these extra bytes). At first glance it
would seem that the physics analysis does need all the components of the
propagator field at one time (worse yet, of two or three propagators with different
mass values). However, the analysis can normally be done one time slice at a
time, with only 1 - 3 time slices in memory at any instant. Under those
circumstances, the memory needs for analysis are no greater than those for
configuration generation. Thus the anticipated lattice size dependant memory
needed is

[900- 1600 bytes/site]

There is some amount of data memory needed independent of lattice size. This
includes data structures describing the lattices in general and sets of sites and
fields on the lattice; local variables and intermediate storage for use during the
computations at each site; and memory in support of whatever operating system
is running. (On machines with distinct integer units not coordinated with the
floating point processors, this can be in a different, probably slower, memory.) We
find for the ACPMAPS system that this "overhead" memory amounts to a few
hundred kilobytes per processor, but it can probably be kept to under 100K bytes.
The minimal extra overhead is then

[i00 Kbytes/processor 1

The instruction memory needed is obviously driven by the most complex
algorithms that will be desired. It would be a disaster not to be able to run the
codes you want because of instruction memory limitation; just as bad is the need
to "overlay" problems or worry about breaking things up into multiple jobs.
Fortunately, we can get a good idea of how large these codes can be once ,,Je have
factored out all the grid/connectivity/bookkeeping work. This is what the libraries
for CANOPY do _ the CANOPY routines linked into most lattice codes amount to
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over 200K bytes on ACPMAPS (but more like 100K on machines where half the
instruction line is not occupied with floating point nops). To this can be added
under 100 Kbytes for the operating system. The remainder of the problem code is
what varies with algorithm complexity. This ranges from about 20 Kbytes up to
100 Kbytes for problems done to date. The coding complexity of algorithms is
probably worst for large analysis codes, where several different types of analysis
will be combined, to lessen the need for multiple passes through data kept on tape
or disk.

|
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It seems safe to assume that the library routines will at most double, and that
the code complexities will become no worse than five times what they are today.
In that case, if the instruction memory is shared with data memory, we need

1800 Kbytes for instructions I

Because running out of instruction room is so disastrous, if there is a distinct
instruction memory, we would like to provide more than a factor of two
cushioning:

I2 Mbytes for separate instruction memory I

We know some things about lattice size requirements. Attempts at doing
interesting physics have shown that 16 (and probably 24) sites on a side is
inadequate m either finite size or lattice spacing effects are significant. There is
some hope that 32**4 sites (or 32**3 volume by a larger number of time slices) will
be better; we would have to go a bit further to be somewhat convinced that size
dependance is dying off. Thus we need to be able to work with at least two million
sites. What we would really like to be able to study is 64**3 volumes and even
longer in the time direction (24,000,000 sites) -- perhaps only for quenched
fermions. So, not including overheads described above

{ needatleast3.2Gbytes }total memory desire atleast 21.2 Gbytes plus overhead

These are absolute minimum requirements for advancing physics beyond the
realm explored to date. Even the larger number is easy to attain for systems with
many processors.

We also know something about the power needed for doing quenched
calculations. This is made up of comparable times spent on gauge Monte-Carlo,
and inversion to find propagators. (A limited amount of physics can be done
without propagators.) The time needed to do about 1000 Monte-Carlo sweeps (to
get a non-correlated configuration) is about 15 million cycles per site; the time for
LU decomposition inversion for each of 3 mass values and each of 12 spin-color
components (three times faster than without preconditioning) is about 20 million
cycles. These times (especially the inversion time) may improve, but because they
are balanced, both have to improve a lot to make a big difference in total cycles
needed. If a physicist wanted to do a serious examination of quenched QCD on a
big machine, this would require exploring about ten values of (beta, size). For
each value, you would like at least 100 decorrelated points; and the study should
take no longer than 6 months. This gives a value for the memory supportable by a
given power for a high-statistics study of quenched QCD:

1 cycle • 1 decorellated point • 900 bytes • 1 value • 1 study • 15M sec
2 flops 35M cycles/site site 100 points 10 values study =

10.2 Mbytes/Mflops needed for high-statistics quenched QCD I



This is an absolutely minimum appropriate memory size for quenched
physics. At least five effects make it desirable to have more memoly per unit
power:

• It is often possible to trade memory for speed. For example, and alternative
scheme of storing pointers to the link fields needed in environment
calculations would save 10 - 20% in time, at the cost of 600 extra bytes per site.

• Frequently, one would like to explore either memory-intensive algorithms on
reasonable lattices, or the behavior of proposed methods on really large
lattices. Sometimes these low statistics studies are done to investigate
algorithms; at other times, physics can be extracted. These studies require
much more memory- one or two orders of magnitude. For example, just to
double the number of points in all directions needs an order of magnitude
increase in memory size.

• For a given machine size, the memory is a hard limitation; the power
limitation can be worked around in important cases merely by tolerating
longer running times.

° Although we have assumed the system scales, making memory/power ratio
the important factor, this scaling does not go on forever. If there is a limit on
how many processors can be in a system, you cannot indefinitely increase the
size by adding memory and power together. For example, it may be possible to
work with 4,000 32 Mbyte processors, but not 16,000 8 Mbyte processors.

° Some programs in the analysis stage may require more bytes per site than the
corresponding program to generate the configurations and propagators. For
example, if a particular smearing method requires the entire propagator (all
time slices) for each mass value to be present at once, that could quintuple the
needed memory.

A couple of interesting points also indicate that large memories are desirable.
As long as a sufficient number of decorrelated lattices, very large lattices provide
extra statistics compared to smaller volumes (the fields on one side may
decorrelate with those on the other side). So it is not the case that power needed to
do high-statistics physics scales with volume -- it may level off at some point.
Also, major breakthroughs (for example, cluster-like algorithms) are not ruled
out; these tend to vastly increase the appropriate memory/power ratio. This is
even more relevant to dynamic QCD.

Experience with the ACPMAPS system corroborates these observations:
Physics can just be done comfortably with 0.4 Mbytes/Mflops, but low-statistics
large-lattice or memory-intensive investigations are hampered.

Hard facts concerning memory needs for dynamic QCD are more difficult to
come by. This is because of there is much greater uncertainty in the nature of
algorithms that will be appropriate, and in the speed with which these algorithms
produce decorrelated data points. However, certain obvious constraints can be
stated.



Firstly, dynamic QCD will (probably) never be quicker than quenched
calculations. (It is conceivable that the presence of quark loops damps some
critical point effect in a big enough way to overcome the extra time taken, but that
seems prohibitively unlikely.) Therefore, the memory to power ratio required for
dynamic QCD tends to be smaller than that for quenched physics.

Secondly, the absolute size limitations still hold. On the low end, if you can't fit
a large enough lattice to do interesting physics, decent statistics will do no good.
On the high end, a machine large enough to do dynamic QCD on 64**3 by 96
lattices will probably be satisfactory for a lot of physics, although there may be
some reason why bigger lattices are interesting.

I at least 3.2 Gbytes needed even for dynamic QCD

Finally, because algorithm investigation is for dynamic QCD is an extremely
important endeavor, quite a bit of work will be low statistics studies on lattices
which are larger than would be feasible (for. good statistics) based on power.

As to the estimated appropriate memory/power ratio for high-statistics
dynamic QCD, we can proceed as follows: Today's best dynamic methods (e.g.
hybrid Monte Carlo) take between a factor of 100 and 1000 more time than is used
for quenched calculations on the same size of lattice. (The factor depends both on
the algorithm and on the values of beta and quark masses used.) If" no further
algorithm improvements occur, this would give quite a small memory/power
ratio; the memory needs are controlled by the desire to have at least as much site
data memory available as overhead- this means memories of 250K (or 1-2
Megabytes if instruction memory shares the same space) would be appropriate.
However, in the absence of algorithm improvements, the important work will be
on algorithm development, which needs _as mentioned above) at least an order of
magnitude more memory.

Recent improvements in propagator computation have increased speed by a
factor of 3; these improvements have not yet been applied to dynamic QCD on
reasonable lattices. We can suppose that the same sort of speedup will occur
there -- a factor of between 1 and 10. It is more speculative to try to estimate the
remaining room for improvement; we will guess that it is the same amount:
between no further progress, and another order of magnitude. However, we will
not include this last factor in our estimates when we also include the _increased
memory to do algorithm exploration; you don't need both the last improvement
factor and the exploration room. This will give a conservative estimate of the
memory/power ratio appropriate for dynamic QCD.

|



Putting together the estimated numbers, we get that the memory required for
dynamic QCD is that for quenched QCD, multiplied by the increase in bytGdsite
needed (a factor of about two) and by:

10.5 + .5 improvement in algorithm • 101.5 + .5 for further algorithm exploration
102.5 + .5 times more power needed for dynamic QCD

This means that the appropriate memory size for doing dynamic QCD is half of
that for quenched physics -- there is an uncertainty here of an order of
magnitude.

I0.1 Mbytes/Mflops needed for dynamic QCD]

The memory to processing power ratio needed for high statistics dynamic QCD
may be about ten t_!aes less than that (because the improvement factor is likely to
be sma!ler than the extra memory needed for algorithm exploration);
uncertainties are large. To allow for the possibility that the analysis phase will
require more bytes per site, we will estimate that high statistics dynamic QCD
needs three times less memory

[.03 Mbytes/Mflops needed for high statistics dynamic QCD I

To summarize appropriate memory/power ratios are:

0.2- 6.0 Mbytes/Mflops for que:_ched QCD with algorithm exploration

0.2- 0.6 Mbytes/Mflops for high statistics quenched QCD and analysis

0,01 - 1.0 Mbytes/Mflops for dynamic QCD with algorithm exploration

0.003 - 0.3 Mbytes/Mflops for high statistics dynamic QCD

To put this in perspective, it means that for a 100 Gflop machine, you might
have 30 Gbytes of memory to be confident that high statistics physics can be done,
and to provide for most dynamic algorithm exploration. For a true Teraflop
machine, you might wish to stop at 100 Gbytes, which would comfortably allow for
algorithm exploration and support high-statistics quenched physics on 100"4
lattices.
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Appendix A- P_r_m_ters Studied

To parameterize the nature of a machine architecture (for the purpose of
evaluating its effective power), we adapt the following conventions: Since for fixed
numbers of cycles for every operation the power scales completely with cycle rate,
we express everything in terms of number of cycles taken for a particular
operation. (This need not be an integer, and can easily be less than one; and in
some circumstances is a statistical average number.) Clock cycle rate is
somewhat arbitrary; we ordinarily take our 'cycle' to be the time needed for one
floating point multiply and accumulate operation, since many proposed
architectures are oriented in that way. In the analysis of how long various
operations will take, we come across several parameters -- each is the time taken
to do something (so that a lower value for a parameter means more power).

• F -- A floating point multiply and accumulate (or sometimes a multiply and
an add). Normally taken to be 1.

• f -- A floating point multiply or add. Often the same as F; smaller the

architecture is not multiply/accumulate. /
• D -- Double precision operation.
• M -- Load a 32-bit word from memory (actually, a usual floating point word,

64-bits if 32-bit operations are not typical). Typically will range from .5 to
around 4.

• Mc -- Load a 32-bit word from a fairly large cache memory -- same as M if
there is non cache.

• Me -- Load a 32-bit word from an external register- same as Mc if there are
none.

• S _ Store a 32-bit word to memory.
• Se _ Store a 32-bit word to an external r_giste_.
• Oc _ Overhead to establish communication to another (neighboring)

processor. In some SIMD architectures, this can be zero cycles; it
ranges up to hundreds or thousands.

....C -- Communicate one 32-bit word to or from another processor (as part of a
block; the overhead is covered by Oc).

• I _ Integer operation. This is normalized to Vax Mips -- a 1 Mhz processor
with I = 1 would match one _ax (780) in integer power. Many factors go
into I, including memory speed and compiler efficiency; typical RISC
machines require 2-3 actual cycles to do one 'integer operation' by this
definition.

Another parameter which comes into consideration is controlled not by the
machine architecture but by how big a chunk of the lattice is handled by each
processor. This is surface/volume ratio, S/V, and will typically be around 1 - 2.
Details of S/V considerations are presented in appendix D.



Appendix B -- Archit¢ctur_ Examined

1-Shared Memory- Communications tied to memory. Every memory access
takes the same time, whether or not communications is involved. The
architecture can look like a grid or a switch:

6 e
2- Lockstep: Shared Memory with Explicit Local Caches ----Communications tie_

to certain memory accesses. Accesses which are known to be available locally
are quicker. The same architectures apply, with some additional small, fast
memory attached to each processor:

M

3 - Lockstep Clusters- Lockstep communication, but with shared paths between
nodes of groups of nodes. For example, there may be several nodes on a single
board, which has a communications path (or paths) to other clusters.
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Obviously, there may be multiple levels of clustering: nodes on ai board, boards
in a crate, etc. Assumedly, this shared path is not fast enough to match the
intra-claster bandwidths; it is a potential bottleneck. For these architectures,
the details of the size and shape of the portion of the grid on each cluster is
important. Possible architectures include having switches or fixed
interconnections between clusters and within each cluster:

sw_ ch

4- MIMD M Shared communication paths, with or without attempts to minimize
contention. There can, of course, be levels of clustering which will effect
communications bottleneck computations.



Appendix C: Detailed Breekdown of Anticipated Timings

_l;_g_tors and Dynamic 0uarks m Dsla_h

The object is the computation of the D operator being inverted when quark
propagator calculations are being done. This is done once per conjugate-gradient
sweep for each site. Quark inversion represents about half the work for q,,enched
calculations, and probably 80% - 99% for dynamic QCD. The quantity need ed for
each site x is

{ }. k y_..,up. x> +

where k is the hopping parameter (related to the bare quark mass). Thus for

each of eight directions, one must accumulate an expression of the form Uy_.

The quark field _ is a set of four color-vectors (complex 3-vectors), but the

multiplication of _ by y{_does not imply a multiplying a 4 x 3 and a 3 x 3 complex

matrix, because _ consists of l's and i's, one element in each row. Naively,

multiplying lp by U does involve multiplying a 4 x 3 complex matrix by a complex

matrix (144 multiply/add cycles). However, there is a technique (the "Draper
trick") to reduce the requirement to multiplying 2 x 3 and a 3 x 3 complex

matrices, saving half the arithmetic. The trick relies on the fact that 1 + y{_either
has two zero rows, or has rows 3 and 4 trivially dependant on rows 1 and 2. Thus,

it suffices to combine the top and bottom halves of _, and '_nultiply U by the

resulting 2 x 3 matrix. For example, in a representation where Ztx is given by

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

to compute (l+Yx) _ one need only use (q/l+qt4) and (Ig2+lg3).

So, the efficient computation of the D operator can be broken into four phases:

• Phase 0 -- Locating all the necessary _g and U fields, and loading any off-node
data needed.
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• Phase 1 -- Combining the four rows of into two color vectors, incorporating the
appropriate i and signs (or in one case, multiplying two rows by 2, since the

other two components of are (l+_'_)_l/zero).

• Phase 2 -- Multiplying the combined color vectors by the gauge field U. This is
the step that has been shortened by the trick, but is still the dominant step.

• Phase 3 -- Accumulating the result of phase 2. At the end, this result can be

multiplied by k and added to _(x). Alternatively, one can multiply by k and
accumulate immediately.

We will calculate the time T[D] needed for accumulating all eight components
(one entire site). Note that phases 2 and 3 may be combined, if there are enough
registers or sufficient bandwidth to memory. Phases 1 and 2 could in principle be
combined, but in practice, to gain from this would require extra memory
bandwidth, substantial extra integer power (to generate the complicated
addressing pattern needed), and a lot of extra coding work -- we assume this
won't happen. Phase 0 might be combined with phase 1, but this would involve
inserting new memory operations into a very ubiquitous software tool (getting
pointers to fields), and would probably not be attempted.

A total of 1260 floating point operations is required to compute D in this way.

Phitse 0: There is a computational part and a communications part. The
computational part is mainly pointer chasing. Basically, you are offsetting the
home site's pointer list with the direction (shifted appropriately) to get a pointer to
the site desired, looki_lg up and adding the field offset corresponding to the
selected field, and checking that the node looked up is indeed the local node.
Including the subroutine calling overhead, this amounts to about 8 integer

instructions for each field; there are 9 _/(including tr, e home site) and only 5 U
(the four gauge links on the home site are known to be bunched together) field
pointers needed. We will also add in the overhead for moving from one site to the
next in a task (10 instructions). The time taken for the local portion of phase 0 is
thus 122 I. [One can picture some macho arrangement of sites and fields in
memory such that this is cut by a bit, computing field locations by shifting and
adding appropriately. Aside from the fact that this limits the physics you can do,
and has to be reconsidered for each new problem, it is also observed that the
pointer chasing method actually is faster in practice.] In this phase, it turns out
that only about 15% of the data accesses are inherently uncachable -- at any rate,
these memory cycles are factored in to the effective integer speed I.

The communications part of phase 0 depends critically on two things: how
many fields must be brought in from off node, and how long it takes to load a field.
The latter is sensitive to communications overhead and bandwidth, and to just
how the communications are synchronized. That is, the bandwidth requirements
may be much less if nodes are not all attempting to communicate
simultaneously. Several models will be considered here: (1) A MIMD system,
with communication needs eventually being randomly distributed in time. (2) A
system with a large configurable switch, employing simultaneous



communication over the switch. (3) A system with lockstep local communication,
with a group of processors (perhaps on one board) sharing a channel to
neighboring boards. (4) A system with lockstep local communication, with each
processor's bandwidth unaffected by other activity.

The number of fields needed from other nodes depends on how the sites are
distributed among the nodes. It ranges from 6 fields needed (4 quarks and 2 links)
for the "pancake" case (e.g. a 64*64 plane in each node) to an average of two or less
for hypercubic chunks (1 for 8**4 chunks in each node). ,This number is equal to
1.5 SN, the surface to volume ratio for each processor (because even when a
quark must be fetched, there is a 50% chance that the associated U for
transporting that quark belongs to the home site). In cases (2) and (4), the
communications time adds to the rest of the time - the time taken is
S/V (1.5 Oc + 33C). In cases (1) and (3), the time taken is the same, but there is
the potential for a bottleneck in communications -- if N nodes share a bottleneck,
N S/V (33C) cycles of communication must happen. This is discussed at length in
the section on communications saturation (appendix D). In case (1), this
communication is distributed (to a good approximation) along the entire
computation time, but in case (3), it must all be part of phase 0. Because of this,
for lockstep shared communication, one must multiply C by the number of nodes
haring the bottleneck, while for MIMD shared communication, one multiplies C
by a contention factor equal to 1/(1-saturation), where the saturation is the total N
node communication cycle time divided by the time for the entire Dslash
calculation.

Phase 0 thus takes [122 1 + SN (1.50c + 33C)] cycles.

Phase 1; This is pulling four color vectors in and adding them in pairs to form
two color vectors. (In one case out of four, it instead pulls in two vectors and
multiplies by 2; we will ignore this small deviation.) The integer overhead
involved is pretty trivial (two primary addressing operations, then DMA). The
memory requirements, which are likely to dominate, amount to 24 M. The
floating point requirements are 12 adds (12 f). This is done for each of eight
directions. (Note -- we assume that there are sufficient registers to hold the two
resulting color vectors. If there are fewer than about 16 registers, this and phase
2 will change, requiring many more memory operations.)

The memory accesses here are largely uncachable. Obviously, the fields from
the site before home in the most rapidly changing dimension (or two dimensions
if the cache is very large) can hit cache; depending on details of the
communication mechanism, so can any fields that had to be fetch from
neighbors. Still, between 50% and 87% of these accesses are inherently "fresh"
data. We will assume a 75% miss rate.

Phase 1 thus takes [Max(144 M + 48 Mc, 96 f)] cycles.

' Phas_ 2; This is the multiplication by U- 72 multiply/add pairs (72 F).
During this time, U must be pulled in. Assuming the two color vectors remain in
registers, each row of U need only be loaded once. This phase requires 24 - 30
registers to accomplish in this optimal way. If there were only 16 registers, then
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you could do the loading in the same manner, but each component of the answer
would have to be stored back, and the pipe overheads would be felt more strongly.
We assume at least 32 registers. This phase is done eight times. Again, most of
the memory accesses will miss cache.

Phase 2 thus takes IMax(108 M+ 36 Mc, 576 F)] cycles.

Phase 3: Here we have two choices. If the registers are limited, we pull in the

accumulated /g(x) + k(l+_)/g terms, multiply or two color vectors produced in
phase two by k, add one of them to each of the four accumulation color vectors,
and store the new accumulations. If we have sufficient registers to hold the
accumulations, (a total of 56 - 64 registers) then the loads and stores go away,
except for the first loads and last stores. In principle, the k multiplications can be
done at the same time as the adds. In practice, the chip architecture may or may
not allow this, but this step may be memory dominated anyway, so we will just
assume multiply/add cycles. These are not the sort of"regular" F cycles found in
complex multiply and accumulate operations, so architectures with F less than 1
(e.g. two or more fmac units in tandem) will use F=I here. That is only important
if there are lots of registers, so that this step is not memory dominated.

Phase 3 thus takes either [Max(168 Me + 168 Se + 24 M + 24 S, 192 F) I cycles,

or with at least 56 registers IMax(24 M, 24 F) + Max(24 S, 24 F) + 144 F 1 cycles,

but in any case at least 192 cycles.

The total time in cycles for the Dslash operation is then (assuming we are in
the range where a memory operation takes at least half as long as a floating point
multiply and add, and no more than four times as long)

1576 M + 576 F + 122 1 + SN (1.5 Oa + 33C)]

:t
I Of the 576 memory cycles in memory-dominated phases, one third are

inherently uncacheable loads; one third are stores. 336 cycles (including most of
_ the stores) could be to extended registers or not involve memory at all if there are
i{ at least 56 registers -- but these do not overlap the other memory operations.

Therefore, for this operation, an 80 Mflop unit might be reasonably balanced with
160 Mbytes/sec bandwidth to memory, 16 Mips of integer power, and 20
Mbytes/second of communications bandwidth (giving 15% communication
saturation, if S/V is 1). Under those circumstances, the D operation will take
about 45 _sec; this represents 35% of the peak floating point speed, or about 45% of
the maximum power in principle possible by overlapping all the integer,
communications, memory and floating point operations.

i

Communications bandwidths between groups of nodes are particularly
stressed here, because the number of sites handled by each node would not be
large small for such a computing-intensive problem. Assuming decent
chunking, a card with 8 nodes might well contain 8*8*8*8 sites; S/V is 1. Making
the queueing assumptions discussed previously, a 40 Mbytes/second inter-group



bandwidth would increase the execution time by 18% (the communications
bandwidth being 30% saturated); 28 Mbytes/second would cost 42%, and 20 would
cost 80%.

Minimal Residual Incomplete LU Decomposition

The operations other than D necessary for propagator calculation vary widely
with what particular algorithm is selected (even the D computation can vary, but
those changes don't alter the mix of operations much, except as mentioned in the
next paragraph). Rather than try to study all possible algorithms, we will
examine a sample algorithm, choosing one which is currently "state of the art" in
the sense that for interesting values of _ and k on fairly large lattices it performs
much better than most methods, and as well as any. This algorithm is the
method of minimal residuals, preconditioned using incomplete LU conditioning.

The steps involved are an ordinary D, followed by special Dslash-like
operations acting with the L and _,hen the U operators (these backsolve the
conditioning), followed by the miscellanec, us additional operations we will
consider here. The L and U operations involve the same sort of quark transport,
multiply by gamma matrix, and accumulate steps a's D, but the accumulations
average only half the number of quarks. In addition, needs for synchronization of
data affect the performance on those operations; a full analysis would depend
heavily on the particulars of the architecture. We will approximate the LU
portion as being equivalent to one D, for the purposes of estimating how important
the miscellaneous additional operations are.

These additional operations consist of finding a pair of dot products of the form

_g • _ and _/ • (_ where _/ and @ are quark fields, and doing a

pair of linear accumulations of the forms _/ = _g + a ¢; ¢

= _- _ o_, where o_ is a complex scalar. The dot products can be

done together, as can the linear accumulations, but _ depends on the results of
the dot products. So these miscellaneous operations must be broken into two
phases -- phases 4 and 5 for the overall propagator inversion.

Phase 4: The dot products require, per site, about 10 integer operatiuns for task
overhead, roughly 8 integer operations to locate two fields (which can be clustered
together) at the home site, and about 8 integer operations to guide the summing of
results across sites, for a total of 26 integer operations. The actual dot product

takes 24 multiply/accumulate cycles for _g • _g and 48
multiply/accumulates for

_g ° O , and requires 48 non-cacheable memory cycles, to load in W and

¢.

There is a potential complication here involving double precision. It seems
likely that small errors in these dot products can radically effect the speed of



convergence for the inversion. Since these dot products can be sums of millions of
terms, systematic less of precision is a major concern. An obvious solution
would be to do the accumulation in double precision. This does not affect the
loading needed (assuming the quarks themselves are still single precision) but it
means that the multiply/accumulate (or at least the accumulate part) is done in
double precision. It is prudent to assume that this is the case.

28 ! Max (48 M, 72 D) I cycles.Phase 4 thus takes i +

Phase 5: The linear accumulations require, per site, about 10 integer
operations for task overhead, and 10 operations to locate three fields clustered
together at the home site. The actual calculations then require 72 uncachable
memory load_ to bring in the three quarks (there will surely be sufficient

registers to not need to bring ¢ in twice) and 48 stores, as well as 192
multiply/add cycles. (For architectures like the XL-3132, where
multiply/accumulate must accumulate with the result of a prior operation, an
extra 24 floating point cycles are needed.)

Phase 5 thus takes[ 20 1 + Max ( 72 M + 48 S, 192 F ) 1 cycles.

The total time in cycles for these miscellaneous operations (which amount to
528 flops) is

[ 46 1 + Max (48 M, 72 D) + Max ( 72 M + 48 S, 192 F)]

Three things to notice are:

• The ratio of memory needs to floating point cycles is, surprisingly, smaller for
these _alculations than for the D computation. But when at least 56 registers
are available, D becomes less memory intensive.

• Integer operations are about twice as important in these miscellaneous
calculations.

• The Dslash and Dslash-like computations together take roughly 10 times
longer than the rest of the calculation.

To summarize, for the entire propagator inversion (representing 1788 flops)
the number of cycles required per site is:

field location: 122 I + S/V (1.5 Oc + 33C)

combine color vectors: Max(144 M + 48 Mc, 96 f)

multiply by links: Max(108 M + 36 Mc, 576 F)

accumulate D: M_x(168 Me + 168 Se + 24 M + 24 S, 192 F)

dot products: 26 1 + Max (48 M, 72 D )

linear accumulations: 20 1 + Max ( 72 M + 48 S, 192 F )



Quenched Gauge, Configurations _ Envir..Qnment

When evolving the gauge field configuration in the absence of fermion loops,
the bulk of the fi_0ating point operations are in the calculation of the
"environment" with respect to a link being updated. This environment is the sum
of six 3-1ink "staples", so this procedure can be referred to as "staple-sum". While
the computation of a staple naively involves two SU(3) multiplications, in fact, it is
sufficient to compute only the first two rows of the initial multiplication, and
reconstruct the necessary third row of the final product by cross-multiplying the
first two rows. This means that the entire process requires 1932 flops, rather than
the naive value of 2592.

The efficient computation of the environment can be broken into three phases:

* Phase 0 --Locating :all the necessary U fields, and loading any off-node data
needed.

* Phase 1 -- The SU(3) _nultiplication of pairs of fields.

o Phase 2 -- Accumulating the result of phase 1.

We will calculate the tJime TIE] needed for accumulating all six staples to get
the environment for one link. Note that phases 1 and 2 may be combined, if there
are enough registers or s_ufficient bandwidth to memory. Phase 0 might be
combined with phase 1, bu'_ this would involve inserting new memory operations
into a very ubiquitous software tool (getting pointers to fields), and would probably
not be attempted.

_hase Q: There are two components to the accumulation of the field data. One
is the computation of pointers to the data on the node _ this takes 10 integer
operations per element, or 190 I (including the 10 I site task overhead). The other
is communication _ each boundary link will require one (if it is at the top of a
region) or three (if it is on the bottom) fields from other nodes. Thus the
communications needs are S/V ( 20c + 36C ).

The total time for phase 0 is [190 I + S/V ( 20c + 36C )1 cycles.

Phase 1; Each element of the SU(3) products requires 12 multiply/accumulate
cycles to compute by finding the dot product of a row of one matrix with a column
of another. Computing a staple involves doing a "half' multiply of the first two
links (giving only two rows of the product) followed by a "full" multiply by the third
link matrix. To reconstruct the third row of the answer, without needing the
third row of the intermediate product, one takes advantage of the SU(3) nature of
the matrices, and uses the cross product of rows one and two. (This is what
allows the first multiply to be incomplete, and also saves time on its uwn.) The
reconstruction takes 8 multiply/add cycles per element. This leads to a total of 168
floating point cycles per staple.



The memory operations needed are heavily dependant on the number of
registers available. The obvious minimum is pulling in two rows of the first link,
and all three rows of the other two links -- 48 M. (These operations are roughly
half cachable, depending on whether all four links associated with a site are
updated sequentially.) To achieve this minimal memory usage would require
sufficient registers. It would seem that 36 registers are needed -- at one instant,
there is a row from the first link, the entire second link, and two answer rows for
the intermediate product. With about 28 registers, one can accomplish the staple
computation using 6 extra loads (any of these extra loads will, of course, hit
cache) -- in the first multiplication, one column of the second link gets
overwritten by answers, and is later pulled in over the no longer needed first row
of the first link. With as few as 16 registers, the number of memory operations
could go up to 78 loads and 12 stores (the intermediate answers would need to be
stored somewhere as they are computed). The memory operations associated
with storing the answer for each staple (18 S for each except the last) are included
here, although if there are sufficient registers to do the phase 2 summing without
putting the staple results into memory, these stores can be avoided.

The total time for phase 1 (for all six staples), assuming 32 registers, is

LMax(144M+lS0Mc+90S, 1008F) I cycles; one could adjust the memory
requirements down by 36Mc if there were at least 36 registers, or up by as much
as 144Me+ 72Se if there were as few as 16 registers.

Phase 2: Adding up the six staples can be fairly memory intensive unless
there are enough registers to keep the accumulations as answers are found. The
number of floating point cycles involved is 18 f for each of five staples. (In
principle, the additions for the third row can be absorbed under the cross product
operations to find elements of that row; this small savings is not worth worrying
about). The simplest case is if there are at least about 54 registers -- then the
accumulation is done without any extra memory involvement. With fewer
registers, it becomes tempting to consider overlapping the memory-intensive
accumulation with the floating-point dominated phase 1. However, this requ_res
the accumulated answer to be stored and re-loaded each time, further
complicating matters and putting a lot of stress on register and memory usage.
Instead, we can assume that the first five staples will have been stored, and after
the last staple is found, the addition will be done.

The total time for phase 2 is [Max(90 Mc + !8 S, 90 f)] cycles, with the memory
load needs completely eliminated if there are at least 54 registers, and the
memory needs increasing by 18 Mc (the answer for the last staple is not there for
free) if there are fewer than about 24 registers.

The total time in cycles for the environment calculation is then (assuming we
are in the range where a memory operation takes at least as long as a floating
point multiply and add, and no more than 2.5 times as long)

190 lS S + 1008 F + 190 1 + S/V (20c + 36C)]Mc +

!



The 90 memory load cycles in the memory-dominated phase 2 are inherently
uncacheable loads. For the environment computation, operation, an 80 Mflop
unit might be reasonably balanced with 80 Mbytes/sec bandwidth to memory, 16
Mips of integer power, and 20 Mbytes/second of communications bandwidth.
Under those circumstances, the environment calculation will take about 50 _sec;
this represents 50% of the maximum power in principle possible by overlapping
all the integer, communications, memory and floating point operations.

Communications bandwidths between groups of nodes are not particularly
stressed here, because the number of sites handled by each node would not be
large for any problem dominated by these pure gauge environment computations.
A card with 8 nodes might well contain 16'16'16'16 sites; SN is 1/2. Making the
queueing assumptions discussed previously, a 20 Mbytes/second inter-group
bandwidth would increase the execution time by 8%; 20 Mbytes/second costs 23%.

Quenched Gauge Configurations --- Cabibbo-Marinari

When evolving the gauge field configuration in the absence of fermion loops,
updating a link involves the environment calculation detailed above, followed by a
heat-bath in that environment to determine the new link. For SU(3), the method
of Cabibbo and Marinari is commonly employed: Choose a matrix in the [1,2]
SU(2) subspace (with the correct heat-bath distribution); multiply by a matrix in
the [1,3] subspace, and then by one in the [2,3] subspace. This gives a result which
obeys detailed balance and is very nearly distributed as a heat-bath in the full
SU(3) space. (One could choose to do only two SU(2) subspaces, since the product
does cover all of SU(3); the feeling is that the better uniformity associated with the
extra step leads to quicker decorrelation, more than offsetting the additional
work.)

The process then involves three SU(2) heat-bath computations; after each one,
the link and the environment must be updated by multiplying a 3 by 3 matrix
times a 'promoted' 2 by 2 matrix. (Actually, after the third link update, the
environment is no longer needed, so we have a total of only 5 of these "mul23"
updates.)

The SU(2) heat-bath calculation involves finding a random magnitude a
obeying some probability distribution which depends on beta times the
"magnitude" of the SU(2) environment bmag, and then choosing a point
uniformly distributed inside a circle and forming the SU(2) matrix based on a and
that point. The only tricky part is constructing a. In principle, a table lookup and
interpolation is conceivable, but this would have to be a two-dimensional table
(indexed by a random number R and the value of bmag- that a single table based
on some function of R and bmag is inadequate is non-obvious). The construction
and use of the lookup table is not straightforward, and the table would have to be
rather large to allow for simple interpolation, or, in the alternative, costly higher-
order interpolation would be necessary. In practice, users are likely to employ a
more mathematical approach, such as that of Creutz or Kennedy-Pendleton,
which constructs a from R and bmag and then rejects or accepts according to a
further random number. The Creutz algorithm is a bit quicker, but in the



physically interesting regions rejects more tries (and thus has to be repeated more
often)- roughly 66% acceptance versus 98% for Kennedy-Pendleton, which
makes the choice between them pretty much a wash for MIMD machines. (In the
SIMD case, Kennedy-Pendleton has the advantage that the 'tail' of the rejection
distribution is shorter m for 256 nodes, it takes an average of two KP steps, but six
Creutz steps, for every node to have its value.)

So, we can break this link updating into three sorts of computation, forming
phases 3, 4 and 5 of the overal! gauge configuration algorithm'

• Phase 3 m Using the Creutz (_r another) algorithm to get a.
' _ , q

• Phase 4 _ Constructing SU(2)',elements from a values which involves picking
points in a unit circle.

• Phase 5 _ Multiplying 3 by 3 times promoted 2 by 2 matrices to update the link
and environment.

Phase 3; The Creutz method involves and exponential, followed by a loop in
which two random numbers, a sqrt and a logarithm are needed _ the loop
repeats until a value is accepted, an average of 1.5 times for physically interesting
cases. Including the floating point operations to relate these quantities, the
number of cycles taken is 4R + 3T + 15 f, where R is the number of cycles for a
random number, and T the number of cycles to compute a transcendental
function.

The time taken per random number is, of course, sensitive to the
pseudorandom generator employed _ there may even be random number
hardware. We have found that using a combination of fairly sophisticated
random number generators (to insure independent streams) and generating
several numbers at once for efficiency is a reasonably quick way of getting good
random numbers. This method uses mostly integer operations (including pulling
the desired number off the queue of pre-computed randoms) and seems to take
about 8 I cycles.

The transcendentals are done by a table lookup and perturbation expansion.
The business of getting started (by finding the table index, checking ranges,
truncating and subtracting, etc.) takes longer than the actual floating point
involved. In principle, one can save a bit of time by relying on the fact that we
know in advance what the range of possible inputs can be in this case, and that we
care only about absolute (not relative) accuracy in the log case. In practice, one
writes the best and most efficient "gold plated" transcendental functions possible,
and uses those. The typical transcendental takes 10 I + 20 f (the overlap is
negligible) cycles.

Thus, the total time for three instances of phase 3 is L12R+9T+45 f]

or [ 186 1+ 225 f l cycles.

Phase 4; Here, it is clearly right to simply choose two random numbers, and
reject if the sum of squares is greater than 1. This amounts to an average of 2.5
random numbers per SU(2) matrix generated, plus a bit of floating point to put the
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randoms into the (-1,1) range and check the magnitude. (However, for SIMD
systems, this has a long tail, such that an average of four pairs of randoms are
needed before 256 nodes all have accepted a pair. In that case, it may pay to do a
table lookup and interpolation on the first random number to get a magnitude,
followed by taking the cos and sin of a second random number.) For all three
SU(3) multiplies, this amounts to 7.5 R + 26 f.

Once the point on the circle has been determined, it takes about 39 floating
point operations and a square root to combine it with the SU(2) environment
fragment, to form an SU(2) multiplier. For three such operations, we have 117 f +
3 T cycles. The memory operations involved are negligible.

So, the time taken for phase 4 is I 7.5 R + 3 T + 143 _ or I 90 1 + 203 f] cycles.

Phase 5' A promoted SU(2) matrix is formed from an SU(2) matrix by
inserting a 1 on the diagonal and zeros off diagonal for elements with the third
index value, for example,

a 0 b
0 1 0
c 0 d

To multiply an SU(3) matrix by this requires computation of six answer elements
(one row remains unchanged). Each answer element requires 8 multiplies and 6
adds -- 8 F cycles. So a single "mu123" involves 48 F cycles for the floating point
operations.

The memory required is 20 loads (the SU(2) matrix and two rows of the SU(3)
matrix) and 12 stores. These operations will hit cache if there is one, and could
utilize extended registers. The memory burden could be reduced by keeping the
link being updated and the environment matrix in registers, but they would need
to be there across the Creutz and SU(2)-forming phases. We assume this savings
would not be realized.

This operation must be done to update both the link and the environment,
except the final time, when only the link needs to be updated. This means five
mu123 operations (420 flops).

the time for phase 5 is [ Max ( 240 F, 100 Mc + 60 S )]So, cycles.

The entire heat-bath procedure then involves about 848 flops, and takes

[ 19.5R+12T+lSSf+Max(240F, 100Mc+60S)J

or, using our values for R and T,

I 276I+428f+Max(240F, 100Mc+60S)I

cycles.

|
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To summarize, for the link updating (representing 2800 flops) the number of
cycles required per link is:

field location' 190 1 + SN ( 20c + 36C )

staple products of links: Max( 144M + 180Mc + 90 S, 1008 F)

accumulating staples' Max(90 Me + 18 S, 90 _)

Creutz algorithm: 186 1 + 225 f

forming SU(2) matrices: 90 1 + 203 f

updating links, etc: Max ( 240 F, 100 Mc + 60 S )



Appendix D- Site Distribution and Communications Issues

When computing communications requirements_ it is critical to have a good
estimate for the "surface to volume" ratio in a processor- this determines what
fraction of accesses will be off node. Three models can apply to this:

® Dimension Filling (DF) -- the portion of the grid in each node is of size L by L
by M by 1, where L is the length of the entire lattice (in the appropriate
dimension) and M is some fraction of the length in the third dimension.
Suppressing the first two dimensions, this looks as follows:

..|
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This method is fairly flexible and easy to implement, and can lead to trivial
computation of locations of site data structures in special cases. For example,
a 32**3 by 64 grid fits into 512 nodes using 32 * 32 * 4 * 1 slabs in each node,
giving a surface/volume ratio of 5/2.

• Chunks of Sites (CS) -- each processor handles a hyper-rectangle of sites
which is as close to a hypercube as possible. This minimizes the surface to
volume ratio, at the cost of some flexibility: Only certain grids can fit onto a
fixed number of processes in this way. For example, a 32**3 by 64 grid could fit
onto 512 nodes using 8**4 chunks in each, giving a surface/volume ratio of 1/1.



• Broken Dimension Filling (BDF) --each processor handles it share of sites,
allocated in some such that contiguous sites in that order are physical
neighbors. In two dimensions, this looks as follows'
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The big advantage of broken dimension filling is that any shape grid can be
mapped onto any number of sites. The surface/volume ratio is not much worse
than for dimension filling distributions. One caveat is that if computations are
done in lockstep, although there is a reasonable surface/volume ratio, it is
much less frequent that all of a set of accesses will be local.

A fourth method would be to attempt to fit irregular almost-rectilinear, almost
hypercubic chunks onto the grid. The problem here is that the assignment of sites
is not easy to generate, and that the irregularity in 4 dimensional volumes
contributes greatly to the surface area. Assuming flexible hardware, the "right"
method is probably to use chunks if the number of nodes is such tbat there is a
convenient fit, and BDF (or DF) otherwise. The importance of minimizing surface
area is increased for dynamic fermion problems, which tend to be on smaller
lattices and be more communications dominated.

For a given site distribution, the order in which sites are processed within
each node can still be important, If communications are not done in lockstep, the
idea is to spread the interprocessor communication needs over the entire
processing time, so as to avoid bottlenecks. This can be less important in MIMD
architectures, for which an initial bottleneck has the effect of' getting the processes
out of sync, thus ameliorating later delays.

The effects of saturation of communication paths can be estimated in the
following manner: Let us assume that in the absence of contention, a processor
does a process in some time which can be broken into non-comraunication time To
and some communication time _. The communication time is assumed to be

multiplied by some factor F due to saturation effects: T = TO + _ F. Queueing
1

theory estimates F as being 1---PP'where P is the represents how saturated the

channel is. If n nodes are each attempting to use communication time in T total



n_

execution time, P = _--. (Note that no matter how large n gets, P never exceeds

one; T simply increases, asymptotically being dominated by the communications
time.) Combining these, we get an expression for the total time taken:

This is solved, giving

[T=_ 0+(n+l)_+ (n+l)z -4n_T0

which behaves inthefollowingway (takingn = 8):
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This behavior is such that if the channel would naively be half saturated, the time
take is only 10% longer than TO; if it would be fully saturated, the time cost is 42%
(and the channel is actually only 70% saturated); and past there, the time quickly
becomes communications dominated (and the channel almost fully saturated).



Appendix E: Rules of Thumb

,, Cost Rule: In a system with two major costly components with linear
improvements per unit cost, if you have no idea as to what the right balance is,
then spend half the money on each. This insures that you are within a factor
of two (and normally much better) of optimal. This rule requires a scalable
system.

,, Components Rule: A corollary to the cost rule is that it is much more difficult
to design a system with more than two major components, the balances among
which are uncertain.

,, Design Rule: If you know the proper balance between components for your
problems, and this balance grossly violates the cost rule, then re-examine your
system design. For example, if you are using DRAM, and your memory costs
are negligible for the size of memory needed, then see if using SRAM will
improve your cost effectiveness by lever_ging your critica! FPU power. On the
other hand, if almost all your costs are in SRAM, it may pay to design more
numerous, less powerful processors using DRAM.

,, Software Technology Principle: Don't count on major software technology
advances. While hardware technology can be counted on to improve with time,
it is very risky to say "I will somehow write a compiler to optimize for this
architecture". This rule avoids painting yourself into the "flaky software"
corner.

,, Keep Good Software: This is a corollary of the Software Tec'_ nology Principle.
If you have some software which is solid and liked by the users, build on that
rather than discarding it for something which may someday be much better.

,, Software Quagmire Principle: If the Software Technology Principle and the
Keep Good Software principle are followed religiously, you will eventually be
possessed of hopelessly outmoded, impossible to maintain bodies of software
which are relied on by many users. The time to develop major new software
packages is before the hardware design for a machine is set.

,, Slack Rule: It does not pay do sweat the last tiny balance details. The last 20%
of balancing one parameter to all the others is often worth much less than 20%
in machine improvement. This is because now if any of the other parameters
is stressed, it begins costing full value -- there are many things to go wrong,
and no slack. However, if there is only one other parameter at the balance
point, then your are likely to get nearly the full improvement.



Appendix F: Issues Affecting How the Sv,_tem Can be Used

Probably more important than the balance issues discussed in this
presentation, are the factors that will impact how a system can be used to do
physics. These include properties of the hardware and system software. The
following features might be wanted in a system. They are listed in no particular
order, as being essential, important, or only desirable -- this list is not intended to
be exhaustive. The bottom line is always how much physics can be done on the
machine. That may imply tradeoffs between machine size and power, and
usability issues.

Multiple Simultaneous Users Important
Without this, development machines of various sizes will be needed.
They would relieve some (but not all) of the development pressure from
the main machine.

Sophisticated Scheduling Desirable
(Only if Multiple Users.) Avoids the tendency to set aside some portion
of the system at certain times for immediate development availability.

Checkpointing Capability Essential
Means that jobs comparable to the mean time between failures (or
longer) can be run. Can use either intermediate or long-term storage.

Intermediate (Disk) Storage Important
Allows user-controlled use to implement larger lattices on memory-
intensive problems. Permits quick checkpointing and scheduling.
Makes efficient staging to long-term storage possible.

Long Term Storage Important
Users can keep configurations and propagators for future analysis.
Avoids having to re-generate results. Either this or disk storage is
needed for checkpointing and for analysis (which requires 12 com-
ponents of propagators).

Error Checking Desirable
The possibih_y of uncaught errors would lead to some fraction of the
programs being rerun to check. This depends, of course, on how
reliable the hardware is.

Interjob Robustness Desirable
The need to keep a cache of spare modules, and to keep the machine
down when a module has died until it is replaced, is avoided in systems
which can run with several modules excluded.

Good Programmability Essential
Even excluding the issues of not being able to do complicated analysis
or of not being able to program the algorithms desired, very difficult
programming implies that ambitious optimization is impossible. Once
a program is working there is reluctance to change things if
programming is difficult.

MIMD Important
There are some algorithms which appear to require MIMD and which
improve speeds by factors of more than 2. Even if these can be made
SIMD, MIMD makes it easier to provide programming tools. It also
provides a natural way of breaking communications bottlenecks.
MIMD systems are also more likely to be able to survive the loss of one
module. At least some minimal form of MIMD is required for multiple
userg.
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Global Communication Desirable
Helps provide clean programming tools, robustness, and flexible
resource allocation (disks and tapes). Some algorithms rely on non-
local communication; this can be accomplished by passing data alo_lg,
but that is costly. It is not clear whether global communication
algorithms will need to be run for production.

Adequate Memory Essential
Allows one to let physics dictate decisions on how large a lattice one
studies (at the cost of more time). Enables exploration of alternative
algorithms on large lattices.

Standardization of Stored Data Desirable
It should be possible to take configurations and propagators created on
one machine over to other systems for later analysis.
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